The cdmaOne measurement personality, available on the Agilent PSA Series high-performance spectrum analyzers and the E4406A vector signal analyzer (VSA), provides a suite of standard-based measurements with digital modulation analysis to provide the most comprehensive and easy-to-use cdmaOne measurement solution in one analyzer.
Evaluating base station and mobile transmitter performance for cdmaOne systems requires a broad series of tests and measurements.

Promote productivity in research and development:
• extensive capability in one analyzer
• robust, repeatable measurements
• intuitive user-interface
Streamline manufacturing with improved yields:
• one-button measurement setups
• superior accuracy minimizes measurement uncertainty resulting in reduced test margins
• SCPI programmable

The Agilent PSA Series offers high-performance spectrum analysis up to 50 GHz with powerful one-button measurements, a versatile feature set, and a leading-edge combination of flexibility, speed, accuracy, and dynamic range. Expand the PSA to include cdma2000 digital signal analysis capability with the cdmaOne measurement personality (option BAC).

For many manufacturing needs, the E4406A VSA is an affordable platform that also offers the cdmaOne personality.

The cdmaOne measurement personality provides measurement capability in the R&D and manufacturing environments for base stations, mobile devices, and their components based on the IS-95A, J-STD-008, and IS-97D/98D standards.

All demonstrations utilize the PSA Series and the E4438C ESG vector signal generator; however, they can also be performed with the E4406A VSA. Keystrokes surrounded by [] indicate hard keys located on the front panel, while key names surrounded by { } indicate soft keys located on the right edge of the display.

This technical overview includes
• measurement details
• demonstrations
• PSA Series key specifications for cdmaOne measurements
• ordering information
• related literature
To configure the instruments, connect the ESG’s 50 Ω RF output to the PSA’s 50 Ω RF input with a 50 Ω RF cable. Turn on the power in both instruments.

To perform the demonstrations, the ESG and the PSA Series require the following options.

<table>
<thead>
<tr>
<th>Product type</th>
<th>Model number</th>
<th>Required options</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESG vector signal generator</td>
<td>E4438C</td>
<td>502, 503, 504, or 506 – frequency range up to at least 2 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>001 or 002 – baseband generator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>401 – cdma2000 and IS95A personalities</td>
</tr>
<tr>
<td>PSA Series spectrum analyzer</td>
<td>E4440A/E4443A/E4445A/E4446A/E4448A</td>
<td>B7J – Digital demodulation hardware</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BAC – cdmaOne measurement personality</td>
</tr>
</tbody>
</table>

Instructions

On the ESG:
- **Set the center frequency to 1.93125 GHz.**

 ![Keystrokes](preset [Frequency] [1.93125] GHz)

- **This is channel #25 for ANSI J-STD-008.**

- **Set amplitude to –10 dBm.**

 ![Keystrokes](amplitude [–10] dBm)

- **Select cdmaOne mode (IS-95) and assign 23 channels.**

 ![Keystrokes](mode {CDMA} {Arb IS-95A}

 ![Keystrokes](setup select)

 ![Keystrokes](32 Ch Fwd) {CDMA On}

- **Turn on RF output.**

 ![Keystrokes](rf on)

On the PSA:
- **Perform factory preset.**

 ![Keystrokes](system (power on/reset) (preset type) (factory)

- **Enter the cdmaOne mode.**

 ![Keystrokes](preset [mode] {cdmaOne})

- **Set up the analyzer to make J-STD-008 based measurements.**

 ![Keystrokes](mode setup) {radio} {band} {j-std-008}

- **Set the center frequency to 1.93125 GHz.**

 ![Keystrokes](frequency) {center freq} [1.93125] GHz
Channel power

The channel power measurement determines the total rms power in a user-specified bandwidth. The power spectral density (PSD) is also displayed in dBm/Hz.

Control the following channel power measurement parameters:

- Integration bandwidth (defaults to 1.23 MHz)
- Channel power span (defaults to 2 MHz)
- Number of trace averages (defaults to 20)
- Data points displayed (64 to 65536, defaults to 512)

This exercise demonstrates the one-button channel power measurement on the PSA.

Instructions

On the PSA:

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure the channel power (Figure 1).</td>
<td>[MEASURE] (Channel Power)</td>
</tr>
<tr>
<td>Adjust averaging.</td>
<td>[Meas Setup] (Avg Number On) [35] [Enter]</td>
</tr>
<tr>
<td>Deactivate averaging.</td>
<td>(Avg Number Off)</td>
</tr>
</tbody>
</table>

Figure 1. Channel power measurement

![Channel power measurement](image)
Adjacent channel power ratio (ACPR)

To maintain a quality call by avoiding channel interference, it is important to measure and reduce any adjacent channel leakage power transmitted from a base station. The adjacent channel power ratio is a measure of the power in adjacent channels relative to the transmitted power.

