The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Safety Information

The following safety notes are used throughout this manual. Familiarize yourself with each of the notes and its meaning before operating this instrument.

WARNING

Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

CAUTION

Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

WARNING

This is a Safety Class 1 Product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protected earth contact. Any interruption of the protective conductor inside or outside of the product is likely to make the product dangerous. Intentional interruption is prohibited.

WARNING

These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

WARNING

The power cord is connected to internal capacitors that may remain live for 5 seconds after disconnecting the plug from its power supply.
Warranty

This Agilent Technologies instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Agilent Technologies Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.

Agilent Technologies warrants that its software and firmware designated by Agilent Technologies for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT TECHNOLOGIES SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.
Contents

1. Preparing for Use
 - What’s in This Chapter? .. 38
 - www.agilent.com/find/vsa ... 38
 - Digital Communications Measurements Information 39
 - Programming the Transmitter Tester 40
 - Installing Optional
 - Measurement Personalities .. 44
 - Available Personality Options 45
 - License Key Numbers .. 45
 - Installing a License Key Number 46
 - Using the Uninstall Key .. 47
 - Writing Your First Program ... 48
 - Three Basic Steps in a Measurement 48
 - Programming a Measurement ... 48
 - File Naming Rules ... 49
 - Cables for Connecting to RS-232 .. 50
 - Connecting to a LAN Server .. 57
 - Connecting to a GPIB Server ... 58

2. Programming Fundamentals
 - SCPI Language Basics ... 61
 - Creating Valid Commands .. 62
 - Command keywords and Syntax 62
 - Special Characters in Commands 63
 - Parameters in Commands .. 64
 - Putting Multiple Commands on the Same Line 67
 - Using the Instrument Status Registers 69
 - What are the Status Registers? 70
 - Why Would You Use the Status Registers? 72
 - Using a Status Register ... 74
 - Using the Service Request (SRQ) Method 74
 - Overall Status Register System 76
 - Status Byte Register .. 77
 - Standard Event Status Register 80
 - Operation and Questionable Status Registers 83
 - C Programming Examples using VTL 84
 - Typical Example Program Contents 84
 - Linking to VTL Libraries ... 85
 - Compiling and Linking a VTL Program 86
 - Example Program .. 88
 - Including the VISA Declarations File 88
 - Opening a Session .. 89
 - Device Sessions ... 89
 - Addressing a Session .. 91
 - Closing a Session .. 92
 - Overview of the GPIB Bus .. 93
 - GPIB Instrument Nomenclature 93
 - GPIB Command Statements ... 93
 - Overview of the RS-232 Bus .. 95
Contents

CALCulate Subsystem ... 178
CALibration Subsystem .. 198
Wait-to-Continue ... 176
Self Test Query ... 176
Trigger ... 176
Read Status Byte Query .. 175
Service Request Enable .. 175
Save ... 175
Reset ... 174
Recall ... 174
Query Instrument Options .. 174
Abort ... 177
CALCulate:MARKers Subsystem .. 185
CALCulate:MARKers Subsystem .. 185
Adjacent Channel Power—Limit Test ... 178
Adjacent Channel Power—Limit Test ... 178
Test Current Results Against all Limits ... 178
Data Query ... 179
Calculate/Compress Trace Data Query .. 179
Calculate Peaks of Trace Data .. 183
CALCulate:MARKers Subsystem .. 185
Power Statistic CCDF—Store Reference .. 197
CALibration Subsystem .. 198
Calibration Abort ... 198
Align the ADC Auto-range Threshold .. 198
Align the ADC Dither Center Frequency .. 198
Align the ADC Offset ... 199
Align the ADC RAM Gain .. 199
Align All Instrument Assemblies .. 199
Calibrate the Attenuator .. 200
Automatic Alignment ... 200
Calibration Comb Alignment ... 201
Calibration Display Detail .. 201
Align the IF Flatness ... 201
Auto Adjust the Internal 10 MHz Frequency Reference 202
Align the ADC ... 202
Align the IF Gain ... 202
Calibrate the Nominal System Gain ... 203
Align the IF ... 203
Align the RF ... 203
Align the Image Filter Circuitry .. 203
Load the Factory Default Calibration Constants 204
Align the Wide LC Prefilter .. 204
Align the Narrow LC Prefilter .. 204
Align the Wide Crystal Prefilter .. 204
Align the Narrow Crystal Prefilter .. 205
Adjust the Level of the 321.4 MHz Alignment Signal 205
50 MHz Reference Alignment Signal ... 205
Align the Trigger Delay .. 209
Align the Trigger Interpolator ... 209
Calibration Wait ... 209
Contents

CONFfigure Subsystem ... 210
 Configure the Selected Measurement 210
 Configure Query ... 210
DISPlay Subsystem .. 211
 Adjacent Channel Power - View Selection 211
 Display Annotation Title Data .. 211
 Display Annotation Title On/Off ... 212
 Turn the Entire Display On/Off ... 212
 Error Vector Magnitude - View Selection 212
 Select Display Format .. 213
 Select Display Format .. 213
 Spectrum - Y-Axis Reference Level 214
 Turn a Trace Display On/Off ... 215
 Waveform - Y-Axis Reference Level 218
FETCh Subsystem .. 219
 Fetch the Current Measurement Results 219
FORMat Subsystem ... 220
 Byte Order ... 220
 Numeric Data format .. 220
HCOPy Subsystem .. 222
 Screen Printout Destination ... 222
 Custom Printer Color Capability 222
 Custom Printer Language .. 223
 Printer Type ... 223
 Color Hard Copy .. 224
 Print a Hard Copy .. 224
 Form Feed the Print Item .. 224
 Page Orientation .. 225
 Number of Items Printed on a Page 225
 Reprint the Last Image ... 226
 Screen Dump Query .. 226
 Screen Dump Image Inverting .. 227
 Screen Dump Now ... 227
INITiate Subsystem .. 228
 Continuous or Single Measurements 228
 Take New Data Acquisitions ... 229
 Restart the Measurement .. 229
INPut Subsystem ... 230
 Input Impedance for IQ Input ... 230
INSTrument Subsystem .. 231
 Catalog Query .. 231
 Select Application by Number .. 231
 Select Application ... 232
MEASure Group of Commands .. 233
 Measure Commands ... 233
 Configure Commands .. 234
 Fetch Commands ... 235
 Read Commands ... 235
 Adjacent Channel Power Ratio (ACP) Measurement 236
Contents

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ Subsystem</td>
<td>261</td>
</tr>
<tr>
<td>SENSE Subsystem</td>
<td>262</td>
</tr>
<tr>
<td>MMEMory Subsystem</td>
<td>258</td>
</tr>
<tr>
<td>RADIO Carrier Multiple</td>
<td>316</td>
</tr>
<tr>
<td>Screen Image Background</td>
<td>260</td>
</tr>
<tr>
<td>Screen File Type</td>
<td>260</td>
</tr>
<tr>
<td>Save Screen Image to File</td>
<td>259</td>
</tr>
<tr>
<td>Select a Memory Device</td>
<td>258</td>
</tr>
<tr>
<td>Memory Available or In-Use</td>
<td>258</td>
</tr>
<tr>
<td>RF Port Power Range Maximum Total Power</td>
<td>309</td>
</tr>
<tr>
<td>RF Port Power Range Auto</td>
<td>308</td>
</tr>
<tr>
<td>RF Port Input Attenuation</td>
<td>307</td>
</tr>
<tr>
<td>Center Frequency Step Size Automatic</td>
<td>306</td>
</tr>
<tr>
<td>Center Frequency Step Size</td>
<td>306</td>
</tr>
<tr>
<td>Channel Power Measurement</td>
<td>299</td>
</tr>
<tr>
<td>Training Sequence Code (TSC)</td>
<td>297</td>
</tr>
<tr>
<td>Training Sequence Code (TSC) Auto</td>
<td>298</td>
</tr>
<tr>
<td>Burst Type</td>
<td>293</td>
</tr>
<tr>
<td>Channel Burst Type</td>
<td>294</td>
</tr>
<tr>
<td>Digital Demod PN Offset</td>
<td>294</td>
</tr>
<tr>
<td>RF Channel Number</td>
<td>295</td>
</tr>
<tr>
<td>Time Slot number</td>
<td>296</td>
</tr>
<tr>
<td>Time Slot Auto</td>
<td>297</td>
</tr>
<tr>
<td>Sensor Measurement</td>
<td>250</td>
</tr>
<tr>
<td>Spectrum (Frequency Domain) Measurement</td>
<td>251</td>
</tr>
<tr>
<td>Timebase Frequency Measurement</td>
<td>254</td>
</tr>
<tr>
<td>Waveform (Time Domain) Measurement</td>
<td>255</td>
</tr>
<tr>
<td>MEMory Subsystem</td>
<td>257</td>
</tr>
<tr>
<td>Install Application</td>
<td>257</td>
</tr>
<tr>
<td>Un-install Application</td>
<td>257</td>
</tr>
<tr>
<td>Sensor Measurement</td>
<td>250</td>
</tr>
<tr>
<td>Power vs. Time Measurement</td>
<td>248</td>
</tr>
<tr>
<td>Power Statistics CCDF Measurement</td>
<td>246</td>
</tr>
<tr>
<td>Power vs. Time (Burst Power) Measurement</td>
<td>312</td>
</tr>
<tr>
<td>Power Statistics CCDF Measurement</td>
<td>310</td>
</tr>
<tr>
<td>50 MHz Amplitude Reference Measurement</td>
<td>244</td>
</tr>
<tr>
<td>Adjacent Channel Power Measurement</td>
<td>262</td>
</tr>
<tr>
<td>Select the ARFCN—Absolute RF Channel Number</td>
<td>290</td>
</tr>
<tr>
<td>Select the Lowest ARFCN</td>
<td>291</td>
</tr>
<tr>
<td>Select the Middle ARFCN</td>
<td>292</td>
</tr>
<tr>
<td>Select the Highest ARFCN</td>
<td>293</td>
</tr>
<tr>
<td>Burst Type</td>
<td>293</td>
</tr>
<tr>
<td>Digital Equipment Offset</td>
<td>294</td>
</tr>
<tr>
<td>RF Channel Number</td>
<td>295</td>
</tr>
<tr>
<td>Time Slot number</td>
<td>296</td>
</tr>
<tr>
<td>Time Slot Auto</td>
<td>297</td>
</tr>
<tr>
<td>Training Sequence Code (TSC)</td>
<td>297</td>
</tr>
<tr>
<td>Training Sequence Code (TSC) Auto</td>
<td>298</td>
</tr>
<tr>
<td>Channel Power Measurement</td>
<td>299</td>
</tr>
<tr>
<td>Correction for Base Station RF Port External</td>
<td>304</td>
</tr>
<tr>
<td>Correction for BTS RF Port External Attenuation</td>
<td>304</td>
</tr>
<tr>
<td>Correction for Mobile Station RF Port External</td>
<td>305</td>
</tr>
<tr>
<td>Select the Input Port</td>
<td>305</td>
</tr>
<tr>
<td>Center Frequency</td>
<td>306</td>
</tr>
<tr>
<td>Center Frequency Step Size Automatic</td>
<td>306</td>
</tr>
<tr>
<td>Center Frequency Step Size</td>
<td>306</td>
</tr>
<tr>
<td>RF Port Input Attenuation</td>
<td>307</td>
</tr>
<tr>
<td>RF Port Power Range Auto</td>
<td>308</td>
</tr>
<tr>
<td>RF Port Power Range Maximum Total Power</td>
<td>309</td>
</tr>
<tr>
<td>BTS RF Port External Attenuation</td>
<td>304</td>
</tr>
<tr>
<td>Mobile Station RF Port External Attenuation</td>
<td>305</td>
</tr>
<tr>
<td>Select the Input Port</td>
<td>305</td>
</tr>
<tr>
<td>Center Frequency</td>
<td>306</td>
</tr>
<tr>
<td>Center Frequency Step Size Automatic</td>
<td>306</td>
</tr>
<tr>
<td>Center Frequency Step Size</td>
<td>306</td>
</tr>
<tr>
<td>RF Port Input Attenuation</td>
<td>307</td>
</tr>
<tr>
<td>RF Port Power Range Auto</td>
<td>308</td>
</tr>
<tr>
<td>RF Port Power Range Maximum Total Power</td>
<td>309</td>
</tr>
</tbody>
</table>
6. Error Messages

Error Queue Descriptions ... 385
Error Queues ... 380
SCPI Remote Interface Error Messages 383
Clearing the Error Queue .. 384
No Error .. 384

Error Message Descriptions .. 385
Messages with No Numbers .. 385
Query Error Messages ... 385
[−499 to −400] ... 387
Device-Specific Error Messages .. 388
[−399 to −300] ... 388
Execution Error Messages .. 390
[−299 to −200] ... 390
Command Error Messages ... 397
[−199 to −100] ... 397
Instrument-Specific Error Messages 402
[positive numbers] .. 402
Core-Specific Error Messages ... 402
[1 to 99] .. 402
GSM - Specific Error Messages 402
Contents

[100 to 199] ... 406
cdmaOne - Specific Error Messages
[200 to 299] ... 408
NADC - Specific Error Messages
[300 to 399] ... 409
PDC - Specific Error Messages
[400 to 499] ... 410
W-CDMA - Specific Error Messages
[500 to 599] ... 411
cdma2000 - Specific Error Messages
[600 to 699] ... 411
Commands

*CLS ... 70
*ESE 65 .. 74
*STB? ... 74
*SRE ... 75
*SRE? ... 75
*STB? ... 75
*STB? ... 78
*SRE <number> ... 79
<number> .. 79
*SRE 192 .. 79
*SRE? ... 79
*SRE <number> ... 79
*OPC ... 81
*ESR? ... 82
*ESE <number> ... 82
<number> .. 82
*ESE 192 .. 82
*ESE? ... 82
*ESE <number> ... 82
visa.h ... 84
ViSession ... 84
ViSession ... 84
ViSession ... 84
viOpenDefaultRM .. 84
viOpenDefaultRM .. 84
viOpen .. 84
viPrintf ... 85
viPrintf ... 85
*RST ... 85
viPrintf ... 85
<table>
<thead>
<tr>
<th>Commands</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IDN?</td>
<td>.85</td>
</tr>
<tr>
<td>viScanf</td>
<td>.85</td>
</tr>
<tr>
<td>viClose</td>
<td>.85</td>
</tr>
<tr>
<td>visa.h</td>
<td>.88</td>
</tr>
<tr>
<td>#include “visa.h”</td>
<td>.88</td>
</tr>
<tr>
<td>visa.h</td>
<td>.88</td>
</tr>
<tr>
<td>visatype.h</td>
<td>.88</td>
</tr>
<tr>
<td>visatype.h</td>
<td>.88</td>
</tr>
<tr>
<td>viOpenDefaultRM</td>
<td>.88</td>
</tr>
<tr>
<td>ViSession</td>
<td>.88</td>
</tr>
<tr>
<td>ViSession</td>
<td>.88</td>
</tr>
<tr>
<td>visatype.h</td>
<td>.88</td>
</tr>
<tr>
<td>ViSession</td>
<td>.88</td>
</tr>
<tr>
<td>viOpenDefaultRM</td>
<td>.88</td>
</tr>
<tr>
<td>viOpenDefaultRM</td>
<td>.89</td>
</tr>
<tr>
<td>viOpen</td>
<td>.90</td>
</tr>
<tr>
<td>viOpenDefaultRM</td>
<td>.90</td>
</tr>
<tr>
<td>viOpen</td>
<td>.90</td>
</tr>
<tr>
<td>viOpen</td>
<td>.91</td>
</tr>
<tr>
<td>viClose</td>
<td>.92</td>
</tr>
<tr>
<td>viFindRsrc</td>
<td>.92</td>
</tr>
<tr>
<td>viWaitOnEvent</td>
<td>.92</td>
</tr>
<tr>
<td>viClose</td>
<td>.92</td>
</tr>
</tbody>
</table>
Commands

*CAL? ... 171
*CLS ... 171
*ESE <number> ... 171
*ESE? ... 171
*ESR? ... 172
*IDN? ... 172
*LRN? ... 173
*OPC ... 173
*OPC? .. 173
*OPT? .. 174
*RCL <register> ... 174
*RST ... 174
*SAV <register> ... 175
*SRE <integer> .. 175
*SRE? ... 175
*STB? ... 175
*TRG ... 176
*TST? .. 176
*WAI ... 176
:ABORt .. 177
:CALCulate:ACP:LIMIT:STATE OFF|ON|0|1 178
:CALCulate:ACP:LIMIT?. ... 178
:CALCulate:ACP:LIMIT[:TEST] OFF|ON|0|1 178
:CALCulate:ACP:LIMIT[:TEST]? 178
:CALCulate:CLIMITs:FAIL? .. 178
:CALCulate:DATA[n]? .. 179
:CALCulate:DATA[n]:COMPress? BLOCK|CFIT|MAXimum|MEAN|MINimum|RMS|SAMPLE|SDEViation {<offset>}{<length>}{<offset>} 179
:CALCulate:DATA[n]:PEAKs? <threshold>,<excursion>[:AMPLitude|FREQuency|TIME] 183
:CALCulate:<measurement>:MARKer:AOFF 188
:CALCulate:<measurement>:MARKer[1]|2|3|4:FUNCTION BPOWER|NOISE|OFF 188
 Commands

:CALCulate:<measurement>:MARKer[1] 2 3|4:MAXimum ... 189
:CALCulate:<measurement>:MARKer[1] 2 3|4:MINimum ... 190
:CALCulate:<measurement>:MARKer[1] 2 3|4:MODE POSITION|DELTa 190
:CALCulate:<measurement>:MARKer[1] 2 3|4[:STATE] OFF|ON|0|1 .. 191
:CALCulate:<measurement>:MARKer[1] 2 3|4[:STATE]? .. 191
:CALCulate:<measurement>:MARKer[1] 2 3|4:TRACE <trace_name> 191
:CALCulate:PSTATistic:STORE:REFERENCE ON .. 197
:CALibration:ABORt .. 198
:CALibration:ADC:ARANge 198
:CALibration:ADC:ARANge? 198
:CALibration:ADC:DITHer 198
:CALibration:ADC:DITHer? 198
:CALibration:ADC:OFFSet 199
:CALibration:ADC:OFFSet? 199
:CALibration:ADCRam:GAIN 199
:CALibration:ADCRam:GAIN? 199
:CALibration:[ALL] .. 199
:CALibration:[ALL]? .. 199
:CALibration:ATTenuator 200
:CALibration:ATTenuator? 200
:CALibration:AUTO OFF|ALERT|ON 200
:CALibration:AUTO? .. 200
Commands

:CALibration:COMB ... 201
:CALibration:COMB? ... 201
:CALibration:DISPlay:LEVel OFF | LOW | HIGH 201
:CALibration:DISPlay:LEVel? .. 201
:CALibration:FLATness:IF ... 201
:CALibration:FLATness:IF? ... 201
:CALibration:FREQuency:REFerence:AADjust 202
:CALibration:GADC ... 202
:CALibration:GADC? .. 202
:CALibration:GAIN:IF ... 202
:CALibration:GAIN:IF? ... 202
:CALibration:GAIN:CSYStem .. 203
:CALibration:GAIN:CSYStem? ... 203
:CALibration:GIF ... 203
:CALibration:GIF? ... 203
:CALibration:GRF ... 203
:CALibration:GRF? ... 203
:CALibration:IMAGefilter ... 203
:CALibration:IMAGefilter? .. 203
:CALibration:LOAD:DEFault .. 204
:CALibration:PFILter:LCWide .. 204
:CALibration:PFILter:LCWide? .. 204
:CALibration:PFILter:LCNarrow ... 204
:CALibration:PFILter:LCNarrow? .. 204
:CALibration:PFILter:XTALWide ... 204
:CALibration:PFILter:XTALWide? ... 204
:CALibration:PFILter:XTALNarrow ... 205
:CALibration:PFILter:XTALNarrow? .. 205
:CALibration:REF321 .. 205
:CALibration:REF321? ... 205
:CALibration:REF50:AMPL <power> 206
Commands

:CALibration:REF50:AMPL? ... 206
:CALibration:REF50:ANOW .. 206
:CALibration:REF50[:DOIT] ... 207
:CALibration:REF50[:DOIT]? ... 207
:CALibration:REF50:ENTER ... 207
:CALibration:REF50:EXIT .. 208
:CALibration:REF50:LAST:ABSLevel? .. 208
:CALibration:REF50:LAST:ALCDac? .. 208
:CALibration:TRIGger:DELAY ... 209
:CALibration:TRIGger:DELAY? .. 209
:CALibration:TRIGger:INTERP ... 209
:CALibration:TRIGger:INTERP? ... 209
:CALibration:WAIT ... 209
:CONFigure:<measurement> ... 210
:CONFigure? ... 210
:DISPlay:ACP:VIEW BGRAPH|SPECTRUM 211
:DISPlay:ACP:VIEW? .. 211
:DISPlay:ANnotation:TITLE:DATA <string> 211
:DISPlay:ANnotation:TITLE:DATA? .. 211
:DISPlay:ANnotation:TITLE[:STATE] OFF|ON|0|1 212
:DISPlay:ANnotation:TITLE[:STATE]? .. 212
:DISPlay:ENABLE OFF|ON|0|1 ... 212
:DISPlay:ENABLE? ... 212
:DISPlay:EVM:VIEW POLAR|CONSTLN|QUAD 212
:DISPlay:EVM:VIEW? .. 212
:DISPlay:FORMat:TILE .. 213
:DISPlay:FORMat:ZOOM .. 213
:DISPlay:SPECTRum[n]:WINDow[m]:TRACeY[:SCALe]:RLEVel <power> ... 214
:DISPlay:SPECTrurm[n]:WINDow[m]:TRACeY[:SCALe]:RLEVel? .. 214
:DISPlay:TRACE[n][:STATE] OFF|ON|0|1 215
:DISPlay:TRACE[n][:STATE]? ... 215
Commands

:DISPlay:WAVEform[n]:WINDow[m]:TRACeY[:SCALe]:RLEVel <power> 218
:DISPlay:WAVEform[n]:WINDow[m]:TRACeY[:SCALe]:RLEVel? 218
:FETCh:<measurement>[n]? ... 219
:FORMat:BORDer NORMal|SWAPped ... 220
:FORMat:BORDer? ... 220
:FORMat[:DATA] ASCII|REAL,32|REAL,64 .. 220
:FORMat[:DATA]? ... 220
:HCOPy:DESTination FPANel|PRINter ... 222
:HCOPy:DESTination? ... 222
:HCOPy:DEVice:COLor NO|YES .. 222
:HCOPy:DEVice:COLor? .. 222
:HCOPy:DEVice:LANGuage PCL3|PCL5 ... 223
:HCOPy:DEVice:LANGuage? .. 223
:HCOPy:DEVice:TYPE CUSTom|NONE .. 223
:HCOPy:DEVice:TYPE? .. 223
:HCOPy:IMAGe:COLor[:STATe] OFF|ON|0|1 ... 224
:HCOPy:IMAGe:COLor[:STATe]? ... 224
:HCOPy[:IMMediate] ... 224
:HCOPy:REPrint[:IMMediate] .. 224
:HCOPy:SDUMp:IMAGe NORMal|INVert ... 227
:HCOPy:SDUMp:IMAGe? ... 227
:HCOPy:SDUMp[:IMMediate] .. 227
:INITiate:CONTinuous OFF|ON|0|1 ... 228
:INITiate:CONTinuous? .. 228
:INITiate[:IMMediate] ... 229
Commands

:INITiate:RESTart ... 229
:INPUT:IMPedance:IQ 50|600 .. 230
:INPUT:IMPedance:IQ? .. 230
:INSTRument:CATalog[:FULL]? .. 230
:INSTRument:NSELect <integer> ... 230
:INSTRument:NSELect? ... 230
:INSTRument[:SELect] BASIC|SERVICE|CDMA|CDMA2K|GSM|EDGE|GSM|IDEN|NADC|PDC|WCDMA|ARIB-WCDMA ... 233
:INSTRument[:SELect]? ... 233
:MEASURE:<measurement>[n]? .. 234
:CONFIGure:<measurement> ... 234
:FETCH:<measurement>[n]? ... 235
:READ:<measurement>[n]? ... 235
:CONFIGure:ACP ... 236
:FETCH:ACP[n]? ... 236
:READ:ACP[n]? ... 236
:MEASURE:ACP[n]? ... 236
:CONFIGure:AREference .. 245
:FETCH:AREference[n]? ... 245
:READ:AREference[n]? ... 245
:MEASURE:AREference[n]? ... 245
:CONFIGure:CHPower .. 246
:FETCH:CHPower[n]? ... 246
:READ:CHPower[n]? ... 246
:MEASURE:CHPower[n]? .. 246
:CONFIGure:PSTatistic ... 247
:FETCH:PSTatistic[n]? .. 247
:READ:PSTatistic[n]? .. 247
:MEASURE:PSTatistic[n]? ... 247
:CONFIGure:PVTime ... 248
:FETCH:PVTime[n]? .. 248
Commands

:READ:PVTime[n]? ... 248
:MEASure:PVTime[n]? ... 248
:CONFigure:SENSors ... 250
:FETCh:SENSors[n]? ... 250
:READ:SENSors[n]? ... 250
:MEASure:SENSors[n]? ... 250
:CONFigure:SPECtrum .. 251
:FETCh:SPECtrum[n]? ... 251
:READ:SPECtrum[n]? ... 251
:MEASure:SPECtrum[n]? ... 251
:CONFigure:TBFRequency ... 254
:FETCh:TBFRequency[n]? ... 254
:READ:TBFRequency[n]? ... 254
:MEASure:TBFRequency[n]? ... 254
:CONFigure:WAVeform ... 255
:FETCh:WAVeform[n]? ... 255
:READ:WAVeform[n]? ... 255
:MEASure:WAVeform[n]? .. 255
:MEMory:INSTall:APPLication <filename> 257
:MEMory:UNINstall:APPLication <filename> 257
:MMEMory:FREE? .. 258
:MMEMory:MSIS A|C ... 258
:MMEMory:MSIS? .. 258
:MMEMory:STORE:SCReen[:IMMediate] [<filename>] 259
:MMEMory:STORE:SCReen:IMAGe NORMAL|INVert 260
:MMEMory:STORE:SCReen:IMAGe? 260
:READ:<measurement>[n]? .. 261
[:SENSe]:ACP:AVERage:COUNt <integer> 262
[:SENSe]:ACP:AVERage:COUNt? 262
[:SENSe]:ACP:AVERage[:STATe] OFF|ON|0|1 262
[:SENSe]:ACP:AVERage[:STATe]?

[:SENSe]:ACP:AVERage:TCONtrol EXPonential|REPeat

[:SENSe]:ACP:AVERage:TCONtrol?

[:SENSe]:ACP:AVERage:TYPE MAXimum|RMS

[:SENSe]:ACP:AVERage:TYPE?

[:SENSe]:ACP:BANDwidth|BWIDth:INTegration <freq>

[:SENSe]:ACP:BANDwidth|BWIDth:INTegration?

[:SENSe]:ACP:BANDwidth[n]|BWIDth[n]:INTegration <freq>

[:SENSe]:ACP:BANDwidth[n]|BWIDth[n]:INTegration?

[:SENSe]:ACP:BANDwidth[n]|BWIDth[n]:INTegration[n] <freq>

[:SENSe]:ACP:BANDwidth[n]|BWIDth[n]:INTegration[n]?

[:SENSe]:ACP:FFTSegment <integer>

[:SENSe]:ACP:FFTSegment?

[:SENSe]:ACP:FFTSegment:AUTO OFF|ON|0|1

[:SENSe]:ACP:FFTSegment:AUTO?

[:SENSe]:ACP:OFFSet:ABSolute <power>

[:SENSe]:ACP:OFFSet:ABSolute?

[:SENSe]:ACP:OFFSet:LIST:ABSolute <power>,<power>,<power>,<power>,<power>

[:SENSe]:ACP:OFFSet:LIST:ABSolute?

[:SENSe]:ACP:OFFSet[n]:LIST:ABSolute <power>,<power>,<power>,<power>,<power>

[:SENSe]:ACP:OFFSet[n]:LIST:ABSolute?

[:SENSe]:ACP:OFFSet[n]:LIST[n]:ABSolute <power>,<power>,<power>,<power>,<power>

[:SENSe]:ACP:OFFSet[n]:LIST[n]:ABSolute?

[:SENSe]:ACP:OFFSet:LIST:AVERage:TYPE LOG|MAXimum|MINimum|RMS|SCALar

[:SENSe]:ACP:OFFSet:LIST:AVERage:TYPE?

[:SENSe]:ACP:OFFSet:BANDwidth|BWIDth <res_bw>

[:SENSe]:ACP:OFFSet:BANDwidth|BWIDth?

[:SENSe]:ACP:OFFSet:LIST:BANDwidth|BWIDth <res_bw>,<res_bw>,<res_bw>,<res_bw>,<res_bw>

[:SENSe]:ACP:OFFSet:LIST:BANDwidth|BWIDth <res_bw>,<res_bw>,<res_bw>,<res_bw>,<res_bw>?
Commands

[:SENSe]:ACP:OFFSet[n]:LIST:BANDwidth|BWIDth? .. 268
[:SENSe]:ACP:OFFSet[n]:LIST[n]:BANDwidth|BWIDth <res_bw>,<res_bw>,<res_bw> ... 268
[:SENSe]:ACP:OFFSet[n]:LIST[n]:BANDwidth|BWIDth? .. 268
[:SENSe]:ACP:OFFSet:LIST:FFTSegment <integer>,<integer>,<integer>,<integer>,<integer> . 270
[:SENSe]:ACP:OFFSet:LIST:FFTSegment? ... 270
[:SENSe]:ACP:OFFSet:LIST:FFTSegment:AUTO OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1 .. 271
[:SENSe]:ACP:OFFSet:LIST:FFTSegment:AUTO? .. 271
[:SENSe]:ACP:OFFSet[:FREQuency] <f_offset> ... 271
[:SENSe]:ACP:OFFSet[:FREQuency]? ... 271
[:SENSe]:ACP:OFFSet:LIST[:FREQuency] <f_offset>,<f_offset>,<f_offset>,<f_offset>,<f_offset> ... 271
[:SENSe]:ACP:OFFSet:LIST[:FREQuency]? ... 271
[:SENSe]:ACP:OFFSet[n]:LIST[:FREQuency] <f_offset>,<f_offset>,<f_offset>,<f_offset>,<f_offset> ... 271
[:SENSe]:ACP:OFFSet[n]:LIST[:FREQuency]? ... 271
[:SENSe]:ACP:OFFSet[n]:LIST[n]:[:FREQuency] <f_offset>,<f_offset>,<f_offset>,<f_offset>,<f_offset> ... 271
[:SENSe]:ACP:OFFSet[n]:LIST[n]:[:FREQuency]? ... 271
[:SENSe]:ACP:OFFSet:LIST:POINts <integer>,<integer>,<integer>,<integer>,<integer> .. 273
[:SENSe]:ACP:OFFSet:LIST:POINts? ... 273
[:SENSe]:ACP:OFFSet:LIST:POINts:AUTO OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1 .. 274
[:SENSe]:ACP:OFFSet:LIST:RATTenuation <rel_powr>,<rel_powr>,<rel_powr>,<rel_powr>,<rel_powr> ... 274
[:SENSe]:ACP:OFFSet:LIST:RATTenuation? .. 274
[:SENSe]:ACP:OFFSet:LIST:RATTenuation:AUTO OFF|ON|0|1 .. 275
[:SENSe]:ACP:OFFSet:LIST:RATTenuation:AUTO? .. 275
[:SENSe]:ACP:OFFSet:RCARrier <rel_power> ... 276
[:SENSe]:ACP:OFFSet:RCARrier? ... 276
[:SENSe]:ACP:OFFSet:LIST:RCARrier <rel_power>,<rel_power>,<rel_power>,<rel_power>,<rel_power> ... 276
[:SENSe]:ACP:OFFSet:LIST:RCARrier? .. 276
Commands

[:SENSe]:ACP:OFFSet:LIST:RCArrier? .. 276
[:SENSe]:ACP:OFFSet[n]:LIST:RCArrier <rel_power>,<rel_power>,
<rel_power>,<rel_power>,<rel_power> .. 276
[:SENSe]:ACP:OFFSet[n]:LIST:RCArrier? ... 276
[:SENSe]:ACP:OFFSet[n]:LIST[n]:RCArrier <rel_power>,<rel_power>,
<rel_power>,<rel_power>,<rel_power> .. 276
[:SENSe]:ACP:OFFSet[n]:LIST[n]:RCArrier? ... 276
[:SENSe]:ACP:OFFSet:RPSDensity <rel_power> ... 278
[:SENSe]:ACP:OFFSet:RPSDensity? .. 278
[:SENSe]:ACP:OFFSet:LIST:RPSDensity <rel_power>,<rel_power>,
<rel_power>,<rel_power>,<rel_power> .. 278
[:SENSe]:ACP:OFFSet:LIST:RPSDensity? ... 278
[:SENSe]:ACP:OFFSet[n]:LIST:RPSDensity <rel_power>,<rel_power>,
<rel_power>,<rel_power>,<rel_power> .. 278
[:SENSe]:ACP:OFFSet[n]:LIST:RPSDensity? ... 278
[:SENSe]:ACP:OFFSet:LIST:SIDE BOTH|NEGative|POSitive, BOTH|NEGative|POSitive,
BOTH|NEGative|POSitive, BOTH|NEGative|POSitive, BOTH|NEGative|POSitive. 280
[:SENSe]:ACP:OFFSet:LIST:SIDE? ... 280
[:SENSe]:ACP:OFFSet[n]:LIST:SIDE OFF|ON|0|1, OFF|ON|0|1. ... 280
[:SENSe]:ACP:OFFSet[n]:LIST:STATE? ... 280
[:SENSe]:ACP:OFFSet[n]:LIST[n]:STATE OFF|ON|0|1, OFF|ON|0|1. ... 280
[:SENSe]:ACP:OFFSet[n]:LIST[n]:STATE? ... 280
[:SENSe]:ACP:OFFSet[n]:LIST:STATE OFF|ON|0|1, OFF|ON|0|1. ... 280
[:SENSe]:ACP:OFFSet[n]:LIST[n]:STATE? ... 280
[:SENSe]:ACP:OFFSet:LIST:SWEep:TIME <seconds>,<seconds>,
<seconds>,<seconds>,<seconds> .. 282
[:SENSe]:ACP:OFFSet:LIST:SWEep:TIME? .. 282
[:SENSe]:ACP:OFFSet[n]:LIST:SWEep:TIME AUTO OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1. ... 283
Commands

[:SENSe]:ACP:OFFSet:LIS{T:SWEep:TIME:AUTO?} .. 283
[:SENSe]:ACP:OFFSet:TESt ABSolute|AND|OR|RELative .. 283
[:SENSe]:ACP:OFFSet:TESt? .. 283
[:SENSe]:ACP:OFFSet:LIS{T:TEST ABSolute|AND|OR|RELative
ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative
ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative .. 283
[:SENSe]:ACP:OFFSet:LIS{T:TEST?} .. 283
[:SENSe]:ACP:OFFSet[n]:LIS{T:TEST ABSolute|AND|OR|RELative
ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative
ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative .. 283
[:SENSe]:ACP:OFFSet[n]:LIS{T:TEST?} .. 283
[:SENSe]:ACP:POINts <integer> .. 285
[:SENSe]:ACP:POINts? .. 285
[:SENSe]:ACP:POINts:AUTo OFF|ON|0|1 .. 286
[:SENSe]:ACP:POINts:AUTo? .. 286
[:SENSe]:ACP:SPECTruman:ENABlE OFF|ON|0|1 .. 286
[:SENSe]:ACP:SPECTruman:ENABlE? .. 286
[:SENSe]:ACP:SWEep:TIME <seconds> .. 287
[:SENSe]:ACP:SWEep:TIME? .. 287
[:SENSe]:ACP:SWEep:TIME:AUTO OFF|ON|0|1 .. 288
[:SENSe]:ACP:SWEep:TIME:AUTO? .. 288
[:SENSe]:ACP:TRIGger:SOURce EXTernal[1]|EXTernal2|FRAMe|IF|IMMediate|RFBurst .. 288
[:SENSe]:ACP:TRIGger:SOURce? .. 288
[:SENSe]:ACP:TYPE PSDRef|TPRef .. 289
[:SENSe]:ACP:TYPE? .. 289
[:SENSe]:CHANnel:ARFCn|RFCHannel <integer> .. 290
[:SENSe]:CHANnel:ARFCn|RFCHannel? .. 290
[:SENSe]:CHANnel:ARFCn|RFCHannel:BOTTom .. 291
[:SENSe]:CHANnel:ARFCn|RFCHannel:MIDDle .. 292
Commands

[:SENSe]:CHANnel:ARFCn| RFChannel:TOP .. 293
[:SENSe]:CHANnel:BURSt TCH| CCH 293
[:SENSe]:CHANnel:BURSt? .. 293
[:SENSe]:CHANnel:BURSt NORMAL| SYNC| ACCess 294
[:SENSe]:CHANnel:BURSt? .. 294
[:SENSe]:CHANnel:PNOffset <integer> 294
[:SENSe]:CHANnel:PNOffset? ... 294
[:SENSe]:CHANnel:RFChannel[:NUMBER] <integer> 295
[:SENSe]:CHANnel:RFChannel[:NUMBER]? 295
[:SENSe]:CHANnel:SLOT <integer> 296
[:SENSe]:CHANnel:SLOT? .. 296
[:SENSe]:CHANnel:SLOT:AUTO OFF| ON| 0| 1 297
[:SENSe]:CHANnel:SLOT:AUTO? 297
[:SENSe]:CHANnel:TSCode <integer> 297
[:SENSe]:CHANnel:TSCode? .. 297
[:SENSe]:CHANnel:TSCode:AUTO OFF| ON| 0| 1 298
[:SENSe]:CHANnel:TSCode:AUTO? 298
[:SENSe]:CHPower:AVERage:COUNt <integer> 299
[:SENSe]:CHPower:AVERage:COUNt? 299
[:SENSe]:CHPower:AVERage[:STATe] OFF| ON| 0| 1 299
[:SENSe]:CHPower:AVERage[:STATe]? 299
[:SENSe]:CHPower:AVERage:TCONtrol EXPonential| REPeat 300
[:SENSe]:CHPower:AVERage:TCONtrol? 300
[:SENSe]:CHPower:BANDwidth| BWIDth:INTEGRation <freq> 300
[:SENSe]:CHPower:BANDwidth| BWIDth:INTEGRation? 300
[:SENSe]:CHPower:FREQuency:SPAN <freq> 301
[:SENSe]:CHPower:FREQuency:SPAN? 301
[:SENSe]:CHPower:POINts <integer> 301
[:SENSe]:CHPower:POINts? .. 301
[:SENSe]:CHPower:POINts:AUTO OFF| ON| 0| 1 302
[:SENSe]:CHPower:POINts:AUTO? 302
Commands

[:SENSe]:CHPower:SWEep:TIME <time> .. 302
[:SENSe]:CHPower:SWEep:TIME? .. 302
[:SENSe]:CHPower:SWEep:TIME:AUTO OFF|ON|0|1 303
[:SENSe]:CHPower:SWEep:TIME:AUTO? .. 303
[:SENSe]:CHPower:TRIGger:SOURce EXternal[1] EXternal2 | IMMEDIATE 303
[:SENSe]:CHPower:TRIGger:SOURce? ... 303
[:SENSe]:CORRection:BS[:RF]:LOSS <rel_power> 304
[:SENSe]:CORRection:BS[:RF]:LOSS? ... 304
[:SENSe]:CORRection:BTS[:RF]:LOSS <rel_power> 304
[:SENSe]:CORRection:BTS[:RF]:LOSS? ... 304
[:SENSe]:CORRection:MS[:RF]:LOSS <rel_power> 305
[:SENSe]:CORRection:MS[:RF]:LOSS? ... 305
[:SENSe]:FEED IONLY|IQ|RF|IFALign|AREference 305
[:SENSe]:FEED? ... 305
[:SENSe]:FREQuency:CENTer <freq> ... 306
[:SENSe]:FREQuency:CENTer? ... 306
[:SENSe]:FREQuency:CENTer:STEP:AUTO OFF|ON|0|1 306
[:SENSe]:FREQuency:CENTer:STEP:AUTO? .. 306
[:SENSe]:FREQuency:CENTer:STEP[:INCRement] <freq> 307
[:SENSe]:FREQuency:CENTer:STEP[:INCRement]? 307
[:SENSe]:POWer[:RF]:ATTenuation <rel_power> 307
[:SENSe]:POWer[:RF]:ATTenuation? ... 307
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1 308
[:SENSe]:POWer[:RF]:RANGe:AUTO? .. 308
[:SENSe]:POWer[:RF]:RANGe[:UPPer] <power> ... 309
[:SENSe]:POWer[:RF]:RANGe[:UPPer]? ... 309
[:SENSe]:PSTatistic:BANDwidth|BWIDth <freq> .. 310
[:SENSe]:PSTatistic:BANDwidth|BWIDth? .. 310
[:SENSe]:PSTatistic:COUNts <integer> ... 310
[:SENSe]:PSTatistic:COUNts? ... 310
[:SENSe]:PSTatistic:SWEep:TIME <time> ... 311
Commands

[:SENSe]:PSTatistic:SWEep:TIME? .. 311
[:SENSe]:PVTime:AVErage:COUNt <integer> ... 312
[:SENSe]:PVTime:AVErage:COUNt? .. 312
[:SENSe]:PVTime:AVErage[:STATe] OFF | ON | 0 | 1 312
[:SENSe]:PVTime:AVErage[:STATe]? ... 312
[:SENSe]:PVTime:AVErage:TCONtrol EXPonential | REPeat 313
[:SENSe]:PVTime:AVErage:TCONtrol? ... 313
[:SENSe]:PVTime:AVErage:TYPE LOG | MAXimum | MINimum | MXMinimum | RMS 313
[:SENSe]:PVTime:AVErage:TYPE? ... 313
[:SENSe]:PVTime:Bandwidth | BWIDth[:RESolution] <freq> .. 314
[:SENSe]:PVTime:Bandwidth | BWIDth[:RESolution]? ... 314
[:SENSe]:PVTime:Bandwidth | BWIDth[:RESolution]:TYPE FLATtop | GAUSSian 314
[:SENSe]:PVTime:Bandwidth | BWIDth[:RESolution]:TYPE? ... 314
[:SENSe]:PVTime:SWEep:TIME <integer> .. 315
[:SENSe]:PVTime:SWEep:TIME? ... 315
[:SENSe]:PVTime:TRIGger:SOURce EXTernal[1] | EXTernal2 | FRAME | IF | IMMEDIATE | RF Burst .. 315
[:SENSe]:PVTime:TRIGger:SOURce? ... 315
[:SENSe]:RADio:CARRier:HOP OFF | ON | 0 | 1 .. 316
[:SENSe]:RADio:CARRier:HOP? ... 316
[:SENSe]:RADio:CARRier:NUMBer SINGle | MULTiple ... 316
[:SENSe]:RADio:CARRier:NUMBer? ... 316
[:SENSe]:RADio:CARRier[:TYPE] BURSt | CONTinuous 317
[:SENSe]:RADio:CARRier[:TYPE]? .. 317
[:SENSe]:RADio:DEVice BS | MS ... 317
[:SENSe]:RADio:DEVice? ... 317
[:SENSe]:RADio:DEVice BTS | MS ... 318
[:SENSe]:RADio:DEVice? ... 318
[:SENSe]:RADio:DEVice INBound | OUTBound .. 318
[:SENSe]:RADio:DEVice? ... 318
[:SENSe]:RADio:DEVice:BASE[:TYPE] NORMal | MICRO | PICO 319
Commands

[:SENSe]:RADio:DEVice:BASE[:TYPE]? ... 319
[:SENSe]:RADio:FOFFset <freq> ... 319
[:SENSe]:RADio:FOFFset? ... 319
[:SENSe]:RADio:FORMat ARIB|TGPP|TRial 320
[:SENSe]:RADio:FORMat? ... 320
[:SENSe]:RADio:FORMat M16QAM|M64QAM|DJSMR 320
[:SENSe]:RADio:FORMat? ... 320
[:SENSe]:RADio:STANdard:BAND ARIBT53|C95B|CKOR|IS95A|STD8|P95B|PKOR|CUSTOM 321
[:SENSe]:RADio:STANdard:BAND? .. 321
[:SENSe]:RADio:STANdard:BAND PGSM|EGSM|RGSM|DCS|PCS|GSM450|GSM480|GSM850 322
[:SENSe]:RADio:STANdard:BAND? .. 322
[:SENSe]:RADio:TRATe FULL|HALF .. 322
[:SENSe]:RADio:TRATe? ... 322
[:SENSe]:ROSCillator:EXTernal:FREQuency <frequency> 323
[:SENSe]:ROSCillator:EXTernal:FREQuency? 323
[:SENSe]:ROSCillator:OUTPut[:STATe] OFF|ON|0|1 323
[:SENSe]:ROSCillator:OUTPut? ... 323
[:SENSe]:ROSCillator:SOURce INTernal|EXTernal 324
[:SENSe]:ROSCillator:SOURce? ... 324
[:SENSe]:SPECtrum:ACQuisition:PACKing AUTO|LONG|MEDium|SHORT 325
[:SENSe]:SPECtrum:ACQuisition:PACKing? 325
[:SENSe]:SPECtrum:ADC:DITHer[:STATe] AUTO|ON|OFF|2|1|0 325
[:SENSe]:SPECtrum:ADC:DITHer[:STATe]? 325
[:SENSe]:SPECtrum:ADC:RANGe AUTO|APEak|APLock|M6|P0|P6|P12|P18|P24 .. 326
[:SENSe]:SPECtrum:ADC:RANGe? ... 326
[:SENSe]:SPECtrum:AVERage:CLEAR 327
[:SENSe]:SPECtrum:AVERage:COUNt <integer> 327
[:SENSe]:SPECtrum:AVERage:COUNt? 327
Commands

