Keysight Technologies
Using a Network and Impedance Analyzer to Evaluate 13.56 MHz RFID Tags and Readers/Writers

Application Note

\[f_0 = \frac{1}{2 \pi \sqrt{L \cdot C}} \]
RFIDs, also called non-contact IC cards or ID tags, are devices that make it possible to detect the presence of objects and verify their identification without contacting them. RFIDs have been used since the 1980’s but initially their use was limited to maritime transports, traffic information systems, and other special applications. Since the middle of 1990’s, RFIDs have been miniaturized at an accelerated rate and they are now widely used. Currently, a number of standards exist that define the frequencies, communication methods, and purposes of RFIDs. This document gives an overview of how to evaluate the electrical characteristics of mass-produced 13.56 MHz RFID tags and readers/writers and their components.

Overview of an RFID

Figure 1 shows a simplified RFID system. The loop antenna in the reader/writer communicates with the loop antenna in the RFID tag; these are electromagnetically coupled. The reader/writer outputs RF signals, which are received by the RFID tag via its loop antenna. The RFID tag gains power by detecting DC signals through a detector circuit integrated in its IC chip. This power is used to drive the IC chip.

Typically, data communications between readers/writers and RFID tags use ASK modulation at a frequency of 13.56 MHz.
Evaluating RFID Tags

Figure 2 shows a typical manufacturing process of card type RFID tags. This process involves printing or otherwise forming a loop antenna on the card and subsequently placing an IC chip and chip capacitor on the same card. Printing may also be used to form the capacitor on the card. Finally, the tag is appropriately packaged and tested before shipping.

Figure 3 is a circuit diagram which represents a completed RFID tag. Basically, an RFID tag consists of an L-C-R parallel circuit (where “L” stands for a loop antenna, “C” for a chip capacitor, and “R” for an IC chip). The resonant frequency of an RFID tag, f_0, is given by the expression $1/(2\pi\sqrt{LC})$. If an RFID tag has a resonant frequency close to 13.56 MHz, then the RFID tag is considered to communicate well with a reader/writer. It is very important to verify that the completed tag in its entirety resonates at 13.56 MHz.

Also, measuring the characteristics of L and C component parts will help improve the yield of completed RFID tags.

Another consideration is the sharpness of resonance (communication bandwidth), which is determined by the R value of the IC chip or the parasitic resistance, “R”, of the loop antenna. An excessively high sharpness of resonance makes communications difficult when the modulation signal bandwidth is wide; on the other hand, an excessively low sharpness of resonance results in worsened communication distance characteristics. It is important to measure the resonance characteristics of the completed tag in its entirety, and measuring these resistance values on a part by part basis will help improve the communication performance of the RFID tag.
Basic components of L, C, and R make up an RFID tag as well as the RF portion of a reader/writer. The 4294A impedance analyzer is an optimum choice for measuring the electrical characteristics of these components. You may also want to use the E5061B-3L5 LF-RF network analyzer with option 005 impedance analysis function. If you do not need the wide impedance measurement range provided by an impedance analyzer you can use a network analyzer instead. RFID tags do not have coaxial connectors, instead, many of their components have electrodes or lead terminals. Therefore, you should use a test fixture that matches the shape of the tag to connect the RFID tag under test to the analyzer. If the RFID tag has a loop antenna formed on the card, you should use a probe to connect the tag to the analyzer.
Figure 5 shows examples of measurements carried out on a chip capacitor and a loop antenna. The two graphs indicate that the chip capacitor and loop antenna resonate at approximately 100 MHz and 30 MHz, respectively.

Each of these components can only be used at or below the resonant frequencies indicated. Also, the results obtained at 13.56 MHz for these components are: C = approximately 204 pF and L = approximately 4.3 uH. These values determine the resonant frequencies.

After testing each component, you can use a probe to measure the resonance characteristics of the entire RFID tag complete with all its components.

Figure 6. RFID measurement with impedance probe

Example: Chip capacitor characteristics measured with the 4294A

Example: Loop antenna characteristics measured with the 4294A
Non-Contact Measurements of Resonant Frequencies

Once an RFID tag is packaged, you cannot test it with a probe. You can, however, use a non-contact measuring method. In this method you hold an RFID tag in front of a loop antenna connected to an analyzer. This allows you to measure the resonant frequency of an RFID tag without having to disassemble the RFID tag. Non-contact measurements are typically carried out with a network analyzer. The resonant peak is generally evaluated by measuring the negative peak of the reflection coefficient S11 or the positive peak of the impedance real part R with the non-contacting measurement configuration. In some case, the non-contacting resonant peak evaluation is performed with the S21 transmission measurement.