- Select fast ACP or high dynamic range.
- Adjust integration BW (defaults to 1.23 MHz).
- Use averaging for rms or maximum values.
- Evaluate up to five adjacent channel pairs.
- Choose adjacent channel offset frequency, reference bandwidth, and limit values.
- Adjust and display both absolute and relative limits.
- Measure the total power in dBm or the PSD in dBm/Hz.
- View bar graph or spectrum.

In this exercise, the ACPR measurement will be made and the customizable offsets and limits explored.

Instructions

Keystrokes

<table>
<thead>
<tr>
<th>On the PSA:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Make the ACPR measurement.</td>
<td>[MEASURE] {ACPR}</td>
</tr>
<tr>
<td>Change the first offset limit to make it fail (Figure 2).</td>
<td>[Meas Setup] {Offsets/Limits} {Limit Setup} {Abs Limit} [-90] {dBm} {Fail} {Absolute}</td>
</tr>
<tr>
<td>Observe the green “PASS” change to a red “FAIL” and red “F” that marks each parameter that fails.</td>
<td></td>
</tr>
<tr>
<td>Look at the spectrum view and zoom in on that part of the display (Figure 3).</td>
<td>[Trace/View] {Spectrum}, [Next Window] until the upper part of the display is highlighted in green, [Zoom]</td>
</tr>
<tr>
<td>Return to multi-view.</td>
<td>[Zoom]</td>
</tr>
</tbody>
</table>

Figure 2. ACPR with failure in first offset channel

Figure 3. Spectrum view
Spur close

This measurement makes it easy to identify spurs that are in the transmitting band. It locates the worst spur and measures its power relative to the limit and relative to the carrier power.

- Choose number of averages (defaults to 15).
- Measure the entire band or examine a single segment.

In this exercise, make the spur close measurement.

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Keystrokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the PSA:</td>
<td></td>
</tr>
<tr>
<td>Measure for close-in spurious.</td>
<td>[MEASURE] (Spur Close)</td>
</tr>
<tr>
<td>Examine just the center segment (Figure 4).</td>
<td>[Meas Setup] {Meas Type Examine} [Trace/View] {Center}</td>
</tr>
</tbody>
</table>

Figure 4. Examining the center segment for close-in spurs
Walsh codes are the fundamental channelization mechanism for cdmaOne. To analyze the cdmaOne multichannel composite waveform, the analyzer receives the signal and decodes each channel using a Walsh code correlation algorithm. Channels with high correlation factors are determined to be active channels and are indicated as such on the display. Once the channels are decoded, the analyzer determines the power in each channel relative to the total signal power.

This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from the coding to the RF section. System imperfections, such as amplifier non-linearity, will present themselves as an undesired distribution of power in the code domain.

The PSA also makes code domain timing and phase measurements. Timing is important because traffic channels can interfere with each other if they are not time aligned. Timing errors are typically due to problems with base station ASIC time adjustment parameters, delays in baseband signal paths, or intermodulation between Walsh codes. Having phase alignment with the local oscillator (LO) is also important. Phase errors can result in a loss of orthogonality between I and Q, thereby making it difficult to demodulate data from the traffic channels.

Now make these code domain measurements using the PSA.
Modulation accuracy (rho)

An important measure of modulation accuracy for cdmaOne signals is rho. Rho is the ratio of the correlated power to the total power. The correlated power is computed by removing frequency, phase, and time offsets and performing a cross correlation between the corrected signal and an ideal reference. This measurement offers a multi-carrier filter that enables demodulation in the presence of multiple and adjacent cdmaOne signals.

Though rho is an excellent metric for modulation quality, it gives little insight into what might be causing poor modulator performance. More useful troubleshooting tools are the PSA’s quadrature phase shift keying (QPSK) diagrams. They make it possible to visualize compression in linear amplifiers, magnitude and phase errors in the I/Q modulator, and carrier feedthrough.

There are two ways to view the cdmaOne signal constellation. The polar vector constellation diagram gives the data of the signal as it occurs during transmission. The complementary vector constellation applies a filter to the natural signal to “clean up” the diagram and make errors more evident.

- Specify PN (pseudonoise sequence) offset.
- Set the measurement interval (defaults to 1.25 ms).
- View magnitude error, phase error, and EVM plots.
- Complimentary filtered constellation diagram. available for zero-ISI analysis
- Parametric results based on IS-95 filtering standard.

