Keysight Technologies
Evaluate Lithium Ion Self-Discharge of Cells in a Fraction of the Time Traditionally Required

Application Note
Overview

Whether you are an engineer in design or manufacturing, Li-Ion cell and battery performance testing is both a priority and a challenge for you. This is especially true for evaluating cells for self-discharge. Cells exhibiting high levels of self-discharge have higher likelihood of failure and must be sorted out and the cause identified. Unfortunately, this has traditionally been a long and tedious process to perform.

What is a cell’s self-discharge? Self-discharge of an electrical cell is the loss of charge over time while not connected to any load. Some amount of self-discharge is a normal attribute resulting from chemical reactions taking place within the cell. Compared to other types of rechargeable cell chemistries, lithium ion cells have rather low self-discharge. On their own they may typically lose about 0.5 to 1% of their charge per month.

Additional self-discharge can result from leakage current paths existing within the cell. Particulate contaminants and dendrite growths produce internal “micro-shorts”, creating such leakage current paths. These are not normal attributes and they can lead to catastrophic failure of the cell. Because of this it is a top priority during the design of the cell to eliminate possible causes of high self-discharge. In manufacturing, it’s critical to screen out any cells exhibiting abnormally high self-discharge as early as possible in the process.

Traditionally self-discharge is evaluated by measuring the decrease of a cell’s open-circuit voltage (OCV) over time. While it is not challenging to measure a cell’s OCV, the challenge is that it is very time-consuming. Because lithium ion cells have very little change in OCV as they discharge, it takes weeks to months to detect a significant loss of a cell’s state of charge (SOC), and to discern a good cell from one having high self-discharge.

An alternate means to determine a cell’s self-discharge is to instead measure its self-discharge current. When such a measurement is correctly implemented, cells exhibiting excessively high self-discharge can be identified and isolated in a small fraction of the time required by the traditional OCV approach. This mitigates the associated expenses, complexities and hazards of a large amount of work-in-progress (WIP). Now the challenge you are faced with is having a suitable solution for this task. Equipment possessing required stability and resolution has not previously existed to make it practical.

In this application note, details of these two methods for determining a cell’s self-discharge will be examined and compared, along with the approach Keysight has taken to create a cell performance test solution that greatly reduces measurement time.
Open-Circuit Voltage (OCV) Method

The open-circuit voltage (OCV) method for measuring a cell’s self-discharge is depicted in Figure 1. The self-discharge behavior is represented as a resistance, R_{SD}, whose value is equal to the cell’s OCV divided by the self-discharge current I_{SD}. I_{SD} is simply the rate of charge loss in coulombs per second. As would be expected, I_{SD} is very small, typically a few to a few hundred microamperes, depending on cell size. As charge is slowly lost, the cell’s voltage very slowly drops. A high accuracy, high resolution voltmeter is required to measure the cell’s voltage loss over an extended period.

Looking at a representative example of a lithium ion cell’s discharge characteristics in Figure 2 it can be seen there is very little change of voltage over most of the range of the cell’s state of charge (SOC). It can also be seen that the voltage change varies considerably depending on the exact % SOC. For this cell by itself without any load, assuming a self-discharge of 1% per month equates to a voltage loss of about 3 to 12 mV per month, depending on its % SOC. The decrease of a cell’s OCV over time is an indirect and imprecise indicator of what the cell’s self-discharge rate is.

![Figure 1: Open-Circuit Voltage (OCV) method for measuring a cell's self-discharge](image1.png)

![Figure 2: Example of a lithium ion cell discharge characteristics](image2.png)
In addition to the variance of a cell’s voltage loss with % SOC, other factors affect a cell’s voltage, such as temperature drift. These factors pose test challenges, such as the need to monitor the voltage over several weeks to detect meaningful changes in a cell’s % SOC, and discern good cells from ones having unacceptably high self-discharge.

The ultimate impact of the challenge of evaluating a cell’s self-discharge by using the OCV method is:
- In development, it adds a lot of time to the schedule, with resultant loss of opportunity (e.g. time-to-market).
- In manufacturing, it adds considerable work-in-progress (WIP), with complexities and hazards of storing large quantities of cells for extended periods of time.

Potentiostatic Method

The potentiostatic method for measuring a cell’s self-discharge measures the cell’s self-discharge current. This is a direct measurement of the self-discharge rate, as current is coulombs per seconds, which is charge loss over time. The potentiostatic method is illustrated in Figure 3.

![Figure 3: Potentiostatic method for measuring a cell’s self-discharge](image)

When the cell is open-circuited, the self-discharge current I_{SD} internally drains charge from the cell, causing its OCV and SOC to slowly decrease. With the potentiostatic method, a low noise, very stable DC source is set to match the cell’s OCV. The DC source is then connected to the cell through a micro-ammeter to measure the current flowing between the DC source and cell. Now when the cell continues to self-discharge, the DC source takes over, furnishing sufficient current to maintain the cell at a constant voltage and SOC. When the DC source comes to equilibrium with the cell, the self-discharge current I_{SD} transitions from being sourced internally to being totally furnished externally from the DC source. I_{SD} can then be directly measured using the micro-ammeter.

