Abstract

The performance of optical components can have significant dependence on polarization, as with the difference between TE and TM polarization in planar devices like AWG and SOA. Determination of the optical properties for the principal states of polarization can be needed, for instance to determine the polarization dependent wavelength of a bandpass filter. It can be complicated to adjust instrumentation to provide these polarization states. A fast and direct method to do this based on Mueller matrix analysis is described here.
Introduction

The performance of optical components can depend significantly on input signal polarization as a result of the structure or cross-section of the optical path in the device. In components based on planar waveguides in particular, different optical properties apply to light polarized parallel or perpendicular to the substrate, labeled TE or TM respectively. Arrayed waveguides (AWG) and semiconductor optical amplifiers (SOA) are two examples of such devices. Determination of the optical properties at these principal states of polarization is valuable, for example to determine the polarization dependent wavelength (PDW) of the passband for an AWG channel and to aid in the design and refinement of the component.

Often it is not known ahead of time how to align the polarization of a test source in order to produce light in the principal states of polarization of the optical device under test (DUT), because these states may be unknown and there is often a fiber that changes the polarization in an unknown way between the polarization controller and the DUT. A possible approach of iteratively optimizing the alignment of the polarization controller to yield maximum or minimum insertion loss from the device itself, or from a reference polarizer in its place, is effective but slow.

Instead of such a search method, both the desired states of polarization and the corresponding optical properties can be determined by analysis of Jones-matrix or Mueller matrix data from the device. In particular, the latter data can be obtained from optical power measurements performed at a predetermined set of input polarization states. It is not necessary to know before the measurement the relation between the chosen set of states and the principal polarization states of the device. This is the same type of measured data obtained for determination of polarization dependent loss (PDL) by the Mueller matrix method. However the analysis is extended to not only find the maximum polarization dependent difference in the loss or other optical property, but to determine the values at the maximum and minimum and to assign the corresponding polarization states to these values.

This Mueller matrix analysis method, described below, provides accurate and fast polarization-resolved measurements and is especially adapted to swept wavelength spectral measurements. From the polarization-resolved spectra, parameters such as PDW can be further derived.

Fundamentals

The method described here is used to identify the input polarization states of a DUT associated with the maximum and minimum values of a transmission or reflection parameter, typically insertion loss, as well as those parameter values. Other device response parameters, such as the photocurrent from a detector device could also be determined.

These input states of polarization associated with the maximum and minimum values correspond to what are called principal axes for crystalline optical materials. Since these input states may not be linear in a fiberoptic component where the polarization can change along the fiber after the input connector, the more general label principal states of polarization (PSP) is used here. Any other state of polarization is composed of a combination of the two PSP and will then be associated with an intermediate value of the optical parameter, such as loss.

Determination of the optical parameters for the PSP is particularly useful when these states are directly related to the structure and design of the component. As mentioned above, this is the case for planar waveguide devices. There are generally clear physical reasons for a difference in the optical parameters for light polarized parallel to the plane of the waveguide vs. perpendicular. Keeping the same nomenclature that is used for microwave guides, these are called transverse electric (TE) and transverse magnetic (TM) respectively. Differences between TE and TM parameters can be influenced by the design and the manufacturing process of the waveguide device.

An important example for such a device is the arrayed waveguide (AWG), which provides a wavelength-selective bandpass filter function between input and output fibers. The device is typically fabricated in a multilayer film that is deposited on a flat substrate and is therefore planar. Due to differences in the waveguide properties for TE and TM light, there can be a difference in the wavelength of the passband. Knowledge of this polarization-dependent wavelength (PDW) is important, both for refining the device design and for characterizing the device performance.

Although the TE and TM states are predominantly linear polarized states that are aligned with the waveguide axes, the polarization states at the input to a fiber connecting to the device are not easily known and may even be partly circular due to changes induced by the fiber.
In fact, the PSP can vary along the length of a device, between the input and output, but light entering with an input PSP will exit with the corresponding output PSP. Light entering as a mixture of the two input PSP will generally exit as a different mixture of the output PSP, depending on the different optical parameters of the two PSP.

As an example, consider the following case of a bandpass filter. The minimum and maximum losses define the envelope of the insertion loss vs. wavelength curve, as shown by the dotted lines in Figure 1. The loss curve is located within this envelope for all polarization states. This includes the effects of possible wavelength shifts of the spectral filter transmission dependent on polarization.

