Agilent EEsof EDA # Automated Circuit Modeling Tool for Arbitrary Passive Microwave and RF Components This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent's line of EEsof electronic design automation (EDA) products and services, please go to: www.agilent.com/find/eesof ## **Automated Circuit Modeling Tool for Arbitrary Passive Microwave and RF Components** Tom Dhaene, Jan De Geest*, Daniël De Zutter* Agilent EEsof Comms EDA, Lammerstraat 20, B9000 Gent, Belgium, tom_dhaene@agilent.com * INTEC, Ghent University, Sint Pietersnieuwstraat 41, B9000 Gent, Belgium, daniel.dezutter@intec.rug.ac.be An automated circuit-modeling tool is developed for arbitrary passive components. The tool builds compact, parameterized, analytical models based on full-wave EM simulations. The scattering parameters (or the transmission line parameters) of the components are stored as a multidimensional function of frequency and geometrical parameters. The modeling algorithm combines adaptive data selecting and modeling techniques. The circuit models guarantee EM-accuracy and generality, and circuit simulation speed and flexibility. #### I. INTRODUCTION Accurate parameterized circuit models for arbitrary microwave and RF components are required for the design and optimization of high-speed electronic circuits. Several numerical EM techniques (such as the method of moments) can be used to accurately model passive components. However, most numerical EM techniques require a significant amount of expertise and computer resources, so that they are often only used for verification purposes. On the other hand circuit simulators are very fast, and offer a lot of different analysis possibilities. However, the number of available analytical models is limited, and the accuracy is not always guaranteed up to RF or microwave frequencies. Numerous efforts (e.g. lookup tables [1], curve fitting techniques [2] and neural networks [3]) have been made to build models for general interconnection structures based on EM simulations. A common drawback of the previous efforts is the lack of knowledge about the accuracy of the resulting models. We developed an automated tool for building parameterized circuit models of general passive microwave and RF components with user-defined accuracy [4]-[5]. The analytical models represent the scattering parameters (or transmission line parameters) as a multidimensional function of frequency and geometrical parameters. The models are based on full-wave EM simulations, and can easily be incorporated in circuit simulators. This brings EM-accuracy and generality in the circuit simulator, without sacrificing speed. The model generation process is fully automated. Data points are selected efficiently and model complexity is automatically adapted. The algorithm consists of an adaptive modeling loop (section II) and an adaptive sample selection loop (section III). An example is given to illustrate the technique (section IV). #### II. ADAPTIVE MODEL BUILDING ALGORITHM The scattering parameters S (or transmission line parameters R, L, G and C) are approximated by a weighted sum of multidimensional orthonormal polynomials (*multinomials*) P_m . The multinomials only depend on the coordinate \bar{x} in the multidimensional parameter space R, while the weights C_m only depend on the frequency f: $$S(f, \overline{x}) \approx A(f, \overline{x}) = \sum_{m=1}^{M} C_m(f) P_m(\overline{x})$$ (1) The weights C_m are calculated by fitting equation (1) on a set of D data points $\{\bar{x}_a, S(f,\bar{x}_a)\}$ (with $d=1,\ldots,D$). The number of multinomials M is adaptively increased until the error function $E(f,\bar{x}) = |S(f,\bar{x}) - A(f,\bar{x})|$ is lower than a user-defined accuracy level in all the data points. For numerical stability and efficiency reasons orthonormal multinomials are used. #### III. ADAPTIVE DATA SELECTING ALGORITHM The modeling process starts with an initial set of data points. New data points are added adaptively until the user-defined accuracy level is guaranteed. The process of selecting data points and building models in an adaptive way is called *reflective exploration* [6]. Reflective exploration is useful when the process that provides the data is very costly, which is the case for full-wave EM simulators. Reflective exploration requires *reflective functions* that are used to select a new data point. The difference between 2 consecutive approximate models (with different order M in (1)) is used as a reflective function. A new data point is selected near the maximum of the reflective function. No new data points are added if the magnitude of the reflective function is smaller than the user-defined accuracy level Δ (over the whole parameter space). Physical rules are also checked. If the approximate modeling function $A(f,\bar{x})$ violates certain physical rules, a new data point is chosen where the criteria are violated the most. Furthermore, at least one data point is chosen in the close vicinity of local minima and maxima of the modeling function $A(f,\bar{x})$ over the parameter space of interest. The complete flowchart of the algorithm is given in figure 1. Figure 1: Adaptive multidimensional modeling algorithm Figure 2: Slot-coupled microstrip-fed patch antenna structure Figure 3: Layout of corner-fed patch #### IV. EXAMPLE: SLOT-COUPLED MICROSTRIP-FED PATCH ANTENNA The automated modeling tool was used to generate analytical circuit models for *all* sub-parts (*transmission line*, *open end*, *slot coupler*, *step in width*, *corner-fed patch*) of a *slot-coupled microstrip-fed patch antenna* structure (figure 2). This modeling step is a one-time, upfront time investment. A double sided duroid substrate was used (thickness = 31 mil & 15 mil, ϵ_r = 2.33, tg δ = 0.0012). First, parameterized circuit models were built for *all* substructures of the circuit. For example, the *corner-fed patch* (figure 3) circuit model was built over the following parameter range (table 1): Table 1 Parameter ranges of corner-fed patch | variable | min | max | |----------|---------|---------| | Lpatch | 320 mil | 400 mil | | Wfeed | 5 mil | 30 mil | | f | 5 GHz | 15 GHz | Figure 4: S_{11} of corner-fed patch (Wfeed = 8 mil) Figure 5: S_{11} of Slot-coupled microstrip-fed patch antenna The automated modeling tool selected 25 data points (= discrete layouts) in an adaptive way, and grouped all S-parameter data all in one global, compact, analytical model. ADS Momentum was used as planar EM simulator [7]. The desired accuracy level was set to -55 dB. In figure 4, the reflection coefficient S₁₁ of the *corner-fed patch* is shown as a function of frequency and width. Then, the parameterized circuit models were used to simulate the overall antenna structure (figure 2). Figure 5 shows S_{11} simulated with Momentum, and with the new analytical circuit models for all sub-components (divide and conquer approach). Both results correspond very well. However, the simulations based on the circuit models easily allow optimization and tuning, and took only a fraction of the time of the full-wave simulation (2 seconds compared to 96 minutes on a 450 MHz Pentium II). #### V. CONCLUSION A new adaptive technique was presented for building parameterized models for general passive planar interconnection structures. The models are based on full-wave EM simulations, and have a user-defined accuracy. Once generated, the analytical models can be grouped in a library, and incorporated in a circuit simulator where they can be used for simulation, design and optimization purposes. A patch antenna example was given to illustrate the technique. The results based on the parameterized models correspond very well with the global full-wave simulations. However, the time required for a simulation using the compact analytical circuit models was only a fraction of the time required for a global full-wave simulation. #### REFERENCES - S. Chaki, S. Aono, N. Andoh, Y. Sasaki, N. Tanino and O. Ishihara, *Experimental Study on Spiral Inductors*, Proceedings of the IEEE Symposium on Microwave Theory and Techniques, pp. 753-756, 1995. - (2) Ji-Fuh Liang and K. A. Zaki, CAD of Microwave Junctions by Polynomial Curve Fitting, Proceedings of the IEEE Symposium on Microwave Theory and Techniques, pp. 451-454, 1993. - (3) P. Watson and K.C. Gupta, EM-ANN Modeling and Optimal Chamfering of 90 ffi CPW Bends with Airbridges, Proceedings of the IEEE Symposium on Microwave Theory and Techniques, pp. 1603-1606, 1997. - (4) J. De Geest, T. Dhaene, N. Fache and D. De Zutter, Adaptive CAD-Model Building Algorithm for General Planar Microwave Structures, IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 9, pp. 1801-1809, Sep. 1999. - (5) T. Dhaene, J. De Geest and D. De Zutter, EM-based Multidimensional Parameterized Modeling of General Passive Planar components, IEEE International Microwave Symposium 2001 (IEEE IMS 01), Vol. 3, pp. 1745-1748, May 2001. - (6) U. Beyer and F. Smieja, Data Exploration with Reflective Adaptive Models, Computational Statistics and Data Analysis, vol. 22, pp. 193-211, 1996. - (7) Momentum software, Agilent EEsof Comms EDA, Agilent Technologies, Santa Rosa, CA. For more information about Agilent EEsof EDA, visit: www.agilent.com/find/eesof www.agilent.com/find/emailupdates Get the latest information on the products and applications you select. www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence. #### www.agilent.com For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: #### www.agilent.com/find/contactus | Americas | | |---------------|----------------| | Canada | (877) 894-4414 | | Latin America | 305 269 7500 | | United States | (800) 829-4444 | | | | #### **Asia Pacific** | TIOIU I WOIIIO | | |----------------|----------------| | Australia | 1 800 629 485 | | China | 800 810 0189 | | Hong Kong | 800 938 693 | | India | 1 800 112 929 | | Japan | 0120 (421) 345 | | Korea | 080 769 0800 | | Malaysia | 1 800 888 848 | | Singapore | 1 800 375 8100 | | Taiwan | 0800 047 866 | | Thailand | 1 800 226 008 | | | | #### **Europe & Middle East** | Lui ope & Milaule Last | | | |---------------------------|---------------------|--| | Austria | 0820 87 44 11 | | | Belgium | 32 (0) 2 404 93 40 | | | Denmark | 45 70 13 15 15 | | | Finland | 358 (0) 10 855 2100 | | | France | 0825 010 700* | | | | *0.125 €/minute | | | Germany | 01805 24 6333** | | | | **0.14 €/minute | | | Ireland | 1890 924 204 | | | Israel | 972-3-9288-504/544 | | | Italy | 39 02 92 60 8484 | | | Netherlands | 31 (0) 20 547 2111 | | | Spain | 34 (91) 631 3300 | | | Sweden | 0200-88 22 55 | | | Switzerland | 0800 80 53 53 | | | United Kingdom | 44 (0) 118 9276201 | | | Other European Countries: | | | | | | | www.agilent.com/find/contactus Revised: March 27, 2008 Product specifications and descriptions in this document subject to change without notice. © Agilent Technologies, Inc. 2008 Printed in USA, June 24, 2002 5989-8985EN