[:SENSe]:SPECTrum:AVERage[:STATE] OFF|ON|0|1 ... 327
[:SENSe]:SPECTrum:AVERage[:STATE]? .. 327
[:SENSe]:SPECTrum:AVERage:TCONtrol EXPonential|REPeat 328
[:SENSe]:SPECTrum:AVERage:TCONtrol? ... 328
[:SENSe]:SPECTrum:AVERage:TYPE LOG|MAXimum|MINimum|RMS|SCALar 328
[:SENSe]:SPECTrum:AVERage:TYPE? ... 328
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PADC OFF|ON|0|1 ... 329
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PADC? ... 329
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PFFT:AUTO OFF|ON|0|1 329
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PFFT:AUTO? ... 329
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PFFT[:SIZE] <freq> 329
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PFFT[:SIZE]? ... 329
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PFFT:TYPE FLAT|GAUSsian 330
[:SENSe]:SPECTrum:BANDwidth|BWIDth:PFFT:TYPE? ... 330
[:SENSe]:SPECTrum:BANDwidth|BWIDth[:RESolution] <freq> 330
[:SENSe]:SPECTrum:BANDwidth|BWIDth[:RESolution]? ... 330
[:SENSe]:SPECTrum:BANDwidth|BWIDth[:RESolution]:AUTO OFF|ON|0|1 331
[:SENSe]:SPECTrum:BANDwidth|BWIDth[:RESolution]:AUTO? 331
[:SENSe]:SPECTrum:DECimate[:FACTor] <integer> .. 331
[:SENSe]:SPECTrum:DECimate[:FACTor]? ... 331
[:SENSe]:SPECTrum:FFT:LENGth <integer> ... 332
[:SENSe]:SPECTrum:FFT:LENGth? ... 332
[:SENSe]:SPECTrum:FFT:LENGth:AUTO OFF|ON|0|1 .. 332
[:SENSe]:SPECTrum:FFT:WINDow:DELay <real> .. 333
[:SENSe]:SPECTrum:FFT:WINDow:DELay? .. 333
[:SENSe]:SPECTrum:FFT:WINDow:LENGth <integer> ... 334
[:SENSe]:SPECTrum:FFT:WINDow:LENGth? ... 334
Commands

[:SENSe]:SPECTrum:FFT:WINDow[:TYPE] BH4Tap|BLACKman|
| FLATtop] GAUSsian] HAMMing| HANNing|
KB70| KB90| KB110| UNIForm 334
[:SENSe]:SPECTrum:FFT:WINDow[:TYPE]? 334
[:SENSe]:SPECTrum:FREQuency:SPAN <freq> 335
[:SENSe]:SPECTrum:FREQuency:SPAN? 335
[:SENSe]:SPECTrum:SWEep:TIME <time> 335
[:SENSe]:SPECTrum:SWEep:TIME? 335
[:SENSe]:SPECTrum:SWEep:TIME:AUTo OFF|ON|0|1 336
[:SENSe]:SPECTrum:SWEep:TIME:AUTo 336
[:SENSe]:SPECTrum:TRIGger:SOURce EXTernal[1]|EXTernal2|
FRAME| IF| LINE| IMMEDIATE| RF Burst 336
[:SENSe]:SPECTrum:TRIGger:SOURce? 336
[:SENSe]:SYNC:SECond|EXTernal[1]|EXTernal2|NONE|PSEQUence 337
[:SENSe]:SYNC? ... 337
[:SENSe]:SYNC:ALIGNment GSM|HBIT 337
[:SENSe]:SYNC:ALIGNment? 337
[:SENSe]:SYNC:BURSt:DELay <time> 338
[:SENSe]:SYNC:BURSt:DELay? 338
[:SENSe]:SYNC:BURSt:RFAMplitude:DELay <time> 338
[:SENSe]:SYNC:BURSt:RFAMplitude:DELay? 338
[:SENSe]:SYNC:BURSt:STHReshold <rel_power> 339
[:SENSe]:SYNC:BURSt:STHReshold? 339
[:SENSe]:SYNC:STHReshold <rel_power> 339
[:SENSe]:SYNC:STHReshold? 339
[:SENSe]:WAVEform:ACQuistion:PACKing AUTO|LONG|MEDium|SHORT 340
[:SENSe]:WAVEform:ACQuistion:PACKing? 340
[:SENSe]:WAVEform:ADC:DITHer[:STATe] OFF|ON|0|1 340
[:SENSe]:WAVEform:ADC:DITHer[:STATe]? 340
[:SENSe]:WAVEform:ADC:FILT[er][:STATe] OFF|ON|0|1 340
[:SENSe]:WAVEform:ADC:FILT[er][:STATe]? 340
Commands

[:SENSe]:WAVeform:ADC:RANGe AUTO|APEak|APLock|
GROund| M6| P0| P6| P12| P18| P24| .. 341
[:SENSe]:WAVeform:ADC:RANGe? .. 341
[:SENSe]:WAVeform:AVERage:COUNt <integer> 341
[:SENSe]:WAVeform:AVERage:COUNt? .. 341
[:SENSe]:WAVeform:AVERage:[STATE] OFF| ON | 0 | 1 .. 342
[:SENSe]:WAVeform:AVERage:[STATE]? .. 342
[:SENSe]:WAVeform:AVERage:TCONtrol EXPonential|REPeat 342
[:SENSe]:WAVeform:AVERage:TCONtrol? .. 342
[:SENSe]:WAVeform:AVERage:TYPE LOG|MAXimum|MINimum|RMS|SCALar 343
[:SENSe]:WAVeform:AVERage:TYPE? .. 343
[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution] <freq> 343
[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution]? 343
[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution]:TYPE FLATtop|GAUSSian 344
[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution]:TYPE? 344
[:SENSe]:WAVeform:DECimate[:FACTor] <integer> 344
[:SENSe]:WAVeform:DECimate[:FACTor]? .. 344
[:SENSe]:WAVeform:DECimate:[STATE] OFF| ON | 0 | 1 .. 345
[:SENSe]:WAVeform:DECimate:[STATE]? .. 345
[:SENSe]:WAVeform:SWEep:TIME <time> .. 345
[:SENSe]:WAVeform:SWEep:TIME? .. 345
[:SENSe]:WAVeform:TRIGger:SOURce EXTernal[1]|EXTernal2|FRAME|IF|IMMediate|LINE|RFBurst .. 346
[:SENSe]:WAVeform:TRIGger:SOURce? .. 346
:SERVice[:PRODuction]:CALibrate <cal_fid>,<idx>,<numeric_value> 347
:SERVice[:PRODuction]:CALibrate? <cal_fid>,<idx> 347
:SERVice[:PRODuction]:CALibrate:BEGIN ... 347
:SERVice[:PRODuction]:CALibrate:DEFAULT <cal_fid> 347
:SERVice[:PRODuction]:CALibrate:END ... 348
:SERVice[:PRODuction]:CALibrate:INITialize <cal_fid> 348
:SERVice[:PRODuction]:CALibrate:STORE <cal_fid> 348
:STATus:OPERation:CONDition? .. 349
Commands

BASE ... 349
:STATus:OPERation:ENABle? ... 349
:STATus:OPERation[:EVENt]? .. 349
BASE ... 350
:STATus:OPERation:NTRansition? .. 350
BASE ... 350
:STATus:OPERation:PTRansition? .. 350
:STATus:PRESet ... 351
:STATus:QUESTionable:CONDition? .. 351
:STATus:QUESTionable:ENABle <number> 351
:STATus:QUESTionable:ENABle? .. 351
:STATus:QUESTionable[:EVENt]? .. 352
:STATus:QUESTionable:NTRansition <number> 352
:STATus:QUESTionable:NTRansition? 352
:STATus:QUESTionable:PTRansition <number> 352
:STATus:QUESTionable:PTRansition? 352
:STATus:QUESTionable:CALibration:ENABle <number> 353
:STATus:QUESTionable:CALibration[:EVENt]? 353
:STATus:QUESTionable:CALibration:NTRansition <number> 354
:STATus:QUESTionable:CALibration:PTRansition <number> 354
:STATus:QUESTionable:FREQuency:ENABle <number> 355
:STATus:QUESTionable:FREQuency[:EVENt]? 355
:STATus:QUESTionable:FREQuency:NTRansition <number> 355
:STATus:QUESTionable:FREQuency:PTRansition <number> 356
Commands

:STATus:QUESTionable:INTegrity:ENABLE <number> 356
:STATus:QUESTionable:INTegrity:[EVENt]? 357
:STATus:QUESTionable:INTegrity:NTRansition <number> 357
:STATus:QUESTionable:INTegrity:NTRansition? 357
:STATus:QUESTionable:INTegrity:PTRansition <number> 357
:STATus:QUESTionable:INTegrity:SIGNal:ENABLE <number> 358
:STATus:QUESTionable:INTegrity:SIGNal:[EVENt]? 358
:STATus:QUESTionable:INTegrity:SIGNal:NTRansition <number> 359
:STATus:QUESTionable:INTegrity:SIGNal:PTRansition <number> 359
:STATus:QUESTionable:POWER:ENABLE <number> 360
:STATus:QUESTionable:POWER:ENABLE? 360
:STATus:QUESTionable:POWER:[EVENt]? 360
:STATus:QUESTionable:POWER:NTRansition <number> 360
:STATus:QUESTionable:POWER:NTRansition? 360
:STATus:QUESTionable:POWER:PTRansition <number> 361
:STATus:QUESTionable:POWER:PTRansition? 361
:STATus:QUESTionable:TEMPerature:CONDition? 361
:STATus:QUESTionable:TEMPerature:ENABLE <number> 361
:STATus:QUESTionable:TEMPerature:ENABLE? 361
:STATus:QUESTionable:TEMPerature:[EVENt]? 362
:STATus:QUESTionable:TEMPerature:NTRansition <number> 362
Commands

:STATus:QUEstionable:TEMPerture:PTRansition <number> .. 362
:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <integer> 363
:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess? ... 363
:SYSTem:COMMunicate:LAN[:SELF]:IP <string> ... 363
:SYSTem:COMMunicate:LAN[:SELF]:IP? ... 363
:SYSTem:CONfigure:DEFault ... 364
:SYSTem:CONfigure[:SYSTem]? ... 364
:SYSTem:DATE <year>,<month>,<day> ... 364
:SYSTem:DATE? .. 364
:SYSTem:ERRor[:NEXT]? ... 365
:SYSTem:ERRor:VERBose OFF|ON|0|1 .. 365
:SYSTem:ERRor:VERBose? ... 365
:SYSTem:EXIT ... 366
:SYSTem:HID? .. 366
:SYSTem:LKEY <"option">,<"license key"> ... 367
:SYSTem:LKEY? <"option"> .. 367
:SYSTem:LKEY:DELete <"application">,<"license key"> ... 367
:SYSTem:PASSword[:CENable]<integer> ... 368
:SYSTem:PRESet ... 368
:SYSTem:TIME <hour>,<min>,<sec> ... 368
:SYSTem:TIME? ... 368
:SYSTem:TIME:ADJ ust <seconds> .. 369
:SYSTem:VERSion? .. 369
:TRIGger[:SEQuence]:AUTO:STATe OFF|ON|0|1 ... 370
:TRIGger[:SEQuence]:AUTO:STATe? ... 370
:TRIGger[:SEQuence]:AUTO[:TIME] <time> ... 371
:TRIGger[:SEQuence]:AUTO[:TIME]? .. 371
:TRIGger[:SEQuence]:EXTernal[1]:DEL ay <time> .. 371
:TRIGger[:SEQuence]:EXTernal[1]:DEL ay? .. 371
Commands

:TRIGger[:SEQuence]:EXTernal[1]:LEVel <voltage> .. 372
:TRIGger[:SEQuence]:EXTernal[1]:LEVel? ... 372
:TRIGger[:SEQuence]:EXTernal[1]:SLOPe NEGative|POSitive 372
:TRIGger[:SEQuence]:EXTernal[1]:SLOPe? ... 372
:TRIGger[:SEQuence]:EXTernal2:DELay <time> ... 372
:TRIGger[:SEQuence]:EXTernal2:DELay? ... 372
:TRIGger[:SEQuence]:EXTernal2:LEVel <voltage> ... 373
:TRIGger[:SEQuence]:EXTernal2:LEVel? ... 373
:TRIGger[:SEQuence]:EXTernal2:SLOPe NEGative|POSitive 373
:TRIGger[:SEQuence]:EXTernal2:SLOPe? ... 373
:TRIGger[:SEQuence]:FRAMe:ADJust <time> .. 373
:TRIGger[:SEQuence]:FRAMe:PERiod <time> .. 374
:TRIGger[:SEQuence]:FRAMe:PERiod? ... 374
:TRIGger[:SEQuence]:FRAMe:SYNCmode EXTFront|EXTRear|OFF|RF Burst 374
:TRIGger[:SEQuence]:FRAMe:SYNCmode:OFFSet <time> .. 375
:TRIGger[:SEQuence]:HOLDoff <time> .. 375
:TRIGger[:SEQuence]:HOLDoff? .. 375
:TRIGger[:SEQuence]:IF:DELay <time> ... 376
:TRIGger[:SEQuence]:IF:DELay? ... 376
:TRIGger[:SEQuence]:IF:LEVel <power> .. 376
:TRIGger[:SEQuence]:IF:LEVel? ... 376
:TRIGger[:SEQuence]:IF:SLOPe NEGative|POSitive .. 377
:TRIGger[:SEQuence]:IF:SLOPe? ... 377
:TRIGger[:SEQuence]:RF Burst:DELay <time> .. 377
:TRIGger[:SEQuence]:RF Burst:DELay? ... 377
:TRIGger[:SEQuence]:RF Burst:LEVel <percent> ... 378
:TRIGger[:SEQuence]:RF Burst:LEVel? ... 378
:TRIGger[:SEQuence]:RF Burst:SLOPe NEGative|POSitive 378
:TRIGger[:SEQuence]:RF Burst:SLOPe? ... 378
1 Preparing for Use

This instrument uses the Standard Commands for Programmable Instruments (SCPI) programming language. For information on writing SCPI commands see “SCPI Language Basics” on page 61.
What’s in This Chapter?

- “Programming the Transmitter Tester” on page 40
- “Installing Optional Measurement Personalities” on page 44
- “Writing Your First Program” on page 48
- “Cables for Connecting to RS-232” on page 50
- “Connecting to a LAN Server” on page 57
- “Connecting to a GPIB Server” on page 58

www.agilent.com/find/vsa

Get the latest listing of SCPI commands for this instrument at the above web location. Look under technical support information.
Digital Communications Measurements Information

Additional measurement application information is available through your local Agilent Technologies sales and service office. Some application notes are listed below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Agilent Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Modulation in Communications Systems - An Introduction</td>
<td>5965-7160E</td>
</tr>
<tr>
<td>Application Note 1298</td>
<td></td>
</tr>
<tr>
<td>Understanding CDMA Measurements for Base Stations and Their Components</td>
<td>5968-0953E</td>
</tr>
<tr>
<td>Application Note 1311</td>
<td></td>
</tr>
<tr>
<td>Designing and Testing 3GPP W-CDMA User Equipment (UE)</td>
<td>5980-1238E</td>
</tr>
<tr>
<td>Application Note 1356</td>
<td></td>
</tr>
<tr>
<td>Designing and Testing 3GPP W-CDMA Base Stations (BTS)</td>
<td>5980-1239E</td>
</tr>
<tr>
<td>Application Note 1355</td>
<td></td>
</tr>
<tr>
<td>Designing and Testing IS-2000 Mobile Stations</td>
<td>5980-1237E</td>
</tr>
<tr>
<td>Application Note 1358</td>
<td></td>
</tr>
<tr>
<td>Designing and Testing IS-2000 Base Stations</td>
<td>5980-1303E</td>
</tr>
<tr>
<td>Application Note 1357</td>
<td></td>
</tr>
<tr>
<td>Understanding GSM Transmitter Measurements for Base Transceiver Stations and Mobile Stations</td>
<td>5966-2833E</td>
</tr>
<tr>
<td>Application Note 1312</td>
<td></td>
</tr>
<tr>
<td>Understanding PDC and NADC Transmitter Measurements for Base Transceiver Stations and Mobile Stations</td>
<td>5968-5537E</td>
</tr>
<tr>
<td>Application Note 1324</td>
<td></td>
</tr>
</tbody>
</table>
Programming the Transmitter Tester

The E4406A VSA Series Transmitter Tester has several different measurement modes. The measurement commands that are available to you change, depending on which mode is selected. Use INSTRument:SELECT to select the desired mode.

Most modes are optional and must be installed into instrument memory before they can be used. See “Installing Optional Measurement Personalities” on page 44, if your measurement mode is not installed.

The SYSTem:HELP:HEADers? command provides a list of all the commands available in the mode you have currently selected. The programming commands for each optional mode are documented separately. The specific measurements available in a particular mode are indicated below.

Table 1-1 Available Modes and Measurements

<table>
<thead>
<tr>
<th>Modes</th>
<th>Measurement Keywords</th>
</tr>
</thead>
</table>
| Basic - standard | • ACP - adjacent channel power measurement
| | • CHPower - channel power measurement
| | • PSTatistic - power statistics (CCDF) measurement
| | • SPECTrum - spectrum (frequency domain) measurement
| | • WAVeform - waveform (time domain) measurement |
| INST:SELECT BASIC |
| cdmaOne - Option BAC | • ACP - adjacent channel power ratio measurement
| | • CDPower - code domain power measurement
| | • CHPower - channel power measurement
| | • CSPur - close spurs measurement
| | • RHO - rho (waveform quality) measurement
| | • SPECTrum - spectrum (frequency domain) measurement
| | • TSpur - transmit band spurs measurement
| | • WAVeform - waveform (time domain) measurement |
| INST:SELECT CDMA |
Table 1-1 Available Modes and Measurements

<table>
<thead>
<tr>
<th>Modes</th>
<th>Measurement Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdma2000 - Option B78</td>
<td>• ACP - adjacent channel power ratio measurement</td>
</tr>
<tr>
<td>INST:SELECT CDMA2K</td>
<td>• CHPower - channel power measurement</td>
</tr>
<tr>
<td></td>
<td>• PSTatistic - power statistics (CCDF) measurement</td>
</tr>
<tr>
<td></td>
<td>• CDPower - code domain power measurement</td>
</tr>
<tr>
<td></td>
<td>• EVMQpsk - QPSK error vector magnitude measurement</td>
</tr>
<tr>
<td></td>
<td>• RHO - rho (waveform quality) measurement</td>
</tr>
<tr>
<td></td>
<td>• OBW - occupied bandwidth measurement</td>
</tr>
<tr>
<td></td>
<td>• SEMask - spectrum emission mask measurement</td>
</tr>
<tr>
<td></td>
<td>• IM - inter-modulation measurement</td>
</tr>
<tr>
<td></td>
<td>• SPECtrum - spectrum (frequency domain) measurement</td>
</tr>
<tr>
<td></td>
<td>• WAVeform - waveform (time domain) measurement</td>
</tr>
<tr>
<td>W-CDMA (3GPP) - Option BAF</td>
<td>• ACP - adjacent channel power ratio measurement</td>
</tr>
<tr>
<td>INST:SELECT WCDMA</td>
<td>• CDPower - code domain power measurement</td>
</tr>
<tr>
<td>or</td>
<td>• CHPower - channel power measurement</td>
</tr>
<tr>
<td>W-CDMA (ARIB) - Option BAF</td>
<td>• PSTatistic - power statistics (CCDF) measurement</td>
</tr>
<tr>
<td>INST:SELECT ARIBWCDMA</td>
<td>• EVMQpsk - QPSK error vector magnitude measurement</td>
</tr>
<tr>
<td></td>
<td>• RHO - rho (waveform quality) measurement</td>
</tr>
<tr>
<td></td>
<td>• OBW - occupied bandwidth measurement</td>
</tr>
<tr>
<td></td>
<td>• SEMask - spectrum emission mask measurement</td>
</tr>
<tr>
<td></td>
<td>• IM - inter-modulation measurement</td>
</tr>
<tr>
<td></td>
<td>• MCPower - multi-carrier power measurement</td>
</tr>
<tr>
<td></td>
<td>• SPECtrum - spectrum (frequency domain) measurement</td>
</tr>
<tr>
<td></td>
<td>• WAVeform - waveform (time domain) measurement</td>
</tr>
</tbody>
</table>
Table 1-1 Available Modes and Measurements

<table>
<thead>
<tr>
<th>Modes</th>
<th>Measurement Keywords</th>
</tr>
</thead>
</table>
| EDGE w/GSM - Option 202 or EDGE w/GSM - Option 252 | • ORFSpectrum - output RF spectrum measurement
• PFERror - phase and frequency error measurement
• PVTTime - power versus time measurement
• TXSPurs - transmit band spurs measurement
• EEVM - EDGE error vector magnitude measurement
• EPVTime - EDGE power versus time measurement
• EORFspectr - EDGE output RF spectrum measurement
• SPECtrum - spectrum (frequency domain) measurement
• TXPower - transmit power measurement
• WAVeform - waveform (time domain) measurement |
| GSM - Option BAH | • ORFSpectrum - output RF spectrum measurement
• PFERror - phase and frequency error measurement
• PVTTime - power versus time measurement
• TXSPurs - transmit band spurs measurement
• SPECtrum - spectrum (frequency domain) measurement
• TXPower - transmit power measurement
• WAVeform - waveform (time domain) measurement |
| NADC - Option BAE or PDC - Option BAE | • ACP - adjacent channel power measurement
• EVM - error vector magnitude measurement
• OBWidth - occupied bandwidth measurement
• SPECtrum - spectrum (frequency domain) Measurement
• WAVeform - waveform (time domain) measurement |
| iDEN - Option HN1 | • ACP - adjacent channel power measurement
• BER - bit error rate measurement
• OBWidth - occupied bandwidth measurement
• SPECtrum - spectrum (frequency domain) Measurement
• WAVeform - waveform (time domain) measurement |
<table>
<thead>
<tr>
<th>Modes</th>
<th>Measurement Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service - standard</td>
<td>• AREFerence - (internal) 50 MHz amplitude reference measurement</td>
</tr>
<tr>
<td>INST:SELECT SERVICE</td>
<td>• PVTtime - power versus time measurement</td>
</tr>
<tr>
<td></td>
<td>• SENSors - (internal) temperature sensors measurement</td>
</tr>
<tr>
<td></td>
<td>• SPECTrum - spectrum (frequency domain) measurement</td>
</tr>
<tr>
<td></td>
<td>• TBFrequency - (internal) timebase frequency measurement</td>
</tr>
<tr>
<td></td>
<td>• WAVeform - waveform (time domain) measurement</td>
</tr>
</tbody>
</table>
Installing Optional Measurement Personalities

When you **Install** a measurement personality, you follow a two step process.

1. Install the measurement personality firmware into the instrument. (See the supplied installation instructions.)
2. Enter a license key number to enable the measurement personality. (Refer to the “License Key Numbers” section below.)

Adding additional measurement personalities requires purchasing a retrofit kit for the desired option. The retrofit kit contains the measurement personality firmware. A license key certificate is also included in the kit. It documents the license key number that is for your specific option and instrument serial number. Installation instructions are included with the retrofit kit.

The installation instructions require you to know three pieces of information about your instrument: the amount of memory installed, the Host ID, and the instrument serial number.

<table>
<thead>
<tr>
<th>Required information:</th>
<th>Key Path:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Memory:</td>
<td>System, File System (the amount of memory in your instrument will be the sum of the Used memory and the Free memory)</td>
</tr>
<tr>
<td>Host ID:</td>
<td>System, Show System, Host ID</td>
</tr>
<tr>
<td>Instrument Serial Number:</td>
<td>System, Show System, Serial Number</td>
</tr>
</tbody>
</table>

The **Exit Main Firmware** key is used during the firmware installation process. This key is only for use when you want to update firmware using a LAN connection. The **Exit Main Firmware** key halts the operation of the instrument firmware so you can install an updated version of firmware using a LAN connection. Instructions for loading future firmware updates are available at the following URL: www.agilent.com/find/vsa/
Available Personality Options

The option designation consists of three characters, as shown in the **Option** column of the table below.

<table>
<thead>
<tr>
<th>Available Personality Options</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM measurement personality</td>
<td>BAH</td>
</tr>
<tr>
<td>EDGE (with GSM) measurement personality</td>
<td>202</td>
</tr>
<tr>
<td>cdmaOne measurement personality</td>
<td>BAC</td>
</tr>
<tr>
<td>NADC, PDC measurement personalities</td>
<td>BAE</td>
</tr>
<tr>
<td>iDEN measurement personality</td>
<td>HN1</td>
</tr>
<tr>
<td>W-CDMA measurement personality</td>
<td>BAF</td>
</tr>
<tr>
<td>cdma2000 measurement personality</td>
<td>B78</td>
</tr>
</tbody>
</table>

a. Available as of the print date of this guide.
b. For instruments that already have Option BAH licensed, order E4406AU Option 252 to add EDGE (with GSM).

License Key Numbers

Measurement personalities purchased with your instrument have been installed and enabled at the factory. You will receive a unique **License Key** number with every measurement personality purchased. The license key number is a hexadecimal number that is for your specific measurement personality and instrument serial number. It enables you to install, or reactivate that particular personality.

Follow these steps to display the unique license key number for the measurement personality that is installed in your instrument:

1. Press **System, Install, Choose Option**. The **Choose Option** key accesses the alpha editor. Use the alpha editor to enter letters (upper-case) and the front-panel numeric keys to enter digits for a personality option that is already installed in the instrument.

2. Press the **Done** key on the alpha editor menu. The unique license key number for your instrument will now appear on the **License Key** softkey.
Preparing for Use
Installing Optional Measurement Personalities

You will want to keep a copy of your license key number in a secure location. Please enter your license key numbers below for future reference. If you should lose your license key number, call your nearest Agilent Technologies service or sales office for assistance.

<table>
<thead>
<tr>
<th>License Key Numbers for Instrument with Serial # ________</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Option________ the license key number is ______________</td>
</tr>
<tr>
<td>For Option________ the license key number is ______________</td>
</tr>
<tr>
<td>For Option________ the license key number is ______________</td>
</tr>
<tr>
<td>For Option________ the license key number is ______________</td>
</tr>
<tr>
<td>For Option________ the license key number is ______________</td>
</tr>
<tr>
<td>For Option________ the license key number is ______________</td>
</tr>
</tbody>
</table>

If you purchase an option later, you will receive a certificate that indicates the unique license key number that you will need to install that option on your particular serial number instrument.

NOTE
You will need to enter a license key number only if you purchase an additional measurement personality at a later date, or if you want to reactivate a measurement personality that has been deactivated.

Installing a License Key Number

NOTE
Follow this procedure to reinstall a license key number which has been deleted during the uninstall process, or lost due to a memory failure.

To install a license key number for the selected option, use the following procedure:

1. Press **System, Install, Choose Option**. The **Choose Option** key accesses the alpha editor menu. Use the alpha editor to enter letters (upper-case) and the front-panel numeric keys to enter numbers for the option designation. Then press the **Done** key. As you enter the option, you will see your entry in the active function area of the display.

 Note: that you must already have entered the license key for the GSM option BAH before you can enter the license key for the EDGE retrofit option 252.

2. Press **License Key**. Use the alpha editor to enter letters and the front-panel numeric keys to enter digits. You will see your entry in the active function area of the display. When you have completed entering the license key number, press the **Done** key.
3. Press the **Install Now** key after you have entered the personality option number and the license key number. On some instruments, a message may appear in the function area of the display which reads, “Insert disk and power cycle the instrument”. Disregard this message. If you want to proceed with the installation, press the **Yes** key and cycle the instrument power off and then on. Press the **No** key if you wish to cancel the installation process.

Using the Uninstall Key

The following procedure removes the license key number for the selected option. This will make the option unavailable for use, and the message “Application Not Licensed” will appear in the Status/Info bar at the bottom of the display. Please write down the 12-digit license key number for the option before proceeding. If that measurement personality is to be used at a later date you will need the license key number to reactivate the personality firmware.

NOTE
Using the **Uninstall** key does not remove the personality from the instrument memory, and does not free memory to be available to install another option. If you need to free memory to install another option, refer to the instructions for loading firmware updates located at the URL: www.agilent.com/find/vsa/

1. Press **System**, **More(1 of 3)**, **More(2 of 3)**, **Uninstall**, **Choose Option**. Pressing the **Choose Option** key will activate the alpha editor menu. Use the alpha editor to enter the letters (upper-case) and the front-panel numeric keyboard to enter the digits (if required) for the option, then press the **Done** key. As you enter the option, you will see your entry in the active function area of the display.

2. Press the **Uninstall Now** key after you have entered the personality option. Press the **Yes** key if you want to continue the uninstall process. Press the **No** key to cancel the uninstall process.

3. Cycle the instrument power off and then on to complete the uninstall process.
Writing Your First Program

When the instrument has been connected to a computer, the computer can be used to send instrument instructions to make fast, repeatable measurements. A variety of different programming languages, computer types, and interface buses can be used for this process. The following section describes some basic steps for making a measurement program.

Three Basic Steps in a Measurement

<table>
<thead>
<tr>
<th>Step</th>
<th>Tasks (SCPI Command Subsystem)</th>
</tr>
</thead>
</table>
| 1. Set system parameters | • Printer setup (HCOPy)
• I/O & addressing (SYSTem)
• Display configuration (DISPlay)
• Data formatting (FORMat)
• Status and errors (*commands/STATUs) |
| 2. Select mode & setup mode | • Mode selection (INSTrument:SELect)
• Standard selection (SENSe:RADio)
• RF channel (SENSe:CHANnel)
• Frequency (SENSe:FREQuency)
• Triggering (TRIGger)
• Input (INPut) |
| 3. Select measurement & setup measurement | • Measurement selection (MEASure)
• Meas control/restart (INITiate)
• Markers (CALCulate:<meas>:MARKer)
• Averaging (SENSe:<meas>:AVERage)
• Bandwidth (SENSe:<meas>:BWIDth)
• FFT & meas window (SENSe:<meas>:FFT) |

Programming a Measurement

General recommendations for writing a measurement program:

• Include comment lines in your program to describe what is happening at each point. The way you include comment lines is dependent on the controller and the programming language that you are using.

• Use variables for function values. List the variables at the beginning of the program.

• Perform the measurement manually, keeping track of the key functions used. Identify the programming commands equivalent to these front panel keys.
Preparing for Use
Writing Your First Program

- Select the instrument mode with INST:SELeクト. Set the mode setup for things like your desired communications standard, channel frequency and triggering.

- In the program, execute an instrument preset (*RST) and select single-sweep mode (INITiate:CONTInuous OFF) before setting other instrument functions.

- Use the MEASure group of commands, described in Chapter 5, “Language Reference”. MEASure commands make the measurement using the standard procedure and limits. You can alter some of the measurement defaults by using commands in the SENS:＜meas＞ subsystem. Once altered, use the CONFigure, FETCH, READ, and INITiate commands to perform the measurements.

- The instrument can return different types of results for a particular measurement. These results are described in the language reference section on the MEASure group of commands.

- Execute the desired commands in logical order. Multiple SCPI commands can be included on one line. See “SCPI Language Basics” on page 61.

File Naming Rules

File names for storing instrument states or other data files in the analyzer should follow pc conventions.

- They can be up to eight characters long. In addition, they can have a file extension up to three characters long. The analyzer can assign the extension.

- They are not case sensitive. It does not matter whether you use upper case or lower case letters when you enter them.

- They can only contain the letters A through Z and the numbers 0 through 9.

- They cannot contain any special characters (except the period that separates the name from the extension).

- They cannot be identical to the name of another file in the same directory.
Cables for Connecting to RS-232

There are a variety of cables and adapters available for connecting to PCs, and printers. Several of these are documented in the following wiring diagrams. You need to find out what connections your equipment uses to identify the cables and/or adapters that you will need.

HP/Agilent 34398A
RS-232 Cable Kit
This kit comes with an RS-232, 9-pin female to 9-pin female null modem/printer cable and one adapter 9-pin male to 25-pin female (part number 5181-6641). The adapter is also included in 34399A RS-232 Adapter Kit.

HP/Agilent 34399A
RS-232 Adapter Kit
This kit includes four adapters to go from DB9 female cable (34398A) to PC/printer DB25 male or female, or to modem DB9 female or DB25 female.

Figure 1-1 HP/Agilent 24542U Cable
Preparing for Use
Cables for Connecting to RS-232

Figure 1-2 HP/Agilent F1047-80002 Cable

<table>
<thead>
<tr>
<th>Instrument</th>
<th>F1047-80002 Cable</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>DCD</td>
</tr>
<tr>
<td>TX</td>
<td>2</td>
<td>RX</td>
</tr>
<tr>
<td>RX</td>
<td>3</td>
<td>TX</td>
</tr>
<tr>
<td>DR</td>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>RTS</td>
<td>5</td>
<td>DSR</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>RTS</td>
</tr>
<tr>
<td>CTS</td>
<td>7</td>
<td>CTS</td>
</tr>
<tr>
<td>RT</td>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>9</td>
<td>DTR</td>
</tr>
</tbody>
</table>

DB9 Male DB9 Female DB9 Male

Figure 1-3 HP/Agilent 24542G/H Cable

<table>
<thead>
<tr>
<th>Instrument</th>
<th>24542G/H Cable</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>TX</td>
</tr>
<tr>
<td>TX</td>
<td>2</td>
<td>RX</td>
</tr>
<tr>
<td>RX</td>
<td>3</td>
<td>RTS</td>
</tr>
<tr>
<td>DR</td>
<td>4</td>
<td>CTS</td>
</tr>
<tr>
<td>CTS</td>
<td>5</td>
<td>DSR</td>
</tr>
<tr>
<td>RTS</td>
<td>6</td>
<td>RTS</td>
</tr>
<tr>
<td>DSR</td>
<td>7</td>
<td>CTS</td>
</tr>
<tr>
<td>GND</td>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>DTR</td>
<td>9</td>
<td>DTR</td>
</tr>
</tbody>
</table>

DB9 Male DB9 Female DB9 Male

DB25 Male DB25 Female DB25 Male

Figure 1-4 HP/Agilent 92219J Cable

<table>
<thead>
<tr>
<th>Instrument</th>
<th>92219J Cable</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>1</td>
<td>TX</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>RX</td>
</tr>
<tr>
<td>RT</td>
<td>3</td>
<td>RTS</td>
</tr>
<tr>
<td>CTS</td>
<td>4</td>
<td>CTS</td>
</tr>
<tr>
<td>DSR</td>
<td>5</td>
<td>DSR</td>
</tr>
<tr>
<td>RTS</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>DTR</td>
</tr>
<tr>
<td>DTR</td>
<td>20</td>
<td>DTR</td>
</tr>
</tbody>
</table>

DB25 Female DB25 Male DB25 Female
Cables for Connecting to RS-232

Figure 1-5 HP/Agilent 13242G Cable

<table>
<thead>
<tr>
<th>Instrument</th>
<th>13242G Cable</th>
<th>PC/Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>1</td>
<td>Shield</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>TX</td>
</tr>
<tr>
<td>RTS</td>
<td>3</td>
<td>RX</td>
</tr>
<tr>
<td>CTS</td>
<td>4</td>
<td>CD</td>
</tr>
<tr>
<td>DSR</td>
<td>5</td>
<td>DTR</td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>CD</td>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>SCD</td>
<td>8</td>
<td>SRTS</td>
</tr>
<tr>
<td>SRTS</td>
<td>9</td>
<td>SCD</td>
</tr>
<tr>
<td>DTR</td>
<td>10</td>
<td>DSR</td>
</tr>
</tbody>
</table>

DB25 Female DB25 Male DB25 Male

Figure 1-6 HP/Agilent 24542M Modem Cable

<table>
<thead>
<tr>
<th>Instrument</th>
<th>24542M Modem Cable</th>
<th>Modem</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>DCD</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>RX</td>
</tr>
<tr>
<td>TX</td>
<td>3</td>
<td>TX</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>RI</td>
</tr>
</tbody>
</table>

DB9 Male DB9 Female DB25 Male DB25 Female
Preparing for Use
Cables for Connecting to RS-232

Figure 1-7 HP/Agilent C2913A/C2914A Cable

<table>
<thead>
<tr>
<th>Instrument</th>
<th>C2913A/C2914A</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>1</td>
<td>TX</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>RTS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CTS</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DSR</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>DTR</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>DB25 Female</td>
<td>DB25 Male</td>
<td>DB25 Male</td>
</tr>
<tr>
<td>DB25 Male</td>
<td>DB25 Female</td>
<td>DB25 Female</td>
</tr>
</tbody>
</table>

Figure 1-8 Mouse Adapter (typical)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Typical Mouse Adapter</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>TX</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>DB9 Female</td>
<td>DB9 Male</td>
<td>DB25 Male</td>
</tr>
<tr>
<td>DB25 Male</td>
<td>DB25 Female</td>
<td>DB25 Female</td>
</tr>
</tbody>
</table>

A mouse adapter works well as a 9 pin to 25 pin adapter with a PC.
Figure 1-9 **HP/Agilent 24542U Cable with 5181-6641 Adapter**

![Diagram](ca811a)

Figure 1-10 HP/Agilent 24542U Cable with 5181-6640 Adapter

![Diagram](ca812a)

Figure 1-11 HP/Agilent 24542U Cable with 5181-6642 Adapter

![Diagram](ca813a)
Figure 1-12 HP/Agilent 24542U Cable with 5181-6639 Adapter

<table>
<thead>
<tr>
<th>Instrument</th>
<th>24542U Cable</th>
<th>5181-6639 Adapter (Black)</th>
<th>Modem</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>1</td>
<td>DCD</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>2</td>
<td>RX</td>
</tr>
<tr>
<td>TX</td>
<td>3</td>
<td>3</td>
<td>TX</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>9</td>
<td>RI</td>
</tr>
</tbody>
</table>

Figure 1-13 HP/Agilent F1047-80002 Cable with 5181-6641 Adapter

<table>
<thead>
<tr>
<th>Instrument</th>
<th>F1047-80002 Cable</th>
<th>5181-6641 Adapter (Black)</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>1</td>
<td>TX</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>2</td>
<td>RX</td>
</tr>
<tr>
<td>TX</td>
<td>3</td>
<td>3</td>
<td>RTS</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>4</td>
<td>CTS</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>5</td>
<td>DSR</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>7</td>
<td>DCD</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>8</td>
<td>DTR</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-14 HP/Agilent F1047-80002 Cable with 5181-6640 Adapter

<table>
<thead>
<tr>
<th>Instrument</th>
<th>F1047-80002 Cable</th>
<th>5181-6640 Adapter (White)</th>
<th>PC/Printer</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCD</td>
<td>1</td>
<td>1</td>
<td>TX</td>
</tr>
<tr>
<td>RX</td>
<td>2</td>
<td>2</td>
<td>RX</td>
</tr>
<tr>
<td>TX</td>
<td>3</td>
<td>3</td>
<td>RTS</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>4</td>
<td>CTS</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>5</td>
<td>DSR</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>7</td>
<td>DCD</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>8</td>
<td>DTR</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Preparing for Use
Cables for Connecting to RS-232

Figure 1-15 HP/Agilent F1047-80002 Cable with 5181-6642 Adapter

Figure 1-16 HP/Agilent F1047-80002 Cable with 5181-6639 Adapter
Connecting to a LAN Server

Connect a cable to the standard LAN connector on the rear panel of the instrument. The LAN can then be used several different ways:

• To ftp files from the instrument
• To use telnet to send SCPI commands
• To use sockets to send SCPI commands
• To use as a SICL server emulating IEEE 488.2 GPIB

Several LAN parameters can be queried from the front panel key menus by pressing System, Config I/O and then pressing the appropriate keys. Configuration of some LAN parameters can only be done from the front panel. The IP address can be set/queried remotely using SYST:COMM:LAN:IP. The LAN default configuration settings do not usually have to be changed for you to use the functionality. More detailed LAN use and troubleshooting information can be found in Chapter 2, “Programming Fundamentals”.

The different types of LAN functionality can be turned on and off from the front panel keys under System, Config I/O. If you are running programs on the analyzer, you might want to turn off the other types of LAN access to make sure other users don’t accidentally send commands to your analyzer in the middle of the program execution.

Pressing Preset will not change the LAN configuration settings. Since they are persistent they will stay at the last user-defined setting. However, you can return the instrument to its original factory defaults by pressing System, Restore Sys Defaults. If you want to use the LAN after restoring defaults, you will have to re-set the instrument IP address (and any other appropriate configuration settings) found in System, Config I/O.
Connecting to a GPIB Server

Connect a cable to the standard GPIB connector on the rear panel of the instrument. The GPIB can then be used to send SCPI commands to control the instrument and to return measurement data to the computer.

The GPIB address can be queried and set from the front panel key menus by pressing System, Config I/O, GPIB Address. This can also be done remotely using SYST:COMM:GPIB:ADDR.

Pressing Preset will not change the GPIB address. It is persistent and will stay at the last user-defined setting. However, you can return the instrument to its original factory defaults by pressing System, Restore Sys Defaults. If you want to use a GPIB address other than 18 after restoring defaults, you will have to re-set the address.
2 Programming Fundamentals
• “SCPI Language Basics” on page 61
• “Using the Instrument Status Registers” on page 69
• “C Programming Examples using VTL” on page 84
• “Overview of the GPIB Bus” on page 93
• “Overview of the RS-232 Bus” on page 95
• “Using the LAN to Control the Analyzer” on page 98
SCPI Language Basics

This section is not intended to teach you everything about the SCPI (Standard Commands for Programmable Instruments) programming language. The SCPI Consortium or IEEE can provide detailed information.

Topics covered in this chapter include:

- “Creating Valid Commands” on page 62
- “Command keywords and Syntax” on page 62
- “Special Characters in Commands” on page 63
- “Parameters in Commands” on page 64
- “Putting Multiple Commands on the Same Line” on page 67

For more information refer to:

Creating Valid Commands

Commands are not case sensitive and there are often many different ways of writing a particular command. These are examples of valid commands for a given command syntax:

<table>
<thead>
<tr>
<th>Command Syntax</th>
<th>Sample Valid Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SENSe:]BANDwidth[:RESolution] <freq></td>
<td>The following sample commands are all identical. They will all cause the same result.</td>
</tr>
<tr>
<td></td>
<td>• Sense:Band:Res 1700</td>
</tr>
<tr>
<td></td>
<td>• BANDWIDTH:RESOLUTION 1.7e3</td>
</tr>
<tr>
<td></td>
<td>• sens:band 1.7KHZ</td>
</tr>
<tr>
<td></td>
<td>• SENS:band 1.7E3Hz</td>
</tr>
<tr>
<td></td>
<td>• band 1.7kHz</td>
</tr>
<tr>
<td></td>
<td>• bandwidth:RES 1.7e3Hz</td>
</tr>
<tr>
<td>MEASure:SPECTrum[n]?</td>
<td>• MEAS:SPEC?</td>
</tr>
<tr>
<td></td>
<td>• Meas:spec?</td>
</tr>
<tr>
<td></td>
<td>• meas:spec3?</td>
</tr>
<tr>
<td></td>
<td>The number 3 in the last meas example causes it to return different results then the commands above it. See the command description for more information.</td>
</tr>
<tr>
<td>[SENSe:]CPOWer:AVERage:TCONtrol</td>
<td>• CP0W:AVER:TCON EXP</td>
</tr>
<tr>
<td></td>
<td>• CPOWER:aver:tcon Normal</td>
</tr>
<tr>
<td>INITiate:CONTinuous ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>• INIT:CONT ON</td>
</tr>
<tr>
<td></td>
<td>• init:continuous 1</td>
</tr>
</tbody>
</table>

Command keywords and Syntax

A typical command is made up of keywords set off by colons. The keywords are followed by parameters that can be followed by optional units.

Example: TRIGger:LEVel:EXT1 2.5V

The instrument does not distinguish between upper and lower case letters. In the documentation, upper case letters indicate the short form of the keyword. The upper and lower case letters, together, indicate the long form of the keyword. Either form may be used in the command.

Example: Trig:LEVEL:EXT1 2 is the same as trigger:Lev:ext1 2v.
The command `TRIGG:level:EXT1` is not valid because `trigg` is neither the short, nor the long form of the command. Only the short and long forms of the keywords are allowed in valid commands.