The minimum and maximum loss curves never cross, since the maximum must stay above the minimum. However, at some points the curves may touch each other. These correspond to the points where the spectral loss curves of the TE and TM modes may cross.

Algorithm for isolating TE and TM curves

This is an algorithm for obtaining the insertion loss spectra for light polarized along the two PSP of the device under test, based on the Mueller matrix determined for the device by a 4-state measurement. With these two spectra, the polarization dependence of spectral features, like the passband of a filter can be determined. The equations here are taken or adapted from Ref. 1.

Mueller Matrix analysis

1) Standard Mueller-Matrix-method PDL Measurement

The measurements for this determination are made at 4 pre-defined polarization states that sufficiently sample all possible states. Here we use the same set of states as in Ref. 1, which includes (as set at the output of the polarization controller) linear horizontal, linear vertical, linear diagonal, and right-hand circular polarization. To obtain these states with the Keysight Technologies, Inc. 8169A polarization controller, the linear polarizer angle α_p is first aligned with the incoming source for maximum output power and then the quarter-wave and half-wave plates are set according to Table 1. Note that the linear polarizer is used to define the orientation of the “horizontal” axis. The transmission spectra are measured for each polarization state. Refer to the Product Note [1] for more detailed information about the Mueller-Matrix method and the operation of the 8169A.

Thus, although the maximum and minimum curves can either be determined directly or determined from IL and PDL data, the identification of the TE and TM spectra involves assigning the maximum and minimum for each wavelength to either of the two polarization modes. The solid lines in Fig. 1 illustrate this process.

**Table 1.** Relationship between the four polarization states and the angles that need to be set for the polarization controller.

<table>
<thead>
<tr>
<th>Polarizer</th>
<th>Q-plate</th>
<th>H-plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH, 0°</td>
<td>α_p</td>
<td>α_p</td>
</tr>
<tr>
<td>LV, 90°</td>
<td>α_p</td>
<td>$\alpha_p + 45°$</td>
</tr>
<tr>
<td>LD, +45°</td>
<td>α_p</td>
<td>α_p</td>
</tr>
<tr>
<td>RHC</td>
<td>$\alpha_p + 45°$</td>
<td>α_p</td>
</tr>
</tbody>
</table>

2) Calculate Mueller matrix

The result of the above measurements produces four wavelength-dependent arrays of reference data $[P_1(\lambda), P_2(\lambda), P_3(\lambda), P_4(\lambda)]$ and four arrays of DUT data $[P_1(\lambda), P_2(\lambda), P_3(\lambda), P_4(\lambda)]$. The top-row elements of the Mueller matrix are calculated based on these eight arrays of data according to Eqn. 1

$$
\begin{bmatrix}
m_{11}(\lambda) \\
m_{12}(\lambda) \\
m_{13}(\lambda) \\
m_{14}(\lambda)
\end{bmatrix} =
\begin{bmatrix}
1 \\
2 \\
1 \\
2
\end{bmatrix}
\begin{bmatrix}
P_1(\lambda) \\
P_2(\lambda) \\
P_3(\lambda) \\
P_4(\lambda)
\end{bmatrix}
+
\begin{bmatrix}
P_2(\lambda) \\
P_3(\lambda) \\
P_4(\lambda) \\
P_1(\lambda)
\end{bmatrix}
$$

Eqn. 1
3) Calculate insertion loss and PDL

Average insertion loss (IL) and PDL are calculated based on the maximum and minimum transmission data derived from the Mueller matrix. IL is an array of loss data over wavelength.

\[
IL_{\text{ave}}(\lambda) = 1 - \left(\frac{T_{\text{Max}}(\lambda) + T_{\text{Min}}(\lambda)}{2} \right) \quad \text{Eqn. 2}
\]

and

\[
PDL(\lambda) = \frac{T_{\text{Max}}(\lambda)}{T_{\text{Min}}(\lambda)} \quad \text{Eqn. 3}
\]

with

\[
T_{\text{Max}}(\lambda) = m_{11} + \sqrt{m_{12}^2 + m_{13}^2 + m_{14}^2}
\]

\[
T_{\text{Min}}(\lambda) = m_{11} - \sqrt{m_{12}^2 + m_{13}^2 + m_{14}^2} \quad \text{Eqn. 4}
\]

Note that IL and PDL are typically then converted to be expressed logarithmically in units of dB.

