DC-input battery adapters for mobile phones, laptops and other portable devices need to correctly power their host device and charge the internal battery pack. Not only can errant battery adapters damage the host device or battery pack, they can also pose a safety hazard. Complete functional testing is needed to mitigate such risks.
Problem

Battery adapters are extremely cost-sensitive. Even fractions of a second of test time are critical, therefore functional test must be thorough while test time must be minimized. Most efforts to reduce test time usually return only modest improvements. A more effective approach to reduce test time is necessary.

Solution

Parallel device testing dramatically increases test system throughput. Unlike a lot of other, more conventional equipment, Keysight Technologies, Inc. provides advanced capabilities that support high throughput parallel battery adapter testing, including:

- The N6700 Modular Power System features Channel List commands for simultaneous operation of its multiple power supply modules.
- The N6700-A-B provides four 100 W outputs in a 1-U package for high density.
- The N6752A 50 V, 10 A, 100 W autoranging power supply module has flexibility for powering 12 V or 24 V DC input battery adapters at full power.
- The N6752A 50 V, 10 A, 100 W autoranging power supply module has precision and dynamic measurement capabilities for testing standby and inrush currents.
- The N6743B 20 V, 5 A, 100 W power supply module is an economical alternative when the primary focus is powering the battery adapters.
- The N3300A Electronic Load System features multiple Save and Recall states for setting the conditions of its multiple electronic load modules simultaneously.
- The N3300A holds up to six load modules in a 3-U package for high density.
- The N3302A 60 V, 30 A, 150 W load module features multiple voltage and current ranges for accurate battery adapter testing at both high and low levels.

Battery Adapter Description

A battery adapter is a DC/DC converter that takes an unregulated +9 to +16 volts DC in from the vehicle electrical system and furnishes regulated DC power out to the mobile phone, laptop or other portable device, as shown in Figure 1. Depending on the device, battery adapters output from 3 to 20 volts and up to 50 watts, to power the device for active operation and to recharge its battery in a few hours or less. It is important to test the battery adapter’s ability to regulate its output voltage and current so that it will properly power the device and recharge its battery.

Figure 1. Example Battery Adapter and Host Device
Common Battery Adapter Tests

The majority of functional tests for a battery adapter relate to either its output or input, as listed in Table 1. For additional details on many of these tests, refer to Keysight Technologies application note AN 372-1 Power Supply Testing, part number 5952-4190.

Table 1: Common Battery Adapter Functional Tests

<table>
<thead>
<tr>
<th>Output Related Tests</th>
<th>Input Related Tests</th>
<th>Other Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output accuracy, CV & CC</td>
<td>Input current, NL & FL</td>
<td>Start up time</td>
</tr>
<tr>
<td>Load regulation, CV</td>
<td>Inrush current</td>
<td>Line regulation, CV</td>
</tr>
<tr>
<td>Transient response, CV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripple voltage V p-p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short circuit current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse leakage current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery charge terminate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV = Constant Voltage, CC = Constant Current, NL = No Load, FL = Full Load

Conventional Test System Configuration

Based on the required set of tests, an appropriate set of test equipment can be identified and configured to address these test needs. A conventional system configuration is illustrated in Figure 2. This configuration tests battery adapters sequentially one at a time.

![Conventional Test System Configuration](image)
Parallel Device Test Solution Example
Using Keysight Equipment

A large portion of test execution activity involves the DC source for input power and electronic load to set conditions and make measurements. These are opportune areas for throughput improvement. Configuring the test system so that it can simultaneously execute most of the tests on multiple devices by using multiple DC sources and loads is a cost effective way to achieve a large improvement in test throughput. Figure 3 depicts an example test configuration to test four devices in parallel. The N6700 Modular Power System and N3300A Electronic Load System are excellent choices for this configuration having multiple channels and advanced programming capabilities.

![Figure 3. Parallel Device Test System Configuration](image-url)
Sequential versus Parallel Test Execution

Sequential execution for an Input Current test for the conventional system is illustrated on the left side of Figure 4. Test execution has to loop through the sequence four times, once for each of the four DUTs. In comparison, test execution for the parallel device test system is illustrated on the right side of Figure 4. Test execution requires only one pass through the sequence for all four DUTs. Using Save and Recall states and Channel List programming features allow all four Loads and DC Sources to be changed and read back simultaneously.

Sequential Device Test

1. Start
2. \(n = 1 \)
3. Insert DUT \((n) \) into fixture
4. Set load test conditions
5. Set DC source test conditions
6. Read back DC source current
7. Reset load, reset DC source
8. Remove DUT \((n) \) from fixture
9. \(n = n + 1 \)
10. \(n = 4? \)
 - No
 - Yes

Parallel Device Test

1. Start
2. Insert DUTs \((1-4) \) into fixture
3. Recall loads \((1-4) \) test conditions
4. Set DC sources \((1-4) \) test conditions
5. Read back DC sources \((1-4) \) current
6. Reset loads \((1-4) \), reset DC sources \((1-4) \)
7. Remove DUTs \((1-4) \) from fixture
8. DUTs \((1-4) \) input current

Figure 4. Sequential versus Parallel Execution for Input Current Test
Optimum Parallel Device Test System Configuration

A parallel device system is likely to strike a balance between different tests executed in parallel and in serial, dictating where multiple system components are needed. Using multiple power supplies and loads for parallel DC adapter testing is a given for several reasons:

- One of each is needed to power up and load each DUT.
- Perform the majority of test measurements taken.
- Establish operating conditions for all the tests.
- Support parallel program execution, when designed for such.
- Are relatively low cost.

In comparison, the other equipment does not have this overall breadth of impact. The more effective solution is usually to use a single, higher performance instrument and multiplex its input to each DUT.

How Many Devices to Test in Parallel?

As more devices are tested in parallel, the throughput is reduced in proportion, to a certain point. Sequential test operations and measurements become an increasingly dominant factor in the overall test time. The time to load and unload devices from their test fixture is also a limiting factor. A pair of test fixtures and switch bank is often employed. One is unloaded and reloaded while the other is engaged for testing. Time studies for handling and test execution are needed to optimize overall throughput at the test system.

Improvement in Throughput Using Parallel Testing

For individual tests that make use of the DC Source and Load, such as Input Current, the improvement in throughput is comparable to the number of devices being tested in parallel. In this case a four-fold throughput improvement is realized. Overall throughput improvement depends on many factors, but given that the majority of test conditions and measurements make use of the DC Sources and Loads, a three-fold overall throughput improvement is typical when testing four devices in parallel. This of course requires that the DC Sources and Loads will support multiple channel simultaneous operations. Multiple channel simultaneous operations can be done using the Channel List feature with the N6700 Modular Power System, and Save and Recall states feature with the N3300A Electronic Load System.

Such dramatic improvements in throughput more than offset the expense of the additional DC Sources and Loads, making it a very cost effective solution. The limiting factor ultimately becomes how fast the devices can be loaded and unloaded from the test fixture. Therefore test equipment is no longer a limitation, when taking advantage of advanced capabilities provided by Keysight Technologies products.

Related Applications

- DC/DC converter test
- Voltage Regulator Module (VRM) test
- Point Of Load (POL) Regulator test
Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.
From Hewlett-Packard to Agilent to Keysight.

myKeysight
myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

This document was formerly known as application note number 1506

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 011 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 800353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001:2015
Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5989-1675EN
www.keysight.com