Special Characters in Commands

<table>
<thead>
<tr>
<th>Special Character</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A vertical stroke between parameters indicates alternative choices. The effect of the command is different depending on which parameter is selected.</td>
<td>Command: `TRIG:SOURce EXT</td>
</tr>
<tr>
<td></td>
<td>A vertical stroke between keywords indicates identical effects exist for both keywords. The command functions the same for either keyword. Only one of these keywords is used at a time.</td>
<td>Command: `SENSe:BANDwidth</td>
</tr>
<tr>
<td>[]</td>
<td>Keywords in square brackets are optional when composing the command. These implied keywords will be executed even if they are omitted.</td>
<td>Command: <code>[SENSe:]BANDwidth[:RESolu]tion:AUTO</code>
The following commands are all valid and have identical effects: <code>bandwidth:auto</code> <code>bandwidth:resolution:auto</code> <code>sense:bandwidth:auto</code></td>
</tr>
<tr>
<td><></td>
<td>Angle brackets around a word, or words, indicates they are not to be used literally in the command. They represent the needed item.</td>
<td>Command: <code>SENS:FREQ <freq></code>
In this command example the word <code><freq></code> should be replaced by an actual frequency, 9.7MHz.</td>
</tr>
<tr>
<td>{ }</td>
<td>Parameters in braces can optionally be used in the command either not at all, once, or several times.</td>
<td>Command: <code>measure:bw </code>{level}``
A valid command might be <code>measure:bw 3dB 60dB</code></td>
</tr>
</tbody>
</table>
Parameters in Commands

There are four basic types of parameters: booleans, keywords, variables and arbitrary block program data.

ON| OFF| 0| 1 This is a two state boolean-type parameter. The numeric value 0 is equivalent to OFF. Any numeric value other than 0 is equivalent to ON. The numeric values of 0 or 1 are commonly used in the command instead of OFF or ON. Queries of the parameter always return a numeric value of 0 or 1.

keyword The keywords that are allowed for a particular command are defined in the command syntax description.

Units Numeric variables may include units. The valid units for a command depend on the variable type being used. See the following variable descriptions. The indicated default units will be used if no units are sent. Units can follow the numerical value with, or without, a space.

Variable A variable can be entered in exponential format as well as standard numeric format. The appropriate range of the variable and its optional units are defined in the command description.

The following keywords may also be used in commands, but not all commands allow keyword variables.

DEFault - resets the parameter to its default value.

UP - increments the parameter.

DOWN - decrements the parameter.

The numeric value associated with DEFault can be queried by adding the keyword to the command in its query form. The keyword must be entered following the question mark.

Example query: SENSE:FREQ:CENTER? DEFAULT

Variable Parameters

freq> A frequency parameter is a positive rational number followed by optional units. The default unit is Hz. Acceptable units include: HZ, KHZ, MHZ, GHZ.

seconds> A time parameter is a rational number followed by optional units. The default units are seconds. Acceptable units include: S, MS, US.
A voltage parameter is a rational number followed by optional units. The default units are V. Acceptable units include: Volts, V, MV, UV.

A power parameter is a rational number followed by optional units. The default units are dBm. Acceptable units include: DBM, DBMV, W.

A relative power parameter is a positive rational number followed by optional units. The default units are dB. Acceptable units include: DB.

An angle parameter is a rational number followed by optional units. The default units are degrees. Acceptable units include: DEG, RAD.

There are no units associated with an integer parameter.

A percent parameter is a rational number between 1 and 99, with no units.

A string parameter includes a series of alpha numeric characters.

Block Program Data

Some parameters consist of a block of data. Block data There are a few standard types of block data. Arbitrary blocks of program data can also be used.

A trace parameter is an array of rational numbers corresponding to displayed trace data. The default uses “display units” with 600 trace points with amplitudes from 0 to 1024. See FORMat:DATA for information about available data formats.

A SCPI command often refers to a block of current trace data with a variable name such as: Trace1, TRACE2, or trace3, depending on which trace is being accessed.
<bit_pattern> A bit pattern parameter specifies a series of bits rather than a numeric value. The bit series is the binary representation of a numeric value. There are no units.

Bit patterns are most often specified as hexadecimal numbers, though octal, binary or decimal numbers may also be used. In the SCPI language these numbers are specified as:

- Hexadecimal, #Hdddd or #hdddd where ‘d’ represents a hexadecimal digit 0 to 9, or a to f.
- Octal, #Odddddd or #odddddd where ‘d’ represents an octal digit 0 to 7.
- Binary, #Bdddddddddddddddd or #bdddddddddddddd where ‘d’ represents a 1 or 0.

<arbitrary block data> This parameter type consists of a block of data bytes. The first information sent in the block is an ASCII header beginning with #. The header can be used to determine how many bytes are in the data block. There are no units.

For example, suppose the header is #512320.

- The first digit in the header (5) tells you how many additional digits/bytes there are in the header.
- The 12320 means 12 thousand, 3 hundred, 20 data bytes follow the header.
- Divide this number of bytes by your current data format (bytes/point), either 8 (for real64), or 4 (for real32). For this example, if you're using real64 then there are 1540 points in the block.
Putting Multiple Commands on the Same Line

Multiple commands can be written on the same line. This can be used to provide a shorter notation for sending a series of related commands in the same subsystem. Commands for different subsystems can be put on the same line but this can make your program harder to understand. To put commands on the same line:

- Commands must be separated with a semicolon (;
- If the commands are in different subsystems, the keyword for the new subsystem must be preceded by a colon(:).
- If the commands are in the same subsystem, the full hierarchy of the command keywords need not be included. The second command can start at the same keyword level as the command that was just executed.

The following are some examples of good and bad commands. The examples are created from a theoretical instrument with the simple set of commands indicated below:

```
INPut
   :ATTenuation

TRIGger
   :AUTO
   :HOLDoff
   :LEVel
       :ADC
       [:EXTernal]
   :BURSt

[SENSe]
   :FREQuency
   :POWer
       :ATTenuation
   [:LEVel]
       [:IMMediate]
       [:AMPLitude]
   :OFFSet
   :HIGH
   :LOW
   :TRIGgered
```
SCPI Language Basics

#### Bad Command	Good Command
IN:ATT 30dB | INP:ATT 30dB
The short form of INPUT is INP, not IN.
FREQ 30MHz; ATT 20dBm | FREQ 30MHz; POW:ATT 20dBm
The ATT command is in the same (SENSE) subsystem as FREQ, but executing the FREQ command puts you back at the SENSE level. You must specify POWER to get to the ATT command.
FREQ 30MHz; POW:ATT 20dB; LOW 3dBm | FREQ 30MHz; POW:ATT 20dB; LOW 3dBm
ATT and LOW are both in the same (SENSE) subsystem but they are two separate commands and need a semicolon to separate them.
POWER:ATT is in the SENSE subsystem, not the TRIGGER subsystem.
FREQ 10MHz; TRIG:HOLD 10ms | FREQ 10MHz; :TRIG:HOLD 10ms
The FREQ command and the HOLDOFF command are not in the same subsystem, so the command that follows must be preceded by a colon.
POW?:FREQ? | POW?:FREQ?
POW and FREQ are within the same SENSE subsystem, but they are two separate commands, so they should be separated with a semicolon, not a colon.
INP:ATT -5dB; :FREQ 10MHz | INP:ATT 5dB; :FREQ 10MHz
Attenuation should not be a negative value.
Using the Instrument Status Registers

You can determine the state of certain instrument hardware and firmware events and conditions by programming the status register system. The Figure on page 76 shows all the instrument status registers and their hierarchy. The IEEE common (*) commands access the higher-level summary registers. To access the status information from specific registers you would use the STATus commands in Chapter 5, “Language Reference.”

- “What are the Status Registers?” on page 70
- “Why Would You Use the Status Registers?” on page 72
- “Using a Status Register” on page 74
- “Using the Service Request (SRQ) Method” on page 74
- “Overall Status Register System” on page 76
- “Standard Event Status Register” on page 80
- “Operation and Questionable Status Registers” on page 83
What are the Status Registers?

The status system is comprised of multiple registers which are arranged in a hierarchical order. The lower-level status registers propagate their data to the higher-level registers in the data structures by means of summary bits. The status byte register is at the top of the hierarchy and contains general status information for the instrument’s events and conditions. All other individual registers are used to determine the specific events or conditions.

Most status registers are actually a family of five registers:

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>A condition register continuously monitors the hardware and firmware status of the instrument. There is no latching or buffering for a condition register. It is updated in real time.</td>
</tr>
<tr>
<td>Negative Transition</td>
<td>A negative transition register specifies the bits in the condition register that will set corresponding bits in the event register when the condition bit changes from 1 to 0.</td>
</tr>
<tr>
<td>Positive Transition</td>
<td>A positive transition register specifies the bits in the condition register that will set corresponding bits in the event register when the condition bit changes from 0 to 1.</td>
</tr>
<tr>
<td>Event</td>
<td>An event register latches transition events from the condition register as specified by the positive and negative transition filters. Bits in the event register are latched, and once set, they remain set until cleared by either querying the register contents or sending the *CLS command.</td>
</tr>
<tr>
<td>Event Enable</td>
<td>An enable register specifies the bits in the event register that can generate a summary bit. Summary bits are, in turn, used by the next higher register.</td>
</tr>
</tbody>
</table>
What are the Status Register SCPI Commands

Most monitoring of the instrument conditions is done at the highest level using the IEEE common commands indicated below. Complete command descriptions are available in the IEEE commands section at the beginning of the language reference. Individual status registers can be set and queried using the commands in the STATus subsystem of the language reference.

*CLS (clear status) clears the status byte by emptying the error queue and clearing all the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the enable register part of the standard event status register.

*ESR? (event status register) queries and clears the event register part of the standard event status register.

*OPC, *OPC? (operation complete) sets the standard event status register to monitor the completion of all commands. The query stops any new commands from being processed until the current processing is complete, then returns a ‘1’.

*SRE, *SRE? (service request enable) sets and queries the value of the service request enable register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.
Why Would You Use the Status Registers?

Your program often needs to be able to detect and manage error conditions or changes in instrument status. There are two methods you can use to programmatically access the information in status registers:

- **The polling method**
- **The service request (SRQ) method**

In the polling method, the instrument has a passive role. It only tells the controller that conditions have changed when the controller asks the right question. In the SRQ method, the analyzer takes a more active role. It tells the controller when there has been a condition change without the controller asking. Either method allows you to monitor one or more conditions.

The polling method works well if you do not need to know about changes the moment they occur. The SRQ method should be used if you must know immediately when a condition changes. To detect a change using the polling method, the program must repeatedly read the registers.

Use the SRQ method when:

- you need time-critical notification of changes
- you are monitoring more than one device which supports SRQs
- you need to have the controller do something else while waiting
- you can't afford the performance penalty inherent to polling

Use polling when:

- your programming language/development environment does not support SRQ interrupts
- you want to write a simple, single-purpose program and don't want the added complexity of setting up an SRQ handler

To monitor a condition:

1. Determine which register contains the bit that reports the condition.
2. Send the unique SCPI query that reads that register.
3. Examine the bit to see if the condition has changed.
You can monitor conditions in different ways.

- **Check the current instrument hardware and firmware status.**

 Do this by querying the condition registers which continuously monitor status. These registers represent the current state of the instrument. Bits in a condition register are updated in real time. When the condition monitored by a particular bit becomes true, the bit is set to 1. When the condition becomes false, the bit is reset to 0.

- **Monitor for the occurrence of a particular condition (bit).**

 Once you have enabled a bit, using the event enable register, the instrument will monitor that particular bit. If the bit becomes true in the event register, it will stay set until the event register is cleared. Querying the event register allows you to detect that this condition occurred even if the condition no longer exists. The event register can only be cleared by querying it or sending the *CLS command, which clears all event registers.

- **Monitor any changes in a particular condition (bit).**

 Once you have enabled a bit, the instrument will monitor it for a change in its condition. The transition registers are preset to register the conditions going from 0 to 1, positive transitions. This can be changed so that the selected bit is detected if it goes from true to false (negative transition), or if either transition occurs.
Using a Status Register

Each bit in a register is represented by a numerical value based on its location. See Figure 2-1 below. This number is sent with the command, to enable a particular bit. If you want to enable more than one bit, you would send the sum of all the bits that you are interested in.

For example, to enable bit 0 and bit 6 of standard event status register, you would send the command \(*ESE \ 65 \ (1 + 64 = 65)\).

The results of a query are evaluated in a similar way. If the \(*STB?\) command returns a decimal value of 140, \((140 = 128 + 8 + 4)\) then the bit 7 is true, bit 3 is true and bit 2 is true.

Figure 2-1 Status Register Bit Values

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Value</td>
<td>32768</td>
<td>16384</td>
<td>8192</td>
<td>4096</td>
<td>2048</td>
<td>1024</td>
<td>512</td>
<td>256</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE Bit 15 is not used to report status.

Using the Service Request (SRQ) Method

Your language, bus and programming environment must be able to support SRQ interrupts. (For example, BASIC used with the GPIB.) When you monitor a condition with the SRQ method, you must:

1. Determine which bit monitors the condition.
2. Determine how that bit reports to the request service (RQS) bit of the status byte.
3. Send GPIB commands to enable the bit that monitors the condition and to enable the summary bits that report the condition to the RQS bit.
4. Enable the controller to respond to service requests.

When the condition changes, the instrument sets its RQS bit and the GPIB SRQ line. The controller is informed of the change as soon as it occurs. The time the controller would otherwise have used to monitor the condition can now be used to perform other tasks. Your program determines how the controller responds to the SRQ.
Generating a Service Request

To use the SRQ method, you must understand how service requests are generated. Bit 6 of the status byte register is the request service (RQS) bit. The RQS bit is set whenever something (that it has been configured to report using *SRE) changes. It is cleared when the status byte register is queried using *SRE? (with a serial poll.) It can be queried without erasing the contents with *STB?.

When a register set causes a summary bit in the status byte to change from 0 to 1, the instrument can initiate the service request (SRQ) process. However, the process is only initiated if both of the following conditions are true:

• The corresponding bit of the service request enable register is also set to 1.

• The instrument does not have a service request pending. (A service request is considered to be pending between the time the instrument’s SRQ process is initiated and the time the controller reads the status byte register.)

The SRQ process sets the GPIB SRQ line true. It also sets the status byte’s request service (RQS) bit to 1. Both actions are necessary to inform the controller that the instrument requires service. Setting the SRQ line only informs the controller that some device on the bus requires service. Setting the RQS bit allows the controller to determine which instrument requires service.

If your program enables the controller to detect and respond to service requests, it should instruct the controller to perform a serial poll when the GPIB SRQ line is set true. Each device on the bus returns the contents of its status byte register in response to this poll. The device whose RQS bit is set to 1 is the device that requested service.

NOTE

When you read the instrument’s status byte register with a serial poll, the RQS bit is reset to 0. Other bits in the register are not affected.

Restarting a measurement (INIT command) can cause the measuring bit to pulse low, which causes an SRQ if the status register is configured to SRQ on end-of-measurement. To avoid this:

1. Set INITiate:CONTinuous off.
2. Set/enable the status registers.
3. Restart the measurement (send INIT).
The RQS bit is read and reset by a serial poll. MSS (the same bit position) is read, non-destructively by the *STB? command. If you serial poll bit 6 it is read as RQS, but if you send *STB it reads bit 6 as MSS. For more information refer to IEEE 488.2 standards, section 11.
Using the Instrument Status Registers

To query the status byte register, send the command \texttt{*STB?}. The response will be the decimal sum of the bits which are set to 1. For example, if bit number 7 and bit number 3 are set to 1, the decimal sum of the 2 bits is 128 plus 8. So the decimal value 136 is returned.

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Standard Operation Status Summary Bit</td>
<td>Request Service (RQS) Status Summary Bit</td>
<td>Message Available (MAY) Status Summary Bit</td>
<td>Data Questionable Status Summary Bit</td>
<td>Error Event Queue Status Summary Bit</td>
<td>Unused</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>Bit Description</td>
<td>7th Bit (Bit 7)</td>
<td>6th Bit (Bit 6)</td>
<td>5th Bit (Bit 5)</td>
<td>4th Bit (Bit 4)</td>
<td>3rd Bit (Bit 3)</td>
<td>2nd Bit (Bit 2)</td>
<td>1st Bit (Bit 1)</td>
<td>0th Bit (Bit 0)</td>
</tr>
<tr>
<td>0, 1</td>
<td>These bits are always set to 0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A 1 in this bit position indicates that the SCPI error queue is not empty. The SCPI error queue contains at least one error message.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A 1 in this bit position indicates that the data questionable summary bit has been set. The data questionable event register can then be read to determine the specific condition that caused this bit to be set.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A 1 in this bit position indicates that the instrument has data ready in the output queue. There are no lower status groups that provide input to this bit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A 1 in this bit position indicates that the standard event summary bit has been set. The standard event status register can then be read to determine the specific event that caused this bit to be set.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A 1 in this bit position indicates that the instrument has at least one reason to report a status change. This bit is also called the master summary status bit (MSS).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 1 in this bit position indicates that the standard operation summary bit has been set. The standard operation event register can then be read to determine the specific condition that caused this bit to be set.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In addition to the status byte register, the status byte group also contains the service request enable register. This register lets you choose which bits in the status byte register will trigger a service request.

Send the *SRE <number> command where <number> is the sum of the decimal values of the bits you want to enable plus the decimal value of bit 6. For example, assume that you want to enable bit 7 so that whenever the standard operation status register summary bit is set to 1 it will trigger a service request. Send the command *SRE 192 (128 + 64). You must always add 64 (the numeric value of RQS bit 6) to your numeric sum when you enable any bits for a service request. The command *SRE? returns the decimal value of the sum of the bits previously enabled with the *SRE <number> command.

The service request enable register presets to zeros (0).

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

*SRE <num>
*SRE?

Service Request Enable Register
Standard Event Status Register

The standard event status register contains the following bits:
Standard Event Status Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A 1 in this bit position indicates that all pending operations were completed following execution of the *OPC command.</td>
</tr>
<tr>
<td>1</td>
<td>This bit is always set to 0. (The instrument does not request control.)</td>
</tr>
<tr>
<td>2</td>
<td>A 1 in this bit position indicates that a query error has occurred. Query errors have SCPI error numbers from −499 to −400.</td>
</tr>
<tr>
<td>3</td>
<td>A 1 in this bit position indicates that a device dependent error has occurred. Device dependent errors have SCPI error numbers from −399 to −300 and 1 to 32767.</td>
</tr>
<tr>
<td>4</td>
<td>A 1 in this bit position indicates that an execution error has occurred. Execution errors have SCPI error numbers from −299 to −200.</td>
</tr>
<tr>
<td>5</td>
<td>A 1 in this bit position indicates that a command error has occurred. Command errors have SCPI error numbers from −199 to −100.</td>
</tr>
<tr>
<td>6</td>
<td>Currently not used.</td>
</tr>
<tr>
<td>7</td>
<td>A 1 in this bit position indicates that the instrument has been turned off and then on.</td>
</tr>
</tbody>
</table>
The standard event status register is used to determine the specific event that set bit 5 in the status byte register. To query the standard event status register, send the command \(^*\text{ESR}?\). The response will be the decimal sum of the bits which are enabled (set to 1). For example, if bit number 7 and bit number 3 are enabled, the decimal sum of the 2 bits is 128 plus 8. So the decimal value 136 is returned.

In addition to the standard event status register, the standard event status group also contains a standard event status enable register. This register lets you choose which bits in the standard event status register will set the summary bit (bit 5 of the status byte register) to 1. Send the \(^*\text{ESE }<\text{number}>\) command where <number> is the sum of the decimal values of the bits you want to enable. For example, to enable bit 7 and bit 6 so that whenever either of those bits is set to 1, the standard event status summary bit of the status byte register will be set to 1, send the command \(^*\text{ESE }192\) (128 + 64). The command \(^*\text{ESE}?\) returns the decimal value of the sum of the bits previously enabled with the \(^*\text{ESE }<\text{number}>\) command.

The standard event status enable register presets to zeros (0).
Operation and Questionable Status Registers

The operation and questionable status registers are registers that monitor the overall instrument condition. They are accessed with the STATus:OPERation and STATus:QUEStionable commands in the STATus command subsystem.

Operation Status Register

The operation status register monitors the current instrument measurement state. It checks to see if the instrument is measuring, calibrating, sweeping, waiting for a trigger, or what?

Questionable Status Register

The questionable status register monitors the instrument to see if anything questionable has happened. It is looking for anything that might cause an error or a bad measurement like a hardware problem, an out of calibration situation, or a unusual signal. All the bits are summary bits from lower-level event registers.
C Programming Examples using VTL

The programming examples that are provided are written using the C programming language and the HP/Agilent VTL (VISA transition library). This section includes some basic information about programming in the C language. Refer to your C programming language documentation for more details. (This information is taken from the manual “VISA Transition Library”, part number E2090-90026.) The following topics are included:

“Typical Example Program Contents” on page 84
“Linking to VTL Libraries” on page 85
“Compiling and Linking a VTL Program” on page 86
“Example Program” on page 88
“Including the VISA Declarations File” on page 88
“Opening a Session” on page 89
“Device Sessions” on page 89
“Addressing a Session” on page 91
“Closing a Session” on page 92

Typical Example Program Contents

The following is a summary of the VTL function calls used in the example programs.

visa.h

This file is included at the beginning of the file to provide the function prototypes and constants defined by VTL.

ViSession

The ViSession is a VTL data type. Each object that will establish a communication channel must be defined as ViSession.

viOpenDefaultRM

You must first open a session with the default resource manager with the viOpenDefaultRM function. This function will initialize the default resource manager and return a pointer to that resource manager session.

viOpen

This function establishes a communication channel with the device specified. A session identifier that can be used with other VTL functions is returned. This call must be made for each device you will be using.
viPrintf
viScanf

These are the VTL formatted I/O functions that are patterned after those used in the C programming language. The viPrintf call sends the IEEE 488.2 *RST command to the instrument and puts it in a known state. The viPrintf call is used again to query for the device identification (*IDN?). The viScanf call is then used to read the results.

viClose

This function must be used to close each session. When you close a device session, all data structures that had been allocated for the session will be de-allocated. When you close the default manager session, all sessions opened using the default manager session will be closed.

Linking to VTL Libraries

Your application must link to one of the VTL import libraries:

32-bit Version:

C:\VXIPNP\WIN95\LIB\MSC\VISA32.LIB for Microsoft compilers
C:\VXIPNP\WIN95\LIB\BC\VISA32.LIB for Borland compilers

16-bit Version:

C:\VXIPNP\WIN\LIB\MSC\VISA.LIB for Microsoft compilers
C:\VXIPNP\WIN\LIB\BC\VISA.LIB for Borland compilers

See the following section, “Compiling and Linking a VTL Program” for information on how to use the VTL run-time libraries.
Compiling and Linking a VTL Program

32-bit Applications

The following is a summary of important compiler-specific considerations for several C/C++ compiler products when developing WIN32 applications.

For Microsoft Visual C++ version 2.0 compilers:

• Select Project | Update All Dependencies from the menu.
• Select Project | Settings from the menu. Click on the C/C++ button. Select Code Generation from the Use Run-Time Libraries list box. VTL requires these definitions for WIN32. Click on OK to close the dialog boxes.
• Select Project | Settings from the menu. Click on the Link button and add visa32.lib to the Object / Library Modules list box. Optionally, you may add the library directly to your project file. Click on OK to close the dialog boxes.
• You may wish to add the include file and library file search paths. They are set by doing the following:
 1. Select Tools | Options from the menu.
 2. Click on the Directories button to set the include file path.
 3. Select Include Files from the Show Directories For list box.
 4. Click on the Add button and type in the following:
 C:\VXIPNP\WIN95\INCLUDE
 5. Select Library Files from the Show Directories For list box.
 6. Click on the Add button and type in the following:
 C:\VXIPNP\WIN95\LIB\MSC

For Borland C++ version 4.0 compilers:

• You may wish to add the include file and library file search paths. They are set under the Options | Project menu selection. Double click on Directories from the Topics list box and add the following:

 C:\VXIPNP\WIN95\INCLUDE
 C:\VXIPNP\WIN95\LIB\BC
16-bit Applications

The following is a summary of important compiler-specific considerations for the Windows compiler.

For Microsoft Visual C++ version 1.5:

- To set the memory model, do the following:
 1. Select Options | Project.
 2. Click on the Compiler button, then select Memory Model from the Category list.
 3. Click on the Model list arrow to display the model options, and select Large.
 4. Click on OK to close the Compiler dialog box.

- You may wish to add the include file and library file search paths. They are set under the Options | Directories menu selection:

 C:\VXIPNP\WIN\INCLUDE
 C:\VXIPNP\WIN\LIB\MSC

 Otherwise, the library and include files should be explicitly specified in the project file.
Example Program

This example program queries a GPIB device for an identification string and prints the results. Note that you must change the address.

/*idn.c - program filename */

#include "visa.h"
#include <stdio.h>

void main () {
 /*Open session to GPIB device at address 18 */
 ViOpenDefaultRM (&defaultRM);
 ViOpen (defaultRM, "GPIB0::18::INSTR", VI_NULL, VI_NULL, &vi);

 /*Initialize device */
 viPrintf (vi, "*RST\n");

 /*Send an *IDN? string to the device */
 printf (vi, "*IDN?\n");

 /*Read results */
 viScanf (vi, "%t", &buf);

 /*Print results */
 printf ("Instrument identification string: %s\n", buf);

 /* Close sessions */
 viClose (vi);
 viClose (defaultRM);
}

Including the VISA Declarations File

For C and C++ programs, you must include the visa.h header file at the beginning of every file that contains VTL function calls:

 #include "visa.h"

This header file contains the VISA function prototypes and the definitions for all VISA constants and error codes. The visa.h header file includes the visatype.h header file.

The visatype.h header file defines most of the VISA types. The VISA types are used throughout VTL to specify data types used in the functions. For example, the viOpenDefaultRM function requires a pointer to a parameter of type ViSession. If you find ViSession in the visatype.h header file, you will find that ViSession is eventually typed as an unsigned long.
Opening a Session

A session is a channel of communication. Sessions must first be opened on the default resource manager, and then for each device you will be using. The following is a summary of sessions that can be opened:

- A **resource manager session** is used to initialize the VISA system. It is a parent session that knows about all the opened sessions. A resource manager session must be opened before any other session can be opened.

- A **device session** is used to communicate with a device on an interface. A device session must be opened for each device you will be using. When you use a device session you can communicate without worrying about the type of interface to which it is connected. This insulation makes applications more robust and portable across interfaces. Typically a device is an instrument, but could be a computer, a plotter, or a printer.

NOTE

All devices that you will be using need to be connected and in working condition prior to the first VTL function call (viOpenDefaultRM). The system is configured only on the first viOpenDefaultRM per process. Therefore, if viOpenDefaultRM is called without devices connected and then called again when devices are connected, the devices will not be recognized. You must close **ALL** resource manager sessions and re-open with all devices connected and in working condition.

Device Sessions

There are two parts to opening a communications session with a specific device. First you must open a session to the default resource manager with the viOpenDefaultRM function. The first call to this function initializes the default resource manager and returns a session to that resource manager session. You only need to open the default manager session once. However, subsequent calls to viOpenDefaultRM returns a session to a unique session to the same default resource manager resource.

Next, you open a session with a specific device with the viOpen function. This function uses the session returned from viOpenDefaultRM and returns its own session to identify the device session. The following shows the function syntax:

```c
viOpenDefaultRM (sesn);
viOpen (sesn, rsrName, accessMode, timeout, vi);
```
The session returned from `viOpenDefaultRM` must be used in the `sesn` parameter of the `viOpen` function. The `viOpen` function then uses that session and the device address specified in the `rsrcName` parameter to open a device session. The `vi` parameter in `viOpen` returns a session identifier that can be used with other VTL functions.

Your program may have several sessions open at the same time by creating multiple session identifiers by calling the `viOpen` function multiple times.

The following summarizes the parameters in the previous function calls:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sesn</code></td>
<td>This is a session returned from the <code>viOpenDefaultRM</code> function that identifies the resource manager session.</td>
</tr>
<tr>
<td><code>rsrcName</code></td>
<td>This is a unique symbolic name of the device (device address).</td>
</tr>
<tr>
<td><code>accessMode</code></td>
<td>This parameter is not used for VTL. Use <code>VI_NULL</code>.</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>This parameter is not used for VTL. Use <code>VI_NULL</code>.</td>
</tr>
<tr>
<td><code>vi</code></td>
<td>This is a pointer to the session identifier for this particular device session. This pointer will be used to identify this device session when using other VTL functions.</td>
</tr>
</tbody>
</table>

The following is an example of opening sessions with a GPIB multimeter and a GPIB-VXI scanner:

```c
ViSession defaultRM, dmm, scanner;
.
viOpenDefaultRM(&defaultRM);
viOpen (defaultRM, "GPIB0::22::INSTR", VI_NULL,
       VI_NULL, &dmm);
viOpen (defaultRM, "GPIB-VXI0::24::INSTR", VI_NULL,
       VI_NULL, &scanner);
.
viClose (scanner);
viclose (dmm);
viclose(defaultRM);
```

The above function first opens a session with the default resource manager. The session returned from the resource manager and a device address is then used to open a session with the GPIB device at address 22. That session will now be identified as `dmm` when using other VTL functions. The session returned from the resource manager is then used again with another device address to open a session with the GPIB-VXI device at primary address 9 and VXI logical address 24. That session will now be identified as `scanner` when using other VTL functions. See the following section for information on addressing particular devices.
Addressing a Session

As seen in the previous section, the rsrcName parameter in the viOpen function is used to identify a specific device. This parameter is made up of the VTL interface name and the device address. The interface name is determined when you run the VTL Configuration Utility. This name is usually the interface type followed by a number. The following table illustrates the format of the rsrcName for the different interface types:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>VXI</td>
<td>VXI [board]:VXI logical address[:INSTR]</td>
</tr>
<tr>
<td>GPIB-VXI</td>
<td>GPIB-VXI [board]:VXI logical address[:INSTR]</td>
</tr>
<tr>
<td>GPIB</td>
<td>GPIB [board]:primary address[:secondary address][:INSTR]</td>
</tr>
</tbody>
</table>

The following describes the parameters used above:

- **board**: This optional parameter is used if you have more than one interface of the same type. The default value for board is 0.
- **VXI logical address**: This is the logical address of the VXI instrument.
- **primary address**: This is the primary address of the GPIB device.
- **secondary address**: This optional parameter is the secondary address of the GPIB device. If no secondary address is specified, none is assumed.
- **INSTR**: This is an optional parameter that indicates that you are communicating with a resource that is of type INSTR, meaning instrument.

NOTE

If you want to be compatible with future releases of VTL and VISA, you must include the INSTR parameter in the syntax.

The following are examples of valid symbolic names:

- **XI0::24::INSTR** Device at VXI logical address 24 that is of VISA type INSTR.
- **VXI2::128** Device at VXI logical address 128, in the third VXI system (VXI2).
- **GPIB-VXI0::24** A VXI device at logical address 24. This VXI device is connected via a GPIB-VXI command module.
- **GPIB0::7::0** A GPIB device at primary address 7 and secondary address 0 on the GPIB interface.
The following is an example of opening a device session with the GPIB device at primary address 23.

```c
ViSession defaultRM, vi;
.
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::23::INSTR", VI_NULL, VI_NULL, &vi);
.
viClose(vi);
viClose (defaultRM);
```

Closing a Session

The `viClose` function must be used to close each session. You can close the specific device session, which will free all data structures that had been allocated for the session. If you close the default resource manager session, all sessions opened using that resource manager will be closed.

Since system resources are also used when searching for resources (`viFindRsrc`) or waiting for events (`viWaitOnEvent`), the `viClose` function needs to be called to free up find lists and event contexts.
Overview of the GPIB Bus

GPIB Instrument Nomenclature

An instrument that is part of an GPIB network is categorized as a listener, talker, or controller, depending on its current function in the network.

Listener
A listener is a device capable of receiving data or commands from other instruments. Any number of instruments in the GPIB network can be listeners simultaneously.

Talker
A talker is a device capable of transmitting data or commands to other instruments. To avoid confusion, an GPIB system allows only one device at a time to be an active talker.

Controller
A controller is an instrument, typically a computer, capable of managing the various GPIB activities. Only one device at a time can be an active controller.

GPIB Command Statements

Command statements form the nucleus of GPIB programming. They are understood by all instruments in the network. When combined with the programming language codes, they provide all management and data communication instructions for the system. Refer to the your programming language manual and your computers I/O programming manual for more information.

The seven fundamental command functions are as follows:

• An abort function that stops all listener/talker activity on the interface bus, and prepares all instruments to receive a new command from the controller. Typically, this is an initialization command used to place the bus in a known starting condition (sometimes called: abort, abortio, reset, halt).

• A remote function that causes an instrument to change from local control to remote control. In remote control, the front panel keys are disabled except for the Local key and the line power switch (sometimes called: remote, resume).

• A local lockout function, that can be used with the remote function, to disable the front panel Local key. With the Local key disabled, only the controller (or a hard reset by the line power switch) can restore local control (sometimes called: local).
Overview of the GPIB Bus

- A local function that is the complement to the remote command, causing an instrument to return to local control with a fully enabled front panel (sometimes called: local, resume).

- A clear function that causes all GPIB instruments, or addressed instruments, to assume a cleared condition. The definition of clear is unique for each instrument (sometimes called: clear, reset, control, send).

- An output function that is used to send function commands and data commands from the controller to the addressed instrument (sometimes called: output, control, convert, image, iobuffer, transfer).

- An enter function that is the complement of the output function and is used to transfer data from the addressed instrument to the controller (sometimes called: enter, convert, image, iobuffer, on timeout, set timeout, transfer).
Overview of the RS-232 Bus

This feature is not implemented.

Serial interface programming techniques are similar to most general I/O applications. Refer to your programming language documentation for information on how to initiate the card and verify the status.

Due to the asynchronous nature of serial I/O operations, special care must be exercised to ensure that data is not lost by sending to another device before the device is ready to receive. Modem line handshaking can be used to help solve this problem. These and other topics are discussed in greater detail in your programming language documentation.

Settings for the Serial Interface

Please refer to the documentation on your computer and I/O to configure the serial bus. Some common serial interface configuration settings are:

- **Baud Rate to**: 9600
- **Bits per character to**: 8
- **Parity to**: 8
- **Stop bits to**: 1

Handshake and Baud Rate

To determine hardware operating parameters, you need to know the answer for each of the following questions about the peripheral device:

- Which of the following signal and control lines are actively used during communication with the peripheral?
 - Data Set Ready (DSR)
 - Clear to Send (CTS)
- What baud rate is expected by the peripheral?
Character Format Parameters

To define the character format, you must know the requirements of the peripheral device for the following parameters:

- **Character Length:** Eight data bits are used for each character, excluding start, stop, and parity bits.
- **Parity Enable:** Parity is disabled (absent) for each character.
- **Stop Bits:** One stop bit is included with each character.

Modem Line Handshaking

To use modem line handshaking for data transfer you would consider the following tasks:

1. Set Data Terminal Ready and Request-to-Send modem lines to active state.
2. Check Data Set Ready and Clear-to-Send modem lines to be sure they are active.
3. Send information to the interface and thence to the peripheral.
4. After data transfer is complete, clear Data Terminal Ready and Request-to-Send signals.

For ENTER operations:

1. Set Data Terminal Ready line to active state. Leave Request-to-Send inactive.
2. Check Data Set Ready and Data Carrier Detect modem lines to be sure they are active.
3. Input information from the interface as it is received from the peripheral.
4. After the input operation is complete, clear the Data Terminal Ready signal.
Data Transfer Errors

The serial interface can generate several types of errors when certain conditions are encountered while receiving data from the peripheral device. Errors can be generated by any of the following conditions:

- **Parity error.** The parity bit on an incoming character does not match the parity expected by the receiver. This condition is most commonly caused by line noise.

- **Framing error.** Start and stop bits do not match the timing expectations of the receiver. This can occur when line noise causes the receiver to miss the start bit or obscures the stop bits.

- **Overrun error.** Incoming data buffer overrun caused a loss of one or more data characters. This is usually caused when data is received by the interface, but no ENTER statement has been activated to input the information.

- **Break received.** A BREAK was sent to the interface by the peripheral device. The desktop computer program must be able to properly interpret the meaning of a break and take appropriate action.
Using the LAN to Control the Analyzer

- “Using ftp for File Transfers” on page 98
- “Using Telnet to Send Commands” on page 101
- “Using Socket LAN to Send Commands” on page 105
- “Using SICL LAN to Control the Analyzer” on page 106
- “Using HP/Agilent VEE Over Socket LAN” on page 114
- “Using a Java™ Applet Over Socket LAN” on page 115
- “Using a C Program Over Socket LAN” on page 115
- “General LAN Troubleshooting” on page 116

Using ftp for File Transfers

File transfers can be done using the instrument LAN connection. For example, you can use the ftp functionality to download instrument screen dumps to an external server.

A sample ftp session might be:

```
ftp 15.88.163.118 (instrument IP address)
```

At the name prompt enter:

```
vsa
```

At the password prompt enter:

```
service
```

You are now in the instrument /users directory and can get files from the analyzer. Type in help at the prompt to see the ftp commands that are available on your system. Typing quit will end your ftp session.

NOTE

Do NOT delete files from this directory. Most of the files are required for the instrument, and it's optional personality modes, to operate.

The Standard UNIX FTP Command:

Synopsis

```
ftp [-g] [-i] [-n] [-v] [server-host] [-B DataSocketBufferSize]
```

Description

The `ftp` command is used to transfer files using the File Transfer Protocol. `ftp` transfers files over a network connection between a local machine and the remote server-host.

Options and Parameters

When `ftp` is invoked with a server-host specified, a connection is opened immediately. Otherwise, `ftp` waits for user commands.
The following options are supported:

- `g` disables expansion of shell metacharacters in file and directory names
- `i` disables prompts during multiple-file operations
- `n` disables automatic log-in
- `v` enables verbose output
- `B` specifies a new DataSocketBufferSize server-host the name or address of the remote host.

Table lists the available user commands.
Table 2-1 ftp Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii</td>
<td>Sets the file transfer type to ASCII.</td>
</tr>
<tr>
<td>binary</td>
<td>Sets the file transfer type to binary.</td>
</tr>
<tr>
<td>bye</td>
<td>Closes the connection to the host and exits ftp.</td>
</tr>
<tr>
<td>cd remote_directory</td>
<td>Sets the working directory on the host to remote_directory.</td>
</tr>
<tr>
<td>delete remote_file</td>
<td>Deletes remote_file or empty remote_directory.</td>
</tr>
<tr>
<td>dir [remote_directory]</td>
<td>Lists the contents of the specified remote_directory. If the remote_directory is unspecified, the contents of the current remote directory are listed.</td>
</tr>
<tr>
<td>get remote_file [local_file]</td>
<td>Copies remote_file to local_file. If local_file is unspecified, ftp uses the remote_file name as the local_file name.</td>
</tr>
<tr>
<td>help</td>
<td>Provides a list of ftp commands.</td>
</tr>
<tr>
<td>help command</td>
<td>Provides a brief description of command.</td>
</tr>
<tr>
<td>image</td>
<td>Sets the file transfer type to binary.</td>
</tr>
<tr>
<td>lcd [local_directory]</td>
<td>Sets the local working directory to local_directory.</td>
</tr>
<tr>
<td>ls [remote_directory]</td>
<td>Lists the contents of the specified remote_directory. If the remote_directory is unspecified, the contents of the current remote directory are listed.</td>
</tr>
<tr>
<td>mget remote_file [local_file]</td>
<td>Copy remote_file to the local system. If local_file is unspecified, ftp uses the remote_file name as the local_file name.</td>
</tr>
<tr>
<td>mput local_file [remote_file]</td>
<td>Copies local_file to remote_file. If remote_file is unspecified, ftp uses the local_file name as the remote_file name.</td>
</tr>
<tr>
<td>put local_file [remote_file]</td>
<td>Copies local_file to remote_file. If remote_file is unspecified, ftp uses the local_file name as the remote_file name.</td>
</tr>
<tr>
<td>quit</td>
<td>Closes the connection to the host and exits ftp.</td>
</tr>
</tbody>
</table>
Using Telnet to Send Commands

Using telnet to send commands to your analyzer works in a similar way to communicating over GPIB. You establish a connection with the analyzer, and then send or receive information using SCPI commands.

NOTE
If you need to control the GPIB using “device clear” or SRQ’s, you can use SICL LAN. SICL LAN provides control of your analyzer via IEEE 488.2 GPIB over the LAN. See “Using SICL LAN to Control the Analyzer” on page 106. in this chapter.

On unix:
The syntax of the telnet command is:

telnet <vsa hostname> 5023

or

telnet <IP address>

The initial telnet connection message will be displayed and then a SCPI> prompt. At the SCPI prompt, simply enter the desired SCPI commands.

On a PC:
You would type at the dos prompt

telnet

The telnet gui has the host/port setting menu.

Unix Telnet Example:
To connect to the instrument with host name my4406 and port number 5023, enter the following command:

telnet my4406 5023

NOTE
You must have changed your instrument host name from the default (for example, change E566DD69 to my4406) in order to specify your instrument by name. Press System, Config I/O, Host Name.

Alternately, you can enter the IP address directly in the telnet command, in place of the analyzer name:

telnet 15.4.45.255 5023
The computer responds with the following messages:

Tryng...
Connected to 15.4.45.255.
Escape character is '^]'.

When you connect to the instrument, it will display a welcome message and a command prompt.

The instrument is now ready to accept your SCPI commands. As you type SCPI commands, query results appear on the next line. When you are done, break the telnet connection using the escape character (in this case Ctrl],) and type quit.

The analyzer responds with the a welcome message and the SCPI prompt. You can immediately enter programming (SCPI) commands. Typical commands might be:

CONF:SPECTRUM
CALC:SPECTRUM:MARK:TRACE SPECTRUM
CALC:SPECTRUM:MARK:MAX
CALC:SPECTRUM:MARK:MAX?

The small program above sets the analyzer to measure a signal in the frequency domain, places a marker on the maximum point, and then queries the analyzer for the amplitude of the marker.

You need to press Enter after typing in each command. After pressing Enter on the last line in the example above, the analyzer returns the amplitude level of the marker to your computer and displays it on the next line. For example, after typing CALC:SPECTRUM:MARK:MAX? and pressing Enter, the computer would display:

+1.71000000000E+002

When you are done, close the telnet connection. Enter the escape character to get the telnet prompt. The escape character (Ctrl and "]" in this example) does not print.

At the telnet prompt, type quit or close.

The telnet connection closes and you see your regular prompt.

Connection closed.

Figure 2-2 shows a terminal screen using the example commands above.
Figure 2-2 Example telnet Session

Trying...
Connected to at10,sr.hp.com.
Escape character is '^]'.
Welcome to at10
Hewlett-Packard,E4406A,US38430092,PROTOTYPE

SCPI> *IDN?
Hewlett-Packard,E4406A,US38430092,PROTOTYPE
SCPI> *OPT?
"GSM","CDMA","NADC","IDEN"
SCPI> READ:SPECtrum?
-1.00714661E+002,+9.99620056E+008,+1095,+9.99499207E+008,+9.15527344E+002,+706, -2.00000000E-007,+2.66666667E-007,+1,+1.88000000E-004,+25
SCPI> |

NOTE

If your telnet connection is in a mode called "line-by-line," there is no local echo. This means you will not be able to see the characters you are typing on your computer's display until after you press the Enter key.

To remedy this, you need to change your telnet connection to "character-by-character" mode. This can be accomplished in most systems by escaping out of telnet to the telnet> prompt and then typing mode char. If this does not work, consult your telnet program's documentation for how to change to "character-by-character" mode.
The Standard UNIX TELNET Command:

Synopsis `telnet [host [port]]`

Description The `telnet` command is used to communicate with another host using the TELNET protocol. When `telnet` is invoked with `host` or `port` arguments, a connection is opened to `host`, and input is sent from the user to `host`.

Options and Parameters `telnet` operates in line-by-line mode or in character-at-a-time mode. In line-by-line mode, typed text is first echoed on the screen. When the line is completed by pressing the **Enter** key, the text line is then sent to `host`. In character-at-a-time mode, text is echoed to the screen and sent to `host` as it is typed.

In some cases, if your `telnet` connection is in “line-by-line” mode, there is no local echo. This means you will not be able to see the characters you are typing on your computer's display until after you press the **Enter** key.

To remedy this, you need to change your `telnet` connection to “character-by-character” mode. This can be accomplished in most systems by escaping out of `telnet` to the `telnet>` prompt and then typing `mode char`. Consult your `telnet` program's documentation for how to change to “character-by-character” mode.
Using Socket LAN to Send Commands

Your analyzer implements a sockets Applications Programming Interface (API) compatible with Berkeley sockets, Winsock, and other standard sockets APIs. You can write programs using sockets to control your analyzer by sending SCPI commands to a socket connection you create in your program. Refer to Using a Java™ Applet Over Socket LAN in this chapter for example programs using sockets to control the analyzer.

Setting Up Your Analyzer for Socket Programming

Before you can use socket programming, you must identify your analyzer’s socket port number. The default is 5025:

1. Press System, Config I/O, SCPI LAN, Socket Port.
2. Notice that the port number you will use for your socket connection to the analyzer is 5025.
Using SICL LAN to Control the Analyzer

SICL LAN is a LAN protocol using the Standard Instrument Control Library (SICL). It provides control of your analyzer over the LAN, using a variety of computing platforms, I/O interfaces, and operating systems. With SICL LAN, you control your remote analyzer over the LAN with the same methods you use for a local analyzer connected directly to the controller with the GPIB. More information about SICL LAN can be found in the HP Standard Instrument Control Library user’s guide for HP-UX, part number E2091-90004.