4) Choose reference wavelength with “high” PDL and “low” IL for determining principal polarization states

The algorithm described here determines the PSP at one or more reference points chosen at wavelengths where significant PDL and low IL (e.g. within 3 dB of the bandpass peak) enable accurate resolution of the polarization dependence.

5) Solve for Stokes parameters at “reference \(\lambda\)”

Now the Mueller matrix data is analyzed to solve for the two PSP of the DUT, labeled J and K as in Ref. 1, at the reference wavelength according to Eqns. 5 and 6. The reference \(\lambda\) chosen in the previous step are identified with the index (i) in the following equations, i.e. \(m(\lambda_{ref})=m(i)\). The equations produce two normalized Stokes vectors that represent the PSP, \(X_J = (x_{J1}, x_{J2}, x_{J3})\) and \(X_K = (x_{K1}, x_{K2}, x_{K3})\).

For the planar device case, these two polarization states are TE and TM. These vectors have been determined from the data for a certain reference wavelength but are typically good representations for the PSP over an extended wavelength range.

\[
x_{J1} = \frac{S_{1J}}{S_{0J}} = \frac{m(i)_{12}}{\sqrt{m(i)_{12}^2 + m(i)_{13}^2 + m(i)_{14}^2}}
\]

\[
x_{J2} = \frac{S_{2J}}{S_{0J}} = \frac{m(i)_{13}}{\sqrt{m(i)_{12}^2 + m(i)_{13}^2 + m(i)_{14}^2}}
\]

\[
x_{J3} = \frac{S_{3J}}{S_{0J}} = \frac{m(i)_{14}}{\sqrt{m(i)_{12}^2 + m(i)_{13}^2 + m(i)_{14}^2}}
\]

\[
x_{K1} = \frac{S_{1K}}{S_{0K}} = \frac{m(i)_{12}}{\sqrt{m(i)_{12}^2 + m(i)_{13}^2 + m(i)_{14}^2}}
\]

\[
x_{K2} = \frac{S_{2K}}{S_{0K}} = \frac{m(i)_{13}}{\sqrt{m(i)_{12}^2 + m(i)_{13}^2 + m(i)_{14}^2}}
\]

\[
x_{K3} = \frac{S_{3K}}{S_{0K}} = \frac{m(i)_{14}}{\sqrt{m(i)_{12}^2 + m(i)_{13}^2 + m(i)_{14}^2}}
\]

If the PSP indicated by the Stokes vectors do have significant dependence on wavelength, more reference points should be used that are more densely spaced and each will be the reference for a smaller wavelength range. If necessary, the Stokes vectors can be determined separately for every wavelength value of the Mueller matrix arrays. The wavelength dependence of these PSP can then be used to assess 2nd-order PMD (polarization mode dispersion), if required.

6) Solve for transmission over \(\lambda\)

The wavelength-dependent arrays \(T_J\) and \(T_K\), as calculated according to Eqn. 7, are the transmission spectra for the two principal polarization states. (This algorithm does not distinguish which spectrum is from TE or TM.) Note that the wavelength dependence in \(T\) results from the wavelength dependence of the Mueller matrix values, while the normalized Stokes parameters for the reference wavelength are used over the wavelength range for which the reference Stokes parameters are valid. Parameters like the polarization-dependent wavelength shift of a passband can then be determined from the spectra.

\[
T_J(\lambda) = m_{11} + m_{12}x_{J1} + m_{13}x_{J2} + m_{14}x_{J3}
\]

\[
T_K(\lambda) = m_{11} + m_{12}x_{K1} + m_{13}x_{K2} + m_{14}x_{K3} \quad \text{Eqn. 7}
\]
In this way, the Stokes vector representation of the PSP and the corresponding spectra are determined, based on analysis of data measured at other states of polarization. This allows the measurement sequence to be set without prior knowledge of the PSP in the device. However it is also possible to use the calculated Stokes vectors to set the polarization controller so that the PSP states may be measured directly. This is described in the next section.

Direct PSP Measurements

To confirm the results obtained with the Mueller matrix analysis, or to make further DUT measurements at the PSP without repeating the 4-state measurements, the 8169A polarization controller can be set to produce the PSP determined according to the method above. The following equations from the Appendix of Ref. 1 describe the method to calculate the Q-plate and H-plate positions of the polarization controller when the Stokes vector is known.