Up to +20 dBm Source Power

The resonance characteristics of RFID tags often change depending on the RF power transmitted from the loop antenna, and it is desired that the network analyzer can provide high source power level up to nearly +20 dBm, which is not available with most of conventional network analyzers. The E5072A network analyzer is an optimum choice for this purpose. The E5072A delivers source power level up to +20 dBm in frequency range of 300 kHz to 1 GHz. This enables you to perform high-power S11 and impedance measurements for RFIDs even without using an external booster amplifier. Not just S11, the impedance R-X can be measured by using the impedance conversion function (Z:Reflection). To measure S11 or R-X by applying the high power up to +20 dBm, it is recommended to connect 6 dB attenuators to the direct access port of the reference and test receivers (RCVR R1 IN and RCVR A IN) as shown in figure 8, so that the receivers operate in the linear region. This is critical especially when measuring impedance because the S11 measurement error due to the receiver compression can be significantly expanded when it is converted to impedance.

Figure 7. Non-contact measurements of resonant frequencies

Figure 8. High power configuration of ENA network analyzer
Figure 9 is a simplified circuit diagram of an RFID reader/writer. The impedance of the power amplifier contained in a reader/writer should match that of the loop antenna so that the power amplifier can effectively transmit the power to the loop antenna. When the power amplifier's output impedance (Zpa) is R-jX, you should adjust the loop antenna's impedance (Zin) to R+jX. A typical setting is: Zpa=Zin=50Ω.

The goal is to determine the capacitors values by adjusting values on both C1s and C2p to achieve impedance matching. You should connect capacitors to the loop antenna in serial or parallel, and adjust the capacitance values of these capacitors so that impedance matching is achieved. It is common practice to use an analyzer or simulator program in Smith Chart mode while measuring and adjusting the capacitance values of these capacitors.
Integrating an analyzer with Keysight Genesys Core software provides analysis functions beyond the built-in analyzer functions.

When your desired analysis is not available on your analyzer, you can use an inexpensive software simulation program called Genesys Core. Easily perform various types of measurement analysis by transferring measurement results to Genesys Core installed on a PC. For example, the 4294A impedance analyzer is not able to display a Smith chart, but you can generate one by just transferring measurement results to Genesys Core.

Note: The E5061B and E5072A analyzers come with built-in Smith Chart mode.
For example, suppose you measure the characteristics of a loop antenna without a matching circuit using your analyzer. You can then transfer the measurement results to Genesys to simulate how the loop antenna would behave when coupled with a certain matching circuit. Thus the simulator program allows you to estimate what characteristics will be obtained with each of possible circuit configuration without having to create different matching circuits by repeatedly rebuilding the actual circuit. By combining an impedance analyzer with Genesys, you can also perform different types of analysis on the electrical characteristics of RFID tags and readers/writers.
Selection Guide Summary

Table 1 show the summary of RFID application and recommend product model.

<table>
<thead>
<tr>
<th></th>
<th>Hand-probing loop antenna impedance measurement</th>
<th>Non-contacting RFID resonance measurement</th>
<th>Non-contact RFID resonance measurement with high-power</th>
<th>Reader/writer matching evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4294A impedance analyzer</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(40 Hz to 110 MHz)</td>
<td>(Provides very high accuracy.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5061B-115/215/135/235</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>50 ohm RF options (100 k to 1.5/3 GHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5061B-3L5 & 005</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LF-RF option with Z-analysis function (5 Hz to 3 GHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5072A</td>
<td>No</td>
<td>Yes</td>
<td>Yes (Provides up to 20 dBm source power.)</td>
<td>Yes</td>
</tr>
<tr>
<td>(30 k to 4.5/8.5 GHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Literature

Non-Contact measurement method of 13.56 MHz RFID using the ENA/ENA-L Application Note, 5990-3443EN

Genesys Software

http://eesof.tm.keysight.com/products/genesys
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/ENA

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 803563
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified ISO 9001:2015 Quality Management System

www.keysight.com/go/quality

Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 2, 2017
5990-3442EN
www.keysight.com