Your analyzer implements a SICL LAN server. To control the analyzer, you need a SICL LAN client application running on a computer or workstation that is connected to the analyzer over a LAN. Typical applications implementing a SICL LAN client include

- HP/Agilent VEE
- HP/Agilent BASIC
- National Instrument’s LabView with HP/Agilent VISA/SICL client drivers

NOTE

The SICL LAN protocol is Agilent’s implementation of the VXI-11 Instrument Protocol, defined by the VXIbus Consortium working group.

At the time of the publication of this manual, National Instruments’ VISA does not support the VXI-11 Instrument Protocol. However, future revisions of National Instruments VISA will support the VX-11 protocol. Contact National Instruments for their release date.

SICL LAN can be used with Windows 95, Windows 98, Windows NT, and HP-UX.
Collecting SICL LAN Set-up Information

Before you set up your analyzer as a SICL LAN server, you will need to collect some information about your VISA/SICL LAN client application. The “value” of the following parameters can be found from the front panel System keys. They can then be used to set up your VISA/SICL LAN client application:

Emulated GPIB Name

The GPIB name is the name given to a device used to communicate with the analyzer. Your analyzer is shipped with gpib7 as its GPIB name. The GPIB name is the same as the remote SICL address.

Emulated GPIB Logical Unit

The logical unit number is a unique integer assigned to the device to be controlled using SICL LAN. Your analyzer is shipped with the logical unit number set to 8.

Emulated GPIB Address

The emulated GPIB address (bus address) is assigned to the device to be controlled using SICL LAN. The emulated GPIB address is automatically set to be the same as the current GPIB address. The instrument is shipped with the emulated GPIB address set to 18.

The SICL LAN server uses the GPIB name, GPIB logical unit number, and GPIB address configuration on the SICL LAN client to communicate with the client. You must match these parameters exactly (including case) when you set up the SICL LAN client and server.

Configuring Your Analyzer as a SICL LAN Server

After you have collected the required information from the SICL LAN client, perform the following steps to set up your analyzer as a SICL LAN server:

1. Identify the GPIB name.

 Press System, Config I/O, SICL Server, Emulated GPIB Name, and notice that it is gpib7.

2. Notice that the Emulated GPIB Logical Unit is set to 8.

3. Notice that the Emulated GPIB Address is set the same as the GPIB address.
Configuring Your PC as a SICL LAN Client

The descriptions here are based on Agilent’s VISA revision G.02.02, model number 2094G. A copy of Agilent’s VISA can be found on Agilent’s website:
http://www.tm.agilent.com/tmo/software/English/HP_IO_Libraries.html

These descriptions assume a LAN connection between your computer and network analyzer. They are not written for the GPIB to LAN gateway.

1. Install VISA revision G.02.02 or higher.
2. Run I/O configuration.
3. Select LAN Client from the available interface types.
4. Press Configure.
5. Enter an interface name, such as lan1.
6. Enter a logical unit number, such as 7.
7. Select Okay.
8. Select VISA LAN Client from the available interface types.
10. Enter a VISA interface name, such as GPIB1.
11. Enter the hostname or IP address of your analyzer in the hostname field, such as my4406a.companyname.com
12. Enter a Remote SICL address, such as GPIB1.
13. Set the LAN interface to match the defined LAN client (lan1 in this example).
14. Select OK.
15. Close I/O Configuration by selecting OK.

Controlling Your Analyzer with SICL LAN and HP/Agilent VEE

Before you can use SICL LAN with VEE, you need to set up VISA/SICL LAN I/O drivers for use with your VEE application. Consult your VEE documentation for information how to do this.

NOTE
If you are using HP/Agilent VEE and SICL LAN, the logical unit number is limited to the range of 0-8.

The logical unit number is the same as the interface select code (ISC). VEE reserves ISC values 9-18, and does not allow you to use them for SICL/LAN communications with your analyzer. VEE also does not allow any ISC values higher than 18.
After you have the VISA/SICL LAN I/O drivers installed, perform the steps below to set up VEE to control your analyzer:

1. On your computer or workstation, select **I/O|Instrument Manager**.

2. Add a new GPIB device with an address of 7XX, where XX is the GPIB device address from your analyzer.
Programming Fundamentals
Using the LAN to Control the Analyzer

Figure 2-4 Adding Your Analyzer as a VEE Device

Select the VI to use for instrument control. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device. Click on "Instrument" in the VEE menu and add the VI for that device.
To send SCPI commands to the analyzer, select I/O|Instrument Manager, and the GPIB device just added. Select Direct I/O. You can now type SCPI commands in the command window, and they are sent over the LAN to your analyzer.

Figure 2-5 Sending SCPI Commands Directly to your Analyzer

See the VEE example program for more details.
Programming Fundamentals
Using the LAN to Control the Analyzer

Controlling Your Analyzer with SICL LAN and HP/Agilent BASIC for Windows

Before you can use HP/Agilent BASIC for Windows with SICL LAN, you need to set up VISA/SICL LAN I/O drivers for use with your BASIC applications. Consult your BASIC documentation for information how to do this.

To set up SICL LAN for BASIC, add the following statement to your AUTOST program (all on a single line):

```
LOAD BIN "GPIBS;DEV lan[analyzer IP address]:GPIB name TIME 30 ISC 7"
```

Replace `analyzer IP address` with the IP address of your analyzer, `GPIB name` with the GPIB name given to your analyzer, and 7 with the logical unit number.

For example, the following LOAD statement should be added to your AUTOST program for the parameters listed below:

- analyzer IP address 12.22.344.225
- analyzer GPIB name inst0
- logical unit number 7
- timeout value (seconds) 30

LOAD statement (all on a single line)

```
LOAD BIN "GPIBS;DEV lan[12.22.344.225]:inst0 TIME 30 ISC 7"
```
Consult your BASIC documentation to learn how to load the SICL driver for BASIC.

After the SICL driver is loaded, you control your analyzer using commands such as the following:

```
OUTPUT 718; "*IDN?"
ENTER 718; S$
```

where 18 is the device address for the analyzer.

See the BASIC example program in this chapter for more information.

Controlling Your Analyzer with SICL LAN and BASIC for UNIX (Rocky Mountain BASIC)

Before you can use Rocky Mountain Basic (HPRMB) with SICL LAN, you will need to set up the SICL LAN I/O drivers for HPRMB. Consult your system administrator for details.

Create a `.rmbrc` file in your root directory of your UNIX workstation with the following entries:

```
SELECTIVE_OPEN=ON
Interface 8= "lan[analyzer IP address]:GPIB name";NORMAL
```

Replace `analyzer IP address` with the IP address of your analyzer, and `GPIB name` with the GPIB name given to your analyzer. Also replace the “8” of `Interface 8` with the logical unit number. Consult your HPRMB documentation for the exact syntax.

After your SICL driver is configured correctly on your UNIX workstation, you control your analyzer using commands such as the following:

```
OUTPUT 818; "*IDN?"
ENTER 818; S$
```

where 18 is the device address for the analyzer.
Using HP/Agilent VEE Over Socket LAN

To control your analyzer via socket LAN using VEE, click on the VEE menu titled "I/O." Then select "To/From Socket" and position the I/O object box on the screen. Fill in the following fields:

Connect Port: 5025
Host Name: <hostname>
Timeout: 15

For faster troubleshooting, you may want to set the timeout to a smaller number. If the hostname you enter doesn't work, try using the IP address of your analyzer (example: 15.4.43.5). Using the IP address rather than the hostname may also be faster. See Figure 2-6 for an example of an VEE screen.

NOTE
If you need to control the GPIB using "device clear" or SRQ's, you can use SICL LAN. SICL LAN provides control of your analyzer via IEEE 488.2 GPIB. See "Using SICL LAN to Control the Analyzer" on page 106 in this chapter.

Figure 2-6 Sample VEE Screen
Using a Java™ Applet Over Socket LAN

The example program “Using Java Programming Over Socket LAN” on page 158 demonstrates simple socket programming with Java. It is written in Java programming language, and will compile with Java compilers versions 1.0 and above.

This program is on your documentation CD ROM that shipped with the product.

Using a C Program Over Socket LAN

The example programs “Using C Programming Over Socket LAN” on page 141 and “Using C Programming Over Socket LAN (Windows NT)” on page 155 demonstrate simple socket programming. They are written in C, and compile in the HP-UX UNIX environment or the WIN32 environment.

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only difference is the openSocket() routine, which uses a few network library routines to create the TCP/IP network connection. Once this connection is created, the standard fread() and fwrite() routines are used for network communication.

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on sockets.
General LAN Troubleshooting

- “Troubleshooting the Initial Connection” on page 116
- “Common Problems After You’ve Made the Connection” on page 117
- “Pinging the Analyzer from Your Computer or Workstation” on page 119
- “EIA/TIA 568B Wiring Information” on page 121

Troubleshooting the Initial Connection

Getting the analyzer to work with your network often requires detailed knowledge of your local network software. This section attempts to help you with some common problems. Contact your network administrator for additional assistance.

The analyzer LAN interface does not need or include any proprietary driver software. It was designed to operate with common network utilities and drivers.

Either a hardware problem or a software problem can prevent the analyzer’s remote file server from communicating over the LAN. The following common problems may be encountered:

Communications Not Established If you have just installed and configured the LAN interface and you have never been able to access the analyzer via ftp or telnet, go directly to “Pinging the Analyzer from Your Computer or Workstation” on page 119.

If you have previously been able to access the analyzer via ftp or telnet and now cannot do so, check the following:

- Has any hardware been added or moved on your network? This includes adding or removing any workstations or peripherals, or changing any cabling.
- Have software applications been added to the network?
- Has the functionality been turned off from the front panel? Press System, Config I/O, SCPI LAN.
- Have any configuration files been modified? Pressing System, Restore Sys Defaults restores the original factory defaults and you will have to re-set the instrument IP address and hostname.
- Is the upper- and lower-case character usage in your hostname consistent?
Have any of the following files been deleted or overwritten?

UNIX:
- /etc/hosts
- /etc/inetd.conf
- /etc/services

PCs:
- dependent network files

If you know or suspect that something has changed on your network, consult with your network administrator.

Timeout Errors Timeout errors such as "Device Timeout," "File Timeout," and "Operation Timeout," are symptoms of one or both of the following problems:

- The currently configured timeout limits are too short compared to the time it takes the LAN to complete some operations. This problem may occur during periods of increased LAN traffic.

- The LAN connection has failed, or fails occasionally.

To increase your timeout period, refer to your computer documentation for instructions. Contact your LAN administrator if problems continue.

Packets Routinely Lost If packets are routinely lost, proceed to the troubleshooting section in this chapter relating to your network.

Problems Transferring or Copying Files If you have problems copying files out of or into the analyzer, you might be experiencing timeout problems. See the previous section on "Timeout Errors."

Common Problems After You’ve Made the Connection

This section describes common problems you may encounter when using the analyzer on a LAN. It assumes you have been able to connect to the analyzer in the past. If this is not so, refer to the previous sections first.

NOTE Pressing **Preset** does not affect LAN settings, but pressing **System, Restore Sys Defaults** will reset to the original factory defaults. You will then have to re-set the instrument IP address and other LAN settings in **System, Config I/O**.
Programming Fundamentals
Using the LAN to Control the Analyzer

You cannot connect to the analyzer

- If you suspect a bad LAN connection between your computer and analyzer, you can verify the network connection by using the ping command described later in this chapter or another similar echo request utility.

- If a bad connection is revealed, try the following solutions:
 - Make sure the analyzer is turned on.
 - Check the physical connection to the LAN.
 - Make sure the internet (IP) Address of the analyzer is set up correctly in the LAN port setup menu. (Press System, Config I/O, IP Address.)
 - If the analyzer and the computer are on different networks or subnets, make sure the gateway address and subnet mask values are set correctly. See "Troubleshooting Subnet Problems" earlier in this chapter.

You cannot access the file system via ftp

- If you get a "connection refused" message, try the following solutions:
 - If the power to the analyzer was just turned on, make sure that you wait about 25 seconds before attempting the connection.

- If you get a "connection timed out" message
 - Verify the LAN connection between your computer and the analyzer. Refer to "If you cannot connect to the analyzer" earlier in this section.

You cannot telnet to the command parser port

- If you get a "connection refused" message
 - Check the telnet port number from the front panel keys.

- If you get a "connection timed out" or "no response from host" message
 - Verify the LAN connection between your computer and the analyzer. Refer to "If you cannot connect to the analyzer" earlier in this section.

- If you get a "connection refused" or "no response from host" message
 - If the analyzer was just turned on, make sure that you wait about 25 seconds before attempting the connection.
You get an "operation timed-out" message

- Check the LAN connection between the computer and the analyzer. Refer to "If you cannot connect to the analyzer" in this section.
- Increase the file time-out value on your PC or workstation.

You cannot access internal web pages or import graphic images when using a point-to-point connection

- Disable the use of proxy servers. You may have to specify this in a number of locations, depending on the operating system and software you are using.
- Disable the use of cached copies of web pages to ensure that you always get a new copy of the analyzer’s screen image.

If all else fails

- Contact your network administrator.
- If you still cannot solve the problem, contact an Agilent Service Center for repair information.

Pinging the Analyzer from Your Computer or Workstation

Verify the communications link between the computer and the analyzer remote file server using the ping utility.

From a UNIX workstation, type:

```
ping hostname 64 10
```

where 64 is the packet size, and 10 is the number of packets transmitted.

From a DOS or Windows environment, type:

```
ping hostname 10
```

where 10 is the number of echo requests.

Normal Response for UNIX

A normal response to the ping will be a total of 9, 10, or possibly 11 packets received with a minimal average round-trip time. The minimal average will be different from network to network. LAN traffic will cause the round-trip time to vary widely.

Because the number of packets received depends on your network traffic and integrity, the normal number might be different for your network.
Programming Fundamentals
Using the LAN to Control the Analyzer

Normal Response for DOS or Windows

A normal response to the ping will be a total of 9, 10, or possibly 11 packets received if 10 echo requests were specified.

Because the number of packets received depends on your network traffic and integrity, the normal number might be different for your network.

Error Messages

If error messages appear, then check the command syntax before continuing with the troubleshooting. If the syntax is correct, then resolve the error messages using your network documentation, or by consulting your network administrator.

If an unknown host error message appears, then check that the host name and IP address for your analyzer are correctly entered from the front panel. Press System, Config I/O.

No Response No packets received indicates no response from a ping.

If there is no response, try typing in the IP address with the ping command, instead of using the hostname. Check that the typed address matches the IP address assigned in the System, Config I/O menu, then check the other addresses in the menu.

Check that the hostname and IP address are correctly entered in the node names database.

If you are using a UNIX environment, ping each node along the route between your workstation and the analyzer, starting with the your workstation. Ping each gateway, then attempt a ping of the remote file server.

If the analyzer still does not respond to ping, then you should suspect a hardware problem with the analyzer. To check the analyzer performance, refer to "Verify the Analyzer Performance" in this chapter.

Intermittent Response If you received 1 to 8 packets back, there is probably a problem with the network. Because the number of packets received depends on your network traffic and integrity, the number might be different for your network.

Use a LAN analyzer or LAN management software to monitor activity and determine where bottlenecks or other problems are occurring. The analyzer will still function, but communications over the LAN will be slower.
On a single-client/single-server network, the most likely cause of intermittent response to an echo request is a hardware problem with the LAN module installed in the PC, the cable, or the analyzer. To check the analyzer, refer to "Verify the Analyzer Performance" later in this chapter.

The Standard UNIX PING Command Synopsis

```
ping [-r][-v][-o] host [packetsize][count]
```

Description The `ping` command sends an echo request packet to the `host` once per second. Each echo response packet that is returned is listed on the screen, along with the round-trip time of the echo request and echo response.

Options and Parameters

- `-r` Bypasses the routing tables, and sends the request directly to the host.
- `-v` Reports all packets that are received, including the response packets.
- `-o` Requests information about the network paths taken by the requests and responses.

host The host name or IP address.

packetsize The size of each packet (8 bytes - 4096 bytes).

count The number of packets to send before ending ping (1-(2^31-1)). If `count` is not specified, `ping` sends packets until interrupted.

EIA/TIA 568B Wiring Information

Table 2-2 Straight-Through Cable (Unshielded-twisted-pair (UTP) cable with RJ-45 connectors)

<table>
<thead>
<tr>
<th>Standard, Straight-Through Wiring (each end)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Name</td>
</tr>
<tr>
<td>RX+</td>
</tr>
<tr>
<td>RX-</td>
</tr>
<tr>
<td>TX+</td>
</tr>
<tr>
<td>TX-</td>
</tr>
<tr>
<td>Not Used</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Using the LAN to Control the Analyzer

This cable can be used to cascade hubs or to make point-to-point connections without a LAN hub.

NOTE

A convenient way to make a cross-over adapter is to use two RJ-45 jacks wired according to Table, above. Standard straight-through patch cables can then be used from the analyzer to the adapter, and from the adapter to other LAN devices. If you use a special-purpose adapter, you will avoid having a cross-over cable mistaken for a standard, straight-through patch cable.

NOTE

Some commercially-available cross-over cables do not implement the cross-over wiring required for your analyzer. Please refer to Table, above, and verify all connections before using cables not made by Agilent Technologies.

Table 2-3 Cross-Over Cable (Unshielded-twisted-pair (UTP) cable with RJ-45 connectors)

<table>
<thead>
<tr>
<th>Cross-Over Wiring<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector A</td>
</tr>
<tr>
<td>Signal Name</td>
</tr>
<tr>
<td>RX+</td>
</tr>
<tr>
<td>RX-</td>
</tr>
<tr>
<td>TX+</td>
</tr>
<tr>
<td>TX-</td>
</tr>
<tr>
<td>Not Used</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

^a Either end of this cable can be used at the analyzer or LAN device. The connector names are a convention useful during cable construction only.
Figure 2-7 Cross-Over Patch Cable Wiring (cross-over end)
Programming Fundamentals
Using the LAN to Control the Analyzer
3 Programming Examples
Types of Examples

This section includes examples of how to program the instrument using the instrument SCPI programming commands. The most of the examples are written for a PC, using GPIB. They are written in the C programming language and use the HP/Agilent VISA transition library. The VISA transition library must be installed and the GPIB card configured.

These examples are available on the Agilent Technologies E4406A documentation CD-ROM. They are also available at the URL http://www.agilent.com/find/vsa.

The section “C Programming Examples using VTL” on page 84, includes some basic information about using the C programming language. That information can be used with the examples in this chapter to create your own measurement routines.

Examples are also available showing you how to program the instrument using the VXIplug&play instrument driver that is provided. The examples are included in the on-line documentation in the driver itself. The driver allows you to use several different programming languages including: VEE, LabView, C, C++, and BASIC. The software driver can be found at the URL http://www.agilent.com/find/vsa.

The programming examples include:

- “Using Markers” on page 127
- “Saving Binary Trace Data in an ASCII File” on page 130
- “Saving ASCII Trace Data in an ASCII File” on page 133
- “Saving and Recalling Instrument State Data” on page 136
- “Performing Alignments and Getting Pass/Fail Results” on page 139
- “Using C Programming Over Socket LAN” on page 141
- “Using C Programming Over Socket LAN (Windows NT)” on page 155
- “Using Java Programming Over Socket LAN” on page 158
Using Markers

This C programming example (HPE4406Markers.c):

- uses the VISA library for input/output, opens a session to a GP-IB device at address 18 and presets the instrument.
- sets the input to the internal 50 MHz reference source and tunes the instrument to the signal.
- turns off the active trace and put the instrument in single measurement mode.
- initiates a spectrum measurement and waits for the operation to complete.
- puts marker 1 on the peak signal of the average trace and measures the amplitude.
- puts a noise type marker (marker 2) on the average trace and measures the amplitude.
- calculates the difference between the peak and the noise floor.
- puts the instrument back in continuous measurement mode and prints the results.
Example:

```c
#include <stdio.h>
#include <stdlib.h>
#include <stdmath.h>
#include "visa.h"

void main ()
{
    /*program variables*/
    ViSession defaultRM, viVSA;
    ViStatus viStatus = 0;
    double dPeakPower = 0;
    double dNoiseMarker = 0;
    double dResult= 0;
    long lComplete = 0;

    /*open session to GPIB device at address 18 */
    viStatus=viOpenDefaultRM (&defaultRM);
    viStatus=viOpen (defaultRM, "GPIB0::18::INSTR",
        VI_NULL,VI_NULL, &viVSA);

    /*check opening session sucess*/
    if(viStatus)
    {
        printf("Could not open a session to GPIB device at
               address 18!
        ");
        exit(0);
    }

    /*reset the instrument */
    viPrintf(viVSA, "*RST\n");

    /*set the input port to the internal 50Mhz reference
    source*/
    viPrintf(viVSA, "SENS:FEED AREF\n");

    /*tune the instrument to 50MHZ*/
    viPrintf(viVSA, "SENS:FREQ:CENT 50E6\n");

    /*put the instrument in single measurement mode*/
    viPrintf(viVSA, "INIT:CONT 0\n");

    /*zoom the spectrum display*/
    viPrintf(viVSA, "DISP:FORM:ZOOM1\n");

    /*trigger a spectrum measurement*/
    viPrintf(viVSA, "INIT:IMM;*OPC?\n");

    /*poll the operation complete query*/
    while (!lComplete)
        viScanf (viVSA,"%d",&lComplete);

    /*assign marker 1 to the average trace of the spectrum*/
    viPrintf(viVSA, "CALC:SPEC:MARK1:TRAC ASP\n");

    /*put the marker 1 on the signal peak*/
```
```c
viPrintf(viVSA, "CALC:SPEC:MARK1:MAX\n");
/*query the 50 MHz signal amplitude*/
viPrintf(viVSA, "CALC:SPEC:MARK1:Y?\n");
/*get the 50 MHz signal amplitude*/
viScanf (viVSA, "%lf", &dPeakPower);
/*assign marker 2 to the average trace of the spectrum*/
viPrintf(viVSA, "CALC:SPEC:MARK2:TRAC ASP\n");
/*assign the marker function NOISE to marker 2 */
viPrintf(viVSA, "CALC:SPEC:MARK2:FUNC NOISE\n");
/*position marker 2 on the noise floor*/
viPrintf(viVSA, "CALC:SPEC:MARK2:X 50.2E6\n");
/*query NOISE marker*/
viPrintf(viVSA, "CALC:SPEC:MARK2:FUNC:RES?\n");
/*get the the NOISE marker reading*/
viPrintf (viVSA, "%lf", &dNoiseMarker);
/*put the instrument back to continuous mode*/
viScanf (viVSA,"INIT:CONT 1\n");
/*calculate the difference between the marker peak and
the NOISE marker*/
dResult = fabs(dNoiseMarker - dPeakPower);
/*print result to the standard output*/
printf("The Peak Marker measured = %.2lf dBm\n",dPeakPower);
printf("The Noise Marker at 50.2 MHz measured = %.2lf dBm/Hz\n",dNoiseMarker);
printf("The difference between the Peak and the Noise
Floor = %.2lf dBC/Hz\n\n",dResult);
/* close session */
viClose (viVSA);
viClose (defaultRM);
```

Saving Binary Trace Data in an ASCII File

This C programming example (HPE4406Trace.c):

- uses the VISA library for input/output, opens a session to a GP-IB device at address 18 and presets the instrument.
- sets the input to the internal 50 MHz reference source and tunes the instrument to the signal.
- sets the instrument to single measurement mode.
- selects binary data output format and sets the binary byte order to SWAP.
- initiates a spectrum measurement and waits for the operation to complete.
- sets the instrument back to continuous measurement mode and queries the trace data.
- calculates the number of points in the trace by:
 1. getting the trace header data. (In this case it’s 6 digits, #DNNNNN.)
 2. extracting the information on the number of bytes in the data block of data from the trace header.
 3. calculating the number of trace points given the number of bytes in the trace. (REAL,64 binary format means each number is represented by 8 bytes.) See “Block Program Data” on page 65 of the section on “SCPI Language Basics” for more details on this process.
- Gets and saves the trace in a buffer
- Copies the trace buffer to the array of real numbers
- Saves the trace data to an ASCII file
Example:

```c
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include "visa.h"

void main ()
{
    /*program variable*/
    ViSession defaultRM, viVSA;
    ViStatus viStatus = 0;
    char sTraceBuffer[10240] = {0};
    char sBufferInfo[4] = {0};
    FILE *fTraceFile;
    long lNumberPoints = 0;
    long lNumberBytes = 0;
    long lComplete = 0;
    unsigned long lBytesRetrieved;
    ViReal64 adTraceArray[10240];

    /*open session to GPIB device at address 18 */
    viStatus=viOpenDefaultRM (&defaultRM);
    viStatus=viOpen (defaultRM, "GPIB0::18::INSTR",
                        VI_NULL, VI_NULL, &viVSA);
    /*check opening session sucess*/
    if(viStatus)
    {
        printf("Could not open a session to GPIB device at
                address 18!\n");
        exit(0);
    }

    /* Reset device */
    viPrintf(viVSA, "*RST\n");

    /*set the input port to the internal 50MHz reference
    source*/
    viPrintf(viVSA, "SENS:FEED AREF\n");

    /*zoom the spectrum display*/
    viPrintf(viVSA, "DISP:FORM:ZOOM1\n");

    /*tune the instrument to 50MHz*/
    viPrintf(viVSA, "SENS:FREQ:CENT 50E6\n");

    /*print message to the standard output*/
    viPrintf(viVSA, "Getting the spectrum trace in binary
            format...\nPlease wait...\n");

    /*set the instrument in single mode*/
    viPrintf(viVSA, "INIT:CONT 0\n");

    /*Set the ouput format to a binary format.
    viPrintf(viVSA, "FORM REAL,64\n");

```
/*set the binary byte order to SWAP*/
viPrintf(viVSA, "FORM:BORD SWAP\n");

/*trigger a spectrum measurement*/
viPrintf(viVSA, "MEAS:SPEC?;*OPC?\n");

/*poll the operation complete query*/
while (!lComplete)
 viScanf (viVSA,"%d",&lComplete);

/*query the spectrum trace data*/
viPrintf(viVSA, "FETCH:SPEC7?\n");

/*set the instrument back to continuous mode*/
viPrintf(viVSA, "INIT:CONT 1\n");

/*get trace header data, in this case we know it's 6 bytes of format #DNNNNN */
viRead (viVSA,(ViBuf)sTraceBuffer,6,&lBytesRetrieved);

/*Extract the number of bytes from the trace header*/
memcpy(sBufferInfo,sTraceBuffer+2,4);
lNumberBytes = atoi(sBufferInfo);

/*calculate the number of points given the number of bytes in the trace - REAL 64 binary format means each number is represented by 8 bytes*/
lNumberPoints = lNumberBytes/8;

/*get and save trace in a buffer*/
viRead (viVSA,(ViBuf)sTraceBuffer,lNumberBytes, &lBytesRetrieved);

/*copy the trace buffer to the array of real*/
memcpy(adTraceArray,sTraceBuffer,(size_t)lNumberBytes);

/*save trace data to an ASCII file*/
fTraceFile=fopen("C:\HPE4406ATrace.txt","w");
fprintf(fTraceFile,"HPE4406ATrace.exe Output\nAgilent 1998\n\n");
fprintf(fTraceFile,"List of %d points of the averaged spectrum trace:\n\n",lNumberPoints);
for (long i=0;i<lNumberPoints;i++)
 fprintf(fTraceFile,"\tAmplitude of point[%d] = %.2lf dBm\n",i+1,adTraceArray[i]);
fclose(fTraceFile);

/*print message to the standard output*/
printf("The %d trace points were saved to C:\HPE4406ATrace.txt file\n\n",lNumberPoints);

/* close session */
viClose (viVSA);
viClose (defaultRM)
}
Saving ASCII Trace Data in an ASCII File

This C programming example (HPE4406TraceASCII.c):

• uses the VISA library for input/output, opens a session to a GP-IB device at address 18 and presets the instrument.
• sets the input to the internal 50 MHz reference source and tunes the instrument to the signal.
• sets the instrument to single measurement mode.
• initiates a spectrum measurement and waits for the operation to complete.
• gets and saves the trace in a buffer.
• queries the spectrum trace data and gets the trace header (which is 6 bytes for ASCII data format).
• sets the instrument back to continuous measurement mode.
• saves the trace data to an ASCII file.
Example:

```c
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include "visa.h"

void main ()
{
    /*program variable*/
    ViSession defaultRM, viVSA;
    ViStatus viStatus = 0;
    char sTraceInfo[256] = {0};
    char sTraceBuffer[1024*100] = {0};
    FILE *fTraceFile;
    long lComplete = 0;
    unsigned long lBytesRetrieved;
    /*open session to GPIB device at address 18 */
    viStatus=viOpenDefaultRM (&defaultRM);
    viStatus=viOpen (defaultRM, "GPIB0::18::INSTR",
        VI_NULL, VI_NULL, &viVSA);
    /*check opening session sucess*/
    if(viStatus)
    {
        printf("Could not open a session to GPIB device at
            address 18!\n");
        exit(0);
    }
    /* Reset device */
    viPrintf(viVSA, "*RST\n");
    /*set the input port to the internal 50MHz reference
        source*/
    viPrintf(viVSA, "SENS:FEED AREF\n");
    /*zoom the spectrum display*/
    viPrintf(viVSA, "DISP:FORM:ZOOM1\n");
    /*tune the instrument to 50MHz*/
    viPrintf(viVSA, "SENS:FREQ:CENT 50E6\n");
    /*print message to the standard output*/
    printf(viVSA, "Getting the spectrum trace in ASCII
        format...\nPlease wait...\n");
    /*set the instrument in single mode*/
    viPrintf(viVSA, "INIT:CONT 0\n");
    /*trigger a spectrum measurement*/
    viPrintf(viVSA, "MEAS:SPEC1?;*OPC?\n");
    /*poll the operation complete query*/
    while (!lComplete)
        viScanf (viVSA, "%d", &lComplete);
```
/*query the spectrum trace information*/
viPrintf(viVSA, "FETCH:SPEC1\n");

/*save the info trace to buffer*/
viRead (viVSA, (ViBuf)sTraceInfo, 256, &lBytesRetrieved);

/*query the spectrum trace data*/
viPrintf(viVSA, "FETCH:SPEC7\n");

/*save the spectrum trace data to buffer*/
viRead (viVSA, (ViBuf)sTraceBuffer, 1024*100, &lBytesRetrieved);

/*set the instrument back to continuous mode*/
viPrintf(viVSA, "INIT:CONT 1\n");

/*save trace data to an ASCII file*/
fTraceFile=fopen("C:\HPE4406ATraceASCII.txt",
"w");
fprintf(fTraceFile,"HPE4406ATraceASCII.exe
Output\nHewlett-Packard 1998\n\n");
fprintf(fTraceFile,"Please refer to the PROGRAMMER'S
GUIDE to read about: FETCH:SPEC[n]\n\n");
fprintf(fTraceFile,"The trace information:n=1----
------------------------\n");
fprintf(fTraceFile, sTraceInfo);
fprintf(fTraceFile,"\n\nThe averaged spectrum trace
data:n=7

\n");
fprintf(fTraceFile, sTraceBuffer);
fprintf(fTraceFile,"End

End of the trace data\n");
fclose(fTraceFile);

/*print message to the standard output*/
printf("The spectrum information was saved to
C:\HPE4406ATraceASCII.txt file\n\n");

/* close session */
viClose (viVSA);
viClose (defaultRM);
}
Saving and Recalling Instrument State Data

This C programming example (HPE4406State.c):

- uses the VISA library for input/output, opens a session to a GP-IB device at address 18 and presets the instrument
- sets the input to the internal 50 MHz reference source and tunes the instrument to the signal
- selects a resolution bandwidth, display scaling, and reference level
- initiates a spectrum measurement and waits for the operation to complete
- saves the current state to register 10, replacing anything that is currently in register 10
- displays a message and waits for a key press before resetting the instrument
- displays a message and waits for a key press before recalling the instrument stored in register 10
- zooms the spectrum display and again displays a message waiting for a key press before resetting the instrument
Example:

```c
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include "visa.h"

void main ()
{
    /*program variables*/
    ViSession defaultRM, viVSA;
    ViStatus viStatus = 0;
    long lComplete = 0;
    /*open session to GPIB device at address 18 */
    viStatus=viOpenDefaultRM (&defaultRM);
    viStatus=viOpen (defaultRM, "GPIB0::18::INSTR",
                                VI_NULL, VI_NULL, &viVSA);
    /*check opening session sucess*/
    if(viStatus)
    {
        printf("Could not open a session to GPIB device at
                address 18!\n");
        exit(0);
    }
    /*reset the instrument */
    viPrintf(viVSA, "*RST\n");
    /*set the input port to the internal 50Mhz reference
     *source*/
    viPrintf(viVSA, "SENS:FEED AREF\n");
    /*zoom the spectrum display*/
    viPrintf(viVSA, "DISP:FORM:ZOOM1\n");
    /*tune the instrument to 50MHZ*/
    viPrintf(viVSA, "SENS:FREQ:CENT 50E6\n");
    /*change the resolution bandwidth*/
    viPrintf(viVSA, "SENS:SPEC:BAND:RES 100E3\n");
    /*change the Y Axis Scale/Div*/
    viPrintf(viVSA, "DISP:SPEC:WIND:TRAC:Y:SCAL:PDIV 5\n");
    /*Change the display refernece level*/
    viPrintf(viVSA, "DISP:SPEC:WIND:TRAC:Y:SCAL:RLEV -15\n");
    /*trigger the instrument*/
    viPrintf(viVSA, "INIT:IMM;*OPC?\n");
    /*poll the operation complete query*/
    while (!lComplete)
    {
        viScanf (viVSA,"%d", &lComplete);
    }
    /*save this state in register 10.

Chapter 3  137
```
!!!Carefull this will overwrite register 10/*
viPrintf(viVSA, "*SAV 10\n");

/*display message*/
printf("E4406A Programming example showing *SAV,*RCL
SCPI commands\n");
printf("used to save instrument state\n\n---------
--------");
printf("The instrument state has been saved to an
internal register\n");
printf("Please observe the display and notice the signal
shape\n");
printf("Then press any key to reset the
instrument\n\n----------");

/*wait for any key to be pressed*/
getch();

/*reset the instrument */
viPrintf(viVSA, "*RST\n");

/*set the again the input port to the internal 50Mhz
reference source*/
viPrintf(viVSA, "INP:PORT AREF\n");

/*display message*/
printf("The instrument was reset to the factory
default setting\n");
printf("Notice the absceence of the signal on the
display\n");
printf("Press any key to recall the saved
state\n\n----------");

/*wait for any key to be pressed*/
getch();

/*recall the state saved in register 10*/
viPrintf(viVSA, "*RCL 10\n");

/*zoom the spectrum display*/
viPrintf(viVSA, "DISP:FORM:ZOOM1\n");

/*display message*/
printf("Notice the previous saved instrument
settings were restored\n");
printf("Press any key to terminate the
program\n\n----------\n");

/*wait for any key to be pressed*/
getch();

/*reset the instrument */
viPrintf(viVSA, "*RST\n");

/* close session */
viClose (viVSA);
viClose (defaultRM);
Performing Alignments and Getting Pass/Fail Results

This C programming example (HPE4406Align.c):

- uses the VISA library for input/output, opens a session to a GP-IB device at address 18 and presets the instrument
- increases the instrument timeout to one minute (60 sec) to allow time for the auto-alignment to run
- runs the auto-alignment procedure
- queries the auto-alignment results and outputs the success/failure information

Example:

```c
#include <stdio.h>
#include <stdlib.h>
#include "visa.h"

void main ()
{
    /*program variables*/
    ViSession defaultRM, viVSA;
    ViStatus viStatus = 0;
    long lCalStatus = 0;

    /*open session to GPIB device at address 18 */
    viStatus=viOpenDefaultRM (&defaultRM);
    viStatus=viOpen (defaultRM, "GPIB0::18::INSTR",
                        VI_NULL, VI_NULL, &viVSA);

    /*check opening session sucess*/
    if (viStatus)
        {
            printf("Could not open a session to GPIB device at address 18!\n");
            exit(0);
        }

    /*increase timeout to 60 sec*/
    viSetAttribute(viVSA, VI_ATTR_TMO_VALUE, 60000);

    /*reset the instrument*/
    viPrintf(viVSA, "*RST\n");

    /*print message */
    printf("The auto-alignment is in progress...\n Please wait...\n\n");

    /*auto-align the instrument*/
    viPrintf(viVSA, "CAL?\n");
}
```
/*check for alignment success*/
viScanf (viVSA, "%d", &lCalStatus);

/*alignment succeeds if query result is zero(0)*/
if (!lCalStatus)

 /*print success message to standard output*/
 printf("The instrument auto-alignement was successful!\n\n");

else

 /*print failure message to standard output*/
 printf("The instrument auto-alignement was not successful!\n\n");

/* reset timeout to 3 sec*/
viSetAttribute(viVSA, VI_ATTR_TMO_VALUE, 3000);

/* Close session */
viClose (viVSA);
viClose (defaultRM);
Using C Programming Over Socket LAN

This is a C programming example (socketio.c) that demonstrates simple socket programming. It is written in C, and compiles in the HP-UX UNIX environment, or the WIN32 environment. It is portable to other UNIX environments with only minor changes.

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only difference is the openSocket() routine, which uses a few network library routines to create the TCP/IP network connection. Once this connection is created, the standard fread() and fwrite() routines are used for network communication.

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on sockets.

The program reads the analyzer's host name from the command line, followed by the SCPI command. It then opens a socket to the analyzer, using port 5025, and sends the command. If the command appears to be a query, the program queries the analyzer for a response, and prints the response.

This example program can also be used as a utility to talk to your analyzer from the command prompt on your UNIX workstation or Windows 95 PC, or from within a script.

This program is also available on your documentation CD ROM.

Example:

/* ***/
/* $Header: socketio.c,v 1.5 96/10/04 20:29:32 roger Exp $ */
/* $Revision: 1.5 $ */
/* $Date: 96/10/04 20:29:32 $ */
/* */
/* $Contributor: LSID, MID $ */
/* */
/* $Description: Functions to talk to an Agilent E4406A transmitter */
/* tester via TCP/IP. Uses command-line arguments. */
/* */
/* A TCP/IP connection to port 5025 is established and */
/* the resultant file descriptor is used to "talk" to the */
/* instrument using regular socket I/O mechanisms. $ */
/* */
/* */
/* E4406A Examples: */
/* */
/* Query the center frequency: */
/* lanio 15.4.43.5 'sens:freq:cent?' */
* Query X and Y values of marker 1 and marker 2 (assumes they are on):
 * lanio my4406 'calc:spec:mark1:x?;y?; ;calc:spec:mark2:x?;y?'
 *
* Check for errors (gets one error):
 * lanio my4406 'syst:err?'
 *
* Send a list of commands from a file, and number them:
 * cat scpi_cmds | lanio -n my4406

**
*
* This program compiles and runs under
* - HP-UX 10.20 (UNIX), using HP cc or gcc:
* + cc -Aa -O -o lanio lanio.c
* + gcc -Wall -O -o lanio lanio.c
* - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition
* - Windows NT 3.51, using Microsoft Visual C++ 4.0
* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Compile both lanio.c and getopt.c
* + Consider re-naming the files to lanio.cpp and getopt.cpp
*
* Considerations:
* - On UNIX systems, file I/O can be used on network sockets.
* This makes programming very convenient, since routines like
* getc(), fgets(), fscanf() and fprintf() can be used. These
* routines typically use the lower level read() and write() calls.
* - In the Windows environment, file operations such as read(), write(),
* and close() cannot be assumed to work correctly when applied to
* sockets. Instead, the functions send() and recv() MUST be used.
*
/* Support both Win32 and HP-UX UNIX environment */
#ifdef _WIN32 /* Visual C++ 4.0 will define this */
 # define WINSOCK
#else
#endif

#ifndef WINSOCK
 #ifndef _HPUX_SOURCE
 # define _HPUX_SOURCE
 #endif
#endif

#include <stdio.h> /* for fprintf and NULL */
#include <string.h> /* for memcpy and memset */
#include <stdlib.h> /* for malloc(), atol() */
#include <errno.h> /* for strerror */

#ifdef WINSOCK
 #include <windows.h>
#endif

#include <windows.h>
ifndef _WINSOCKAPI_
include <winsock.h> // BSD-style socket functions
endif

#else /* UNIX with BSD sockets */

#include <sys/socket.h> /* for connect and socket*/
#include <netinet/in.h> /* for sockaddr_in */
#include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)
define INVALID_SOCKET (-1)

typedef int SOCKET;
#endif /* WINSOCK */

#endif /* WINSOCK */

/* Declared in getopt.c. See example programs disk. */
define COMMAND_ERROR (1)
define NO_CMD_ERROR (0)

define SCPI_PORT 5025
define INPUT_BUF_SIZE (64*1024)

/***/
/* Display usage
***/
static void usage(char *basename)
{
 fprintf(stderr,"Usage: %s [-nqu] <hostname> [<command>]<stdin]\n", basename);
 fprintf(stderr," %s [-nqu] <hostname> < stdin\n", basename);
 fprintf(stderr," -n, number output lines\n");
 fprintf(stderr," -q, quiet; do NOT echo lines\n");
 fprintf(stderr," -e, show messages in error queue when done\n");
}

#endif WINSOCK

int init_winsock(void)
{
 WORD wVersionRequested;
 WSADATA wsaData;
 int err;
wVersionRequested = MAKEWORD(1, 1);
wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0) {
 /* Tell the user that we couldn't find a useable */
 /* winsock.dll. */
 fprintf(stderr, "Cannot initialize Winsock 1.1.\n");
 return -1;
}
return 0;

int close_winsock(void)
{
 WSACleanup();
 return 0;
}
#endif /* WINSOCK */

/**
* $Function: openSocket$
* $Description: open a TCP/IP socket connection to the instrument $
* $Parameters:
* (const char *) hostname Network name of instrument.
* (int) portNumber The TCP/IP port to talk to.
* Use 5025 for the SCPI port.
* $Return: (int) A file descriptor similar to open(1).$
* $Errors: returns -1 if anything goes wrong $
* **/
SOCKET openSocket(const char *hostname, int portNumber)
{
 struct hostent *hostPtr;
 struct sockaddr_in peeraddr_in;
 SOCKET s;

 memset(&peeraddr_in, 0, sizeof(struct sockaddr_in));

 /**/
 /* map the desired host name to internal form. */
 /**/
 hostPtr = gethostbyname(hostname);

 /*************/
if (hostPtr == NULL)
{
 fprintf(stderr,"unable to resolve hostname '%s'
', hostname);
 return INVALID_SOCKET;
}

/*******************/
/* create a socket */
/*******************/
s = socket(AF_INET, SOCK_STREAM, 0);
if (s == INVALID_SOCKET)
{
 fprintf(stderr,"unable to create socket to '%s': %s
',
 hostname, strerror(errno));
 return INVALID_SOCKET;
}

memcpy(&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length);
peeraddr_in.sin_family = AF_INET;
peeraddr_in.sin_port = htons((unsigned short)portNumber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,
 sizeof(struct sockaddr_in)) == SOCKET_ERROR)
{
 fprintf(stderr,"unable to create socket to '%s': %s
',
 hostname, strerror(errno));
 return INVALID_SOCKET;
}

return s;

/***/
/* $Function: commandInstrument$ */
/* $Description: send a SCPI command to the instrument.$ */
/* $Parameters: $ */
/* (FILE *) file pointer associated with TCP/IP socket. */
/* (const char *command) . . . SCPI command string. */
/* $Return: (char *) a pointer to the result string. */
/* $Errors: returns 0 if send fails $ */
/***/
int commandInstrument(SOCKET sock,
 const char *command)
{
 int count;
/* fprintf(stderr, "Sending "s\".\n", command); */
if (strchr(command, '\n') == NULL) {
 fprintf(stderr, "Warning: missing newline on command %s.\n", command);
}

count = send(sock, command, strlen(command), 0);
if (count == SOCKET_ERROR) {
 return COMMAND_ERROR;
}

return NO_CMD_ERROR;

/***/
/* recv_line(): similar to fgets(), but uses recv() */
***/
char * recv_line(SOCKET sock, char * result, int maxLength)
{
 #ifdef WINSOCK
 int cur_length = 0;
 int count;
 char * ptr = result;
 int err = 1;

 while (cur_length < maxLength) {
 /* Get a byte into ptr */
 count = recv(sock, ptr, 1, 0);

 /* If no chars to read, stop. */
 if (count < 1) {
 break;
 }
 cur_length += count;

 /* If we hit a newline, stop. */
 if (*ptr == '\n') {
 ptr++;
 err = 0;
 break;
 }
 ptr++;
 }
 *ptr = '\0';

 if (err) {
 return NULL;
 } else {
 return result;
 }
 #else

 #endif
}
/****************************** Simpler UNIX version, using file I/O. recv() version works too.
* This demonstrates how to use file I/O on sockets, in UNIX.
**/
FILE * instFile;
instFile = fdopen(sock, "r+");
if (instFile == NULL) {
 fprintf(stderr, "Unable to create FILE * structure : %s\n",
 strerror(errno));
 exit(2);
}
return fgets(result, maxLength, instFile);