7) Find Q-plate and H-plate angles of polarization controller for the PSP (J and K states)

Two sets of waveplate settings for the polarization states are calculated: \(\alpha_q \) and \(\alpha_h \) for both the J and K states. This relation can be solved with the following equation. In the following \(x_1, x_2, x_3 = x_{J1}, x_{J2}, x_{J3} \) from the equations above.

If \(x_1 > 0 \), the J state is produced by

\[
\alpha_q = \frac{\arcsin(x_3)}{2}
\]

and

\[
\alpha_h = \frac{\theta}{2} + \frac{\arcsin(x_3)}{4}, \quad \text{Eqn. 8}
\]

where

\[
2\theta = \arctan\left(\frac{x_2}{x_1}\right) + 0^\circ .
\]

and the K state is produced by

\[
\alpha_q = -\frac{\arcsin(x_3)}{2}
\]

and

\[
\alpha_h = \frac{\theta}{2} - \frac{\arcsin(x_3)}{4}, \quad \text{Eqn. 9}
\]

where

\[
2\theta = \arctan\left(\frac{x_2}{x_1}\right) + 180^\circ .
\]

If \(x_1 < 0 \), the J state is produced by

\[
\alpha_q = \frac{\arcsin(x_3)}{2}
\]

and

\[
\alpha_h = \frac{\theta}{2} - \frac{\arcsin(x_3)}{4}, \quad \text{Eqn. 11}
\]

where

\[
2\theta = \arctan\left(\frac{x_2}{x_1}\right) + 180^\circ .
\]

and the K state is produced by

\[
\alpha_q = -\frac{\arcsin(x_3)}{2}
\]

and

\[
\alpha_h = \frac{\theta}{2} + \frac{\arcsin(x_3)}{4}, \quad \text{Eqn. 11}
\]

where

\[
2\theta = \arctan\left(\frac{x_2}{x_1}\right) + 0^\circ .
\]

8) Measure J-state and K-state

Set the polarization controller according to the above calculations, remembering to offset the values according to the linear polarizer position. (For example, set the quarter-wave plate position to \(\alpha_q + \alpha_h \)) Execute reference and DUT measurements over wavelength with the standard \(\lambda \)-scan procedure.
Examples

AWG-multiplexer bandpass filter

Measurements from a prototype-stage AWG are illustrated in Figure 2. The TE and TM spectra calculated from the Mueller matrix according to Eqn. 7 are shown together with the corresponding direct PSP measurements (J and K) obtained as in Step 8. The good agreement between the two methods provides a strong confirmation of the validity for both approaches. Note that the TE and TM curves have crossing points. Similar good agreement between these two sets of spectra and the minimum and maximum envelopes obtained from PDL analysis of the Mueller matrix confirms that the Stokes vectors obtained at the reference wavelength accurately determine the PSP over the entire measured wavelength range. The results clearly show a shift in wavelength of the passband, depending on the polarization. Thus the two PSP spectra could be analyzed for the center or peak wavelength of the passband and the difference between these for TE vs. TM gives the PDCW or PDW.

Semiconductor optical amplifier (SOA)

Since SOAs are produced on a semiconductor chip, they also have a planar structure with possible differences between TE and TM polarization. The results for polarization-resolved gain measurements on such a device are shown for one wavelength in Fig. 3. Here the gain has been determined as a function of signal power for the two polarization directions. An optical spectrum analyzer, rather than a power meter was used to measure signal power in order to filter out the amplified spontaneous emission (ASE) from the amplifier. Also in this case, good agreement is seen between the results calculated from the Mueller matrix and the results of direct measurement using the calculated Stokes vectors. Note that also in this case, a crossing point of the two spectra could be identified.

![Figure 2](image1.png)

Figure 2. Insertion loss spectra for TE and TM modes of an AWG passband, determined both by Mueller matrix analysis and by direct measurement. The inset shows a wider wavelength range with several crossing points.

![Figure 3](image2.png)

Figure 3. Comparison of SOA gain spectra for TE and TM modes using both calculated results (TE/TM) and directly measured results (J/K).

Related literature

Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/EMT_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AffirmationPlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

 Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico (800) 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5989-1261EN
www.keysight.com