Advantages of this measurement method include:
- Test time is a few hours or less to determine the self-discharge current. Cells having unacceptably high self-discharge can be discerned from good cells in even less time, typically well under an hour.
- The result, I_{SD}, is a direct measurement of the rate of the cell’s self-discharge.

The real impact of the advantage of the potentiostatic method is:
- In development, greatly reduced schedules to more quickly capitalize on opportunities.
- In production, greatly reduced WIP, simplifying storage logistics and associated hazards.
Addressing the Challenges of the Potentiostatic Method

When using the potentiostatic method the main challenge becomes how closely you can match the cell’s OCV with the DC voltage source and then maintain a high level of voltage stability for the duration of the test. Close initial matching is critical as a mismatch must change the charge on the cell to get back to equilibrium, adding considerably more time to the process. A high level of stability must be maintained to settle at a final level as opposed to drifting up and down over time. Ideally the level of stability needs to be on the order of microvolts. Existing commercially available DC voltage sources do not possess the accuracy, resolution, and stability to closely match a cell’s OCV and then maintain that voltage for the duration of the test.

Achieving microvolt-level stability on a few to several volts, typical of most cells, requires single parts-per-million (ppm) level resolution and stability. To address this challenge, the Keysight BT2191A Self-Discharge Measurement System incorporates a 33470A 7 ½-digit high accuracy DMM to provide this level of performance. The BT2191A is depicted in Figure 4.

Figure 4: Keysight BT2191A Self-Discharge Measurement System

The BT2191A uses an N6782A SMU module, housed within an N6705C DC Power Analyzer mainframe, as the DC source. As the N6782A does not have sufficient voltage stability on its own, it is supplemented by having a 34470A dedicated for this purpose. While absolute accuracy is important, absolute accuracy down to microvolt levels is not mandatory. Any small absolute error incurred by the DMM measuring the cell effectively becomes nulled out when it is in turn used to set the SMU to match the cell’s voltage. The DMM is not only used for the initial cell voltage matching. Through the BT2191A’s system software, the DMM then goes on to continually monitor and correct the SMU’s voltage for the duration of the testing. In this way, the BT2191A provides microvolt-level output stability.
There are several additional reasons for selecting the N6782A SMU housed within the N6705C DC Power Analyzer mainframe, including:
- Integrated disconnect relays, allowing it to be isolated and reconnected to the cell under test as necessary during the cell voltage matching process.
- Current measurement with sub-microamp accuracy. It easily measures the cell’s self-discharge current and dispenses with needing a separate micro-ammeter.
- Continuous data logging to capture the cell’s self-discharge current over time.

Finally, the BT2191A system incorporates several additional components to create a total solution:
- A second 34470A DMM to log the cell’s voltage over time
- A 34465A DMM and thermocouple assembly to log the cell’s temperature over time.
- Cable assembly to connect the instruments and cell under test.
- Programmable series resistance provides a balance between measurement settling time and the cell’s temperature sensitivity.
- The BT2192A Self-Discharge Measurement System software, shown in Figure 6, for easily setting up the test parameters and logging the cell’s self-discharge current, voltage, and temperature over time.

These additional components and associated capabilities they provide make the BT2191A ideally suited for cell design and evaluation work.

It is also important that the cell is in a stable, well rested state, to measure its self-discharge current. Many factors influence a cell’s voltage, which in turn affects its self-discharge current measurement. For more details on this, refer to the sidebar “Cell Considerations for Self-Discharge Current Measurement”

Testing Multiple Cells

Some applications require testing many cells at one time. A primary example is screening suspect cells for unacceptably high self-discharge as part of a manufacturing process. The same measurement science in the BT2191A has been incorporated into the Keysight BT2152A Self-Discharge Analyzer for this reason. The BT2152A can measure self-discharge current on up to 32 cells at the same time, greatly boosting test throughput. However, being designed explicitly for performing self-discharge current measurement, the BT2152A achieves much greater efficiencies in terms of size and cost per channel. The BT2152A is shown in Figure 5.

Figure 5: Keysight BT2152A Self-Discharge Analyzer tests up to 32 cells at the same time

Cell considerations for self-discharge current measurement

The potentiostatic method for self-discharge current measurement requires a very stable voltage source for supplying the very small self-discharge current to the Li-Ion cell that is subsequently measured. It is also important that the cell is in a well-rested and stable state to obtain valid results. Major things to consider include:

- Charge redistribution and equilibrium: During charging or discharging, a charge gradient is created while charge diffuses more deeply into, or makes its way back out of the cell’s structure. Given sufficient rest time after charging or discharging, the charge will reach equilibrium. The charge will then be uniformly distributed throughout the cell’s structure. This typically may take up to a week to achieve. When measuring the cell’s self-discharge current with the potentiostatic method, if the cell is not fully rested, additional current is initially sourced into or drawn from the cell, exponentially decaying until charge equilibrium is reached. After that point the only current being sourced into the cell will then be just the self-discharge current.