/***
* Function: queryInstrument
* Description: send a SCPI command to the instrument, return a response.
* Parameters:
* (FILE *) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.
* (char *result) where to put the result.
* (size_t) maxLength . . . maximum size of result array in bytes.
*
* Return: (long) The number of bytes in result buffer.
*
* Errors: returns 0 if anything goes wrong.
***/
long queryInstrument(SOCKET sock,
 const char *command, char *result, size_t maxLength)
{
 long ch;
 char tmp_buf[8];
 long resultBytes = 0;
 int command_err;
 int count;

 /******************************
* Send command to analyzer
**/
 command_err = commandInstrument(sock, command);
 if (command_err) return COMMAND_ERROR;

 /******************************
* Read response from analyzer
**/
count = recv(sock, tmp_buf, 1, 0); /* read 1 char */
ch = tmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch == '\n'))
{
 result = '\0'; / null terminate result for ascii */
 return 0;
}

/* use a do-while so we can break out */
do
{
 if (ch == '#')
 {
 /* binary data encountered - figure out what it is */
 long numDigits;
 long numBytes = 0;
 /* char length[10]; */

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */
 ch = tmp_buf[0];
 if ((count < 1) || (ch == EOF)) break; /* End of file */

 if (ch < '0' || ch > '9') break; /* unexpected char */
 numDigits = ch - '0';

 if (numDigits)
 {
 /* read numDigits bytes into result string. */
 count = recv(sock, result, (int)numDigits, 0);
 result[count] = 0; /* null terminate */
 numBytes = atol(result);
 }

 if (numBytes)
 {
 resultBytes = 0;
 /* Loop until we get all the bytes we requested. */
 /* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */
 do {
 int rcount;
 rcount = recv(sock, result, (int)numBytes, 0);
 resultBytes += rcount;
 result += rcount; /* Advance pointer */
 } while (resultBytes < numBytes);

 /* For LAN dumps, there is always an extra trailing newline
 * Since there is no EOI line. For ASCII dumps this is
 * great but for binary dumps, it is not needed.
 **/
 if (resultBytes == numBytes)
Programming Examples
Using C Programming Over Socket LAN

```c
{    char junk;
    count = recv(sock, &junk, 1, 0);
}
else
{
     /* indefinite block ... dump til we read only a line feed */
     do
     {
         if (recv_line(sock, result, maxLength) == NULL) break;
         if (strlen(result)==1 && *result == '\n') break;
         resultBytes += strlen(result);
         result += strlen(result);
     } while (1);
}
else
{
     /* ASCII response (not a binary block) */
     *result = (char)ch;
     if (recv_line(sock, result+1, maxLength-1) == NULL) return 0;

     /* REMOVE trailing newline, if present. And terminate string. */
     resultBytes = strlen(result);
     if (result[resultBytes-1] == '\n') resultBytes -= 1;
     result[resultBytes] = '\0';
 }
} while (0);

return resultBytes;

/*******************************************************************************
*  $Function: showErrors$
*  $Description: Query the SCPI error queue, until empty. Print results. $ *
*  $Return: (void)$ *
*******************************************************************************/
void showErrors(SOCKET sock)
{
    const char * command = "SYST:ERR?\n";
    char result_str[256];

    do {
        queryInstrument(sock, command, result_str, sizeof(result_str)-1);
        
```
Typical result_str:
-221,"Settings conflict; Frequency span reduced."
+0,"No error"
Don’t bother decoding.

if (strncmp(result_str, "+0," 3) == 0) {
 /* Matched +0,"No error" */
 break;
}
puts(result_str);
}
}

unsigned char isQuery(char* cmd)
{
 unsigned char q = 0;
 char *query;

 if ((query = strchr(cmd,'?')) != NULL)
 {
 /* Make sure we don't have a marker value query, or
 * any command with a '?' followed by a ')' character.
 * This kind of command is not a query from our point of view.
 * The analyzer does the query internally, and uses the result.
 */
 while (*query) /* bump past '?' */
 if (*query == ' ') /* attempt to ignore white spc */
 query++;
 else break;
 } else break;

 if (*query != ')')
 {
 /* if the command has a '?' in it, use queryInstrument. */
 /* otherwise, simply send the command. */
 /* Actually, we must a little more specific so that */
 /* marker value queries are treated as commands. */
 /* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */

 if ((query = strchr(cmd,'?')) != NULL)
 {
 /* Make sure we don't have a marker value query, or
 * any command with a '?' followed by a ')' character.
 * This kind of command is not a query from our point of view.
 * The analyzer does the query internally, and uses the result.
 */
 while (*query)
 {
 if (*query == ' ') /* attempt to ignore white spc */
 query++;
 else break;
 }
 }
 }


```c
{
    q = 1;
}
return q;
}

/****************************************************************************
*
> $Function: main$
*
* $Description: Read command line arguments, and talk to analyzer. Send query results to stdout. $ *
* $Return: (int) ... non-zero if an error occurs *
****************************************************************************/
int main(int argc, char *argv[])
{
    SOCKET instSock;
    char *charBuf = (char *) malloc(INPUT_BUF_SIZE);
    char *basename;
    int chr;
    char command[1024];
    char *destination;
    unsigned char quiet = 0;
    unsigned char show_errs = 0;
    int number = 0;

    basename = strrchr(argv[0], '/');
    if (basename != NULL)
        basename++;
    else
        basename = argv[0];

    while ( ( chr = getopt(argc,argv,"qune")) != EOF )
        switch (chr)
        {
            case 'q': quiet = 1; break;
            case 'n': number = 1; break;
            case 'e': show_errs = 1; break;
            case 'u':
                case '?': usage(basename); exit(1); break;
        }

    /* now look for hostname and optional <command> */
    if (optind < argc)
    {
        destination = argv[optind++];
        strcpy(command, "");
    }
```
if (optind < argc) {
 while (optind < argc) {
 /* <hostname> <command> provided; only one command string */
 strcat(command, argv[optind++]);
 if (optind < argc) {
 strcat(command, " ");
 } else {
 strcat(command, "\n");
 }
 }
} else {
 /* Only <hostname> provided; input on <stdin> */
 strcpy(command, ":");

 if (optind > argc) {
 usage(basename);
 exit(1);
 }
} else {
 /* no hostname! */
 usage(basename);
 exit(1);
}

/*****************************/
/* open a socket connection to the instrument */
/*****************************/
#ifndef WINSOCK
 if (init_winsock() != 0) {
 exit(1);
 }
#endif /* WINSOCK */

instSock = openSocket(destination, SCPI_PORT);
if (instSock == INVALID_SOCKET) {
 fprintf(stderr, "Unable to open socket.\n");
 return 1;
}
/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(command) > 0) {
 /******************************/
 /* if the command has a '?' in it, use queryInstrument. */
 /* otherwise, simply send the command. */
 /******************************/
if (isQuery(command))
{
 long bufBytes;
 bufBytes = queryInstrument(instSock, command,
 charBuf, INPUT_BUF_SIZE);
 if (!quiet)
 {
 fwrite(charBuf, bufBytes, 1, stdout);
 fwrite("\n", 1, 1, stdout);
 fflush(stdout);
 }
 else
 {
 commandInstrument(instSock, command);
 }
}
else
{
 /* read a line from stdin */
 while (gets(charBuf) != NULL)
 {
 if (!strlen(charBuf))
 continue;
 if (*charBuf == '#' || *charBuf == '!')
 continue;
 strcat(charBuf, "\n");
 if (!quiet)
 {
 if (number)
 {
 char num[10];
 sprintf(num,"%d: ",number);
 fwrite(num, strlen(num), 1, stdout);
 }
 fwrite(charBuf, strlen(charBuf), 1, stdout);
 fflush(stdout);
 }
 if (isQuery(charBuf))
 {
 long bufBytes;
 /* Put the query response into the same buffer as the
 * command string appended after the null terminator.
 */
 bufBytes = queryInstrument(instSock, charBuf,
 charBuf + strlen(charBuf) + 1,
 INPUT_BUF_SIZE -strlen(charBuf));
 if (!quiet)
Programming Examples

Using C Programming Over Socket LAN

{
 fwrite(" ", 2, 1, stdout);
 fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
 fwrite("\n", 1, 1, stdout);
 fflush(stdout);
}
else
{
 commandInstrument(instSock, charBuf);
}
if (number) number++;
}

if (show_errs) {
 showErrors(instSock);
}

#ifdef WINSOCK
 closesocket(instSock);
 close_winsock();
#else
 close(instSock);
#endif /* WINSOCK */

 return 0;
}

/* End of lanio.c */
Using C Programming Over Socket LAN (Windows NT)

This is a C programming example (getopt.c) that demonstrates simple socket programming. It is written in C, and compiles in the Windows NT environment.

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on sockets.

The program reads the analyzer’s host name from the command line, followed by the SCPI command. It then opens a socket to the analyzer, using port 5025, and sends the command. If the command appears to be a query, the program queries the analyzer for a response, and prints the response.

This example program can also be used as a utility to talk to your analyzer from the command prompt on your Windows NT PC, or from within a script.
Example:

/***/
getopt(3C) getopt(3C)

#include <stdio.h> /* For NULL, EOF */
#include <string.h> /* For strchr() */
char *optarg; /* Global argument pointer. */
int optind = 0; /* Global argv index. */
static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)
{
 char c;
 char *posn;
 optarg = NULL;

 if (scan == NULL || *scan == '\0') {
 if (optind == 0)
 optind++;

 getopt(3C) getopt(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;
extern int optind, opterr, optopt;

DESCRIPTION
getopt returns the next option letter in argv (starting from argv[1])
that matches a letter in optstring. optstring is a string of
recognized option letters; if a letter is followed by a colon, the
option is expected to have an argument that may or may not be
separated from it by white space. optarg is set to point to the start
of the option argument on return from getopt.

g getopt places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before
the first call to the function getopt.

When all options have been processed (i.e., up to the first non-option
argument), getopt returns EOF. The special option -- can be used to
delimit the end of the options; EOF is returned, and -- is skipped.

***/

 int getopt(int argc, char * const argv[], const char *optstring)

 {
 char c;
 char *posn;
 optarg = NULL;

 if (scan == NULL || *scan == '\0') {
 if (optind == 0)
 optind++;

#include <stdio.h> /* For NULL, EOF */
#include <string.h> /* For strchr() */
char *optarg; /* Global argument pointer. */
int optind = 0; /* Global argv index. */
static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)
{
 char c;
 char *posn;
 optarg = NULL;

 if (scan == NULL || *scan == '\0') {
 if (optind == 0)
 optind++;
if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')
 return(EOF);
if (strcmp(argv[optind], "--")==0) {
 optind++;
 return(EOF);
}

scan = argv[optind]+1;
optind++;}

 c = *scan++;
posn = strchr(optstring, c); /* DDP */

if (posn == NULL || c == ':') {
 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
 return('?');
}

posn++;
if (*posn == ':') {
 if (*scan != '\0') {
 optarg = scan;
 scan = NULL;
 } else {
 optarg = argv[optind];
 optind++;
 }
}

return(c);
Using Java Programming Over Socket LAN

This is a Java programming example (ScpiDemo.java) that demonstrates simple socket programming with Java. It is written in Java programming language, and will compile with Java compilers versions 1.0 and above.

Example:

```java
import java.awt.*;
import java.io.*;
import java.net.*;
import java.applet.*;

// This is a SCPI Demo to demonstrate how one can communicate with the
// E4406A VSA with a JAVA capable browser. This is the
// Main class for the SCPI Demo. This applet will need Socks.class to
// support the I/O commands and a ScpiDemo.html for a browser to load
// the applet.
// To use this applet, either compile this applet with a Java compiler
// or use the existing compiled classes. copy ScpiDemo.class,
// Socks.class and ScpiDemo.html to a floppy. Insert the floppy into
// your instrument. Load up a browser on your computer and do the
// following:
// 1. Load this URL in your browser:
//     ftp://<Your instrument's IP address or name>/int/ScpiDemo.html
// 2. There should be two text windows show up in the browser:
//     The top one is the SCPI response text area for any response
//     coming back from the instrument. The bottom one is for you
//     to enter a SCPI command. Type in a SCPI command and hit enter.
//     If the command expects a response, it will show up in the top
//     window.

public class ScpiDemo extends java.applet.Applet implements Runnable {
    Thread       responseThread;
    Socks        sck;
    URL          appletBase;
    TextField    scpiCommand = new TextField();
    TextArea     scpiResponse = new TextArea(10, 60);
    Panel        southPanel = new Panel();
    Panel        p;

    // Initialize the applets
    public void init() {
        SetupSockets();
        SetupPanels();

        // Set up font type for both panels
        Font font = new Font("TimesRoman", Font.BOLD,14);
        scpiResponse.setFont(font);
    }

    // Setup for the applet
    private void SetupSockets() {
        responseThread = new Thread(new Runnable() {
            public void run() {
                // Implement the run method for the response thread
            }
        });
    }

    // Setup for the applet
    private void SetupPanels() {
        // Implement the setup for the panels
    }
}
```
scpiCommand.setFont(font);
scpiResponse.appendText("SCPI Demo Program: Response messages\n");
scpiResponse.appendText("--\n");

// This routine is called whenever the applet is actived
public void start() {
 // Open the sockets if not already opened
 sck.OpenSockets();
 // Start a response thread
 StartResponseThread(true);
}

// This routine is called whenever the applet is out of scope
// i.e. minize browser
public void stop() {
 // Close all local sockets
 sck.CloseSockets();
 // Kill the response thread
 StartResponseThread(false);
}

// Action for sending out scpi commands
// This routine is called whenever a command is received from the
// SCPI command panel.
public boolean action(Event evt, Object what) {
 // If this is the correct target
 if (evt.target == scpiCommand) {
 // Get the scpi command
 String str = scpiCommand.getText();
 // Send it out to the Scpi socket
 sck.ScpiWriteLine(str);
 String tempStr = str.toLowerCase();
 // If command str is "syst:err?", don't need to send another one.
 if ((tempStr.indexOf("syst") == -1) ||
 (tempStr.indexOf("err") == -1)) {
 // Query for any error
 sck.ScpiWriteLine("syst:err?");
 }
 return true;
 }
 return false;
}

// Start/Stop a Response thread to display the response strings
private void StartResponseThread(boolean start) {
 if (start) {
 // Start a response thread
 responseThread = new Thread(this);
 responseThread.start();
 } else {
 // Kill the response thread
 }
}
responseThread = null;
}

// Response thread running
public void run() {
 String str = ""; // Initialize str to null

 // Clear the error queue before starting the thread
 // in case if there's any error messages from the previous actions
 while (str.indexOf("No error") == -1) {
 sck.ScpiWriteLine("syst:err?");
 str = sck.ScpiReadLine();
 }

 // Start receiving response or error messages
 while(true) {
 str = sck.ScpiReadLine();
 if (str != null) {
 // If response messages is "No error", do no display it,
 // replace it with "OK" instead.
 if (str.equals("+0,"No error\")) {
 str = "OK";
 }
 // Display any response messages in the Response panel
 scpiResponse.appendText(str+"\n");
 }
 }
}

// Set up and open the SCPI sockets
private void SetupSockets() {
 // Get server url
 appletBase = (URL)getCodeBase();
 // Open the sockets
 sck = new Socks(appletBase);
}

// Set up the SCPI command and response panels
private void SetupPanels() {
 // Set up SCPI command panel
 southPanel.setLayout(new GridLayout(1, 1));
 p = new Panel();
 p.setLayout(new BorderLayout());
 p.add("West", new Label("SCPI command:"));
 p.add("Center", scpiCommand);
 southPanel.add(p);

 // Set up the Response panel
 setLayout(new BorderLayout(2,2));
 add("Center", scpiResponse);
 add("South", southPanel);
}
Socks class is responsible for open/close/read/write operations
from the predefined socket ports. For this example program,
the only port used is 5025 for the SCPI port.
class Socks extends java.applet.Applet {
 // Socket Info
 // To add a new socket, add a constant here, change MAX_NUM_OF_SOCKETS
 // then, edit the constructor for the new socket.
 public final int SCPI=0;
 private final int MAX_NUM_OF_SOCKETS=1;

 // Port number
 // 5025 is the dedicated port number for E4406A Scpi Port
 private final int SCPI_PORT = 5025;

 // Socket info
 private URL appletBase;
 private Socket[] sock = new Socket[MAX_NUM_OF_SOCKETS];
 private DataInputStream[] sockIn = new DataInputStream[MAX_NUM_OF_SOCKETS];
 private PrintStream[] sockOut = new PrintStream[MAX_NUM_OF_SOCKETS];
 private int[] port = new int[MAX_NUM_OF_SOCKETS];
 private boolean[] sockOpen = new boolean[MAX_NUM_OF_SOCKETS];

 // Constructor
 Socks(URL appletB) {
 appletBase = appletB;

 // Set up for port array.
 port[SCPI] = SCPI_PORT;

 // Initialize the sock array
 for (int i = 0; i < MAX_NUM_OF_SOCKETS; i++) {
 sock[i] = null;
 sockIn[i] = null;
 sockOut[i] = null;
 sockOpen[i] = false;
 }
 }

 //***** Sockets open/close routines
 // Open the socket(s) if not already opened
 public void OpenSockets() {
 try {
 // Open each socket if possible
 for (int i = 0; i < MAX_NUM_OF_SOCKETS; i++) {
 if (!sockOpen[i]) {
 sock[i] = new Socket(appletBase.getHost(),port[i]);
 sockIn[i] = new DataInputStream(sock[i].getInputStream());
 }
 }
 } catch (Exception e) {
 // Handle exceptions
 }
 }
}
sockOut[i] = new PrintStream(sock[i].getOutputStream());
if ((sock[i] != null) && (sockIn[i] != null) &&
 (sockOut[i] != null)) {
 sockOpen[i] = true;
}
}
}
} catch (IOException e) {
 System.out.println("Sock, Open Error "+e.getMessage());
}
}

// Close the socket(s) if opened
public void CloseSocket(int s)
{
 try {
 if (sockOpen[s] == true) {
 // write blank line to exit servers elegantly
 sockOut[s].println();
 sockOut[s].flush();
 sockIn[s].close();
 sockOut[s].close();
 sock[s].close();
 sockOpen[s] = false;
 }
 } catch (IOException e) {
 System.out.println("Sock, Close Error "+e.getMessage());
 }
}

// Close all sockets
public void CloseSockets()
{
 for (int i=0; i < MAX_NUM_OF_SOCKETS; i++) {
 CloseSocket(i);
 }
}

// Return the status of the socket, open or close.
public boolean SockOpen(int s)
{
 return sockOpen[s];
}

/****************** Socket I/O routines.

///*** I/O routines for SCPI socket

// Write an ASCII string with carriage return to SCPI socket
public void ScpiWriteLine(String command)
{
 if (SockOpen(SCPI)) {
 sockOut[SCPI].println(command);
 sockOut[SCPI].flush();
 }
}

// Read an ASCII string, terminated with carriage return from SCPI socket
public String ScpiReadLine()
{
 try {
 if (SockOpen(SCPI)) {
 return sockIn[SCPI].readLine();
 }
 }
 catch (IOException e) {
 System.out.println("Scpi Read Line Error "+e.getMessage());
 }
 return null;
}

// Read a byte from SCPI socket
public byte ScpiReadByte()
{
 try {
 if (SockOpen(SCPI)) {
 return sockIn[SCPI].readByte();
 }
 }
 catch (IOException e) {
 System.out.println("Scpi Read Byte Error "+e.getMessage());
 }
 return 0;
}
4 Programming Command Cross References
Functional Sort of SCPI Commands

<table>
<thead>
<tr>
<th>Function</th>
<th>SCPI Command Subsystems</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Averaging</td>
<td><code>SENSe:<measurement>:AVERAGE</code></td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td><code>SENSe:<measurement>:BWIDth</code></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td><code>CALibration</code></td>
<td></td>
</tr>
<tr>
<td>Channel: setting</td>
<td><code>SENSe:CHANnel</code></td>
<td></td>
</tr>
<tr>
<td>Commands: listing of all</td>
<td><code>SYSTem:HELP:HEADers</code></td>
<td>Lists only the commands in the current selected mode.</td>
</tr>
<tr>
<td>Data format</td>
<td><code>FORMat:DATA</code></td>
<td>Data types include ASCII and real numbers</td>
</tr>
<tr>
<td>Display: Views, Scaling</td>
<td><code>DISPLAY:ENABLE</code></td>
<td>Different display data views are available for any individual measurement.</td>
</tr>
<tr>
<td>Frequency</td>
<td><code>SENSe:FREQuency</code></td>
<td></td>
</tr>
<tr>
<td>File type</td>
<td><code>DISPLAY:IMAGe</code></td>
<td>Image file types include .GIF and .WMF</td>
</tr>
<tr>
<td>Function</td>
<td>SCPI Command Subsystems</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Input/Output/Configuration | INPut:IMPedance
SYSTem:CONFigure
SYSTem:COMMunicate | |
| Markers | CALCulate:<measurement>::MARKer: | Not all measurements:
1. have markers available
2. have all the documented markers, or all the marker functions. |
| Measurements: control | ABORt
INITiate:IMMediate
INITiate:CONTinuous
INITiate:RESTart | |
| Measurements: select mode | INSTrument:SELect | Modes include Basic, Service, GSM, and CDMA. |
| Measurements: mode setup | SENSe:CHANnel:TSCode
SENSe:CORRection:BTS
SENSe:CORRection:BS
SENSe:FREQuency:CENTer
SENSe:POWer[:RF]
SENSe:RADio:CARRier
SENSe:RADio:STANdard
SENSe:SYNC | Mode setup parameters are used for all the measurements available within that mode.
Mode setup parameters persist if you go to a different mode and then return to a previous mode. |
| Measurements: select measurement | CONFigure:<measurement>
FETCH:<measurement>
MEASure:<measurement>
READ:<measurement> | Information about the types of data available for a measurement is in MEASure description. |
| Measurements: measurement setup | SENSe:AVERage:
SENSe:BANDwidth:
SENSe:FREQuency:
SENSe:SWEep:
SENSe:TRIGger:
TRIGger: | |
<table>
<thead>
<tr>
<th>Function</th>
<th>SCPI Command Subsystems</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preset</td>
<td>SYSTem:PRESet:</td>
<td></td>
</tr>
<tr>
<td>Printing</td>
<td>HCOPY:</td>
<td>SYSTem:COMMunicate</td>
</tr>
<tr>
<td>Reference level</td>
<td>DISPlay:WINDow:TRACe</td>
<td></td>
</tr>
<tr>
<td>Save/Recall: display images</td>
<td>DISPlay:IMAGe:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCOPY:IMMediate:</td>
<td></td>
</tr>
<tr>
<td>Save/Recall: instrument states</td>
<td>*SAV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*RCL</td>
<td></td>
</tr>
<tr>
<td>Save/Recall: trace data</td>
<td>MEASure:<measurement>[n]?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FETCH:<measurement>[n]?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FORMat:DATA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FORMat:BORDer</td>
<td>Descriptions of the traces available for each measurement are in the MEASure subsystem.</td>
</tr>
<tr>
<td>Triggering</td>
<td>TRIGger:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SENSE:<measurement>:</td>
<td></td>
</tr>
<tr>
<td>Standards, selection</td>
<td>SENSE:RADio</td>
<td></td>
</tr>
</tbody>
</table>
5 Language Reference

This chapter includes the commands that are common to all of the instrument modes. It also contains the commands unique to the basic and service modes. For commands specific to a measurement mode, like the GSM personality, look in the GSM Programming Commands chapter. Only commands in the current selected mode can be executed.
SCPI Command Subsystems

“Common IEEE Commands” on page 171
“ABORt Subsystem” on page 177
“CALCulate Subsystem” on page 178
“CALibration Subsystem” on page 198
“CONFigure Subsystem” on page 210
“DISPlay Subsystem” on page 211
“FETCh Subsystem” on page 219
“FORMat Subsystem” on page 220
“HCOPy Subsystem” on page 222
“INITiate Subsystem” on page 228
“INPut Subsystem” on page 230
“INSTRument Subsystem” on page 231
“MEASure Group of Commands” on page 233
“MEMory Subsystem” on page 257
“MMEMory Subsystem” on page 258
“READ Subsystem” on page 261
“SENSe Subsystem” on page 262
“SERVice Subsystem” on page 347
“STATus Subsystem” on page 349
“SYSTem Subsystem” on page 363
“TRIGger Subsystem” on page 370
Common IEEE Commands

Calibration Query

*CAL?

Performs a full alignment and returns a number indicating the success of the alignment. A zero is returned if the alignment is successful. A one is returned if any part of the alignment fails. The equivalent SCPI command is CALibrate[:ALL]?

Front Panel Access: System, Alignments, Align All Now

Clear Status

*CLS

Clears the status byte. It does this by emptying the error queue and clearing all bits in all of the event registers. The status byte registers summarize the states of the other registers. It is also responsible for generating service requests.

Remarks: See *STB?

Standard Event Status Enable

*ESE <number>

*ESE?

Selects the desired bits from the standard event status enable register. This register monitors I/O errors and synchronization conditions such as operation complete, request control, query error, device dependent error, execution error, command error and power on. The selected bits are OR’d to become a summary bit (bit 5) in the status byte register which can be queried.

The query returns the state of the standard event status enable register.

Range: Integer, 0 to 255
Standard Event Status Register Query

*ESR?

Queries and clears the standard event status event register. (This is a destructive read.)

Range: Integer, 0 to 255

Identification Query

*IDN?

Returns an instrument identification information string to GPIB. The string will contain the model number, serial number and firmware revision.

The response is organized into four fields separated by commas. The field definitions are as follows:

- Manufacturer
- Model
- Serial number
- Firmware version

For example:

Hewlett-Packard,E4406A,US00000040,A.01.42

Remarks: An @ in the firmware revision information indicates that it is proto firmware.

Front Panel Access: System, Show System
Instrument State Query

LRN?

Returns current instrument state data in a block of defined length. The `<state data>` is in a machine readable format only. Sending the query returns the following format:

\[\text{SYST:SET} \ #NMMMM<state\ data> \]

The following example is a response to *LRN?* The actual sizes will vary depending on the instrument state data size.

Example: \[:\text{SYST:SET} \ #42016<state\ data> \]

Where: 4 (the N in the preceding query response example) represents the number of digits to follow

Where: 2016 (the MMMM in the preceding query response example) represents the number of bytes that follow in the `<state data>`.

The state can be changed by sending this block of data to the instrument after removing the size information:

\[:\text{SYST:SET} <\text{state\ data}> \]

Operation Complete Command

OPC

Sets bit 0 in the standard event status register to “1” when all pending operations have finished.

Operation Complete Query

OPC?

This query stops any new commands from being processed until the current processing is complete. Then it returns a “1”, and the program continues. This query can be used to synchronize events of other instruments on the external bus.
Query Instrument Options

*OPT?

Returns a string of all the installed instrument options. It is a comma separated list such as: BAC,BAH. There are a few options that include more than one mode. An instrument with one of these options will report the option number once for each mode. You would get a response: BAC,BAE,BAE,BAH For an instrument that contains cdmaOne (BAC), NADC (BAE), PDC (BAE), and GSM (BAH).

Recall

*RCL <register>

This command recalls the instrument state from the specified instrument memory register.

Range: registers are an integer, 0 to 19

Front Panel Access: File, Recall State

Reset

*RST

This command presets the instrument to a factory defined condition that is appropriate for remote programming operation. *RST is equivalent to performing the two commands :SYSTem:PRESet and *CLS.

The :SYSTem:PRESet command is equivalent to a front panel Preset. The front panel Preset sets instrument parameters to values for good local/human interaction. The *RST and front panel Preset will be different. For example, the *RST will place the instrument in single sweep while the front panel Preset will place the instrument in continuous sweep.

Front Panel Access: Preset
Save

*SAV <register>

This command saves the instrument state to the specified instrument memory register.

Range: Registers are an integer, 0 to 19

Front Panel Access: File, Save State

Service Request Enable

*SRE <integer>

*SRE?

This command sets the value of the service request enable register. The query returns the value of the register.

Range: Integer, 0 to 63, or 128 to 191

Read Status Byte Query

*STB?

Returns the value of the status byte register without erasing its contents.

Remarks: See *CLS
Trigger

TRG

This command triggers the instrument. Use the
:TRIGGER[:SEQUence]:SOURCE command to select the trigger source.

The desired measurement has been selected and is waiting. The command causes the system to exit this “waiting” state and go to the “initiated” state. The trigger system is initiated and completes one full trigger cycle. It returns to the “waiting” state on completion of the trigger cycle. See the MEASURE subsystem for more information about controlling the measurement process.

The instrument must be in the single measurement mode. If INIT:CONT ON, then the command is ignored. Depending upon the measurement and the number of averages, there may be multiple data acquisitions, with multiple trigger events, for one full trigger cycle.

Remarks: See also the :INITiate:IMMediate command

Front Panel Access: Restart

Self Test Query

TST?

This query performs a full self alignment and returns a number indicating the success of the alignment. A zero is returned if the alignment is successful. Same as CAL[:ALL]? and *CAL?

Front Panel Access: System, Alignments, Align All Now

Wait-to-Continue

WAI

This command causes the instrument to wait until all pending commands are completed before executing any additional commands. There is no query form for the command.
ABORt Subsystem

Abort

:ABORt

Stops any sweep or measurement in progress and resets the sweep or trigger system. A measurement refers to any of the measurements found in the MEASURE menu.

 If INITiate:CONTinuous is off (single measure), then INITiate:IMMediate will start a new single measurement.

 If INITiate:CONTinuous is on (continuous measure), a new continuous measurement begins immediately.

The INITiate and TRIGger subsystems contain additional related commands.

Front Panel Access: For the continuous measurement mode, the Restart key is equivalent to ABORt.
CALCulate Subsystem

This subsystem is used to perform post-acquisition data processing. In effect, the collection of new data triggers the CALCulate subsystem. In this instrument, the primary functions in this subsystem are markers and limits.

Adjacent Channel Power—Limit Test

:CALCulate:ACP:LIMit:STATe OFF|ON|0|1

:CALCulate:ACP:LIMit:STATe?

Turn limit test on or off.

Factory Preset and *RST: On

Remarks: You must be in Basic, cdmaOne, iDEN mode to use this command. Use INStrument:SELection to set the mode.

Adjacent Channel Power—Limit Test

:CALCulate:ACP:LIMit[:TEST] OFF|ON|0|1

:CALCulate:ACP:LIMit[:TEST]?

Turn limit test on or off.

Factory Preset and *RST: On

Remarks: You must be in the NADC, cdmaOne, or PDC mode to use this command. Use INStrument:SELection to set the mode.

Test Current Results Against all Limits

:CALCulate:CLIMits:FAIL?

Queries the status of the current measurement limit testing. It returns a 0 if the measured results pass when compared with the current limits. It returns a 1 if the measured results fail any limit tests.
Data Query

`:CALCulate:DATA[n]`?

Returns the designated measurement data for the currently selected measurement and sub-opcode.

n = any valid sub-opcode for the current measurement. See the “MEASURE Group of Commands” on page 233 for information on the data that can be returned for each measurement.

Calculate/Compress Trace Data Query

`:CALCulate:DATA[n]:COMPress`?

`BLOCK|CFIT|MAXimum|MEAN|MINimum|RMS|SAMPLE|SDEViation`

{,<soffset>}{,<length>}{,<roffset>}

Returns the designated trace data for the currently selected measurement. The command can be used with sub-opcodes (n) for measurement results that are trace data. See the following table.

This command is used to compress/decimate a long trace to extract the desired data and only return to the computer the necessary data. A typical example would be to acquire N bursts of GSM data and return the mean power of each burst.

The command can also be used to identify the best curve fit for the data.

- **BLOck** or block data - returns whole segments from the queried trace. For example, it could be used to return a portion of an input signal over several timeslots.

- **CFIT** or curve fit - applies curve fitting routines to the data. Where `<soffset>` and `<length>` are required, and `<offset>` is an optional parameter for the desired order of the curve equation. The query will return the following values: the x-offset (in points) and the curve coefficients ((order + 1) values).

- `<Start offset>` - is an optional integer. It specifies the amount of data at the beginning of the trace that will be ignored before the decimation process starts. It is an integer index (that starts counting at zero) for all the elements in the trace. The default value is zero.

- `<Length>` - is an optional integer. It defines how many trace elements will be compressed into one value. This parameter has a default value equal to the current trace length.

- `<Repeat offset>` - is an optional real number. It defines the beginning of the next field of trace elements to be compressed. This is relative to the beginning of the previous field. This parameter has a default value equal to the `<length>` variable. Select a number such that repeated additions will round to the correct starting index.
Example: To query the mean power of a set of GSM bursts:

1. Set the waveform measurement sweep time to acquire the required number of bursts.
2. Set the triggers such that acquisition happens at a known position relative to a burst.
3. Then query the mean burst levels using,
 \texttt{CALC:DATA2:COMP? MEAN,62,1315,1442.3} (These parameter values correspond to GSM signals.)

Remarks: The optional parameters must be entered in the specified order. If you want to specify \texttt{<length>}, you must also specify \texttt{<soffset>} or its default. For example:

\texttt{CALC:DATA2:COMP? MEAN,62,1315}

\texttt{CALC:DATA2:COMP? MEAN,DEFault,1315}

This command uses the data setting specified by the \texttt{FORMat:DATA} command and can return binary or ascii data.

History: Added in revision A.03.00 and later

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Available Traces</th>
<th>Markers Available?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP - adjacent channel power</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>(Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), iDEN, NADC, PDC modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BER - bit error rate</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>(iDEN mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDPower - code domain power</td>
<td>POWER (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td>(cdmaOne mode)</td>
<td>TIMing (n=3)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHASe (n=4)^a</td>
<td></td>
</tr>
<tr>
<td>CDPower - code domain power</td>
<td>CDPower (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td>(cdma2000, W-CDMA (3GPP) modes)</td>
<td>EVM (n=5)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERRor (n=6)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=7)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPOWer (n=9)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPOWer (n=10)^a</td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Available Traces</td>
<td>Markers Available?</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>CDPower - code domain power (W-CDMA (Trial & Arib) mode)</td>
<td>CDPower (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>EVM (n=4)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERRor (n=5)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=6)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPOWer (n=8)^a</td>
<td></td>
</tr>
<tr>
<td>CHPower - channel power (Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA</td>
<td>SPECtrum (n=2)^a</td>
<td>no markers</td>
</tr>
<tr>
<td>(Trial & Arib) modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ULIMIT (n=3)^a</td>
<td></td>
</tr>
<tr>
<td>CSPur - spurs close (cdmaOne mode)</td>
<td>SPECtrum (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>ULIMIT (n=3)^a</td>
<td></td>
</tr>
<tr>
<td>EEVM - EDGE error vector magnitude (EDGE mode)</td>
<td>EVMError (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>MERRor (n=3)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=4)^a</td>
<td></td>
</tr>
<tr>
<td>EORFspectr - EDGE output RF spectrum (EDGE mode)</td>
<td>RFEModulation (n=2)^a</td>
<td>yes, only for a single offset</td>
</tr>
<tr>
<td></td>
<td>RFESwitching (n=3)^a</td>
<td></td>
</tr>
<tr>
<td>EPVTime - EDGE power versus time (EDGE mode)</td>
<td>RFENvelope (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>UMASk (n=3)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMASk (n=4)^a</td>
<td></td>
</tr>
<tr>
<td>EVM - error vector magnitude (NADC, PDC modes)</td>
<td>EVM (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>MERRor (n=3)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=4)^a</td>
<td></td>
</tr>
<tr>
<td>EVMQpsk - QPSK error vector magnitude (cdma2000, W-CDMA (3GPP), W-CDMA</td>
<td>EVM (n=2)^a</td>
<td>yes</td>
</tr>
<tr>
<td>(Trial & Arib) modes)</td>
<td>MERRor (n=3)^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=4)^a</td>
<td></td>
</tr>
<tr>
<td>IM - intermodulation (cdma2000, W-CDMA (3GPP) modes)</td>
<td>SPECtrum (n=0)^a</td>
<td>yes</td>
</tr>
<tr>
<td>Measurement</td>
<td>Available Traces</td>
<td>Markers Available?</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>MCPower - multi-carrier power (W-CDMA (3GPP) mode)</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>OBW - occupied bandwidth (cdmaOne, cdma2000, iDEN, PDC, W-CDMA (3GPP) modes)</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>ORFSpectrum - output RF spectrum (GSM mode)</td>
<td>RFEModulation (n=2)(^a) RFESwitching (n=3)(^a)</td>
<td>yes, only for a single offset</td>
</tr>
<tr>
<td>PFERror - phase and frequency error (GSM mode)</td>
<td>PERRor (n=2)(^a) PFERror (n=3)(^a) RFENvelope (n=4)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>PSTatistic - power statistics CCDF (Basic, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>MEASured (n=2)(^a) GAUSian (n=3)(^a) REFerence (n=4)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>PVTime - power versus time (GSM, Service modes)</td>
<td>RFENvelope (n=2)(^a) UMASk (n=3)(^a) LMASk (n=4)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>RHO - modulation quality (cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) mode)</td>
<td>EVM (n=2)(^a) MERRor (n=3)(^a) PERRor (n=4)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>SEMask - spectrum emissions mask (cdma2000, W-CDMA (3GPP) mode)</td>
<td>SPECTrum (n=0)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>TSPur - transmit band spurs (GSM mode)</td>
<td>SPECTrum (n=2)(^a) ULIMit (n=3)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>TXPower - transmit power (GSM mode)</td>
<td>RFENvelope (n=2)(^a) IQ (n=8)(^a)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Calculate Peaks of Trace Data

:CALCulate:DATA[n]:PEAKs?
<threshold>,<excursion>[,AMPLitude|FREQuency|TIME]

Returns a list of peaks for the designated trace data \(n \) for the currently selected measurement. The peaks must meet the requirements of the peak threshold and excursion values.

The command can be used with sub-opcodes (\(n \)) for any measurement results that are trace data. See the table above. Subopcode \(n=0 \), raw trace data cannot be searched for peaks. Both real and complex traces can be searched, but complex traces are converted to magnitude in dBm.

Threshold - is the level below which trace data peaks are ignored

Excursion - To be defined as a peak, the signal must rise above the threshold by a minimum amplitude change. Excursion is measured from the lowest point above the threshold (of the rising edge of the peak), to the highest signal point that begins the falling edge.

Amplitude - lists the peaks in order of descending amplitude, so the highest peak is listed first. This is the default peak order listing if the optional parameter is not specified.

Frequency - lists the peaks in order of occurrence, left to right across the x-axis

Time - lists the peaks in order of occurrence, left to right across the x-axis

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Available Traces</th>
<th>Markers Available?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPE Ctrum - (frequency domain)</td>
<td>RF ENvelope ((n=2))^a for Service mode
IQ ((n=3))^a
SPE Ctrum ((n=4))^a
ASPectrum ((n=7))^a</td>
<td>yes</td>
</tr>
<tr>
<td>(all modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAVEform - (time domain)</td>
<td>RF ENvelope ((n=2))^a
IQ ((n=8))^a</td>
<td>yes</td>
</tr>
<tr>
<td>(all modes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The \(n \) number indicates the sub-opcode that corresponds to this trace. Detailed descriptions of the trace data can be found in the MEASure subsystem documentation by looking up the sub-opcode for the appropriate measurement.
Example: Select the spectrum measurement.

Use `CALC:DATA4:PEAK? -40, 10, FREQ` to identify the peaks above -40 dBm, with excursions of at least 10 dB, in order of increasing frequency.

Query Results: Returns a list of floating-point numbers. The first value in the list is the number of peak points that follow. A peak point consists of two values: a peak amplitude followed by the its corresponding frequency (or time).

If no peaks are found the peak list will consist of only the number of peaks, (0).

The peak list is limited to 100 peaks. Peaks in excess of 100 are ignored.

Remarks: This command uses the data setting specified by the `FORMat:DATA` command and can return real 32-bit, real 64-bit, or ASCII data. The default data format is ASCII.

History: Added in revision A.03.00 and later
CALCulate:MARKers Subsystem

Markers can be put on your displayed measurement data to supply information about specific points on the data. Some of the things that markers can be used to measure include: precise frequency at a point, minimum or maximum amplitude, and the difference in amplitude or frequency between two points.

When using the marker commands you must specify the measurement in the SCPI command. We recommend that you use the marker commands only on the current measurement. Many marker commands will return invalid results, when used on a measurement that is not current. (This is true for commands that do more than simply setting or querying an instrument parameter.) No error is reported for these invalid results.

You must make sure that the measurement is completed before trying to query the marker value. Using the MEASure or READ command, before the marker command, forces the measurement to complete before allowing the next command to be executed.

Each measurement has its own instrument state for marker parameters. Therefore, if you exit the measurement, the marker settings in each measurement are saved and are then recalled when you change back to that measurement.

Basic Mode - <measurement> key words

- ACPr - no markers
- CHPower - no markers
- PSTATistic - markers available
- SPECTrum - markers available
- WAVeform - markers available

Service Mode - <measurement> key words

- PVTime - no markers
- SPECTrum - markers available
- WAVeform - markers available

cdmaOne Mode - <measurement> key words

- ACPr - no markers
- CHPower - no markers
- CDPower - markers available
- CSPur - markers available
- RHO - markers available
- SPECTrum - markers available
- WAVeform - markers available
cdma2000 Mode - <measurement> key words

- ACP - no markers
- CDPMoer - markers available
- CHMoer - no markers
- EVMQpsk - markers available
- IM - markers available
- OBW - no markers
- PSTatic - markers available
- RHO - markers available
- SEMask - markers available
- SPECTrum - markers available
- WAVeform - markers available

EDGE (with GSM) Mode - <measurement> key words

- EEVM - markers available
- EORFspectr - markers available
- EPVTm - no markers
- ORFSpectrum - markers available
- PFERror - markers available
- PVTM - no markers
- SPECTrum - markers available
- TSPur - markers available
- TXPower - no markers
- WAVeform - markers available

GSM Mode - <measurement> key words

- ORFSpectrum - markers available
- PFERror - markers available
- PVTM - no markers
- SPECTrum - markers available
- TSPur - markers available
- TXPower - no markers
- WAVeform - markers available

iDEN Mode - <measurement> key words

- ACP - no markers
- BER - no markers
- OBW - no markers
- SPECTrum - markers available
- WAVeform - markers available

NADC Mode - <measurement> key words

- ACP - no markers
- EVM - markers available
- SPECTrum - markers available
- WAVeform - markers available
PDC Mode - <measurement> key words

- ACP - no markers
- EVM - markers available
- OBW - no markers
- SPECtrum - markers available
- WAVeform - markers available

W-CDMA (3GPP) Mode - <measurement> key words

- ACP - no markers
- CDPower - markers available
- CHPower - no markers
- EVMQpsk - markers available
- IM - markers available
- MCPower - no markers
- OBW - no markers
- PSTatistic - markers available
- RHO - markers available
- SEMask - markers available
- SPECtrum - markers available
- WAVeform - markers available

W-CDMA (Trial & Arib) Mode - <measurement> key words

- ACP - no markers
- CDPower - markers available
- CHPower - no markers
- EVMQpsk - markers available
- PSTatistic - markers available
- RHO - markers available
- SPECtrum - markers available
- WAVeform - markers available

Example:

Suppose you are using the Spectrum measurement. To position marker 2 at the maximum peak value of the trace that marker 2 is currently on, the command is:

```
:CALCulate:SPECtrum:MARKer2:MAXimum
```

You must make sure that the measurement is completed before trying to query the marker value. Use the MEASure or READ command before using the marker command. This forces the measurement to complete before allowing the next command to be executed.
Markers All Off on All Traces

:CALCulate:<measurement>:MARKer:AOFF

Turns off all markers on all the traces in the specified measurement.

Example: CALC:SPEC:MARK:AOFF

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECTrum, WAVEform)

Front Panel Access: Marker, More, Marker All Off

Marker Function

:CALCulate:<measurement>:MARKer[1|2|3|4]:FUNCtion BPOWer|NOISe|OFF

:CALCulate:<measurement>:MARKer[1|2|3|4]:FUNCtion?

Selects the type of marker for the specified marker. A particular measurement may not have all the types of markers that are commonly available.

The marker must have already been assigned to a trace. Use :CALCulate:<measurement>:MARKer[1|2|3|4]:TRACe to assign a marker to a particular trace.

Band Power – is the integrated power between the two markers for traces in the frequency domain and is the mean power between the two markers for traces in the time domain.

Noise – is the noise power spectral density in a 1 Hz bandwidth. It is averaged over 32 horizontal trace points.

Off – turns off the marker functions

Example: CALC:SPEC:MARK3:FUNC Noise

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECTrum, WAVEform)

Front Panel Access: Marker, Marker Function
Marker Function Result

Queries the result of the currently active marker function. The measurement must be completed before querying the marker. A particular measurement may not have all the types of markers available.

The marker must have already been assigned to a trace. Use :CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe to assign a marker to a particular trace.

Example: CALC:SPEC:MARK:FUNC:RES?