In this exercise, measure rho, examine the constellation diagrams, and look at magnitude and phase error plots.
Channel power
- Minimum RF input: –75 dBm (nominal)
- Absolute power accuracy:
 - Manual attenuator setting: ±0.67 dB (±0.18 dB typical)
 - Automatic attenuator setting: ±0.76 dB (±0.24 dB typical)
- Relative power accuracy:
 - (between two different power level signals, mixer level –52 to –12 dBm)

Code domain (base station)
- Minimum power at RF input: –40 dBm (nominal)
- Code domain power:
 - Dynamic range: 50 dB (nominal)
 - Accuracy: +0.3 dB
 - (Walsh channel power within 20 dB of total power)
 - Frequency error accuracy: ±10 Hz + (transmitter frequency x frequency reference accuracy)
 - Pilot time offset accuracy: ±300 ns
 - Code domain timing accuracy: ±10 ns
 - Code domain phase accuracy: ±10 mrad

Modulation accuracy
- Minimum power at RF input: –40 dBm (nominal)
- Measurement interval range: 0.5 ms to 30 ms
- Rho (waveform quality) accuracy: ±0.001
- Frequency error accuracy: ±10 Hz + (transmitter frequency x frequency reference accuracy)
- Base station pilot time offset accuracy: ±300 ns
- EVM accuracy: ±0.5%
- Carrier feed-through accuracy: ±2.0 dB

ACPR
- Minimum power at RF input: –39 dBm (nominal)
- ACPR relative accuracy: ±0.09 dB

Spur close
- Minimum power at RF input: –35 dBm (nominal)
- Amplitude accuracy:
 - Absolute accuracy: ±0.89 dB
 - Relative accuracy: ±0.09 dB

1. For specifications on the E4406A VSA, please refer to the E4406A VSA data sheet, literature number 5968-3030E.
Ordering Information

PSA Series spectrum analyzers
E4433A 3 Hz to 6.7 GHz
E4444A 3 Hz to 12.2 GHz
E4440A 3 Hz to 26.5 GHz
E4446A 3 Hz to 44 GHz
E4448A 3 Hz to 50 GHz

Options
To add options to a product, use the following ordering scheme:
Model E444xA (x = 0, 3, 5, 6 or 8)
Example options E4440A-B7J
E4448A-1DS

Digital demodulation hardware
E444xA-B7J Digital demodulation hardware (required for digital demodulation measurement personalities)

Digital demodulation measurements
E444xA-BAF W-CDMA measurement personality
E444xA-202 GSM w/ EDGE measurement personality
E444xA-B78 cdma2000 measurement personality
E444xA-204 1xEV-DO measurement personality
E444xA-BAC cdmaOne measurement personality
E444xA-BAE NADC, PDC measurement personality

General purpose measurements
E444xA-226 Phase noise measurement personality
E444xA-219 Noise figure measurement personality

Amplifiers
E444xA-1DS 100 kHz to 3 GHz built-in preamplifier

Inputs and outputs
E4440A-BAB Replaces type-N input connector with APC 3.5 connector

Connectivity software
E444xA-230 BenchLink Web Remote Control Software

Warranty and service
Standard warranty is 36 months.
R-51B Return-to-Agilent warranty and service plan

Calibration
For 3 years, order 36 months of the appropriate calibration plan shown below.
R-50C-001 Standard calibration
R-50C-002 Standards compliant calibration

1. Options not available in all countries.

E4406A vector signal analyzer
E4406A 7 MHz to 4 GHz

Options
To add options to a product, use the following ordering scheme:
Model E4406A
Example options E4406A-BAH

Digital demodulation measurements
E4406A-BAF W-CDMA measurement personality
E4406A-B78 cdma2000 measurement personality
E4406A-202 EDGE with GSM measurement personality
E4406A-204 1xEV-DO measurement personality
E4406A-BAH GSM measurement personality
E4406A-BAC cdmaOne measurement personality
E4406A-BAE NADC, PDC measurement personality
E4406A-HN1 IDEN measurement personality

Inputs and outputs
E4406A-B7C I/Q inputs

Connectivity software
E444xA-230 BenchLink Web Remote Control Software

Warranty and service
Standard warranty is 36 months.
R-51B Return-to-Agilent warranty and service plan

Calibration
For 3 years, order 36 months of the appropriate calibration plan shown below.
R-50C-001 Standard calibration
R-50C-002 Standards compliant calibration

1. Options not available in all countries.
Product Literature

Selecting the Right Signal Analyzer for Your Needs, selection guide, literature number 5968-3413E

PSA Series literature
PSA Series, brochure, literature number 5980-1283E
PSA Series, data sheet, literature number 5980-1284E

E4406A VSA literature
E4406A VSA, brochure, literature number 5968-7618E
E4406A VSA, data sheet, literature number 5968–3030E

Application literature
Testing and Troubleshooting Digital RF Communications Transmitter Designs, application note, literature number 5968–3578E
Testing and Troubleshooting Digital RF Communications Receiver Designs, application note, literature number 5968-3578E

For more information on the E4406A VSA or the PSA Series, please visit:
www.agilent.com/find/vsa
www.agilent.com/find/psa

Agilent Technologies’ Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Two concepts underlie Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you receive your new Agilent equipment, we can help verify that it works properly and help with initial product operation.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) 31 20 547 2111

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (080) 769 0800
(fax) (080)769 0900

Latin America:
(tel) (305) 269 7500

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6755 0042
Email: tm_ap@agilent.com

Product specifications and descriptions in this document subject to change without notice.

Printed in U.S.A., July 14, 2005
5988-3695EN