Keysight Technologies
Direct Power MOSFET Capacitance Measurement at 3000 V
B1505A Power Device Analyzer/Curve Tracer

Application Note
The input, output and reverse transfer capacitance of power MOSFETS (Ciss, Coss and Crss respectively) are critical device parameters for switching applications. Unfortunately, the DC voltages applied to power MOSFETs during many switching applications are in the hundreds or even thousands of volts; this has made the measurement of these parameters under specified DC bias voltage conditions impossible using conventional capacitance meters. Therefore, many elaborate schemes have been developed to measure these parameters using a variety of homemade test setups that usually involve measuring a device's step response and extracting the value of capacitance from the resulting RC time constant.

The Keysight Technologies, Inc. B1505A Power Device Analyzer/Curve Tracer supports a high-voltage source/monitor unit (HVSMU), a multi-frequency capacitance measurement unit (MFCMU) and a high-voltage bias-T that permit direct measurement of high-power MOSFET capacitance measurement.

This solution makes it easy to directly measure Ciss, Coss and Crss at DC bias voltages of up to 3000 V. This application note will explain the theory behind these measurements and illustrate the measurement techniques required to make these measurements using Keysight B1505A.
High-Voltage Bias-T

The high-voltage bias-T is an available option for the B1505A that is designed to work with the MFCMU and HVSMU. A simplified circuit schematic of the high-voltage bias-T is shown in Figure 1.

Note: When using the bias-T the measurement capabilities of the MFCMU are reduced. The measurement frequency and capacitance measurement range to maintain 1% measurement accuracy when using the bias-T are as follows:

- Frequency Range: 10 kHz to 1 MHz
- Capacitance Range: 1 pF to 10 nF

The 10 nF limit on the capacitance of the device under test (DUT) is due to the effects of the series combination of the 100 nF bias-T capacitance with the DUT capacitance.

There are two versions available of the high-voltage bias-T. One version is designed to work with the N1259A high-power packaged device test fixture, and it is an option for the test fixture. The inputs to the N1259A bias-T version for testing packaged devices are shown in Figure 2.

Figure 1. The B1505A high-voltage Bias-T connects to the B1505A’s MFCMU and HVSMU modules to provide up to 3000 V of DC bias during capacitance measurements.

Figure 2. Rear view of the N1259A high-power packaged device test fixture showing the high-voltage bias-T option. Note: Module selector option is also shown in this example.
High-Voltage Bias-T (continued)

The inside of the test fixture allows the user to access the CMH, CML and AC guard signals and connect them up to devices using furnished jumper cables.

Figure 3 shows the N1260A, which is the wafer prober version of the high-voltage bias-T. The CMH and CML outputs of the N1260A are SHV (safe high voltage) connectors, as is the AC guard signal. Note that for both versions of the high-voltage bias-T, the AC guard of the MFCMU is available. To understand the use of the AC guard it is first necessary to review the basics of high-power MOSFET capacitance measurement.
High-Voltage MOSFET Capacitance Measurement

Basics

A conceptual diagram of a power MOSFET showing the various junction capacitances is shown in figure 4.

For power MOSFETs the drain is biased to a very high voltage, and both the drain-to-source capacitance (C_ds) and the gate-to-source capacitance (C_gs) are dependent on the DC value of the drain voltage. The AC model of a MOSFET is shown in figure 5.

Figure 4. Cross-section of a power MOSFET showing the various components of junction capacitance.

Figure 5. AC equivalent circuit model of a power MOSFET showing the various junction capacitances.
High-Voltage MOSFET Capacitance Measurement Basics (continued)

Let us now consider what happens when we try to measure any single one of these three capacitances using a capacitance meter. Figure 6 shows the situation when we try to measure an unknown capacitance (Cₓ) on a 3-terminal device without using the AC guard (i.e. unused terminal is floating). This figure shows that when the unused terminal is floating current can flow through the other two capacitors resulting in erroneous measurement results. The best way to prevent this from occurring is to provide an alternative current path so that the current flowing through Cₐ does not flow back through Cₚ into the CML node. We can achieve this by connecting the unused terminal to the AC guard of the capacitance meter. Note: It is important to understand that the AC guard is the circuit common of the auto-balancing bridge and that it is connected to the shields of the four-terminal pair connectors. The AC guard is NOT the same as the ground terminal, which is connected to the chassis ground.

Figure 6. Measuring junction capacitance with a capacitance meter not using the AC guard.
High-Voltage MOSFET Capacitance Measurement Basics (continued)

Figure 7 shows the benefit of connecting the AC guard to the unused measurement terminal. When the AC guard is connected to the third terminal the current flowing through the parasitic path (Ca) does not affect the accuracy of the measurement of the unknown capacitance (Cx), since the capacitance measurement is done through the CML node. Of course, this scheme assumes that the impedance of the AC guard node is much less than that of the parasitic path (Cb). Although this discussion did not include the use of the HVSMU and HV bias-T, we will explain how to incorporate them as we examine each capacitance measurement individually.