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECtrum, WAVeform)

Front Panel Access: Marker, Marker Function

Marker Peak (Maximum) Search

:CALCulate:<measurement>:MARKer[1]|2|3|4:MAXimum

Places the selected marker on the highest point on the trace that is assigned to that particular marker number.

The marker must have already been assigned to a trace. Use :CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe to assign a marker to a particular trace.

Example: CALC:SPEC:MARK1:MAX

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECtrum, WAVeform)

Front Panel Access: Search
Marker Peak (Minimum) Search

`:CALCulate:<measurement>[:MARKer]\[1|2|3|4\]:MINimum

Places the selected marker on the lowest point on the trace that is assigned to that particular marker number.

The marker must have already been assigned to a trace. Use :CALCulate:<measurement>[:MARKer]\[1|2|3|4\]:TRACe to assign a marker to a particular trace.

Example: CALC:SPEC:MARK2:MIN

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECtrum, WAVeform)

Marker Mode

`:CALCulate:<measurement>[:MARKer]\[1|2|3|4\]:MODE POSition|DELTa

`:CALCulate:<measurement>[:MARKer]\[1|2|3|4\]:MODE?

Selects the type of marker to be a normal position-type marker or a delta marker. A specific measurement may not have both types of markers. For example, several measurements only have position markers.

The marker must have already been assigned to a trace. Use :CALCulate:<measurement>[:MARKer]\[1|2|3|4\]:TRACe to assign a marker to a particular trace.

Example: CALC:SPEC:MARK:MODE DELTA

Remarks: For the delta mode only markers 1 and 2 are valid.

The keyword for the current measurement must be specified in the command. (Some examples include: SPECtrum, WAVeform)

Front Panel Access: Marker, Marker [Delta]
Marker On/Off

:CALCulate:<measurement>:MARKer[1]|2|3|4[:STATe] OFF|ON|0|1
:CALCulate:<measurement>:MARKer[1]|2|3|4[:STATe]?

Turns the selected marker on or off.

The marker must have already been assigned to a trace. Use
:CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe to assign a
marker to a particular trace.

Example: \texttt{CALC:SPEC:MARK2: on}

Remarks: The keyword for the current measurement must be
specified in the command. (Some examples include:
SPECtrum, AREFerence, WAVeform)

The WAVeform measurement only has two markers
available.

Front Panel
Access: Marker, Select then Marker Normal or Marker On Off

Marker to Trace

:CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe <trace_name>
:CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe?

Assigns the specified marker to the designated trace. Not all types of
measurement data can have markers assigned to them.

Example: With the WAVeform measurement selected, a valid
command is \texttt{CALC:SPEC:MARK2:TRACE rfenvelope}.

Range: The names of valid traces are dependent upon the
selected measurement. See the following table for the
available trace names. The trace name assignment is
independent of the marker number.

Remarks: The keyword for the current measurement must be
specified in the command. (Some examples include:
SPECtrum, WAVeform)
<table>
<thead>
<tr>
<th>Measurement</th>
<th>Available Traces</th>
<th>Markers Available?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP - adjacent channel power</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>(Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), iDEN, NADC, PDC modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BER - bit error rate</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>(iDEN mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDPower - code domain power</td>
<td>CDPower (n=2)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>(cdmaOne mode)</td>
<td>EVM (n=5)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERRor (n=6)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=7)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPOWer (n=8)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPOWer (n=10)(^a)</td>
<td></td>
</tr>
<tr>
<td>CDPower - code domain power</td>
<td>CDPower (n=2)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>(cdma2000, W-CDMA (3GPP) modes)</td>
<td>EVM (n=5)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERRor (n=6)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=7)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPOWer (n=8)(^a)</td>
<td></td>
</tr>
<tr>
<td>CDPower - code domain power</td>
<td>CDPower (n=2)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>(W-CDMA (Trial & Arib) mode)</td>
<td>EVM (n=4)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERRor (n=5)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=6)(^a)</td>
<td></td>
</tr>
<tr>
<td>CHPower - channel power</td>
<td>SPECtrum (n=2)(^a)</td>
<td>no markers</td>
</tr>
<tr>
<td>(Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSPur - spurs close</td>
<td>SPECtrum (n=2)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>(cdmaOne mode)</td>
<td>ULIMit (n=3)(^a)</td>
<td></td>
</tr>
<tr>
<td>EEVM - EDGE error vector magnitude</td>
<td>EVMError (n=2)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>(EDGE mode)</td>
<td>MERRor (n=3)(^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=4)(^a)</td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Available Traces</td>
<td>Markers Available?</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>EORFspectr - EDGE output RF spectrum (EDGE mode)</td>
<td>RFEModulation (n=2)</td>
<td>yes, only for a single offset</td>
</tr>
<tr>
<td></td>
<td>RFESwitching (n=3)</td>
<td></td>
</tr>
<tr>
<td>EPVTime - EDGE power versus time (EDGE mode)</td>
<td>RFENvelope (n=2)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>UMASk (n=3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMASk (n=4)</td>
<td></td>
</tr>
<tr>
<td>EVM - error vector magnitude (NADC, PDC modes)</td>
<td>EVM (n=2)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>MERRor (n=3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=4)</td>
<td></td>
</tr>
<tr>
<td>EVMQpsk - QPSK error vector magnitude (cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>EVM (n=2)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>MERRor (n=3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=4)</td>
<td></td>
</tr>
<tr>
<td>IM - intermodulation (cdma2000, W-CDMA (3GPP) modes)</td>
<td>SPE ctrum (n=0)</td>
<td>yes</td>
</tr>
<tr>
<td>MCPower - multi-carrier power (W-CDMA (3GPP) mode)</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>OBW - occupied bandwidth (cdmaOne, cdma2000, iDEN, PDC, W-CDMA (3GPP) modes)</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>ORFSpectrum - output RF spectrum (GSM mode)</td>
<td>RFEModulation (n=2)</td>
<td>yes, only for a single offset</td>
</tr>
<tr>
<td></td>
<td>RFESwitching (n=3)</td>
<td></td>
</tr>
<tr>
<td>PFERror - phase and frequency error (GSM mode)</td>
<td>PERRor (n=2)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>PFERror (n=3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFENvelope (n=4)</td>
<td></td>
</tr>
<tr>
<td>PSTatistic - power statistics CCDF (Basic, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>MEASured (n=2)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>GAUSian (n=3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REFerence (n=4)</td>
<td></td>
</tr>
<tr>
<td>Measurement</td>
<td>Available Traces</td>
<td>Markers Available?</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>PVTime - power versus time (GSM, Service modes)</td>
<td>RFENvelope ($n=2$)(^a) UMASk ($n=3$)(^a) LMASk ($n=4$)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>RHO - modulation quality (cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>EVM ($n=2$)(^a) MERRor ($n=3$)(^a) PERRor ($n=4$)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>SEMask - spectrum emissions mask (cdma2000, W-CDMA (3GPP) mode)</td>
<td>SPECtrum ($n=0$)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>TSPur - transmit band spurs (GSM mode)</td>
<td>SPECtrum ($n=2$)(^a) ULIMit ($n=3$)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>TXPower - transmit power (GSM mode)</td>
<td>RFENvelope ($n=2$)(^a) IQ ($n=8$)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>SPECtrum - (frequency domain) (all modes)</td>
<td>RFENvelope ($n=2$)(^a) for Service mode IQ ($n=3$)(^a) SPECtrum ($n=4$)(^a) ASPectrum ($n=7$)(^a)</td>
<td>yes</td>
</tr>
<tr>
<td>WAVEform - (time domain) (all modes)</td>
<td>RFENvelope ($n=2$)(^a) IQ ($n=8$)(^a)</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(a\). The \(n\) number indicates the sub-opcode that corresponds to this trace. Detailed descriptions of the trace data can be found in the MEASure subsystem documentation by looking up the sub-opcode for the appropriate measurement.
Marker X Value

`:CALCulate:<measurement>:MARKer[1]|2|3|4:X <param>`

`:CALCulate:<measurement>:MARKer[1]|2|3|4:X?`

Position the designated marker on its assigned trace at the specified X value. The parameter value is in X-axis units (which is often frequency or time).

The marker must have already been assigned to a trace. Use `:CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe` to assign a marker to a particular trace.

The query returns the current X value of the designated marker. The measurement must be completed before querying the marker.

Example: `CALC:SPEC:MARK2:X 1.2e6 Hz`

Default Unit: Matches the units of the trace on which the marker is positioned

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECtrum, WAVEform)

Front Panel Access: Marker, <active marker>, RPG
Marker X Position

<integer>

Position the designated marker on its assigned trace at the specified X position. A trace is composed of a variable number of measurement points. This number changes depending on the current measurement conditions. The current number of points must be identified before using this command to place the marker at a specific location.

The marker must have already been assigned to a trace. Use :CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe to assign a marker to a particular trace.

The query returns the current X position for the designated marker. The measurement must be completed before querying the marker.

Example: \texttt{CALC:SPEC:MARK:X:POS 500}

Range: 0 to a maximum of (3 to 920,000)

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECtrum, WAVeform)

Front Panel Access: Marker, <active marker>, RPG

Marker Readout Y Value

Readout the current Y value for the designated marker on its assigned trace. The value is in the Y-axis units for the trace (which is often dBm).

The marker must have already been assigned to a trace. Use :CALCulate:<measurement>:MARKer[1]|2|3|4:TRACe to assign a marker to a particular trace.

The measurement must be completed before querying the marker.

Example: \texttt{CALC:SPEC:MARK1:Y?}

Default Unit: Matches the units of the trace on which the marker is positioned

Remarks: The keyword for the current measurement must be specified in the command. (Some examples include: SPECtrum, WAVeform)
Power Statistic CCDF—Store Reference

:CALCulate:PSTatistic:STORE:REFERence ON

Store the current measured trace as the user-defined reference trace.

Remarks: You must be in the cdma2000 or W-CDMA (3GPP) mode to use this command. Use INStument:SELect to set the mode.
CALibration Subsystem

These commands control the self-alignment and self-diagnostic processes.

Calibration Abort

:CALibration:ABORt

Abort any alignment in progress. The query stops any other processing until the abort is complete.

Front Panel Access: ESC, when alignment is in progress

Align the ADC Auto-range Threshold

:CALibration:ADC:ARANge

:CALibration:ADC:ARANge?

Align the ADC auto-range thresholds. This same alignment is run as part of the CAL:ALL routine.

Front Panel Access: System, Alignments, Align subsystem, Align ADC

Align the ADC Dither Center Frequency

:CALibration:ADC:DITHer

:CALibration:ADC:DITHer?

Align the ADC dithering center frequency. This same alignment is run as part of the CAL:ALL routine.

Front Panel Access: System, Alignments, Align subsystem, Align ADC
Align the ADC Offset

:CALibration:ADC:OFFSET

:CALibration:ADC:OFFSET?

Align the six ADC offset DACs. This same alignment is run as part of the CAL::ALL routine.

Front Panel
Access: System, Alignments, Align subsystem, Align ADC

Align the ADC RAM Gain

:CALibration:ADCRam:GAIN

:CALibration:ADCRam:GAIN?

Align the gain of the six ADC RAM pages. This same alignment is run as part of the CAL::ALL routine.

Front Panel
Access: System, Alignments, Align subsystem, Align ADC

Align All Instrument Assemblies

:CALibration[:ALL]

:CALibration[:ALL]?

Performs an alignment of all the assemblies within the instrument.

The query performs a full alignment and returns a number indicating the success of the alignment. A zero is returned if the alignment is successful. A one is returned if any part of the alignment failed.

Front Panel
Access: System, Alignments, Align All Now
Calibrate the Attenuator

:CALibration:ATTenuator

:CALibration:ATTenuator?

Calculate the gain error of 40 RF attenuator steps. The nominal setting of 10 dB is assumed to have 0 dB error.

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel Access: System, Alignments, Align subsystem, RF

Automatic Alignment

:CALibration:AUTO OFF|ALERT|ON

:CALibration:AUTO?

Turns the automatic alignment routines on and off. When turned on, they are run once every 5 minutes, or if the ambient temperature changes by 3 degrees.

If alignment is turned off, the instrument may drift out of specification. The alert mode allows you to turn off the automatic alignment, but reminds you to when to run the alignment again. You will get a warning message if 24 hours has expired or the temperature has change by 3 degrees since the last alignment.

Factory Preset and *RST: Alert

Your setting for the auto alignment is persistent and will remain the same even through an instrument power cycle.

Front Panel Access: System, Alignments, Auto Align
Calibration Comb Alignment

`:CALibration:COMB

`:CALibration:COMB?`
Aligns the comb frequencies by measuring them relative to the internal 50 MHz reference signal.

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel Access: System, Alignments, Align Subsystem, RF

Calibration Display Detail

`:CALibration:DISPlay:LEVel OFF|LOW|HIGH

`:CALibration:DISPlay:LEVel?`
Controls the amount of detail shown on the display while the alignment routines are running. The routines run faster if they are off, so they do not have to update the display.

- Off - displays no trace points
- Low - displays every 10th trace
- High - displays every trace

Factory Preset and *RST: Low

Front Panel Access: System, Alignments, Visible Align

Align the IF Flatness

`:CALibration:FLATness:IF

`:CALibration:FLATness:IF?`
Finds the flatness shape of the current IF setup (prefilter, mgain, natBW). This information is then used for compensating measurements that use FFT functionality, like the spectrum measurement. The alignment is done frequently in the background. This same alignment is run as part of the CAL:ALL routine.

Front Panel Access: Select Timebase Freq under Measure, then press Meas Setup, Auto Adjust Now.
Auto Adjust the Internal 10 MHz Frequency Reference

:CALibration:FREQuency:REFerence:AADJust

Auto adjustment of the internal frequency reference (10 MHz timebase).

Remarks: You must be in the Service mode to use this command.
Use INSTrument:SELect.

Requires the current measurement to be timebase frequency. A valid password needs to be entered sometime prior to sending this command. See the timebase frequency measurement for more information.

Front Panel Access: Select Timebase Freq under Measure, then press Meas Setup, Auto Adjust Now.

Align the ADC

:CALibration:GADC

:CALibration:GADC?

Performs the ADC group of alignments. The query returns a 0 if the alignments occurred without problems.

Front Panel Access: System, Alignments, Align Subsystem, Align ADC

Align the IF Gain

:CALibration:GAIN:IF

:CALibration:GAIN:IF?

Calculate the curve coefficients for the IF gain DAC.

Front Panel Access: System, Alignments, Align Subsystem, IF
Calibrate the Nominal System Gain

:`CALibration:GAIN:CSYSTEM`

:`CALibration:GAIN:CSYSTEM?`

Calculate the current system gain correction for nominal settings. That is, with 10 dB attenuation, 500 MHz center frequency, 0 dB IF gain and the prefilter off.

Front Panel Access: System, Alignments, Align Subsystem, IF

Align the IF

:`CALibration:GIF`

:`CALibration:GIF?`

Performs the IF group of alignments. The query returns a 0 if the alignments occurred without problems.

Front Panel Access: System, Alignments, Align Subsystem, Align IF

Align the RF

:`CALibration:GRF`

:`CALibration:GRF?`

Performs the RF group of alignments. The query returns a 0 if the alignments occurred without problems.

Front Panel Access: System, Alignments, Align Subsystem, Align RF

Align the Image Filter Circuitry

:`CALibration:IMAGefilter`

:`CALibration:IMAGefilter?`

Align the eight image filter tuning DACs.

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel Access: System, Diagnostics
CALibration Subsystem

Load the Factory Default Calibration Constants

:\CALibration:LOAD:DEFault

Load the factory default alignment data, ignoring the effect of any alignments already done.

Front Panel
Access: System, Alignments, Restore Align Defaults

Align the Wide LC Prefilter

:\CALibration:PFILter:LCWide

:\CALibration:PFILter:LCWide?

Align the wide LC prefilter. (1.2 MHz to 7.5 MHz)

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel
Access: System, Diagnostics

Align the Narrow LC Prefilter

:\CALibration:PFILter:LCNarrow

:\CALibration:PFILter:LCNarrow?

Align the narrow LC prefilter. (200 kHz to 1.2 MHz)

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel
Access: System, Alignments, Align Subsystem, IF

Align the Wide Crystal Prefilter

:\CALibration:PFILter:XTALWide

:\CALibration:PFILter:XTALWide?

Align the wide crystal prefilter. (20 kHz to 200 kHz)

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel
Access: Enter service password and press System, Diagnostics
Align the Narrow Crystal Prefilter

:CALibration:PFILter:XTALNarrow

:CALibration:PFILter:XTALNarrow?

Align the narrow crystal prefilter. (2.5 kHz to 20 kHz)

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel Access: Enter service password and press System, Diagnostics

Adjust the Level of the 321.4 MHz Alignment Signal

:CALibration:REF321

:CALibration:REF321?

Calculate the curve coefficients for setting the level of the 321.4 MHz alignment signal.

Remarks: A valid service password needs to be entered prior to sending the command.

Front Panel Access: System, Diagnostics

50 MHz Reference Alignment Signal

<table>
<thead>
<tr>
<th>Process</th>
<th>Process Step Description</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>Attach a 50 MHz signal to the RF input.</td>
<td></td>
</tr>
<tr>
<td>Automatic</td>
<td>Does the entire procedure</td>
<td>CAL:REF50[:DOIT]</td>
</tr>
<tr>
<td>Interactive</td>
<td>Enter the interactive mode</td>
<td>CAL:REF50:ENTer</td>
</tr>
<tr>
<td>Interactive</td>
<td>Tell the instrument what the external signal’s power is. (approx. -25 dBm)</td>
<td>CAL:REF50:AMPL</td>
</tr>
<tr>
<td>Interactive</td>
<td>Proceed with the adjustment phase.</td>
<td>CAL:REF50:ANOW</td>
</tr>
<tr>
<td>Interactive</td>
<td>Exit from the interactive mode.</td>
<td>CAL:REF50:EXIT</td>
</tr>
<tr>
<td>Query</td>
<td>Return the last alignment value of the absolute level of the 50 MHz cal signal.</td>
<td>CAL:REF50:LAST:ABSLevel?</td>
</tr>
<tr>
<td>Query</td>
<td>Return the last alignment value of the ALC DAC.</td>
<td>CAL:REF50:LAST:ALCDac?</td>
</tr>
</tbody>
</table>
External Signal Power for Internal 50 MHz Amplitude Reference Alignment

`:CALibration:REF50:AMPL <power>`

`:CALibration:REF50:AMPL?`

You must set this value equal to the actual amplitude of the external 50 MHz amplitude reference signal applied to the RF INPUT connector. This is used for aligning the 50 MHz amplitude reference with CAL:REF50.

Preset and *RST: −25.00 dBm

Range: −30 to −20 dBm

Default Unit: dBm

Remarks: You must be in the Service mode to use this command. Use INSTRument:SELect.

A valid service password needs to be entered prior to sending this command.

Front Panel Access: System, Alignments, Align subsystem, Align 50 MHz Reference

Internal 50 MHz Amplitude Reference Alignment Control

`:CALibration:REF50:ANOW`

Immediately does the automatic alignment of the internal 50 MHz amplitude reference oscillator. This command is used with the interactive mode of the 50 MHz alignment, i.e. CAL:REF50:ENTer.

Remarks: You must be in the Service mode to use this command. Use INSTRument:SELect.

A valid service password needs to be entered prior to sending this command.

Front Panel Access: System, Alignments, Align subsystem, Align 50 MHz Reference
Internal 50 MHz Amplitude Reference Alignment Control

:CALibration:REF50[:DOIT]

:CALibration:REF50[:DOIT]?

Does automatic alignment of the internal 50 MHz amplitude reference oscillator. You do this by setting an external source to −25.00 dBm and using a power meter to measure the exact value. Then use CAL:REF50:AMPL to input the source amplitude, measured on the power meter. Finally, connect the source to the instrument RF INPUT port and run the adjustment.

Remarks: You must be in the Service mode to use this command. Use INSTrument:SELect.

A valid service password needs to be entered prior to sending this command.

Front Panel Access: System, Alignments, Align subsystem, Align 50 MHz Reference

Enter Interactive Mode for Internal 50 MHz Amplitude Reference Alignment

:CALibration:REF50:ENTER

Turns on the interactive mode for alignment of the internal 50 MHz amplitude reference signal. Use CAL:REF50:ANOW to do the alignment and CAL:REF50:EXIT to exit the interactive mode.

Remarks: You must be in the Service mode to use this command. Use INSTrument:SELect.

A valid service password needs to be entered prior to sending this command.

Front Panel Access: System, Alignments, Align subsystem, Align 50 MHz Reference
Exit Interactive Mode for Internal 50 MHz Amplitude Reference Alignment

:`CALibration:REF50:EXIT`

Turns off the interactive mode for alignment of the internal 50 MHz amplitude reference signal. Use CAL:REF50:ENTER to turn the mode on and CAL:REF50:ANOW to do the alignment immediately.

Remarks: You must be in the Service mode to use this command.
Use INSTRument:SELection.
A valid service password needs to be entered prior to sending the command.

Front Panel Access: System, Alignments, Align subsystem, Align 50 MHz Reference

Query the Absolute Level for the 50 MHz Amplitude Reference

:`CALibration:REF50:LAST:ABSLevel?`

Query returns the last value of the absolute level of the 50 MHz reference alignment.

Remarks: You must be in the Service mode to use this command.
Use INSTRument:SELection.
A valid service password needs to be entered prior to sending this command.

Front Panel Access: System, Alignments, Align subsystem, Align 50 MHz Reference

Query the ALC DAC Value for the 50 MHz Amplitude Reference

:`CALibration:REF50:LAST:ALCDac?`

Query returns the last value of the ALC DAC of the 50 MHz reference alignment.

Remarks: You must be in the Service mode to use this command.
Use INSTRument:SELection.
A valid service password needs to be entered prior to sending this command.

Front Panel Access: System, Alignments, Align subsystem, Align 50 MHz Reference
Align the Trigger Delay

:CALibration:TRIGger:DELay

:CALibration:TRIGger:DELay?

Align any trigger delays needed. One place that this alignment is used is for the even second clock functionality in cdmaOne mode. This same alignment is run as part of the CAL:ALL routine.

Front Panel
Access: System, Alignments, Align subsystem, Align 50 MHz Reference

Align the Trigger Interpolator

:CALibration:TRIGger:INTerp

:CALibration:TRIGger:INTerp?

Align the partial sample trigger interpolator. This same alignment is run as part of the CAL:ALL routine.

Front Panel
Access: System, Alignments, Align subsystem, Align 50 MHz Reference

Calibration Wait

:CALibration:WAIT

Waits until any alignment procedure that is underway is completed.
CONFigure Subsystem

The CONFigure commands are used with several other commands to control the measurement process. These commands are described in the section on the “MEASure Group of Commands” on page 233.

Configure the Selected Measurement

:CONFigure:<measurement>

A CONFigure command must specify the desired measurement. It will set the instrument settings for that measurements standard defaults, but will not initiate the taking of data. The available measurements are described in the MEASure subsystem.

Configure Query

:CONFigure?

The CONFigure query returns the name of the current measurement.
DISPlay Subsystem

The DISPlay controls the selection and presentation of textual, graphical, and TRACe information. Within a DISPlay, information may be separated into individual WINDOWS.

Adjacent Channel Power - View Selection

:DISPlay:ACP:VIEW BGRaph|SPECtrum

:DISPlay:ACP:VIEW?

Select the adjacent channel power measurement display of bar graph or spectrum.

You may want to disable the spectrum trace data part of the measurement so you can increase the speed of the rest of the measurement display. Use SENSE:ACP:SPECTrum:ENABLE to turn on or off the spectrum trace. (Basic and cdmaOne modes only)

Factory Preset

and *RST: Bar Graph (BGRaph)

Remarks: You must be in the Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB), NADC or PDC mode to use this command. Use INSTRument:SELECT to set the mode.

Display Annotation Title Data

:DISPlay:ANNotation:TITLe:DATA <string>

:DISPlay:ANNotation:TITLe:DATA?

Enters the text that will be displayed in the user title area of the display.

Front Panel Access: Display, Title

Display, Title, Change Title

Display, Title, Clear Title
Display Annotation Title On/Off

:DISPLAY:ANNOTation:TITLe[:STATE] OFF|ON|0|1

:DISPLAY:ANNOTation:TITLe[:STATE]?

Turns the display of the title annotation on or off.

Front Panel
Access: Display, Title, Title On Off

Turn the Entire Display On/Off

:DISPLAY:ENABle OFF|ON|0|1

:DISPLAY:ENABle?

Controls the updating of the display. If enable is set to off, the display will appear to “freeze” in its current state. Measurements may run faster if the instrument doesn’t update the display after every data acquisition. There is often no need to update the display information when using remote operation.

Factory Preset
and *RST: On

Remarks: The following key presses will turn display enable back on:

1. If in local, press any key
2. If in remote, press the local (system) key
3. If in local lockout, no key

Front Panel
Access: none

Error Vector Magnitude - View Selection

:DISPLAY:EVM:VIEW POLar|CONStln|QUAD

:DISPLAY:EVM:VIEW?

Select the view of EVM measurement

Factory Preset
and *RST: POLar

Remarks: You must be in the NADC or PDC mode to use this command. Use INSTRument:SELECT to set the mode.
Select Display Format

:DISPLAY:FORMAT:TILE

Selects the viewing format that displays multiple windows of the current measurement data simultaneously. Use DISP:FORM:ZOOM to return the display to a single window.

Front Panel
Access: Zoom

Select Display Format

:DISPLAY:FORMAT:ZOOM

Selects the viewing format that displays only one window of the current measurement data (the current active window). Use DISP:FORM:TILE to return the display to multiple windows.

Front Panel
Access: Zoom
Language Reference

DISPlay Subsystem

Spectrum - Y-Axis Reference Level

:DISPlay:SPECTrum[n]:WINDow[m]:TRACe:Y[:SCALe]:RLEVel <power>

:DISPlay:SPECTrum[n]:WINDow[m]:TRACe:Y[:SCALe]:RLEVel?

Sets the amplitude reference level for the y-axis.

- **n** – selects the view, the default is Spectrum.
 - n=1, Spectrum
 - n=2, I/Q Waveform
 - n=3, numeric data (service mode)
 - n=4, RF Envelope (service mode)

- **m** – selects the window within the view. The default is 1.

Factory Preset and *RST: 0 dBm, for Spectrum

Range: -250 to 250 dBm, for Spectrum

Default Unit: dBm, for Spectrum

Remarks: May affect input attenuator setting.

To use this command, the appropriate mode should be selected with INSTRument:SE lect.

Front Panel Access: When in Spectrum measurement: **Amplitude Y Scale, Ref Level**
Turn a Trace Display On/Off

`:DISPlay::TRACe[n] [:STATe] OFF|ON|0|1`

`:DISPlay::TRACe[n] [:STATe]?

Controls whether the specified trace is visible or not.

n is a sub-opcode that is valid for the current measurement. See the “MEASure Group of Commands” on page 233 for more information about sub-opcodes.

Factory Preset and *RST: On

Range: The valid traces and their sub-opcodes are dependent upon the selected measurement. See the following table.

The trace name assignment is independent of the window number.

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELection.

Front Panel Access: Display, Display Traces

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Available Traces</th>
<th>Markers Available?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP - adjacent channel power (Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), iDEN, NADC, PDC modes)</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>BER - bit error rate (iDEN mode)</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>CDPower - code domain power (cdmaOne mode)</td>
<td>POWer (n=2)a TIMing (n=3)a PHASE (n=4)a</td>
<td>yes</td>
</tr>
<tr>
<td>CDPower - code domain power (cdma2000, W-CDMA (3GPP) modes)</td>
<td>CDPower (n=2)a EVM (n=5)a MERRor (n=6)a PERRor (n=7)a SPOWer (n=9)a CPOWer (n=10)a</td>
<td>yes</td>
</tr>
<tr>
<td>Measurement</td>
<td>Available Traces</td>
<td>Markers Available?</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>CDPower - code domain power (W-CDMA (Trial & Arib) mode)</td>
<td>CDPower ((n=2)^a)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>EVM ((n=4)^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERRor ((n=5)^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor ((n=6)^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPOWER ((n=8)^a)</td>
<td></td>
</tr>
<tr>
<td>CHPower - channel power (Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>SPECtrum ((n=2)^a)</td>
<td>no markers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSPur - spurs close (cdmaOne mode)</td>
<td>SPECtrum ((n=2)^a)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>ULIMIT ((n=3)^a)</td>
<td></td>
</tr>
<tr>
<td>EEVM - EDGE error vector magnitude (EDGE mode)</td>
<td>EVMError ((n=2)^a)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>MERRor ((n=3)^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor ((n=4)^a)</td>
<td></td>
</tr>
<tr>
<td>EORFspectr - EDGE output RF spectrum (EDGE mode)</td>
<td>RFEModulation ((n=2)^a)</td>
<td>yes, only for a single offset</td>
</tr>
<tr>
<td></td>
<td>RFESwitching ((n=3)^a)</td>
<td></td>
</tr>
<tr>
<td>EPVTime - EDGE power versus time (EDGE mode)</td>
<td>RFENvelope ((n=2)^a)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>UMASk ((n=3)^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMASk ((n=4)^a)</td>
<td></td>
</tr>
<tr>
<td>EVM - error vector magnitude (NADC, PDC modes)</td>
<td>EVM ((n=2)^a)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>MERRor ((n=3)^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor ((n=4)^a)</td>
<td></td>
</tr>
<tr>
<td>EVMQpsk - QPSK error vector magnitude (cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>EVM ((n=2)^a)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>MERRor ((n=3)^a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor ((n=4)^a)</td>
<td></td>
</tr>
<tr>
<td>IM - intermodulation (cdma2000, W-CDMA (3GPP) modes)</td>
<td>SPECtrum ((n=0)^a)</td>
<td>yes</td>
</tr>
<tr>
<td>Measurement</td>
<td>Available Traces</td>
<td>Markers Available?</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>MCPower - multi-carrier power</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>(W-CDMA (3GPP) mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBW - occupied bandwidth</td>
<td>no traces</td>
<td>no markers</td>
</tr>
<tr>
<td>(cdmaOne, cdma2000, iDEN, PDC, W-CDMA (3GPP) modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORFSpectrum - output RF spectrum</td>
<td>RFEModulation (n=2)a</td>
<td></td>
</tr>
<tr>
<td>(GSM mode)</td>
<td>RFESwitching (n=3)a</td>
<td></td>
</tr>
<tr>
<td>PFERror - phase and frequency error</td>
<td>PERRor (n=2)a</td>
<td>yes, only for a single offset</td>
</tr>
<tr>
<td>(GSM mode)</td>
<td>PFERror (n=3)a</td>
<td></td>
</tr>
<tr>
<td>PSTatistic - power statistics CCDF</td>
<td>MEASured (n=2)a</td>
<td>yes</td>
</tr>
<tr>
<td>(Basic, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>GAUSian (n=3)a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REFerence (n=4)a</td>
<td></td>
</tr>
<tr>
<td>PVTime - power versus time</td>
<td>RFENvelope (n=2)a</td>
<td>yes</td>
</tr>
<tr>
<td>(GSM, Service modes)</td>
<td>UMASk (n=3)a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMASk (n=4)a</td>
<td></td>
</tr>
<tr>
<td>RHO - modulation quality</td>
<td>EVM (n=2)a</td>
<td>yes</td>
</tr>
<tr>
<td>(cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) modes)</td>
<td>MERRor (n=3)a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERRor (n=4)a</td>
<td></td>
</tr>
<tr>
<td>SEMask - spectrum emissions mask</td>
<td>SPEc trum (n=0)a</td>
<td>yes</td>
</tr>
<tr>
<td>(cdma2000, W-CDMA (3GPP) modes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSPur - transmit band spurs</td>
<td>SPEc trum (n=2)a</td>
<td>yes</td>
</tr>
<tr>
<td>(GSM mode)</td>
<td>ULIMit (n=3)a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IQ (n=8)a</td>
<td></td>
</tr>
<tr>
<td>TXPower - transmit power</td>
<td>RFENvelope (n=2)a</td>
<td>yes</td>
</tr>
<tr>
<td>(GSM mode)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Waveform - Y-Axis Reference Level

:DISPLAY:WAVEform[n]:WINDow[m]:TRACe:Y[:SCALe]:RLEvel <power>

:DISPLAY:WAVEform[n]:WINDow[m]:TRACe:Y[:SCALe]:RLEvel?

Sets the amplitude reference level for the y-axis.

- **n**, selects the view, the default is RF envelope.
 - n=1, RF envelope
 - n=2, I/Q waveform

- **m**, selects the window within the view. The default is 1.

Factory Preset and *RST:

- 0 dBm, for RF envelope

Range:

- −250 to 250 dBm, for RF envelope

Default Unit:

- dBm, for RF envelope

Remarks:

- May affect input attenuator setting.
- To use this command, the appropriate mode should be selected with INSTRument:SELect.

Front Panel Access:

- When in Waveform measurement: Amplitude Y Scale, Ref Level

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Available Traces</th>
<th>Markers Available?</th>
</tr>
</thead>
</table>
| SPECtrum - (frequency domain) (all modes) | RF ENvelope (n=2)
for Service mode
IQ (n=3)
SPECtrum (n=4)
ASpектrum (n=7) | yes |
| WAVEform - (time domain) (all modes) | RF ENvelope (n=2)
IQ (n=8) | yes |

a. The n number indicates the sub-opcode that corresponds to this trace. Detailed descriptions of the trace data can be found in the MEASure subsystem documentation by looking up the sub-opcode for the appropriate measurement.
FETCh Subsystem

The FETCh? commands are used with several other commands to control the measurement process. These commands are described in the section on the “MEASure Group of Commands” on page 233.

Fetch the Current Measurement Results

:FETCh:<measurement>[n]?

A FETCh? command must specify the desired measurement. It will return the valid results that are currently available, but will not initiate the taking of any new data. You can only fetch results from the measurement that is currently selected. The code number n selects the kind of results that will be returned. The available measurements and data results are described in the “MEASure Group of Commands” on page 233.
The FORMat subsystem sets a data format for transferring numeric and array information.

Byte Order

:FORMat:BORDer NORMAL | SWAPPED

Selects the binary data byte order for numeric data output. It controls whether binary data is transferred in normal or swapped mode. In normal mode the most significant byte is sent first. In swapped mode the least significant byte is first.

Factory Preset
and *RST: Normal

Numeric Data format

:FORMat [:DATA] ASCII | REAL,32 | REAL,64

This command changes the format of the data output. It specifies the format used for trace data during data transfer across any remote port. REAL and ASCII formats will format trace data in the current amplitude units. The format of state data cannot be changed. It is always in a machine readable format only.

NOTE

This command specifies the formats used for trace data during data transfer across any remote port.

For corrected trace data (:TRACe[:DATA] with parameter <trace_name>), REAL and ASCII formats will provide trace data in the current amplitude units. INTeger format will provide trace data in mdBm. The fastest mode is INTeger,32.

For uncorrected trace data (:TRACe[:DATA] with parameter RAWTRACE), UINTeger and INTeger formats apply to RAWTRACE queries, and return uncorrected ADC values. The fastest mode is UINTeger,16.
For state data, the format cannot be changed. It is always in a machine readable format only (machine units).

Corrected Trace Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCii</td>
<td>Amplitude Units</td>
</tr>
<tr>
<td>INT,32 (fastest)</td>
<td>Internal Units</td>
</tr>
<tr>
<td>REAL,32</td>
<td>Amplitude Units</td>
</tr>
<tr>
<td>REAL,64</td>
<td>Amplitude Units</td>
</tr>
</tbody>
</table>

Uncorrected Trace Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT,32</td>
<td>Uncorrected ADC Values</td>
</tr>
<tr>
<td>UINT,16 (fastest)</td>
<td>Uncorrected ADC Values</td>
</tr>
</tbody>
</table>

ASCII - Amplitude values are in ASCII, in amplitude units, separated by commas. ASCII format requires more memory than the binary formats. Therefore, handling large amounts of this type of data, will take more time and storage space.

Real,32 (or 64) - Binary 32-bit, or 64-bit, real values in amplitude units), in a definite length block. Transfers of real data are done in a binary block format. The block of data starts with an ASCII header that begins with # and indicates how many additional data points are following in the block. Suppose the header is #512320.

— The first digit in the header (5) tells you how many additional digits/bytes there are in the header.

— The 12320 means 12 thousand, 3 hundred, 20 data bytes follow the header.

— Divide this number of bytes by your selected data format bytes/point, either 8 (for real 64), or 4 (for real 32). In this example, if you are using real 64 then there are 1540 points in the block.

Factory Preset
and *RST: ASCII
HCOPy Subsystem

The HCOPy subsystem controls the setup of printing to an external device.

Screen Printout Destination

:HCOPy:DESTination FPANel|PRINter

:HCOPy:DESTination?

This command was created to support backward compatibility to early instrument functionality. It is used to specify whether the hardcopy printout goes to the printer or to a destination that is specified from the front panel key **Print Setup, Print To File|Printer**.

Example: HCOP:DEST printer

Factory Preset and *RST: Front panel. This parameter is persistent, which means it retains the value previously selected even through a power cycle.

History: Revision A.04.00 and later

Front Panel Access: **Print Setup, Print To**

Custom Printer Color Capability

:HCOPy:DEViCe:COLor NO|YES

:HCOPy:DEViCe:COLor?

Specifies whether the printer is color capable, not whether you want to print in color. HCOPY:DEVICE:TYPE CUSTOM must be selected.

Example: HCOP:DEV:COLOR YES

Factory Preset and *RST: Yes. This parameter is persistent, which means it retains the value previously selected even through a power cycle.

History: Revision A.04.00 and later

Front Panel Access: **Print Setup, Define Custom**, with **Print To:Printer** and Printer Type:Custom selected
Custom Printer Language

:HCOPy:DEVice:LANGuage PCL3|PCL5

:HCOPy:DEVice:LANGuage?

Specifies the type of printer control language that your custom printer uses. HCOPY:DEVICE:TYPE CUSTOM must be selected.

Example: HCOP:DEV:LANG pcl3

Factory Preset and *RST: PCL3. This parameter is persistent, which means it retains the value previously selected even through a power cycle.

History: Revision A.04.00 and later

Front Panel Access: Print Setup, Define Custom, with Print To: Printer and Printer Type: Custom selected

Printer Type

:HCOPy:DEVice:TYPE CUSTom|NONE

:HCOPy:DEVice:TYPE?

Set up the printer by selecting the type of printer.

CUSTom - allows you to configure a custom printer if your printer cannot be auto-configured. Use other HCOPy:DEVice commands to specify some of the characteristics of your custom printer. The color and language must be defined for your custom printer. You must select the custom printer type to print hardcopy output.

NONE - tells the instrument that there is no hard copy (printer) device available.

Factory Preset and *RST: NONE. This parameter is persistent, which means that it retains the setting previously selected, even through a power cycle.

History: Revision A.04.00 and later

Front Panel Access: Print Setup, Printer Type, with Print To: Printer selected
Color Hard Copy

:HCOPy:IMAGE:COLOR[:STATe] OFF|ON|0|1

:HCOPy:IMAGE:COLOR[:STATe]?

Selects between color and monochrome mode for hard copy output. You must set HCOP:DEV:COLOR YES before using this command.

Factory Preset

and *RST: On. This parameter is persistent, which means that it retains the setting previously selected, even through a power cycle.

Remarks: Revision A.04.00 and later

Front Panel Access: Print Setup, Color with Print To: Printer selected

Print a Hard Copy

:HCOPy[:IMMediate]

The entire screen image is output to the printer at the parallel port.

Front Panel Access: Print

Form Feed the Print Item

:HCOPy:ITEM:FFEed[:IMMediate]

Sends the printer a command to form feed. No form feed will occur unless the printer is only partly done. That is, unless it has only printed one image of a multi-image printout.

History: Revision A.04.00 and later

Front Panel Access: Print Setup, Eject Page
Page Orientation

:HCOPy:PAGE:ORIentation LANDscape|PORTRait

:HCOPy:PAGE:ORIentation?

Specifies the orientation of the print image.

NOTE

Landscape mode is not presently supported for PCL-3 printers.

Factory Preset
and *RST: Portrait. This parameter is persistent, which means that it retains the setting previously selected, even through a power cycle.

History: Revision A.04.00 and later

Front Panel Access:
Print Setup, Orientation with Print To:Printer selected

Number of Items Printed on a Page

:HCOPy:PAGE:PRINTs 1|2

:HCOPy:PAGE:PRINTs?

Sets the number of display print outputs sent to print on one sheet of paper, before a form feed is sent.

Factory Preset
and *RST: 1. This parameter is persistent, which means that it retains the setting previously selected, even through a power cycle.

History: Revision A.04.00 and later

Remarks: This must be set to 1 if the paper orientation is landscape.

Front Panel Access:
Print Setup, Prints/Page with Print To:Printer selected
Reprint the Last Image

:HCOPy:REPRint [:IMMediate]

Reprint the most recently printed image.

Example: H COP:REPR

History: Revision A.04.00 and later

Front Panel Access: Print Setup with Print To: Printer selected

Screen Dump Query

The query returns the current screen image as a file. If the optional file type is not specified it returns GIF type graphic data. The orientation is always portrait and the image is always in color.

The data is formatted as block data where the block of data starts with an ASCII header that indicates how many additional binary data bytes are following in the block. (e.g. #DNNN<binary data>) The binary data is the actual graphics file. To process the block of data you would:

• Read the first header byte #: The # tells you to read the next digit (D). That digit tells you how many additional digits there are in the header. (In the above example D=3.)

• Then read the next D bytes. The digits NNN tell you the number of bytes of data there are following the header. (The data format, like binary16, affects how many values are represented by the bytes.)

• Those data bytes can then be saved as a separate file with a .gif .bmp or .wmf suffix to use in other applications.

Factory Preset and *RST: GIF

History: Firmware revision A.03.28 and later, changed A.04.00
Screen Dump Image Inverting

`:HCOPY:SDUMP:IMAGE NORMAL|INVert`

`:HCOPY:SDUMP: IMAGE?`

Controls the trace background color when using the HCOPY:SDUMP command.

- Normal, is black trace background
- Invert, is white trace background

Factory Preset

and *RST: Invert

History: Revision A.04.00 and later

Screen Dump Now

`:HCOPY:SDUMP[:IMMediate]`

The entire screen is output to the SCPI interface.

History: Revision A.04.00 and later
INITiate Subsystem

The INITiate subsystem is used to control the initiation of the trigger. Refer to the TRIGger and ABORt subsystems for related commands.

Continuous or Single Measurements

:INITiate:CONTinuous OFF|ON|0|1

:INITiate:CONTinuous?

Selects whether the trigger system is continuously initiated or not. This corresponds to continuous measurement or single measurement operation.

When set to ON another trigger cycle is initiated at the completion of each trigger cycle.

When set to OFF, the trigger system remains in the “idle” state until an INITiate[:IMMediate] command is received. On receiving the INITiate[:IMMediate] command, it will go through a single trigger cycle, and then return to the “idle” state.

Factory Preset: On

*RST: Off (recommended for remote operation)

Front Panel Access:

Sweep, Sweep Cont Single

Single

Meas Control, Measure Cont Single
Take New Data Acquisitions

:INITiate[:IMMediate]

The instrument must be in the single measurement mode. If INIT:CONT is ON, then the command is ignored. The desired measurement must be selected and waiting. The command causes the system to exit the “waiting” state and go to the “initiated” state.

The trigger system is initiated and completes one full trigger cycle. It returns to the “waiting” state on completion of the trigger cycle. Depending upon the measurement and the number of averages, there may be multiple data acquisitions, with multiple trigger events, for one full trigger cycle.

This command triggers the instrument, if external triggering is the type of trigger event selected. Otherwise, the command is ignored. Use the TRIGer[:SEQuence]:SOURce EXT command to select the external trigger.

Remarks: See also the *TRG command and the TRIGger subsystem.

Front Panel Access: Sweep, Sweep Cont Single

Single

Meas Control, Measure Cont Single

Restart the Measurement

:INITiate:RESStart

It restarts the current measurement from the “idle” state regardless of its current operating state. It is equivalent to:

INITiate[:IMMediate] (for single measurement mode)

ABORt (for continuous measurement mode)

Front Panel Access: Restart

or

Meas Control, Restart
INPut Subsystem

The INPut subsystem controls the characteristics of all the instrument input ports.

Input Impedance for I/Q Input

:INPut:IMPedance:IQ 50|600

:INPut:IMPedance:IQ?

Select the impedance for the baseband I/Q input.

Factory Preset and *RST: 50 Ohm

Front Panel Access: Input, I/Q Input Z
INSTRument Subsystem

This subsystem includes commands for querying and selecting instrument measurement (personality option) modes.

Catalog Query

:INSTRument:CATalog[:FULL]?

Returns a comma separated list of strings which contains the names of all installed applications. If the optional FULL keyword is specified, each name is followed by its associated instrument number, also comma-separated. These instrument numbers are assigned internally and can be used with the INST:NSElect command.

Select Application by Number

:INSTRument:NSElect <integer>

:INSTRument:NSElect?

Select the measurement application by its instrument number. The actual available choices depends upon which applications are installed in the instrument. These instrument numbers can be identified with INST:CATalog:FULL.