- Cell temperature coefficient of voltage (TCV): The voltage of a Li-Ion cell exhibits temperature dependency. This can easily be 10’s of microvolts per degree C. Fluctuations in the temperature give a corresponding fluctuation in the cell’s voltage. This will in turn cause fluctuations in the self-discharge current being measured. It is important to take appropriate steps to minimize temperature fluctuations of the cell during testing.

- Thermo-electric effects: It is common for cell’s terminals to be made of nickel or other metal that gives rise to a thermally-induced voltage when an electrical connection is made with a dissimilar metal. This can be 10’s of microvolts per degree C. Opposing connections created by connecting to both the cell’s terminals cause the thermally-induced voltage to be cancelled out, providing both terminals are at the same temperature. However, differences in temperature between the two terminals will produce a net voltage. Any fluctuations in the temperature difference between the two terminals will in turn cause fluctuations in the self-discharge current being measured. It is important to take steps to minimize fluctuations of the temperature difference between the cell’s terminals during testing.

- Cell state of charge (SOC): The self-discharge of a Li-Ion cell decreases considerably when the cell is at a low SOC and thus becomes more difficult to measure. Also, the cell’s TCV is generally increases for a low SOC. It is useful to have the cell at reasonably high SOC when measuring its self-discharge.

Following these best practices greatly improves accuracy of test results and allows for faster measurement settling time.
Potentiostatic Method Self-Discharge Current Measurement
Examples

One representative example of a self-discharge current measurement, displayed by the BT2192A software in the BT2191A system, is shown in Figure 6. The BT2192A is an interactive graphical interface that allows the user to quickly and easily set up the BT2191A and then log the cell’s self-discharge current, voltage, and temperature over time. In this example the self-discharge current was measured on a 10 amp-hour (Ah) lithium iron phosphate (LiFePO₄) pouch cell. The self-discharge current leveling off indicates the cell has reach equilibrium with the external voltage source. Now the external voltage source is furnishing all the self-discharge current. In this example the self-discharge current levelled off at 64.1 µA after 1.4 hours. This is reasonably characteristic for a good cell of this capacity rating.

Discerning cells exhibiting high levels of self-discharge current from good cells typically takes much less time than the total time it takes to level off at the final self-discharge current values. Figure 7 displays self-discharge currents on eight 18650 cylindrical, 2.4 Ah, lithium manganese oxide (LiMn₂O₄) cells, all logged at the same time by the BT2152A Self-Discharge Analyzer. One cell out of the group had much greater self-discharge, which was readily observable within minutes. An initial starting current was set to 50 microamps to help distinguish the diverging currents. This was the estimated midpoint current value between good cells and cells exhibiting high self-discharge.

Figure 6: BT2192A displaying a self-discharge current measurement

Figure 7: Discerning good cells from high self-discharge cells with the BT2152A
Summary

It is important that the self-discharge of Li-Ion cells is tested. High levels of self-discharge are indicative of latent failures. These cells must be identified and separated from good cells to prevent potentially catastrophic failures, and the underlying cause in either the cell’s design or manufacturing process be identified and corrected.

Traditionally self-discharge is evaluated by measuring the decrease in a cell’s open-circuit voltage (OCV) over time. While it is not challenging to measure a cell’s OCV, the challenge is that it is very time-consuming. Because lithium ion cells have very little change in OCV as they discharge, it takes weeks to months to detect a significant loss of a cell’s % state of charge (SOC), and discern a good cell from one having high self-discharge.

Alternatively, a cell’s self-discharge current can instead be directly measured to determine its self-discharge. Correctly implemented, a cell’s self-discharge can be measured in a small fraction of the time required by the traditional OCV approach, mitigating the associated expenses, complexities and hazards of large amount of work-in-progress (WIP).

The challenge now becomes having the test equipment possessing the necessary stability and resolution required to measure a cell’s self-discharge current. Until now, such test equipment has not existed. To address this, Keysight has created two new solutions:

– The BT2191A Self-Discharge Measurement System is a single channel system ideally suited for cell design and evaluation work. More information is available at: www.keysight.com/find/bt2191a
– The BT2152A Self-Discharge Analyzer provides 32 measurement channels ideally suited for screening out cells having high self-discharge from good ones in manufacturing. More information is available at: www.keysight.com/find/bt2152a

Both provide microvolt-level stability and resolution, and incorporate several other features, making them specifically tailored for quickly and accurately measuring the self-discharge current of cells.
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.
From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/BT2191A
www.keysight.com/find/BT2152A