Figure 7. Measuring junction capacitance with a capacitance meter using the AC guard.
Measuring Ciss, Coss and Crss

The junction capacitances can be related back to the more common power MOSFET datasheet specifications through the following equations:

\[
C_{\text{iss}} = C_{gd} + C_{gs} \\
C_{\text{oss}} = C_{gd} + C_{ds} \\
C_{\text{rss}} = C_{gd}
\]

Since the output capacitance (Crss) and reverse transfer capacitance (Coss) measurements are simpler to make than the input capacitance (Ciss) measurement we will discuss them first.

Crss is equivalent to Cgd, so to make this measurement we need to remove any interference from Cds and Cgs by using the AC guard. Figure 8 shows the correct way to measure Crss using the HV bias-T.

![Diagram](image-url)
Measuring Ciss, Coss and Crss (continued)

To measure Coss we simply need to short the gate and source terminals using a wire as shown in Figure 9.

Figure 9. Connection scheme to measure the output capacitance (Coss).
Measuring Ciss, Coss and Crss (continued)

Note that when making this measurement we do not need to use the AC guard since we want to measure the current flowing through both Cgd and Cds. Figure 10 shows a direct capacitance measurement of Coss on a high power MOSFET made using the B1505A.

![Graph showing capacitance measurement](image)

Figure 10. Output capacitance (Coss) measured at 1500 V of DC bias.
Measuring Ciss, Coss and Crss (continued)

Measuring the input capacitance (Ciss) presents some challenges that are not present for the Crss and Coss measurements. Although we need to short the AC guard to the drain, we also need to bias the drain to high-voltage. However, this is not possible to do using the high-voltage bias-T. Therefore, in this case it is necessary to bypass the high-voltage bias-T and use an external blocking resistor and capacitor. In addition, the capacitor used to connect the drain and AC guard has to be much larger than Cgd or Cds such that the impedance seen by the drain with respect to the AC guard is much smaller than the impedance that it sees to either the source or to the gate. Conversely, we need to connect the HVSMU up to the drain through a relatively large resistor to prevent the HVSMU from interfering with the AC signal coming from the MFCMU. Figure 11 illustrates this technique.
Measuring Ciss, Coss and Crss (continued)

The size of the blocking capacitor required of course depends upon the value of Cgd. Figure 12 shows the connections necessary to correctly measure Ciss using the N1259A test fixture.

Figure 12. Example showing the connections required to measure Ciss on a packaged device (using the N1259A high power test fixture).

Figure 13 shows a direct capacitance measurement of Ciss on a high power MOSFET made using the B1505A.

Figure 13. Input capacitance (Ciss) measured at 1000 V of DC bias.
Measurement Frequency and Compensation
Considerations

Most data sheets specify the Ciss, Coss and Crss at a frequency of 1 MHz. However, accurate capacitance measurements using a capacitance meter require that proper compensation of the cables and fixturing be performed first. This process is discussed at great length in the Keysight Parametric Measurement Handbook (5990-5278EN), but as a quick review there are three types of capacitance compensation that can be performed:

Open Compensation – The CMH and CML outputs of the capacitance meter through all of the attached cabling and test fixturing are left open, and the capacitance meter performs an open compensation.

Short Compensation – The CMH and CML outputs of the capacitance meter through all of the attached cabling and test fixturing are shorted together, and the capacitance meter performs a short compensation.

Load Compensation – The CMH and CML outputs of the capacitance meter through all of the attached cabling and test fixturing are connected to a load standard of known impedance, and the capacitance meter performs a load compensation.

For low-power capacitance measurements load compensation generally only needs to be performed for measurements above 5 MHz. However, when using the high-voltage bias-T and making high-power capacitance measurements, load compensation needs to be performed at much lower frequencies to insure accurate measurement results.

Figure 14 shows a plot of gate to source (Cgs) capacitance (Cp-G) versus frequency using the high-voltage bias-T after performing open/short capacitance compensation. As this data shows, the measured conductance becomes negative as the frequency increases beyond 100 kHz.

![Figure 14](image-url)

Figure 14. Plot of Cp-G versus frequency using the high-voltage bias-T showing that the conductance becomes negative for frequencies above 1 kHz when only an Open/Short calibration sequence has been performed.
Conclusion

Using the techniques explained in this application note, it is possible to directly measure MOSFET capacitances at voltages up to 3000V. All three of the data sheet MOSFET capacitance parameters (Ciss, Coss and Crss) can be directly measured using the B1505A and its high-voltage bias-T. This represents considerable improvement over the conventional methods to measure these same parameters, which typically require measuring a device’s step response and extracting the value of capacitance from an RC time constant.

For the input capacitance (Ciss) measurement, care must be taken to ensure that properly sized bypass resistors and capacitors are used. In addition, unless you have the ability to perform load compensation on your system, you should restrict your maximum measurement frequency to no more than 100 kHz.
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

Formerly published as Application Note B1505-4

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2826
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 532352
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 001514
Sweden 0200 882255
Switzerland 0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001:2015 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5990-7145EN
www.keysight.com