1 = Service
3 = GSM
4 = cdmaOne
5 = NADC
6 = PDC
8 = Basic
9 = W-CDMA (3GPP)
10 = cdma2000
11 = iDEN
12 = W-CDMA (Trial & ARIB)
13 = GSM EDGE

Factory Preset
and *RST: Persistent state with factory default of 1

Range: 1 to x, where x depends upon which applications are installed.

Front Panel Access: Mode
Select Application

:INSTrument [:SELect]
BASIC|SERVICE|CDMA|CDMA2K|GSM|EDGE|GSM|IDEN|NADC|PDC|WCDMA|ARIBWCDMA

:INSTrument [:SELect]?

Select the measurement application (mode). The actual available choices depends upon which applications are installed in the instrument. A list of the valid choices can be seen on the display by pressing System, Show System and looking at the Name column.

Once the instrument mode is selected, only the commands that are valid for that mode can be executed. SYSTem:HELP:HEADers? can be used provide a list of the valid commands.

- Basic mode - Makes basic receiver measurements
- Service mode - Used only for servicing the instrument
- CDMA mode - Makes cdmaOne (code division multiple access) standard measurements
- CDMA2K mode - Makes cdma2000 (wide-band code division multiple access) standard measurements
- EDGEGSM mode - Makes GSM (global system for mobile communications) and EDGE (enhanced data rates for global evolution) standard measurements
- GSM mode - Makes GSM (global system for mobile communications) standard measurements
- IDEN mode - Makes iDEN (integrated digital enhanced network) standard measurements
- NADC mode - Makes NADC (North American Digital Cellular) standard measurements
- PDC mode - Makes PDC (Personal Digital Cellular) standard measurements
- WCDMA mode - Makes W-CDMA (wide-band CDMA) measurements for the 3GPP (third generation partnership project) standards
- ARIBWCDMA mode - Makes W-CDMA (wide-band CDMA) measurements for the trial 98 and ARIB standards

Factory Preset
and *RST: Persistent state with factory default of the first installed application other than the service mode.

Front Panel Access: Mode
MEASure Group of Commands

This group includes commands used to make measurements and return results. The different commands can be used to provide fine control of the overall measurement process. Most measurements should be done in single measurement mode, rather than doing the measurement continuously.

Each measurement sets the instrument state that is appropriate for that measurement. Other commands are available for each mode to allow changing settings, view, limits, etc. Refer to:

SENSe:<measurement>, SENSe:CHANnel, SENSe:CORRection, SENSe:FREQuency, SENSe:POWer, SENSe:RADio, SENSe:SNYC CALCulate:<measurement>, CALCulate:CLIMits/DATA DISPlay:<measurement>
TRIGger

Measure Commands

:MEASure:<measurement>[n]?

This is a fast single-command way to make a measurement using the factory default instrument settings. These are the settings and units that conform to the Standard.

- Stops the current measurement and sets up the instrument for the specified measurement using the factory defaults
- Initiates the data acquisition for the measurement
- Blocks other SCPI communication, waiting until the measurement is complete before returning results.
- After the data is valid it returns the scalar results, or the trace data, for the specified measurement.

If the optional [n] value is not included, or is set to 1, the scalar measurement results will be returned. If the [n] value is set to a value other than 1, the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used for handling large blocks of data since they are smaller and faster than the ASCII format.
If you need to change some of the measurement parameters from the factory default settings you can set up the measurement with the CONFigure command. Use the commands in the SENSE:<measurement> and CALCulate:<measurement> subsystems to change the settings. Then you can use the READ? command, or the INITiate and FETCh? commands, to initiate the measurement and query the results. See Figure 5-1.

If you need to repeatedly make a given measurement with settings other than the factory defaults, you can use the commands in the SENSE:<measurement> and CALCulate:<measurement> subsystems to set up the measurement. Then use the READ? command or INITiate and FETCh? commands, to initiate the measurement and query results.

Measurement settings persist if you initiate a different measurement and then return to a previous one. Use READ:<measurement>? if you want to use those persistent settings. If you want to go back to the default settings, use MEASure:<measurement>?

Figure 5-1 Measurement Group of Commands

![Diagram of Measurement Group of Commands]

Configure Commands

`:CONFigure:<measurement>`

This command stops the current measurement and sets up the instrument for the specified measurement using the factory default instrument settings. It does not initiate the taking of measurement data.

The CONFigure? query returns the current measurement name.
Fetch Commands

`:FETCh:<measurement>[n]?`

This command puts valid data into the output buffer, but does not initiate data acquisition. Use the INITiate[:IMMediate] command to acquire data before you use the FETCh command. You can only fetch results from the measurement that is currently selected.

If the optional [n] value is not included, or is set to 1, the scalar measurement results will be returned. If the [n] value is set to a value other than 1, the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used for handling large blocks of data since they are smaller and faster than the ASCII format.

Read Commands

`:READ:<measurement>[n]?`

- Does not preset the measurement to the factory defaults. (The MEASure? and CONFIGure? commands reset the parameters to the default values.) It uses the settings from the last measurement.
- Initiates the measurement and puts valid data into the output buffer. If a measurement other than the current one is specified, the instrument will switch to that measurement before it initiates the measurement and returns results.
- Blocks other SCPI communication, waiting until the measurement is complete before returning the results.

If the optional [n] value is not included, or is set to 1, the scalar measurement results will be returned. If the [n] value is set to a value other than 1, the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used when handling large blocks of data since they are smaller and faster than the ASCII format.

Measurement settings persist if you initiate a different measurement and then return to a previous one. Use READ:<measurement> if you want to use those persistent settings. If you want to go back to the default settings, use MEASure:<measurement>.
Adjacent Channel Power Ratio (ACP) Measurement

This measures the total rms power in the specified channel and in 5 offset channels. You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), iDEN, NADC or PDC mode to use these commands. Use INSTRument:SELection to set the mode.

The general functionality of CONFigure, FETCH, MEASURE, and READ are described at the beginning of this section. See the SENSE:ACP commands for more measurement related commands.

[:CONF]igure:ACP
[:FETCh:ACP [n] ?
[:READ:ACP [n] ?
[:MEAS]ure:ACP [n] ?

For Basic mode, a channel frequency and power level can be defined in the command statement to override the default standard setting. A comma must precede the power value as a place holder for the frequency, when no frequency is sent.

History: Added to Basic mode, version A.03.00 or later

Front Panel Access: Measure, ACP or ACPR

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Returns unprocessed I/Q trace data, as a series of comma-separated trace points, in volts. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.</td>
</tr>
<tr>
<td>not specified or n=1</td>
<td>NADC and PDC mode</td>
<td>Returns 22 comma-separated scalar results, in the following order: 1. Center frequency – absolute power (dBm) 2. Center frequency – absolute power (W) 3. Negative offset frequency (1) – relative power (dB) 4. Negative offset frequency (1) – absolute power (dBm) 5. Positive offset frequency (1) – relative power (dB) 6. Positive offset frequency (1) – absolute power (dBm) ... 21. Positive offset frequency (5) – relative power (dB) 22. Positive offset frequency (5) – absolute power (dBm)</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>n not specified or n=1</td>
<td>Results Returned</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>iDEN mode</td>
<td>Returns 13 comma-separated scalar results, in the following order:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Center frequency - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Center frequency - absolute power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Lower offset frequency - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Lower offset frequency - absolute power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Upper offset frequency - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Upper offset frequency - absolute power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Total power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Offset frequency (Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Reference BW (Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Offset BW (Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Carrier/center frequency (Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Frequency span (Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. Average count</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>n not specified or n=1</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total power reference</td>
<td>Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode</td>
<td>Returns 24 comma-separated scalar results, in the following order:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Upper adjacent chan center frequency - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Upper adjacent chan center frequency - absolute power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Lower adjacent chan center frequency - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Lower adjacent chan center frequency - absolute power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Negative offset frequency (1) - relative power (dB),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Negative offset frequency (1) - absolute power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Positive offset frequency (1) - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Positive offset frequency (1) - absolute power (dBm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23. Positive offset frequency (5) - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24. Positive offset frequency (5) - absolute power (dBm)</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>n</td>
<td>Results Returned</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Power spectral density reference</td>
<td>not specified or n=1</td>
<td>Returns 24 comma-separated scalar results, in the following order:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Upper adjacent chan center frequency - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Upper adjacent chan center frequency - absolute power (dBm/Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Lower adjacent chan center frequency - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Lower adjacent chan center frequency - absolute power (dBm/Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Negative offset frequency (1) - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Negative offset frequency (1) - absolute power (dBm/Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Positive offset frequency (1) - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Positive offset frequency (1) - absolute power (dBm/Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23. Positive offset frequency (5) - relative power (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24. Positive offset frequency (5) - absolute power (dBm/Hz)</td>
</tr>
<tr>
<td></td>
<td>Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode</td>
<td></td>
</tr>
<tr>
<td>2 NADC and PDC mode</td>
<td></td>
<td>Returns 10 comma-separated scalar values of the pass/fail (0=passed, or 1=failed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>results determined by testing the absolute power of the offset frequencies:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Negative offset frequency (1) absolute power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Positive offset frequency (1) absolute power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Negative offset frequency (5) absolute power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Positive offset frequency (5) absolute power</td>
</tr>
<tr>
<td>2 iDEN mode</td>
<td></td>
<td>Returns 3 comma-separated scalar values of the histogram absolute power trace:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Lower offset frequency – absolute power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Reference frequency – absolute power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Upper offset frequency – absolute power</td>
</tr>
<tr>
<td>Total power reference</td>
<td>2 Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode</td>
<td>Returns 11 comma-separated scalar values (in dBm) corresponding to the total power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>histogram display. The values are returned in ascending frequency order:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Negative offset frequency (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Negative offset frequency (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Positive offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Positive offset frequency (5)</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>n</td>
<td>Results Returned</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>NADC and PDC mode</td>
<td>3</td>
<td>Returns 10 comma-separated scalar values of the pass/fail (0=passed, or 1=failed) results determined by testing the relative power of the offset frequencies: 1. Negative offset frequency (1) relative power 2. Positive offset frequency (1) relative power ... 9. Negative offset frequency (5) relative power 10. Positive offset frequency (5) relative power</td>
</tr>
<tr>
<td>iDEN mode</td>
<td>3</td>
<td>Returns 3 comma-separated scalar values of the histogram relative power trace: 1. Lower offset frequency – relative power 2. Reference frequency – relative power 3. Upper offset frequency – relative power</td>
</tr>
<tr>
<td>Basic, cdmaOne, cdma2000, W-CDMA</td>
<td>3</td>
<td>Returns 11 comma-separated scalar values (in dBm/Hz) corresponding to the power spectral density histogram display. The values are returned in ascending frequency order: 1. Negative offset frequency (5) 2. Negative offset frequency (4) ... 6. Center frequency 7. Positive offset frequency (1) ... 11. Positive offset frequency (5)</td>
</tr>
<tr>
<td>Power spectral density reference</td>
<td></td>
<td>Returns the frequency-domain spectrum trace (data array) for the entire frequency range being measured. In order to return spectrum data, the ACP display must be in the spectrum view and you must not turn off the spectrum trace.</td>
</tr>
<tr>
<td>iDEN mode</td>
<td>4</td>
<td>Returns 4 comma-separated absolute power results for the reference and offset channels. 1. Reference channel – absolute power 2. Reference channel – absolute power (duplicate of above) 3. Lower offset channel – absolute power 4. Upper offset channel – absolute power</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>n</td>
<td>Results Returned</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(For cdma2000 and W-CDMA the data is only available with spectrum display selected)</td>
<td>4</td>
<td>Returns the frequency-domain spectrum trace data for the entire frequency range being measured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With the spectrum view selected (DISPlay:ACP:VIEW SPECTrum) and the spectrum trace on (SENSe:ACP:SPECTrum:ENABle):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In FFT mode (SENSe:ACP:SWEep:TYPE FFT) the number of trace points returned are 343 (cdma2000) or 1715 (W-CDMA). This is with the default span of 5 MHz (cdma2000) or 25 MHz (W-CDMA). The number of points also varies if another offset frequency is set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In sweep mode (SENSe:ACP:SWEep:TYPE SWEep), the number of trace points returned is 601 (for cdma2000 or W-CDMA) for any span.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With bar graph display selected, one point of –999.0 will be returned.</td>
</tr>
<tr>
<td>5 iDEN mode</td>
<td></td>
<td>Returns 4 comma-separated relative power values for the reference and offset channels:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Reference channel – relative power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Reference channel – relative power (duplicate of above)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Lower offset channel – relative power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Upper offset channel – relative power</td>
</tr>
<tr>
<td>5 Total power reference</td>
<td></td>
<td>Returns 12 comma-separated scalar values (in dBm) of the absolute power of the center and the offset frequencies:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Upper adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Lower adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Negative offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Positive offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• • •</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Negative offset frequency (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Positive offset frequency (5)</td>
</tr>
<tr>
<td>5 Power spectral density reference</td>
<td></td>
<td>Returns 12 comma-separated scalar values (in dBm/Hz) of the absolute power of the center and the offset frequencies:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Upper adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Lower adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Negative offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Positive offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• • •</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Negative offset frequency (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Positive offset frequency (5)</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>n</td>
<td>Results Returned</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>iDEN mode</td>
<td>6</td>
<td>Returns 4 comma-separated pass/fail test results for the absolute power of the reference and offset channels: 1. Reference channel absolute power pass/fail 2. Reference channel absolute power pass/fail (duplicate of above) 3. Lower offset channel absolute power pass/fail 4. Upper offset channel absolute power pass/fail</td>
</tr>
<tr>
<td>Total power reference</td>
<td>6</td>
<td>Returns 12 comma-separated scalar values (total power in dB) of the power relative to the carrier at the center and the offset frequencies: 1. Upper adjacent chan center frequency 2. Lower adjacent chan center frequency 3. Negative offset frequency (1) 4. Positive offset frequency (1) 5. Negative offset frequency (5) ... 11. Negative offset frequency (5) 12. Positive offset frequency (5)</td>
</tr>
<tr>
<td>Power spectral density reference</td>
<td>6</td>
<td>Returns 12 comma-separated scalar values (power spectral density in dB) of the power relative to the carrier at the center and offset frequencies: 1. Upper adjacent chan center frequency 2. Lower adjacent chan center frequency 3. Negative offset frequency (1) 4. Positive offset frequency (1) ... 11. Negative offset frequency (5) 12. Positive offset frequency (5)</td>
</tr>
<tr>
<td>iDEN mode</td>
<td>7</td>
<td>Returns 4 comma-separated pass/fail test results for the relative power of the reference and offset channels: 1. Reference channel relative power pass/fail 2. Reference channel relative power pass/fail (duplicate of above) 3. Lower offset channel relative power pass/fail 4. Upper offset channel relative power pass/fail</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>n</td>
<td>Results Returned</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>Total power reference</td>
<td>7</td>
<td>Returns 12 comma-separated scalar values of the pass/fail (0=passed, or 1=failed) results determined by testing the absolute power limit of the center and offset frequencies (measured as total power in dB):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Upper adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Lower adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Negative offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Positive offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Negative offset frequency (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Positive offset frequency (5)</td>
</tr>
<tr>
<td>Power spectral density</td>
<td>7</td>
<td>Returns 12 comma-separated scalar values of the pass/fail (0=passed, or 1=failed) results determined by testing the absolute power limit of the center and offset frequencies (measured as power spectral density in dB):</td>
</tr>
<tr>
<td>reference</td>
<td></td>
<td>1. Upper adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Lower adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Negative offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Positive offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Negative offset frequency (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Positive offset frequency (5)</td>
</tr>
<tr>
<td>Total power reference</td>
<td>8</td>
<td>Returns 12 comma-separated scalar values of the pass/fail (0=passed, or 1=failed) results determined by testing the power limit relative to the center frequency (measured as total power spectral in dB):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Upper adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Lower adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Negative offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Positive offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Negative offset frequency (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Positive offset frequency (5)</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>n</td>
<td>Results Returned</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>Power spectral density reference</td>
<td>8</td>
<td>Returns 12 comma-separated scalar values of the pass/fail (0=passed, or 1=failed) results determined by testing the power limit relative to the center frequency (measured as power spectral density in dB):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Upper adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Lower adjacent chan center frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Negative offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Positive offset frequency (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Negative offset frequency (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Positive offset frequency (5)</td>
</tr>
</tbody>
</table>
50 MHz Amplitude Reference Measurement

This aligns the internal 50 MHz reference signal to an external reference signal that you supply. You must be in the Service mode to use these commands. Use INSTRument:SELection to set the mode.

The general functionality of CONFIGure, FETCH, MEASURE, and READ are described at the beginning of this section. See the SENSE:REFERENCE commands for more measurement related commands.

:CONFIGure:REFERENCE

:FETCH:REFERENCE[n]?

:READ:REFERENCE[n]?

:MEASURE:REFERENCE[n]?

Remarks: For auto adjustment of the internal 50 MHz amplitude reference, use CALibration:AMPLitude:REFERENCE:AADJust command after this measurement has been selected.

Front Panel Access: Measure, 50 MHz Amptd

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>not specified or n=1</td>
<td>Returns 7 scalar results:</td>
</tr>
<tr>
<td></td>
<td>1. RF input average amplitude</td>
</tr>
<tr>
<td></td>
<td>2. 50 MHz reference oscillator average amplitude</td>
</tr>
<tr>
<td></td>
<td>3. Average amplitude error</td>
</tr>
<tr>
<td></td>
<td>4. State (for factory use only)</td>
</tr>
<tr>
<td></td>
<td>5. Level (for factory use only)</td>
</tr>
<tr>
<td></td>
<td>6. Monitored level (for factory use only)</td>
</tr>
<tr>
<td></td>
<td>7. Connector status (for factory use only)</td>
</tr>
<tr>
<td>2</td>
<td>RF input amplitude trace data.</td>
</tr>
<tr>
<td>3</td>
<td>50 MHz oscillator amplitude trace data</td>
</tr>
<tr>
<td>4</td>
<td>Amplitude error strip chart trace data</td>
</tr>
</tbody>
</table>
Channel Power Measurement

This measures the total rms power in a specified integration bandwidth. You must be in the Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use these commands. Use INSTRument:SELECT to set the mode.

The general functionality of CONFigure, FETCH, MEASURE, and READ are described at the beginning of this section. See the SENSE:CHPower commands for more measurement related commands.

:CONFigure:CHPower

:FETCH:CHPower[n]?

:READ:CHPower[n]?

:MEASURE:CHPower[n]?

History: Added to Basic mode, version A.03.00 or later

Front Panel Access: Measure, Channel Power

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Returns unprocessed I/Q trace data, as a series of comma-separated trace points, in volts. The (I) values are listed first in each pair, using the 0 through even-indexed values. The (Q) values are the odd-indexed values.</td>
</tr>
<tr>
<td>not specified or (n=1)</td>
<td>Returns 2 comma-separated scalar results: 1. Channel Power is a floating point number representing the total channel power in the specified integration bandwidth. 2. PSD (Power Spectral Density) is the power (in dBm/Hz) in the specified integration bandwidth.</td>
</tr>
<tr>
<td>2</td>
<td>Returns comma-separated floating point numbers that are the captured trace data of the power (in dBm/resolution BW) of the signal. The frequency span of the captured trace data is specified by the (\text{Span}) key.</td>
</tr>
</tbody>
</table>
Power Statistics CCDF Measurement

This is a statistical power measurement of the complimentary cumulative distribution function (CCDF). You must be in the Basic, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use these commands. Use INSTRument:SELection to set the mode.

The general functionality of CONFigure, FETCH, MEASURE, and READ are described at the beginning of this section. See the SENSE:PSTAT commands for more measurement related commands.

:CONFigure:PSTATistic
:FETCH:PSTATistic[n]?
:READ:PSTATistic[n]?
:MEASURE:PSTATistic[n]?

History: Version A.03.00 or later, added in Basic A.04.00

Front Panel Access: Measure, Power Stat CCDF

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Returns unprocessed I/Q trace data, as a series of comma-separated trace points, in volts. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values,</td>
</tr>
</tbody>
</table>
| not specified or n=1 | Returns 10 comma-separated scalar results:
1. Average input power (in dBm)
2. Probability at the average input power level (in %)
3. Power level that has 10% of the power
4. Power level that has 1% of the power
5. Power level that has 0.1% of the power
6. Power level that has 0.01% of the power
7. Power level that has 0.001% of the power
8. Power level that has 0.0001% of the power
9. Peak power (in dB)
10. Count |
<table>
<thead>
<tr>
<th>n</th>
<th>Returns a series of 5001 floating point numbers (in percent) that represent the current measured power stat trace. This is the probability at particular power levels (average power), in the following order:</th>
</tr>
</thead>
</table>
| 2 | 1. Probability at 0 dB power
2. Probability at 0.1 dB power
3. Probability at 0.2 dB power
...
5000. Probability at 49.9 dB power
5001. Probability at 50.0 dB power |
<table>
<thead>
<tr>
<th>3</th>
<th>Returns a series of 5001 floating point numbers (in percent) that represent the Gaussian trace. This is the probability at particular power levels (average power), in the following order:</th>
</tr>
</thead>
</table>
| 3 | 1. Probability at 0 dB power
2. Probability at 0.1 dB power
3. Probability at 0.2 dB power
...
5000. Probability at 49.9 dB power
5001. Probability at 50.0 dB power |
<table>
<thead>
<tr>
<th>4</th>
<th>Returns a series of 5001 floating point numbers (in percent) that represent the user-definable reference trace. This is the probability at particular power levels (average power), in the following order:</th>
</tr>
</thead>
</table>
| 4 | 1. Probability at 0 dB power
2. Probability at 0.1 dB power
3. Probability at 0.2 dB power
...
5000. Probability at 49.9 dB power
5001. Probability at 50.0 dB power |
Power vs. Time Measurement

This measures the average power during the “useful part” of the burst comparing the power ramp to required timing mask. You must be in EDGE, GSM or Service mode to use these commands. Use INStrument:SELect to set the mode.

The general functionality of CONFIGure, FETCH, MEASure, and READ are described at the beginning of this section. See the SENSE:PVTime commands for more measurement related commands.

:CONFigure:PVTime
:FETCh:PVTime[n]?
:READ:PVTime[n]?
:MEASure:PVTime[n]?

Front Panel Access: Measure, Power vs Time

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Returns unprocessed I/Q trace data, as a series of comma-separated trace points, in volts. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.</td>
</tr>
</tbody>
</table>
not specified or n=1

Returns the following comma-separated scalar results:

1. **Sample time** is a floating point number that represents the time between samples when using the trace queries (n=0,2,etc.).

2. **Power of single burst** is the mean power (in dBm) across the useful part of the selected burst in the most recently acquired data, or in the last data acquired at the end of a set of averages. If averaging is on, the power is for the last burst.

3. **Power averaged** is the power (in dBm) of N averaged bursts, if averaging is on. The power is averaged across the useful part of the burst. Average m is a single burst from the acquired trace. If there are multiple bursts in the acquired trace, only one burst is used for average m. This means that N traces are acquired to make the complete average. If averaging is off, the value of **power averaged** is the same as the **power single burst** value.

4. **Number of samples** is the number of data points in the captured signal. This number is useful when performing a query on the signal (i.e. when n=0,2,etc.).

5. **Start point of the useful part of the burst** is the index of the data point at the start of the useful part of the burst

6. **Stop point of the useful part of the burst** is the index of the data point at the end of the useful part of the burst

7. **Index of the data point where T₀ occurred.**

8. **Burst width of the useful part of the burst** is the width of the burst measured at −3dB below the mean power in the useful part of the burst.

9. **Maximum value** is the maximum value of the most recently acquired data (in dBm).

10. **Minimum value** is the minimum value of the most recently acquired data (in dBm).

11. **Burst search threshold** is the value (in dBm) of the threshold where a valid burst is identified, after the data has been acquired.

12. **IQ point delta** is the number of data points offset that are internally applied to the useful data in traces n=2,3,4. You must apply this correction value to find the actual location of the **Start**, **Stop**, or **T₀** values.

2 Returns comma-separated trace points of the entire captured I/Q trace data. These data points are floating point numbers representing the power of the signal (in dBm). There are N data points, where N is the **number of samples**. The period between the samples is defined by the **sample time**.

3 Returns comma-separated points representing the upper mask (in dBm).

4 Returns comma-separated points representing the lower mask (in dBm).
Sensor Measurement

This checks the output of three sensors in the RF and IF circuitry. You must be in the Service mode to use these commands. Use INSTRument:SELection to set the mode.

The general functionality of CONFigure, FETCH, MEASure, and READ are described at the beginning of this section.

:CONFigure:SENSors

:FETCH:SENSors[n]?

:READ:SENSors[n]?

:MEASure:SENSors[n]?

Front Panel Access: With Service Mode selected, Measure, Sensors

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not valid</td>
</tr>
<tr>
<td>not specified or n=1</td>
<td>Returns the following comma-separated scalar results:</td>
</tr>
<tr>
<td></td>
<td>1. IF signal amplitude is the ADC value for the detected 21.4 MHz IF signal at the input to the analog IF.</td>
</tr>
<tr>
<td></td>
<td>2. Calibration Oscillator Level is a floating point number (is not implemented, currently returns a zero).</td>
</tr>
<tr>
<td></td>
<td>3. RF temperature is a floating point number for the current temperature in the RF section (in degrees Celsius).</td>
</tr>
</tbody>
</table>
Spectrum (Frequency Domain) Measurement

This measures the amplitude of your input signal with respect to the frequency. It provides spectrum analysis capability using FFT (fast Fourier transform) measurement techniques. You must select the appropriate mode using INSTRument:SELection, to use these commands.

The general functionality of CONFIGure, FETCH, MEASURE, and READ are described at the beginning of this section. See the SENSe:SPECTrum commands for more measurement related commands.

:CONFIGure:SPECTrum

:FETCh:SPECTrum[n]?

:READ:SPECTrum[n]?

:MEASURE:SPECTrum[n]?

Front Panel
Access: Measure, Spectrum (Freq Domain)

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Returns unprocessed I/Q trace data, as a series of comma-separated trace points, in volts. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.</td>
</tr>
</tbody>
</table>
Results Returned

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
</table>
| not specified or \(n=1 \) | Returns the following comma-separated scalar results:
1. **FFT peak** is the FFT peak amplitude.
2. **FFT frequency** is the FFT frequency of the peak amplitude.
3. **FFT points** is the Number of points in the FFT spectrum.
4. **First FFT frequency** is the frequency of the first FFT point of the spectrum.
5. **FFT spacing** is the frequency spacing between the FFT points of the spectrum.
6. **Time domain points** is the number of points in the time domain trace used for the FFT. The number of points doubles if the data is complex instead of real. See the time domain scaler description below.
7. **First time point** is the time of the first time domain point, where time zero is the trigger event.
8. **Time spacing** is the time spacing between the time domain points. The time spacing value doubles if the data is complex instead of real. See the time domain scaler description below.
9. **Time domain** returns a 1 if time domain is complex (I/Q) and complex data will be returned. It returns a 0 if the data is real. (raw ADC samples) When this value is 1 rather than 0 (complex vs. real data), the time domain points and the time spacing scalers both increase by a factor of two.
10. **Scan time** is the total scan time of the time domain trace used for the FFT. The total scan time = (time spacing) \(\times \) (time domain points – 1)
11. **Current average count** is the current number of data measurements that have already been combined, in the averaging calculation. |
<p>| 2, Service mode only | Returns the trace data of the log-magnitude versus time. (That is, the RF envelope.) |
| 3 | Returns the I and Q trace data. It is represented by I and Q pairs (in volts) versus time. |
| 4 | Returns spectrum trace data. That is, the trace of log-magnitude versus frequency. (The trace is computed using a FFT.) |
| 5, Service mode only | Returns the averaged trace data of log-magnitude versus time. (That is, the RF envelope.) |
| 6 | Not used. |
| 7 | Returns the averaged spectrum trace data. That is, the trace of the averaged log-magnitude versus frequency. |
| 8 | Not used. |
| 9, Service mode only | Returns a trace containing the shape of the FFT window. |</p>
<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, Service mode only</td>
<td>Returns trace data of the phase of the FFT versus frequency.</td>
</tr>
</tbody>
</table>
Timebase Frequency Measurement

The general functionality of CONFigure, FETCH, MEASURE, and READ are described at the beginning of this section. See the SENSE:TBFREQUENCY commands for more measurement related commands.

You must be in the Service mode to use these commands. Use INSTRUMENT:SELECT to set the mode.

:CONFigure:TBFREQUENCY

:FETCH:TBFREQUENCY[n]?

:READ:TBFREQUENCY[n]?

:MEASURE:TBFREQUENCY[n]?

Remarks: For auto adjustment of the internal frequency reference (10 MHz timebase), use the CALibration:FREQuency:REFerence:AADjust command after this measurement has been selected.

Front Panel Access: Measure, Timebase Freq

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not valid</td>
</tr>
</tbody>
</table>
| not specified or n=1 | Returns 3 scalar results:
 1. RF input average amplitude
 2. Average frequency error
 3. Adjustment in process (returns 1 if an adjustment is being performed, returns 0 if no adjustment is in process) |
| 2 | Frequency error stripchart trace data. |
Waveform (Time Domain) Measurement

This measures the power in your input signal with respect to time and is equivalent to zero-span operation in a traditional spectrum analyzer. You must select the appropriate mode using INStrument:SELect, to use these commands.

The general functionality of CONFigure, FETCH, MEASURE, and READ are described at the beginning of this section. See the SENSE:WAVEform commands for more measurement related commands.

:CONFigure:WAVEform

:FETCh:WAVEform[n]?

:READ:WAVEform[n]?

:MEASURE:WAVEform[n]?

Front Panel Access: Measure, Waveform (Time Domain)

After the measurement is selected, press Restore Meas Defaults to restore factory defaults.

Measurement Results Available

<table>
<thead>
<tr>
<th>n</th>
<th>Results Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Returns unprocessed I/Q trace data, as a series of comma-separated trace points, in volts. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.</td>
</tr>
<tr>
<td>n</td>
<td>Results Returned</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>not specified or n=1</td>
<td>Returns the following comma-separated scalar results:</td>
</tr>
<tr>
<td></td>
<td>1. Sample time is a floating point number representing the time between samples when using the trace queries (n=0,2,etc).</td>
</tr>
<tr>
<td></td>
<td>2. Mean power is the mean power (in dBm). This is either the power across the entire trace, or the power between markers if the markers are enabled. If averaging is on, the power is for the latest acquisition.</td>
</tr>
<tr>
<td></td>
<td>3. Mean power averaged is the power (in dBm) for N averages, if averaging is on. This is either the power across the entire trace, or the power between markers if the markers are enabled. If averaging is on, the power is for the latest acquisition. If averaging is off, the value of the mean power averaged is the same as the value of the mean power.</td>
</tr>
<tr>
<td></td>
<td>4. Number of samples is the number of data points in the captured signal. This number is useful when performing a query on the signal (i.e. when n=0,2,etc.).</td>
</tr>
<tr>
<td></td>
<td>5. Peak-to-mean ratio has units of dB. This is the ratio of the maximum signal level to the mean power. Valid values are only obtained with averaging turned off. If averaging is on, the peak-to-mean ratio is calculated using the highest peak value, rather than the displayed average peak value.</td>
</tr>
<tr>
<td></td>
<td>6. Maximum value is the maximum of the most recently acquired data (in dBm).</td>
</tr>
<tr>
<td></td>
<td>7. Minimum value is the minimum of the most recently acquired data (in dBm).</td>
</tr>
<tr>
<td>2</td>
<td>Returns comma-separated trace points of the entire captured trace data. These data points are floating point numbers representing the power of the signal (in dBm). There are N data points, where N is the number of samples. The period between the samples is defined by the sample time.</td>
</tr>
</tbody>
</table>
MEMory Subsystem

The purpose of the MEMory subsystem is to manage instrument memory. This specifically excludes memory used for mass storage which is defined in the MMEMory Subsystem.

Install Application

:MEMory:INSTall:APPLication <filename>

Installs the specified application from an external drive to the instrument. Each application allows you to make a specific set of measurements easily and accurately. Installation requires a 12-character license key that you received with your application. The license key number is unique to the option and instrument serial number. If it cannot be located, contact your local Hewlett-Packard Sales and Service office to re-obtain the information. (Have the instrument model number, option and serial number available.)

Front Panel
Access: System, Uninstall

Un-install Application

:MEMory:UNINstall:APPLication <filename>

Uninstalls (deletes) the specified application from the instrument memory. Re-installation of these programs requires a license key that can be found in the documentation. It can also be found in the System, Options information screen. Please make a note of this number as it will be needed later to re-install the application.

Front Panel
Access: System, Uninstall
MMEMory Subsystem

The purpose of the MMEMory subsystem is to provide access to mass storage devices such as internal or external disk drives. Any part of memory that is treated as a device will be in the MMEMory subsystem.

If mass storage is not specified in the filename, the default mass storage specified in the MSIS command will be used.

Memory Available or In-Use

:MMEMory:FREE?

Queries the memory for optional application modes, like option BAH (GSM mode) or option BAE (NADC/PDC mode). The query returns two values, the memory currently in use and the free memory. The sum of the two values is the total instrument memory.

History: Revision A.03.00 or later

Front Panel Access: System, File System

Select a Memory Device

:MMEMory:MSIS A | [C]

:MMEMory:MSIS?

Selects a default mass storage device which is used by all MMEMory commands.

The query returns the default mass storage device.

- A is the 3.5 inch floppy disk
- C is the internal memory

Example: MMEM:MSIS C

History: Added in version A.04.00 and later

Front Panel Access: Print Setup, Print To File, File Location
Save Screen Image to File

:MMEMory:STORe:SCReen[:IMMediate] [<filename>]

The :MMEMory:STORe:SCReen[:IMMediate] command will write the screen image to a file regardless of what the front panel Print Setup, Print To key function is set to. Screen files are always saved in color with an orientation of portrait.

The <filename> variable is composed of:
[<device>:]<name>[.<extension>] where:

- <filename> is a string that must be enclosed in single (’) or double (") quotes.
- <device> must be A or C. Upper or lower case is acceptable. If device is not specified the default is set by MMEM:MSIS.
- <name> must be 1 to 8 characters in length and consist only of the characters a..z, A..Z and 0..9 (no underscore). If a name is not specified the default is screen1.
- <extension> must be .gif|.bmp|.wmf. (Note the lower case.) If a file type extension is not specified the default is set by MMEM:STORE:SCREEN:FILE:TYPE

Example: MMEM:STOR:SCR “C:myscreen.gif”

Remarks: When writing to A, <name> can be any valid DOS-compatible name.

When writing to C, <name> must be screen1 . . . screen6. (Note the lower case.)

If you write a file to C any existing screen file with the same name will be replaced, regardless of the extensions. For example, file screen3.gif will replace file screen3.bmp

History: Added in version A.04.00 and later

Front Panel Access: Print Setup, Print To File

Print
Screen File Type

:MMEMory:STORe:SCReen:FILE [:TYPE] GIF|BMP|WMF

Sets the default file type for the :MMEMory:STORe:SCReen command.

Factory Preset and *RST: GIF. The file type setting is persistant. It stays at the last user-selected setting even through a power cycle.

Default: GIF

History: Added in version A.04.00 and later

Front Panel Access: Print Setup, Print To File, File Type

Screen Image Background

:MMEMory:STORe:SCReen:IMAGe NORMal|INVert

:MMEMory:STORe:SCReen:IMAGe?

Selects the background color of trace data windows when writing to a file.

NORMal background is black.

INVert background is white.

Factory Preset and *RST: The image setting is persistant. It stays at the last user-selected setting even through a power cycle.

Default: Invert

History: Added in version A.04.00 and later

Front Panel Access: Print Setup, Print To File, Image
READ Subsystem

The READ? commands are used with several other commands and are documented in the section on the “MEASURE Group of Commands” on page 233.

Initiate and Read Measurement Data

:READ: <measurement>[n]?

A READ? query must specify the desired measurement. It will cause a measurement to occur without changing any of the current settings and will return any valid results. The code number n selects the kind of results that will be returned. The available measurements and data results are described in the “MEASURE Group of Commands” on page 233.
SENSe Subsystem

Sets the instrument state parameters so that you can measure the input signal.

Adjacent Channel Power Measurement

Commands for querying the adjacent channel power measurement results and for setting to the default values are found in the “MEASure Group of Commands” on page 233. The equivalent front panel keys for the parameters described in the following commands, are found under the Meas Setup key, after the ACP or ACPR measurement has been selected from the MEASURE key menu.

Adjacent Channel Power—Average Count

[:SENSe]:ACP:AVERage:COUNt <integer>

[:SENSe]:ACP:AVERage:COUNt?

Set the number of data acquisitions that will be averaged. After the specified number of average counts, the average mode (termination control) setting determines the average action.

Factory Preset

and *RST: 10 for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib)

20 for Basic, cdmaOne, iDEN

Range: 1 to 10,000

Remarks: Use INSTRument:SELect to set the mode.

Adjacent Channel Power—Averaging State

[:SENSe]:ACP:AVERage[:STATe] OFF|ON|0|1

[:SENSe]:ACP:AVERage[:STATe]?

Turn average on or off.

Factory Preset

and *RST: On

Off for iDEN mode

Remarks: Use INSTRument:SELect to set the mode.
Adjacent Channel Power—Averaging Termination Control

[:SENSe]:ACP:AVERage:TCONtrl EXPonential|REPeat

[:SENSe]:ACP:AVERage:TCONtrl?

Select the type of termination control used for averaging. This determines the averaging action after the specified number of data acquisitions (average count) is reached.

- **Exponential** – Each successive data acquisition after the average count is reached, is exponentially weighted and combined with the existing average.
- **Repeat** – After reaching the average count, the averaging is reset and a new average is started.

Factory Preset and *RST:
- Repeat for basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib)
- Exponential for NADC, PDC, iDEN

Remarks: Use INStrument:SELect to set the mode.

Adjacent Channel Power—Type of Carrier Averaging

[:SENSe]:ACP:AVERage:TYPE MAXimum|RMS

[:SENSe]:ACP:AVERage:TYPE?

Selects the type of averaging to be used for the measurement of the carrier.

Factory Preset and *RST:
- RMS

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INStrument:SELect to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00
Adjacent Channel Power—Carrier Channel BW

Basic, cdmaOne, iDEN mode

\[:\text{SENSe}]:\text{ACP}:\text{BANDwidth|BWIDth}:\text{INTegration} <\text{freq}> \\
\[:\text{SENSe}]:\text{ACP}:\text{BANDwidth|BWIDth}:\text{INTegration}? \\

\text{cdma2000}, \text{W-CMDA (3GPP) mode}

\[:\text{SENSe}]:\text{ACP}:\text{BANDwidth}[\text{n}]|\text{BWIDth}[\text{n}]:\text{INTegration} <\text{freq}> \\
\[:\text{SENSe}]:\text{ACP}:\text{BANDwidth}[\text{n}]|\text{BWIDth}[\text{n}]:\text{INTegration}? \\

\text{cdmaOne, W-CMDA (Trial & Arib) mode}

\[:\text{SENSe}]:\text{ACP}:\text{BANDwidth}[\text{n}]|\text{BWIDth}[\text{n}]:\text{INTegration}[\text{n}] <\text{freq}> \\
\[:\text{SENSe}]:\text{ACP}:\text{BANDwidth}[\text{n}]|\text{BWIDth}[\text{n}]:\text{INTegration}[\text{n}]? \\

Set the Integration bandwidth that will be used for the main (carrier) channel.

\text{BANDwidth}[\text{n}]|\text{BWIDth}[\text{n}]:

\text{n=1} is base station and 2 is mobiles. The default is base station (1).

\text{INTegration}[\text{n}]:

cdmaOne mode \text{n=1} is cellular bands and 2 is pcs bands. The default is cellular.

\text{W-CDMA (Trial & Arib) mode} \text{n=1} is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

Factory Preset and \text{*RST:}

<table>
<thead>
<tr>
<th>Mode</th>
<th>Format (Modulation Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>1.23 MHz</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>1.23 MHz</td>
</tr>
<tr>
<td>iDEN</td>
<td>18 kHz</td>
</tr>
<tr>
<td>cdma2000</td>
<td>1.23 MHz</td>
</tr>
<tr>
<td>W-CDMA (3GPP)</td>
<td>3.84 MHz</td>
</tr>
<tr>
<td>W-CDMA (Trial & Arib)</td>
<td>ARIB (n=1) 3GPP (n=2) Trial (n=3)</td>
</tr>
<tr>
<td></td>
<td>4.069 MHz 3.84 MHz 4.096 MHz</td>
</tr>
</tbody>
</table>
Range: 300 Hz to 20 MHz for Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib) mode
1 kHz to 5 MHz for iDEN
Default Unit: Hz
Remarks: With measurement type set at (TPR) total power reference, 1.40 MHz is sometimes used. Using 1.23 MHz will give a power that is very nearly identical to the 1.40 MHz value, and using 1.23 MHz will also yield the correct power spectral density with measurement type set at (PSD) reference. However, a setting of 1.40 MHz will not give the correct results with measurement type set at PSD reference.
You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), iDEN mode to use this command. Use INSTrument:SELect to set the mode.

Adjacent Channel Power—Reference Channel FFT Segments

[:SENSe]:ACP:FFTSegment <integer>
[:SENSe]:ACP:FFTSegment?

Selects the number of FFT segments used in making the measurement of the reference channel (carrier). In automatic mode the measurement optimizes the number of FFT segments required for the shortest measurement time. The minimum number of segments required to make a measurement is set by your desired measurement bandwidth. Selecting more than the minimum number of segments will give you more dynamic range for making the measurement, but the measurement will take longer to execute.

To use this command you must first set SENSe:ACP:FFTS:AUTO to off.

Factory Preset and *RST: 1

Range: 1 to 12

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INSTrument:SELect to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00
SENSe Subsystem

Adjacent Channel Power—Reference Channel FFT Segments State

\[
[:\text{SENSe}:]\text{ACP:FFTSegment}\text{:AUTO} \text{ OFF|ON|0|1}
\]

\[
[:\text{SENSe}:]\text{ACP:FFTSegment}\text{:AUTO}?
\]

The automatic mode selects the optimum number of FFT segments to measure the reference channel (carrier), while making the fastest possible measurement.

Factory Preset and *RST: On

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INSTRument:SELection to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00

Adjacent Channel Power—Absolute Amplitude Limits

iDEN mode

\[
[:\text{SENSe}:]\text{ACP:OFFSet}\text{:ABSolute} \text{ <power>}
\]

\[
[:\text{SENSe}:]\text{ACP:OFFSet}\text{:ABSolute}?
\]

Basic, cdmaOne

\[
[:\text{SENSe}:]\text{ACP:OFFSet}\text{:LIST}\text{:ABSolute} \text{ <power>,<power>,<power>,<power>,<power>}
\]

\[
[:\text{SENSe}:]\text{ACP:OFFSet}\text{:LIST}\text{:ABSolute}?
\]

cdma2000, W-CDMA (3GPP) mode

\[
[:\text{SENSe}:]\text{ACP:OFFSet}[\text{n}]:\text{LIST}\text{:ABSolute} \text{ <power>,<power>,<power>,<power>,<power>}
\]

\[
[:\text{SENSe}:]\text{ACP:OFFSet}[\text{n}]:\text{LIST}\text{:ABSolute}?
\]

W-CDMA (Trial & Arib) mode

\[
[:\text{SENSe}:]\text{ACP:OFFSet}[\text{n}]:\text{LIST}[\text{n}]:\text{ABSolute} \text{ <power>,<power>,<power>,<power>,<power>}
\]

\[
[:\text{SENSe}:]\text{ACP:OFFSet}[\text{n}]:\text{LIST}[\text{n}]:\text{ABSolute}?
\]

Sets the absolute amplitude levels to test against for each of the custom offsets. The list must contain five (5) entries. If there is more than one offset, the offset closest to the carrier channel is the first one in the list. [:SENSe]:ACP:OFFSet[n]:LIST[n]:TEST selects the type of testing to be done at each offset.

You can turn off (not use) specific offsets with the [:SENSe]:ACP:OFFSet[n]:LIST:STATe command.
The query returns five (5) real numbers that are the current absolute amplitude test limits.

Offset[n]
n=1 is base station and 2 is mobiles. The default is base station (1).

List[n]

cdmaOne mode
n=1 is cellular bands and 2 is pcs bands. The default is cellular.

W-CDMA (Trial & Arib) mode
n=1 is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

Factory Preset
and *RST:*

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variant</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td></td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>BS cellular</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
</tr>
<tr>
<td></td>
<td>BS pcs</td>
<td>0 dBm</td>
<td>–13 dBm</td>
<td>–13 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
</tr>
<tr>
<td></td>
<td>MS cellular</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
</tr>
<tr>
<td></td>
<td>MS pcs</td>
<td>0 dBm</td>
<td>–13 dBm</td>
<td>–13 dBm</td>
<td>0 dBm</td>
<td>0 dBm</td>
</tr>
<tr>
<td>cdma2000</td>
<td></td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
</tr>
<tr>
<td>W-CDMA (3GPP)</td>
<td></td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
</tr>
<tr>
<td>W-CDMA (Trial & Arib)</td>
<td></td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
<td>50 dBm</td>
</tr>
<tr>
<td>iDEN</td>
<td></td>
<td>0 dBm</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Range:
–200.0 dBm to 50.0 dBm

Default Unit:
dBm

Remarks:
You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or iDEN mode to use this command. Use INStrument:SELect to set the mode.
Adjacent Channel Power—Type of Offset Averaging

[:SENSe]:ACP:OFFSet:LIST:AVERage:TYPE
LOG|MAXimum|MINimum|RMS|SCALar

[:SENSe]:ACP:OFFSet:LIST:AVERage:TYPE?

