EM Insight Series

Episode #7:

High Speed SATA (Serial ATA) Connector Modeling with EMPro

Agilent EEsof EDA
November 2008
Application Overview

Typical situation

Faster, smaller, and cheaper… This is what drives the consumer electronics and PC markets. Serial ATA (SATA) interconnects are replacing Parallel ATA (PATA) interfaces for faster data rate, smaller form factor, and probably lower cost design. Due to the faster data transfer rate required in these electronic markets, interconnect design, such as SATA to PCB interface, can no longer be ignored. Designers must include electromagnetic effects (coupling, crosstalk, etc) of SATA connectors with board traces for accurate signal integrity analysis.

Potential users and targeted market

• High Speed Connector manufacturers
• Signal Integrity Engineer (High Speed Board Design along with connector)

EM product used

• Electromagnetic Professional (EMPro)
Design Challenges

Design challenges

Maintaining good signal quality throughout high-density and high-speed interconnects is crucial due to ever increasing demands for quality signal transmission. At multi-gigabit data rates, high speed interconnects must be characterized by s-parameters.

Problem solved

In this episode, a SATA connector is analyzed with EMPro. The SATA connector is simulated along with the board traces to take any discontinuity effects into account. The EMPro simulation file is exported as a design kit into ADS so that the connector data can be re-used for signal integrity analysis along with other circuit components in ADS.

Value delivered

Early insight into possible interconnect design problems enables you to optimize interconnects that produce best possible signal transmission.
Appearance of serial ATA connectors

Device connector sizes and locations

<table>
<thead>
<tr>
<th></th>
<th>Serial</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5"</td>
<td>3.5"</td>
</tr>
<tr>
<td>Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legacy Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(vendor specific)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5.25’ form factor also defined for devices like tape drives and DVDs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in comparison…</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parallel ATA signals | 4-pin power
Housing material - LCP (Liquid Crystalline Polymer), Er 2.9

SATA Connector Details

Ground Pin

Differential Ports (Transmit)

Ground Pin

Differential Ports (Receive)

Ground Pin

Pin positions (EMPro Import)

<table>
<thead>
<tr>
<th>Pin</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin-1</td>
<td>3.9</td>
<td>8.2</td>
<td>-4.5</td>
<td>3.9</td>
<td>1.2</td>
<td>-1.9</td>
</tr>
<tr>
<td>Pin-2</td>
<td>5.2</td>
<td>8.2</td>
<td>-4.5</td>
<td>5.2</td>
<td>1.2</td>
<td>-1.9</td>
</tr>
<tr>
<td>Pin-3</td>
<td>6.5</td>
<td>8.2</td>
<td>-4.5</td>
<td>6.5</td>
<td>1.2</td>
<td>-1.9</td>
</tr>
<tr>
<td>Pin-4</td>
<td>7.7</td>
<td>8.2</td>
<td>-4.5</td>
<td>7.7</td>
<td>1.2</td>
<td>-1.9</td>
</tr>
<tr>
<td>Pin-5</td>
<td>9.0</td>
<td>8.2</td>
<td>-4.5</td>
<td>9.0</td>
<td>1.2</td>
<td>-1.9</td>
</tr>
<tr>
<td>Pin-6</td>
<td>10.3</td>
<td>8.2</td>
<td>-4.5</td>
<td>10.3</td>
<td>1.2</td>
<td>-1.9</td>
</tr>
<tr>
<td>Pin-7</td>
<td>11.8</td>
<td>8.2</td>
<td>-4.5</td>
<td>11.8</td>
<td>1.2</td>
<td>-1.9</td>
</tr>
</tbody>
</table>
EMPro Simulation Steps

1. SAT File import in EMPro
2. Assign materials
3. Define mesh
EMPro Simulation Steps Continued

Defining ports and excitation source

4 Ports

Port-2 Port-4 Port-6 Port-8

Voltage source Tx/Rx pin GND

Port-1 Port-3 Port-5 Port-7

EMPro Simulation

Simulate and view the result in EMPro
Simulated Results
Return loss and insertion loss plot
Simulated Results
Adjacent port isolation plots

![Adjacent Port Isolation Plot](image-url)
Creating ADS Design Kits Components in EMPro

1. Generate ADS Design Kit (EMPro)

2. Install design kit in ADS

3. Select EMPro simulated Connector from ADS component Library

 - AMDS_SATA_Connector
 - AMDS_SATA_Connector1
SI Analysis along with High Speed Connector: Setup

High Speed Multi-pin SATA Connector (3D EM-EMPro) Board traces (Planar EM - Momentum)

S-Parameter Simulation
Linear Frequency Sweep

S-Parameters
- Term 1 (Z=100 Ohm, Num=1)
- Term 2 (Z=100 Ohm, Num=2)
- Term 3 (Z=100 Ohm, Num=3)
- Term 4 (Z=100 Ohm, Num=4)

AMDS_TwoConnectors_half
- 2
- 6
- 5
- 7
- 8
- Ref 1

SI Analysis

Agilent Technologies
EM Insights Series
Episode #7 summary

EMPro can give you early insight into possible interconnect design problems allowing you to optimize interconnects to produce best possible signal transmission.

Interested in learning more about this application?

• Request an evaluation copy of EMPro
 http://www.agilent.com/find/eensof-empro-evaluation
• Request a demo of EMPro
 http://www.agilent.com/find/eensof-contact
For more information about Agilent EEsof EDA, visit:

www.agilent.com/find/eesof

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Contact Agilent at:

Americas
- Canada (877) 894-4414
- Latin America 305 269 7500
- United States (800) 829-4444

Asia Pacific
- Australia 1 800 629 485
- China 800 810 0189
- Hong Kong 800 938 693
- India 1 800 112 929
- Japan 0120 (421) 345
- Korea 080 769 0800
- Malaysia 1 800 888 848
- Singapore 1 800 375 8100
- Taiwan 0800 047 866
- Thailand 1 800 226 008

Europe & Middle East
- Austria 01 36027 71571
- Belgium 32 (0) 2 404 93 40
- Denmark 45 70 13 1515
- Finland 358 (0) 10 855 2100
- France 0825 010 700*
 *0.125 €/minute
- Germany 07031 464 6333
- Ireland 1890 924 204
- Israel 972-3-9288-504/544
- Italy 39 02 92 60 8484
- Netherlands 31 (0) 20 547 2111
- Spain 34 (91) 631 3300
- Sweden 0200-88 22 55
- Switzerland 0800 80 53 53
- United Kingdom 44 (0) 118 9276201

Other European Countries:

www.agilent.com/find/contactus

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2009
Printed in USA, March 24, 2009
5989-9447EN