Broadband Monolithic S-band Class-E Power Amplifier Design

This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent’s line of EEs of electronic design automation (EDA) products and services, please go to:

www.agilent.com/find/eesof
Broadband monolithic S-band class-E power amplifier design

This efficient broadband monolithic class-E power amplifier operates at S-band and employs a 0.3 µm x 1000 µm pHEMT device. The amplifier’s measured performance shows a peak power-added efficiency (PAE) of 90% and a peak output power of greater than 23 dBm at 3.25 GHz.

By Reza Tayrani

Highly efficient microwave and RF power amplifiers are required for many commercial as well as defense system applications. These include wireless LANs, cell phones and telecommunication systems as well as advanced airborne active phased array radar systems. The choice of technology, design methodology and manufacturing cycle time are major cost contributors in these systems. A simple and accurate design can be successful for realization of switching mode, class-E high-efficiency power amplifiers in the S band.

The design of class-E amplifiers is based on using a series or parallel resonant load network. The current and voltage time-waveforms at the active device output terminal are optimized in such a way as to minimize the DC power dissipation within. The active device acts as a switch, driven by the RF input signal to on and off conditions. The ideal AC load lines for switching transistors (class D, E, F)

---

Figure 1. (a) Ideal switching amplifier circuit (shunt load). (b) Ideal transistor load lines for several classes of operation.

Figure 2. Switch voltage and current waveforms for circuit (1a).

Figure 3. Current-voltage waveforms for circuit (1a).
are shown in Figure 1(b). It can be seen that the operating point moves along the Vds and Idss axes; i.e. the device is either off (in the saturated region) or on (in the linear region). Under this ideal switching operation, the output voltage and current waveforms at the device output terminal do not simultaneously exist and, therefore, the dissipated energy within the device is zero, leading to 100 percent theoretical power conversion efficiency.

With the advent of active-device performance, non-linear modeling and monolithic circuit technology in the last few years, significant progress has been made toward the development of high-efficiency RF and microwave components. In the case of class-E high efficiency power amplifiers, the circuit designers have pushed the useful operating frequency of these circuits to ever-higher frequencies [1-3].

With this design, we have made a special effort to optimize the amplifier’s lumped-element load network in a coplanar waveguide (CPW) environment for the highest PAE attainable while maintaining a minimum of 23 dBm output power. All aspects of non-linear device modeling and circuit simulations, including time domain analysis, harmonic balance (HB) analysis and large signal stability analysis, were performed using Agilent ICCAP and ADS simulators respectively [4].

**Design methodology**

The detailed analysis and derivation of the ideal load networks for class-E amplifiers are fully discussed elsewhere [1]. Knowing the device drain to source capacitance ($C_d$) and the drain voltage ($V_d$), an approximate maximum frequency ($f_{max}$) for class-E operation can be obtained. Similarly, assuming a load...
The voltage across the switch when it is off is thereby ensuring a "soft" turn-on condition. Zero rate of change at the end of half-cycle, zero at the end of the half-cycle. It also has a switch rises slowly at switch-off and falls to work. The voltage waveform across the circuit after optimization of the load network, a time-domain simulation was performed to optimize the current and voltage waveforms at appropriate terminals of the ideal class-E circuit shown in Figure 1(a).

The completed MMIC amplifier is shown in Figure 6. A primitive layout was used in this first iteration to ensure the accuracy of the complex load. Figure 7 depicts the measured amplifier PAE for different RF input drive levels. PAE of greater than 70% over 3.0-3.7 GHz is obtained for 15.0 dbm input power drive, and a peak PAE of more than 90% is obtained at around 3.25 GHz when the amplifier is driven by only 12.0 dbm of input power.

Likewise, Figure 8 shows the measured amplifier output power for different values of RF input drive levels (-1-12 dbm) over 2-6 GHz. As it can be seen, a broadband output power is obtained indicating the broadband capability of class-E operation. At 3.25 GHz, the output power is more than 23.0 dbm for an input drive level of 12.0 dbm. Figure 9 highlights the measured output power, PAE, and gain vs. input power at 3.25 GHz. A maximum PAE of 92%, and an output power of greater than 23 dbm is obtained at P_{in}=12 dbm.

**References**


**ABOUT THE AUTHORS**

Reza Tayrani received his B.Sc., M.Sc, and Ph.D. degrees in electrical engineering from Kent University, Canterbury, England, in 1974, 1977 and 1985, respectively. He is currently an engineering fellow at Raytheon Microwave Center, Space and Airborne Systems, El Segundo, Calif., engaged in the research and development of GaAs and SiGe MMICs and their related devices. Tayrani has designed and developed many MMICs based on MESFETs, HEMTs, pHEMTs, and HBTs for microwave and millimeter-wave applications. His current areas of interest are high-efficiency switching mode monolithic power amplifiers, advanced SiGe MMICs, broadband sampling circuits and miniature switched filters. Tayrani has published more than 46 technical papers and holds six patents. He can be reached at rtayrani@raytheon.com.
For more information about Agilent EEsof EDA, visit:

www.agilent.com/find/eesof

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions with confidence.

www.agilent.com
For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East

Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700**
Germany 01805 24 6333**
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201

Other European Countries:

www.agilent.com/find/contactus

Revised: March 27, 2008

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008
Printed in USA, April 01, 2004
5989-9533EN