Selects the type of averaging to be used for the measurement at each offset. You can turn off (not use) specific offsets with the SENS:ACP:OFFSet:LIST:STATE command.

Factory Preset
and *RST:

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INSTRument:SELection to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>RMS</td>
<td>RMS</td>
<td>RMS</td>
<td>RMS</td>
<td>RMS</td>
</tr>
</tbody>
</table>

Adjacent Channel Power—Define Resolution Bandwidth List

iDEN mode

[:SENSe]:ACP:OFFSet:BANDwidth|BWIDth <res_bw>

[:SENSe]:ACP:OFFSet:BANDwidth|BWIDth?

Basic mode

[:SENSe]:ACP:OFFSet:LIST:BANDwidth|BWIDth <res_bw>, <res_bw>, <res_bw>, <res_bw>, <res_bw>

[:SENSe]:ACP:OFFSet:LIST:BANDwidth|BWIDth?

cdma2000, W-CDMA (3GPP) mode

[:SENSe]:ACP:OFFSet[n]:LIST:BANDwidth|BWIDth <res_bw>, <res_bw>, <res_bw>, <res_bw>, <res_bw>

[:SENSe]:ACP:OFFSet[n]:LIST:BANDwidth|BWIDth?

cdmaOne, W-CDMA (Trial & Arib) mode

[:SENSe]:ACP:OFFSet[n]:LIST[n]:BANDwidth|BWIDth <res_bw>, <res_bw>, <res_bw>, <res_bw>, <res_bw>

[:SENSe]:ACP:OFFSet[n]:LIST[n]:BANDwidth|BWIDth?
Define the custom resolution bandwidth(s) for the adjacent channel power testing. If there is more than one bandwidth, the list must contain five (5) entries. Each resolution bandwidth in the list corresponds to an offset frequency in the list defined by [:SENSe:ACP:OFFSet[n]:LIST[n]:FREQuency]. You can turn off (not use) specific offsets with the [:SENSe:ACP:OFFSet[n]:LIST[n]:STATe] command.

Offset[n] n=1 is base station and 2 is mobiles. The default is base station (1).

List[n]

cdmaOne mode n=1 is cellular bands and 2 is pcs bands. The default is cellular.

W-CDMA (Trial & Arib) mode n=1 is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variant</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDEN</td>
<td></td>
<td>10 kHz</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>BS cellular</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td></td>
<td>BS pcs</td>
<td>30 kHz</td>
<td>12.5 kHz</td>
<td>1 MHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td></td>
<td>MS cellular</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td></td>
<td>MS pcs</td>
<td>30 kHz</td>
<td>12.5 kHz</td>
<td>1 MHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td>cdma2000</td>
<td></td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td>W-CDMA (3GPP)</td>
<td></td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
</tr>
<tr>
<td>W-CDMA (Trial & Arib)</td>
<td>3GPP</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
<td>3.84 MHz</td>
</tr>
<tr>
<td></td>
<td>Trial, ARIB</td>
<td>4.096 MHz</td>
<td>4.096 MHz</td>
<td>4.096 MHz</td>
<td>4.096 MHz</td>
<td>4.096 MHz</td>
</tr>
</tbody>
</table>

Range: 300 Hz to 20 MHz for cdmaOne, Basic, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode

1 kHz to 5 MHz for iDEN mode

Default Unit: Hz
Remarks: You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or iDEN mode to use this command. Use INSTrument:SELect to set the mode.

Adjacent Channel Power—FFT Segments

[:SENSe]:ACP:OFFSet:LIST:FFTSegment <integer>,<integer>,<integer>,<integer>,<integer>

[:SENSe]:ACP:OFFSet:LIST:FFTSegment?

Selects the number of FFT segments used in making the measurement. In automatic mode the measurement optimizes the number of FFT segments required for the shortest measurement time. The minimum number of segments required to make a measurement is set by your desired measurement bandwidth. Selecting more than the minimum number of segments will give you more dynamic range for making the measurement, but the measurement will take longer to execute.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Range: 1 to 12

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INSTrument:SELect to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00
Adjacent Channel Power—Automatic FFT Segments

[:SENSe]:ACP:OFFSet:LIST:FFTSegment:AUTO OFF|ON|0|1,
OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1
[:SENSe]:ACP:OFFSet:LIST:FFTSegment:AUTO?

The automatic mode selects the optimum number of FFT segments to make the fastest possible measurement.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Remarks: You must be in Basic mode to use this command. Use INSTRument:SELection to set the mode.

History: Revision A.03.00 or later

Adjacent Channel Power—Define Offset Frequency List

iDEN mode

[:SENSe]:ACP:OFFSet[:FREQuency] <f_offset>
[:SENSe]:ACP:OFFSet[:FREQuency]?

Basic mode

[:SENSe]:ACP:OFFSet:LIST[:FREQuency]
<f_offset>,<f_offset>,<f_offset>,<f_offset>,<f_offset>
[:SENSe]:ACP:OFFSet:LIST[:FREQuency]?

cdma2000, W-CDMA (3GPP) mode

[:SENSe]:ACP:OFFSet [n]:LIST[:FREQuency]
<f_offset>,<f_offset>,<f_offset>,<f_offset>,<f_offset>
[:SENSe]:ACP:OFFSet [n]:LIST[:FREQuency]?

cdmaOne, W-CDMA (Trial & Arib) mode

[:SENSe]:ACP:OFFSet [n]:LIST[n][:FREQuency]
<f_offset>,<f_offset>,<f_offset>,<f_offset>,<f_offset>
[:SENSe]:ACP:OFFSet [n]:LIST[n][:FREQuency]?
Define the custom set of offset frequencies at which the switching transient spectrum part of the ACP measurement will be made. The list contains five (5) entries for offset frequencies. Each offset frequency in the list corresponds to a resolution bandwidth in the bandwidth list.

An offset frequency of zero turns the display of the measurement for that offset off, but the measurement is still made and reported. You can turn off (not use) specific offsets with the [:SENSe]:ACP:OFFSet:LIST:STATe command.

Offset[n] n=1 is base station and 2 is mobiles. The default is base station (1).

List[n]

cdmaOne mode n=1 is cellular bands and 2 is pcs bands. The default is cellular.

W-CDMA (Trial & Arib) mode n=1 is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variant</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDEN</td>
<td></td>
<td>25 kHz</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td>750 kHz</td>
<td>1.98 MHz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>BS cellular</td>
<td>750 kHz</td>
<td>1.98 MHz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td></td>
<td>BS pcs</td>
<td>885 kHz</td>
<td>1.25625 MHz</td>
<td>2.75 MHz</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td></td>
<td>MS cellular</td>
<td>885 kHz</td>
<td>1.98 MHz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td></td>
<td>MS pcs</td>
<td>885 kHz</td>
<td>1.25625 MHz</td>
<td>2.75 MHz</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>cdma2000</td>
<td>BTS</td>
<td>750 kHz</td>
<td>1.98 MHz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td>885 kHz</td>
<td>1.98 MHz</td>
<td>0 Hz</td>
<td>0 Hz</td>
<td>0 Hz</td>
</tr>
<tr>
<td>W-CDMA (3GPP)</td>
<td></td>
<td>5 MHz</td>
<td>10 MHz</td>
<td>15 MHz</td>
<td>20 MHz</td>
<td>25 MHz</td>
</tr>
<tr>
<td>W-CDMA (Trial & Arib)</td>
<td></td>
<td>5 MHz</td>
<td>10 MHz</td>
<td>15 MHz</td>
<td>20 MHz</td>
<td>25 MHz</td>
</tr>
</tbody>
</table>
Range: 0 Hz to 20 MHz for iDEN, Basic
0 Hz to 45 MHz for cdmaOne
10 Hz to 45 MHz for cdmaOne
0 Hz to 100 MHz for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib)

Default Unit: Hz

Remarks: You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or iDEN mode to use this command. Use INStrument:SELect to set the mode.

Adjacent Channel Power—Number of Measured Points

[:SENSe]:ACP:OFFSET:LIST:POINts
<integer>,<integer>,<integer>,<integer>,<integer>

[:SENSe]:ACP:OFFSET:LIST:POINts?

Selects the number of data points. The automatic mode chooses the optimum number of points for the fastest measurement time with acceptable repeatability. The minimum number of points that could be used is determined by the sweep time and the sampling rate. You can increase the length of the measured time record (capture more of the burst) by increasing the number of points, but the measurement will take longer. Use [:SENSe]:ACP:POINTs to set the number of points used for measuring the reference channel.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
</tbody>
</table>

Range: 64 to 65536

Remarks: The fastest measurement times are obtained when the number of points measured is 2^n.

You must be in Basic, cdmaOne mode to use this command. Use INStrument:SELe ct to set the mode.
Adjacent Channel Power—Automatic Measurement Points

[:SENSe]:ACP:OFFSet:LIST:POINts:AUTO OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1
[:SENSe]:ACP:OFFSet:LIST:POINts:AUTO?

Automatically selects the number of points for the optimum measurement speed.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Remarks: You must be in Basic or cdmaOne mode to use this command. Use INSTrument:SELect to set the mode.

Adjacent Channel Power—Relative Attenuation

[:SENSe]:ACP:OFFSet:LIST:RATTenuation <rel_powr>,<rel_powr>,<rel_powr>,<rel_powr>,<rel_powr>
[:SENSe]:ACP:OFFSet:LIST:RATTenuation?

Sets a relative amount of attenuation for the measurements made at your offsets. The amount of attenuation is always specified relative to the attenuation that is required to measure the carrier channel. Since the offset channel power is lower than the carrier channel power, less attenuation is required to measure the offset channel and you get wider dynamic range for the measurement.

You can turn off (not use) specific offsets with the SENS:ACP:OFFSet:LIST:STATe command.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
</tbody>
</table>

Range: −40 to 0 dB, but this relative attenuation cannot exceed the absolute attenuation range of 0 to 40 dB.

Default Unit: dB
Remarks: Remember that the attenuation that you specify is always relative to the amount of attenuation used for the carrier channel. Selecting negative attenuation means that you want less attenuation used. For example, if the measurement must use 20 dB of attenuation for the carrier measurement and you want to use 12 dB less attenuation for the first offset, you would send the value −12 dB.

You must be in Basic or cdmaOne mode to use this command. Use INStrument:SELection to set the mode.

Adjacent Channel Power—Relative Attenuation Control

[:SENSe]:ACP:OFFSet:LIST:RATTenuation:AUTO OFF|ON|0|1

[:SENSe]:ACP:OFFSet:LIST:RATTenuation:AUTO?

Automatically sets a relative attenuation to make measurements with the optimum dynamic range at the current carrier channel power.

You can turn off (not use) specific offsets with the SENS:ACP:OFFSet:LIST:STATe command.

Factory Preset
and *RST: On

Remarks: Does this really work in Basic Mode? or just cdmaOne??

You must be in Basic or cdmaOne mode to use this command. Use INStrument:SELection to set the mode.
Adjacent Channel Power—Amplitude Limits Relative to the Carrier

iDEN mode

[:SENSe]:ACP:OFFSet:RCARrier <rel_power>

[:SENSe]:ACP:OFFSet:RCARrier?

Basic mode, cdmaOne

[:SENSe]:ACP:OFFSet:LIST:RCARrier
<rel_power>,<rel_power>,<rel_power>,<rel_power>,<rel_power>

[:SENSe]:ACP:OFFSet:LIST:RCARrier?

cdma2000, W-CDMA (3GPP) mode

[:SENSe]:ACP:OFFSet[n]:LIST:RCARrier
<rel_power>,<rel_power>,<rel_power>,<rel_power>,<rel_power>

[:SENSe]:ACP:OFFSet[n]:LIST:RCARrier?

cdmaOne, W-CDMA (Trial & Arib) mode

[:SENSe]:ACP:OFFSet[n]:LIST[n]:RCARrier
<rel_power>,<rel_power>,<rel_power>,<rel_power>,<rel_power>

[:SENSe]:ACP:OFFSet[n]:LIST[n]:RCARrier?

Sets the amplitude levels to test against for any custom offsets. This amplitude level is relative to the carrier amplitude. If multiple offsets are available, the list contains five (5) entries. The offset closest to the carrier channel is the first one in the list.

[:SENSe]:ACP:OFFSet[n]:LIST[n]:TEST selects the type of testing to be done at each offset.

You can turn off (not use) specific offsets with the [:SENSe]:ACP:OFFSet[n]:LIST[n]:STATe command.

The query returns five (5) real numbers that are the current amplitude test limits, relative to the carrier, for each offset.

Offset[n] n=1 is base station and 2 is mobiles. The default is base station (1).

List[n] cdmaOne mode n=1 is cellular bands and 2 is pcs bands. The default is cellular.
W-CDMA (Trial & Arib) mode: \(n=1 \) is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variant</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDEN</td>
<td></td>
<td>0 dBc</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td>−45 dBc</td>
<td>−60 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>BS cellular</td>
<td>−45 dBc</td>
<td>−60 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
<tr>
<td></td>
<td>BS pcs</td>
<td>−45 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
<tr>
<td></td>
<td>MS cellular</td>
<td>−42 dBc</td>
<td>−54 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
<tr>
<td></td>
<td>MS pcs</td>
<td>−42 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
<tr>
<td>cdma2000</td>
<td></td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
<tr>
<td>W-CDMA (3GPP)</td>
<td></td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
<tr>
<td>W-CDMA (Trial & Arib)</td>
<td></td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
<td>0 dBc</td>
</tr>
</tbody>
</table>

Range: −150.0 dB to 50.0 dB for cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), Basic

−200.0 dB to 50.0 dB for iDEN

Default Unit: dB

Remarks: You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or iDEN mode to use this command. Use INStrument:SELect to set the mode.
Adjacent Channel Power—Amplitude Limits Relative to the Power Spectral Density

iDEN mode

[:SENSe]:ACP:OFFSet:RPSDensity <rel_power>
[:SENSe]:ACP:OFFSet:RPSDensity?

Basic mode, cdmaOne

[:SENSe]:ACP:OFFSet:LIST:RPSDensity
<rel_power>,<rel_power>,<rel_power>,<rel_power>,<rel_power>

[:SENSe]:ACP:OFFSet:LIST:RPSDensity?

cdma2000, W-CDMA (3GPP) mode

[:SENSe]:ACP:OFFSet[n]:LIST:RPSDensity
<rel_power>,<rel_power>,<rel_power>,<rel_power>,<rel_power>

[:SENSe]:ACP:OFFSet[n]:LIST:RPSDensity?

cdmaOne, W-CDMA (Trial & Arib) mode

[:SENSe]:ACP:OFFSet[n]:LIST[n]:RPSDensity
<rel_power>,<rel_power>,<rel_power>,<rel_power>,<rel_power>

[:SENSe]:ACP:OFFSet[n]:LIST[n]:RPSDensity?

Sets the amplitude levels to test against for any custom offsets. This amplitude level is relative to the power spectral density. If multiple offsets are available, the list contains five (5) entries. The offset closest to the carrier channel is the first one in the list.

[:SENSe]:ACP:OFFSet[n]:LIST[n]:TEST selects the type of testing to be done at each offset.

You can turn off (not use) specific offsets with the [:SENSe]:ACP:OFFSet[n]:LIST:STATe command.

The query returns five (5) real numbers that are the current amplitude test limits, relative to the power spectral density, for each offset.

Offset[n] n=1 is base station and 2 is mobiles. The default is base station (1).

List[n]
cdmaOne mode n=1 is cellular bands and 2 is pcs bands. The default is cellular.
W-CDMA (Trial & Arib) mode: $n=1$ is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variant</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDEN</td>
<td></td>
<td>0 dB</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td>−28.87 dB</td>
<td>−43.87 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>BS cellular</td>
<td>−28.87 dB</td>
<td>−43.87 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td></td>
<td>BS pcs</td>
<td>−28.87 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td></td>
<td>MS cellular</td>
<td>−25.87 dB</td>
<td>−37.87 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td></td>
<td>MS pcs</td>
<td>−25.87 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>cdma2000</td>
<td></td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>W-CDMA (3GPP)</td>
<td></td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>W-CDMA (Trial & Arib)</td>
<td></td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
</tbody>
</table>

Range: $−150.0$ dB to 50.0 dB for cdmaOne, Basic, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib)

$−200.0$ dB to 50.0 dB for iDEN

Default Unit: dB

Remarks: You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or iDEN mode to use this command. Use INSTRument:SELection to set the mode.
Adjacent Channel Power—Select Sideband

```
[:SENSe]:ACP:OFFSet:LIST:SIDE BOTH|NEGative|POSitive,
BOTH|NEGative|POSitive, BOTH|NEGative|POSitive,
BOTH|NEGative|POSitive, BOTH|NEGative|POSitive

[:SENSe]:ACP:OFFSet:LIST:SIDE?
```

Selects which sideband will be measured. You can turn off (not use) specific offsets with the SENS:ACP:OFFSet:LIST:STATe command.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>Both</td>
<td>Both</td>
<td>Both</td>
<td>Both</td>
<td>Both</td>
</tr>
</tbody>
</table>

Remarks: You must be in Basic or cdmaOne mode to use this command. Use INSTRument:SELect to set the mode.

Adjacent Channel Power—Control Offset Frequency List

Basic and cdmaOne

```
[:SENSe]:ACP:OFFSet:LIST:STATe OFF|ON|0|1, OFF|ON|0|1,
OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1

[:SENSe]:ACP:OFFSet:LIST:STATe?
```

cdma2000, W-CDMA (3GPP) mode

```
[:SENSe]:ACP:OFFSet[n]:LIST:STATe OFF|ON|0|1, OFF|ON|0|1,
OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1

[:SENSe]:ACP:OFFSet[n]:LIST:STATe?
```

cdmaOne, W-CDMA (Trial & Arib) mode

```
[:SENSe]:ACP:OFFSet[n]:LIST[n]:STATe OFF|ON|0|1,
OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1

[:SENSe]:ACP:OFFSet[n]:LIST[n]:STATe?
```

Selects whether testing is to be done at the custom offset frequencies. The measured powers are tested against the absolute values defined with [:SENSe]:ACP:OFFSet[n]:LIST[n]:ABSolute, or the relative values defined with [:SENSe]:ACP:OFFSet[n]:LIST[n]:RPSDensity and [:SENSe]:ACP:OFFSet[n]:LIST[n]:RCARier.

Offset[n] n=1 is base station and 2 is mobiles. The default is base station (1).

List[n]
cdmaOne mode n=1 is cellular bands and 2 is pcs bands. The default is cellular.

W-CDMA (Trial & Arib) mode n=1 is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variant</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td></td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>BS cellular</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>BS pcs</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>MS cellular</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>MS pcs</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>cdma2000</td>
<td></td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>W-CDMA (3GPP)</td>
<td></td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>W-CDMA (Trial & Arib)</td>
<td></td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

Remarks: You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTRument:SELect to set the mode.
Adjacent Channel Power—Sweep Time

[:SENSe]:ACP:OFFSet:LIST:SWEep:TIME <seconds>,<seconds>,<seconds>,<seconds>,<seconds>

[:SENSe]:ACP:OFFSet:LIST:SWEep:TIME?

Selects a specific sweep time. If you increase the sweep time, you increase the length of the time data captured and the number of points measured. You might need to specify a specific sweep speed to accommodate a specific condition in your transmitter. For example, you may have a burst signal and need to measure an exact portion of the burst.

Selecting a specific sweep time may result in a long measurement time since the resulting number of data points may not be the optimum 2^n. Use [:SENSe]:ACP:SWEep:TIME to set the number of points used for measuring the reference channel.

You can turn off (not use) specific offsets with the SENS:ACP:OFFSet:LIST:STATe command.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>11.20 ms</td>
<td>11.20 ms</td>
<td>11.20 ms</td>
<td>11.20 ms</td>
<td>11.20 ms</td>
</tr>
</tbody>
</table>

Range: 1 µs to 50 ms

Default Unit: seconds

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INSTRument:SELect to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00
Adjacent Channel Power—Automatic Sweep Time

[:SENSe]:ACP:OFFSet:LIST:SWEep:TIME:AUTO OFF|ON|0|1,
OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1, OFF|ON|0|1

[:SENSe]:ACP:OFFSet:LIST:SWEep:TIME:AUTO?

Sets the sweep time to be automatically coupled for the fastest measurement time. You can turn off (not use) specific offsets with the SENS:ACP:OFFSet:LIST:STATe command.

Factory Preset
and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic & cdmaOne</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INStrument:SELect to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00

Adjacent Channel Power—Define Type of Offset Frequency List

iDEN mode

[:SENSe]:ACP:OFFSet:TEST ABSolute|AND|OR|RELative

[:SENSe]:ACP:OFFSet:TEST?

Basic mode, cdmaOne

[:SENSe]:ACP:OFFSet:LIST:TEST ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative

[:SENSe]:ACP:OFFSet:LIST:TEST?

cdma2000, W-CDMA (3GPP) mode

[:SENSe]:ACP:OFFSet[n]:LIST:TEST ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative

[:SENSe]:ACP:OFFSet[n]:LIST:TEST?

cdmaOne, W-CDMA (Trial & Arib) mode

[:SENSe]:ACP:OFFSet[n]:LIST[n]:TEST ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative, ABSolute|AND|OR|RELative

[:SENSe]:ACP:OFFSet[n]:LIST[n]:TEST?
Defines the type of testing to be done at any custom offset frequencies. The measured powers are tested against the absolute values defined with [:SENSe]:ACP:OFFSet[n]:LIST[n]:ABSolute, or the relative values defined with [:SENSe]:ACP:OFFSet[n]:LIST[n]:RPSDensity and [:SENSe]:ACP:OFFSet[n]:LIST[n]:RCARrier.

You can turn off (not use) specific offsets with the [:SENS]:ACP:OFFSet[n]:LIST[n]:STATe command.

Offset[n] n=1 is base station and 2 is mobiles. The default is base station (1).

List[n]

cdmaOne mode n=1 is cellular bands and 2 is pcs bands. The default is cellular.

W-CDMA (Trial & Arib) mode n=1 is ARIB, 2 is 3GPP, and 3 is Trial. The default is ARIB (1).

The types of testing that can be done for each offset include:

- **Absolute** - Test the absolute power measurement. If it fails, then return a failure for the measurement at this offset.
- **And** - Test both the absolute power measurement and the power relative to the carrier. If they both fail, then return a failure for the measurement at this offset.
- **Or** - Test both the absolute power measurement and the power relative to the carrier. If either one fails, then return a failure for the measurement at this offset.
- **Relative** - Test the power relative to the carrier. If it fails, then return a failure for the measurement at this offset.

Factory Preset and *RST:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Variant</th>
<th>Offset A</th>
<th>Offset B</th>
<th>Offset C</th>
<th>Offset D</th>
<th>Offset E</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDEN</td>
<td>REL</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Basic</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
</tr>
<tr>
<td>cdmaOne</td>
<td>BS cellular</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
</tr>
<tr>
<td></td>
<td>BS pcs</td>
<td>REL</td>
<td>ABS</td>
<td>ABS</td>
<td>REL</td>
<td>REL</td>
</tr>
<tr>
<td></td>
<td>MS cellular</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
</tr>
<tr>
<td></td>
<td>MS pcs</td>
<td>REL</td>
<td>ABS</td>
<td>ABS</td>
<td>REL</td>
<td>REL</td>
</tr>
<tr>
<td>cdma2000</td>
<td></td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td>REL</td>
<td></td>
</tr>
</tbody>
</table>
Adjacent Channel Power—Number of Measured Points

[:SENSe]:ACP:POINts <integer>

[:SENSe]:ACP:POINts?

Selects the number of data points used to measure the reference (carrier) channel. The automatic mode chooses the optimum number of points for the fastest measurement time with acceptable repeatability. The minimum number of points that could be used is determined by the sweep time and the sampling rate.

You can increase the length of the measured time record (capture more of the burst) by increasing the number of points, but the measurement will take longer. Use [:SENSe]:ACP:OFFSet:LIST:POINts to set the number of points used for measuring the offset channels.

Factory Preset and *RST: 1024

Remarks: The fastest measurement times are obtained when the number of points measured is 2^n.

You must be in Basic, cdmaOne mode to use this command. Use INSTRument:SELECT to set the mode.

Range: 64 to 65536
Adjacent Channel Power—Automatic Measurement Points

[:SENSe]:ACP:POINts:AUTO OFF|ON|0|1

[:SENSe]:ACP:POINts:AUTO?

Automatically selects the number of points for the optimum measurement speed.

Factory Preset and *RST: On

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INSTRument:SELect to set the mode.

Adjacent Channel Power—Spectrum Trace Control

[:SENSe]:ACP:SPECTrum:ENABle OFF|ON|0|1

[:SENSe]:ACP:SPECTrum:ENABle?

Turns on/off the measurement of the spectrum trace data when the spectrum view is selected. (Select the view with DISPlay:ACP:VIEW.) You may want to disable the spectrum trace data part of the measurement so you can increase the speed of the rest of the measurement data.

Factory Preset and *RST: On

Remarks: You must be in Basic, cdmaOne, iDEN mode to use this command. Use INSTRument:SELect to set the mode.

History: Revision A.03.27 or later, in cdmaOne revision A.04.00
Adjacent Channel Power—Sweep Time

[:SENSe]:ACP:SWEep:TIME <seconds>

[:SENSe]:ACP:SWEep:TIME?

Selects a specific sweep time used to measure the reference (carrier) channel. If you increase the sweep time, you increase the length of the time data captured and the number of points measured. You might need to specify a specific sweep speed to accommodate a specific condition in your transmitter. For example, you may have a burst signal and need to measure an exact portion of the burst.

Selecting a specific sweep time may result in a long measurement time since the resulting number of data points may not be the optimum 2^n. Use [:SENSe]:ACP:OFFSET:LIST:SWEep:TIME to set the number of points used for measuring the offset channels for Basic and cdmaOne.

For cdma2000 and W-CDMA, this command sets the sweep time when using the sweep mode. See [:SENSe]:ACP:SWEep:TYPE.

Factory Preset and *RST:

- 625 µs (1 slot) for W-CDMA (3GPP), W-CDMA (Trial & Arib)
- 1.25 ms for cdma2000
- 11.20 ms for Basic, cdmaOne

Range: 500 µs to 10 ms
- 1 µs to 50 ms for Basic, cdmaOne

Default Unit: seconds

Remarks: You must be in the Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTRument:SELect to set the mode.

History: Added to Basic revision A.03.00, to cdmaOne revision A.04.00
Adjacent Channel Power—Automatic Sweep Time

[:SENSe]:ACP:SWEep:TIME:AUTO OFF|ON|0|1

[:SENSe]:ACP:SWEep:TIME:AUTO?

Sets the sweep time to be automatically coupled for the fastest measurement time.

Factory Preset
and *RST: On

Remarks: You must be in Basic, cdmaOne mode to use this command. Use INStrument:SELection to set the mode.

History: Revision A.03.00 or later, in cdmaOne revision A.04.00

Adjacent Channel Power—Trigger Source

[:SENSe]:ACP:TRIGger:SOURce

EXTernal[1]|EXTernal2|FRAME|IF|IMMediate|RF Burst

[:SENSe]:ACP:TRIGger:SOURce?

Select the trigger source used to control the data acquisitions.

External 1 – front panel external trigger input
External 2 – rear panel external trigger input
Frame – internal frame trigger from front panel input
IF – internal IF envelope (video) trigger
Immediate – the next data acquisition is immediately taken, capturing the signal asynchronously (also called free run).
RF Burst – wideband RF burst envelope trigger that has automatic level control for periodic burst signals.

Factory Preset
and *RST: Immediate for BS
RF Burst for MS

Remarks: You must be in Basic, cdmaOne, iDEN, NADC, or PDC mode to use this command. Use INStrument:SELection to set the mode.

In Basic mode, for offset frequencies >12.5 MHz, the external triggers will be a more reliable trigger source than RF burst. Also, you can use the Waveform measurement to set up trigger delay.
Adjacent Channel Power—Power Reference

[:SENSe]:ACP:TYPE PSDRef|TPRef

[:SENSe]:ACP:TYPE?

Selects the measurement type. This allows you to make absolute and relative power measurements of either total power, or the power normalized to the measurement bandwidth.

Power Spectral Density Reference (PSDRef) - the power spectral density is used as the power reference

Total Power Reference (TPRef) - the total power is used as the power reference

Factory Preset and *RST: Total power reference (TPRef)

Remarks: You must be in the Basic, cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), NADC, or PDC mode to use this command. Use INSTRument:SELect to set the mode.
Select the ARFCN—Absolute RF Channel Number

[:SENSe]:CHANnel:ARFCn|RFCHannel <integer>

[:SENSe]:CHANnel:ARFCn|RFCHannel?

Set the analyzer to a frequency that corresponds to the ARFCN (Absolute RF Channel Number).

Factory Preset

and *RST: 38

Range: 0 to 124, and 975 to 1023 for E-GSM

1 to 124 for P-GSM

0 to 124, and 955 to 974 for R-GSM

512 to 885 for DCS1800

512 to 810 for PCS1900

259 to 293 for GSM450

306 to 340 for GSM480

128 to 251 for GSM850

Remarks: You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTRument:SELect to set the mode.

Global to the current mode.

History: Version A.03.00 or later

Front Panel Access: FREQUENCY Channel, ARFCN
Select the Lowest ARFCN

[:SENSe] :CHANnel:ARFCn | RFCHannel:BOTTom

Set the analyzer to the frequency of the lowest ARFCN (Absolute RF Channel Number) of the selected radio band.

Factory Preset
and *RST:

- 975 for E-GSM
- 1 for P-GSM
- 955 for R-GSM
- 512 for DCS1800
- 512 PCS1900
- 259 GSM450
- 306 GSM480
- 128 GSM850

Remarks: You must be in the EDGE (w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.

Global to the current mode.

History: Version A.03.00 or later

Front Panel Access: FREQUENCY Channel, BMT Freq
Select the Middle ARFCN

[:SENSe]:CHANnel:ARFCn:RFChannel:MIDDle

Set the analyzer to the frequency of the middle ARFCN (Absolute RF Channel Number) of the selected radio band.

Factory Preset
and *RST: 38 for E-GSM
63 for P-GSM
28 for R-GSM
699 for DCS1800
661 for PCS1900
276 for GSM450
323 for GSM480
189 for GSM850

Remarks: You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.

Global to the current mode.

History: Version A.03.00 or later

Front Panel Access: FREQUENCY Channel, BMT Freq
Select the Highest ARFCN

[:SENSe] :CHANnel:ARFCn|RFCHannel:TOP

Set the analyzer to the frequency of the highest ARFCN (Absolute RF Channel Number) of the selected radio band.

Factory Preset and *RST: 124 for E-GSM
124 for P-GSM
124 for R-GSM
885 for DCS1800
810 for PCS1900
293 for GSM450
340 for GSM480
251 for GSM850

Remarks: You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.
Global to the current mode.

History: Version A.03.00 or later

Front Panel Access: FREQUENCY Channel, BMT Freq

Burst Type

[:SENSe] :CHANnel:BURSt TCH|CCH
[:SENSe] :CHANnel:BURSt?

Set the burst type for mobile station testing.

Traffic Channel (TCH) – burst for traffic channel
Control Channel (CCH) – burst for control channel

Factory Preset and *RST: TCH

Remarks: The command is only applicable for mobile station testing, device = MS.
You must be in the NADC or PDC mode to use this command. Use INSTrument:SELect to set the mode.
SENSe Subsystem

Channel Burst Type

[SENSe]:CHANnel:BURSt NORMal|SYNC|Access

[SENSe]:CHANnel:BURSt?

Set the training sequence code that the analyzer will search for and sync to. This only applies with normal burst selected.

- **Normal**: Traffic Channel (TCH) and Control Channel (CCH)
- **Sync**: Synchronization Channel (SCH)
- **Access**: Random Access Channel (RACH)

Remarks: Global to the current mode.

You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTRument:SELeCT to set the mode.

Front Panel Access: FREQUENCY Channel, Burst Type

Digital Demod PN Offset

[SENSe]:CHANnel:PNOffset <integer>

[SENSe]:CHANnel:PNOffset?

Set the PN offset number for the base station being tested.

Factory Preset and *RST: 0

Range: 0 to 511

Default Unit: None

Remarks: Global to the current mode.

You must be in the cdmaOne mode to use this command. Use INSTRument:SELeCT to set the mode.

Front Panel Access: FREQUENCY Channel, PN Offset

or

Mode Setup, Demod, PN Offset
RF Channel Number

[:SENSe]:CHANnel:RFChannel[:NUMBer] <integer>

[:SENSe]:CHANnel:RFChannel[:NUMBer]?

Set the analyzer to a frequency that corresponds to the RF channel number.

Factory Preset

and *RST: 1

Range:

- IS-95A—1 to 799 and 991 to 1023
- J-STD-008—0 to 1199
- ARIB STD-T53—1 to 799, 801-1039, 1041-1199
- TTA.KO-06.0003 (Korea Cell)—1 to 799 and 991 to 1023
- TTA.KO-06.0013 (Korea PCS)—1 to 599
- TIA-95B Cell—1 to 799 and 991 to 1023
- TIA-95B PCS—0 to 1199
- TIA-95C Cell—1 to 799 and 991 to 1023
- TIA-95C PCS—0 to 1199

History: Version A.04.00 or later.

Remarks: Global to the current mode.

You must be in the cdmaOne mode to use this command. Use INStrument:SEL ect to set the mode.

Front Panel

Access: FREQUENCY Channel, RF Channel Number
Time Slot number

[:SENSe]:CHANnel:SLOT <integer>

[:SENSe]:CHANnel:SLOT?

Select the slot number that you want to measure.

In GSM mode the measurement frame is divided into the eight expected measurement timeslots. Optimum alignment of these measurement timeslots with the actual data timeslots may require some trigger time delay. A trigger delay of about 20 ms is a reasonable offset to use for a typical signal.

Factory Preset and *RST:

- 0 for GSM, PDC mode
- 1 for NADC mode

Range:

- 0 to 5 for PDC mode
- 1 to 6 for NADC mode
- 0 to 7 for GSM mode

Remarks:

You must be in EDGE (w/GSM), GSM, NADC, PDC mode to use this command. Use INStrument:SELect to set the mode.

Front Panel Access: **Mode Setup, Radio, Frequency Hopping Repetition Factor**
Time Slot Auto

[:SENSe]:CHANnel:SLOT:AUto OFF|ON|0|1

[:SENSe]:CHANnel:SLOT:AUto?

Select auto or manual control for slot searching. The feature is only supported in external and frame trigger source modes. In external trigger mode when timeslot is set on, the demodulation measurement is made on the nth timeslot specified by the external trigger point + n timeslots, where n is the selected timeslot value 0 to 7. In frame trigger mode when timeslot is set on, then demodulation measurement is only made on the nth timeslot specified by bit 0 of frame reference burst + n timeslots, where n is the selected timeslot value 0 to 7 and where the frame reference burst is specified by Ref Burst and Ref TSC (Std) combination.

Factory Preset
and *RST: On, for NADC, PDC mode

Off, for GSM mode

Remarks: The command is only applicable for mobile station testing, device = MS.

You must be in EDGE(w/GSM), GSM, NADC, PDC mode to use this command. Use INStrument:SELection to set the mode.

History: Added GSM mode, version A.03.00 or later

Training Sequence Code (TSC)

[:SENSe]:CHANnel:TSCode <integer>

[:SENSe]:CHANnel:TSCode?

Set the training sequence code to search for, with normal burst selected and TSC auto set to off.

Factory Preset
and *RST: 0

Range: 0 to 7

Remarks: Global to the current mode.

You must be in EDGE(w/GSM), GSM mode to use this command. Use INStrument:SELection to set the mode.

History: Version A.03.00 or later

Front Panel
Access: FREQUENCY Channel, TSC (Std)
Training Sequence Code (TSC) Auto

[:SENSe]:CHANnel:TSCode:AUTO OFF|ON|0|1

[:SENSe]:CHANnel:TSCode:AUTO?

Select auto or manual control for training sequence code (TSC) search. With auto on, the measurement is made on the first burst found to have one of the valid TSCs in the range 0 to 7 (i.e. normal bursts only). With auto off, the measurement is made on the 1st burst found to have the selected TSC.

Factory Preset and *RST: Auto

Remarks: Global to the current mode.

You must be in the EDGE (w/GSM), GSM mode to use this command. Use INSTRument:SELect to set the mode.

Front Panel Access: FREQUENCY Channel, TSC (Std)
Channel Power Measurement

Commands for querying the channel power measurement results and for setting to the default values are found in the “MEASure Group of Commands” on page 233. The equivalent front panel keys for the parameters described in the following commands, are found under the Meas Setup key, after the Channel Power measurement has been selected from the MEASURE key menu. CHPower used instead of the more std-compliant CPOWer, as that syntax was already used for Carrier Power measurement (but has since been renamed).

Channel Power—Average Count

[:SENSe]:CHPower:AVERAGE:COUNt <integer>
[:SENSe]:CHPower:AVERAGE:COUNt?

Set the number of data acquisitions that will be averaged. After the specified number of average counts, the averaging mode (terminal control) setting determines the averaging action.

Factory Preset and *RST: 20
Range: 1 to 10,000
Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INSTRument:SELection to set the mode.

Channel Power—Averaging State

[:SENSe]:CHPower:AVERAGE[:STATe] OFF|ON|0|1
[:SENSe]:CHPower:AVERAGE[:STATe]?

Turn averaging on or off.

Factory Preset and *RST: On
Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INSTRument:SELection to set the mode.
SENSe Subsystem

Channel Power—Averaging Termination Control

[:SENSe]:CHPower:AVERage:TCONtrol EXPonential|REPeat

[:SENSe]:CHPower:AVERage:TCONtrol?

Select the type of termination control used for the averaging function. This determines the averaging action after the specified number of data acquisitions (average count) is reached.

- **Exponential** - Each successive data acquisition after the average count is reached, is exponentially weighted and combined with the existing average.
- **Repeat** - After reaching the average count, the averaging is reset and a new average is started.

Factory Preset and *RST: Repeat

Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INSTrument:SELect to set the mode.

Channel Power—Integration BW

[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration <freq>

[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration?

Set the Integration BW (IBW) that will be used.

Factory Preset and *RST: 1.23 MHz for Basic, cdmaOne, cdma2000

5.0 MHz for W-CDMA (3GPP), W-CDMA (Trial & Arib)

Range: 1 kHz to 10 MHz

Default Unit: Hz

Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INSTrument:SELect to set the mode.
Channel Power—Span

[:SENSe]:CHPower:FREQuency:SPAN <freq>

[:SENSe]:CHPower:FREQuency:SPAN?

Set the frequency span that will be used.

Factory Preset and *RST: 2.0 MHz for Basic, cdmaOne, cdma2000

6.0 MHz for W-CDMA (3GPP), W-CDMA (Trial & Arib)

Range: 1.0 kHz to 10.0 MHz

Default Unit: Hz

Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INSTrument:SELect to set the mode.

Channel Power—Data Points

[:SENSe]:CHPower:POINts <integer>

[:SENSe]:CHPower:POINts?

Set the number of data points that will be used. Changing this will change the time record length and resolution BW that are used.

Factory Preset and *RST: 512

Range: 64 to 32768, in a 2^n sequence

Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INSTrument:SELect to set the mode.
Channel Power—Data Points Auto

[:SENSe]:CHPower:POINts:AUTO OFF|ON|0|1

[:SENSe]:CHPower:POINts:AUTO?

Select auto or manual control of the data points. This is an advanced control that normally does not need to be changed. Setting this to a value other than the factory default, may cause invalid measurement results.

- **Off** - the Data Points is uncoupled from the Integration BW.
- **On** - couples the Data Points to the Integration BW.

Factory Preset

 and *RST: On

Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INStrument:SELection to set the mode.

Channel Power—Sweep Time

[:SENSe]:CHPower:SWEep:TIME <time>

[:SENSe]:CHPower:SWEep:TIME?

Sets the sweep time when using the sweep mode.

Factory Preset

 and *RST: 68.27 µs

 17.07 µs for W-CDMA (3GPP), W-CDMA (Trial & Arib)

Range: 1 µs to 50 ms

Default Unit: seconds

Remarks: You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INStrument:SELection to set the mode.

History: Version A.03.00 and later
Channel Power—Sweep Time

[:SENSe]:CHPower:SWEep:TIME:AUTO OFF|ON|0|1

[:SENSe]:CHPower:SWEep:TIME:AUTO?

Selects the automatic sweep time, optimizing the measurement.

Factory Preset

and *RST: On

Remarks: You must be in Basic, cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTrument:SELect to set the mode.

History: Version A.03.00 and later

Channel Power—Trigger Source

[:SENSe]:CHPower:TRIGger:SOURce EXTernal[1]|EXTernal2|IMMediate

[:SENSe]:CHPower:TRIGger:SOURce?

Select the trigger source used to control the data acquisitions. This is an Advanced control that normally does not need to be changed.

- External 1 - front panel external trigger input
- External 2 - rear panel external trigger input
- Immediate - the next data acquisition is immediately taken (also called Free Run).

Factory Preset

and *RST: Immediate (Free Run)

Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), or Basic mode to use this command. Use INStrument:SELect to set the mode.
Correction for Base Station RF Port External Attenuation

[:SENSe]:CORRection:BS[:RF]:LOSS <rel_power>

[:SENSe]:CORRection:BS[:RF]:LOSS?

Set the correction equal to the external attenuation used when measuring base stations.

Factory Preset and *RST: 0 dB

Range: 0 to 100 dB for cdmaOne

−50 to 50 dB for Basic, iDEN, NADC or PDC

Default Unit: dB

Remarks: You must be in the Basic, iDEN, cdmaOne, NADC or PDC mode to use this command. Use INSTRument:SELect to set the mode.

Value is global to the current mode.

Correction for BTS RF Port External Attenuation

[:SENSe]:CORRection:BTS[:RF]:LOSS <rel_power>

[:SENSe]:CORRection:BTS[:RF]:LOSS?

Set equal to the external attenuation used when measuring base transmit stations.

Factory Preset and *RST: 0.0 dB

Range: 0.0 to 100.0 dB for GSM

−50.0 to 50.0 dB for cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib)

Default Unit: dB

Remarks: Global to the current mode.

You must be in the EDGE (w/GSM), GSM, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTRument:SELect to set the mode.
Correction for Mobile Station RF Port External Attenuation

[:SENSe]:CORRection:MS[:RF]:LOSS <rel_power>

[:SENSe]:CORRection:MS[:RF]:LOSS?

Set the correction equal to the external attenuation used when measuring mobile stations.

Factory Preset and *RST: 0.0 dB

Range: −50.0 to 50.0 dB

Default Unit: dB

Remarks: You must be in the cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), iDEN, NADC or PDC mode to use this command. Use INSTrument:SELeet to set the mode.

Value is global to the current mode.

Select the Input Port

[:SENSe]:FEED IONLy|IQ|RF|IFAlign|AREFerence

[:SENSe]:FEED?

Select the input port.

IONLy is the in-phase component of an IQ signal
IQ is the IQ Input port
RF in the RF INPUT port
IF Align is the IF alignment signal source (internal, 321.4 MHz)
Amplitude Reference is the internal amplitude reference source (50 MHz)

Factory Preset and *RST: RF

Front Panel Access: Input, Input Port
Center Frequency

[:SENSe]:FREQuency:CENTer <freq>

[:SENSe]:FREQuency:CENTer?

Set the center frequency.

Factory Preset
and *RST: 1.0 GHz
942.6 MHz for GSM, EDGE
806.0 MHz for iDEN

Range: 1.0 kHz to 4.321 GHz

Default Unit: Hz

Front Panel Access: FREQUENCY/Channel, Center Freq

Center Frequency Step Size Automatic

[:SENSe]:FREQuency:CENTer:STEP:AUTO OFF | ON | 0 | 1

[:SENSe]:FREQuency:CENTer:STEP:AUTO?

Specifies whether the step size is set automatically based on the span.

Factory Preset
and *RST: On

History: Version A.03.00 or later

Front Panel Access: FREQUENCY/Channel, CF Step
Center Frequency Step Size

[:SENSe]:FREQuency:CENTer:STEP[:INCRement] <freq>
[:SENSe]:FREQuency:CENTer:STEP[:INCRement]?

Specifies the center frequency step size.

Factory Preset and *RST: 5.0 MHz
1.25 MHz for cdma2000

Range: 1.0 kHz to 1.0 GHz, in 10 kHz steps

Default Unit: Hz

History: Version A.03.00 or later

Front Panel Access: FREQUENCY/Channel, CF Stepl

RF Port Input Attenuation

[:SENSe]:POWer[:RF]:ATTenuation <rel_power>
[:SENSe]:POWer[:RF]:ATTenuation?

Set the RF input attenuator. This value is set at its auto value if input attenuation is set to auto.

Factory Preset and *RST: 0 dB
12 dB for iDEN

Range: 0 to 40 dB

Default Unit: dB

Front Panel Access: Input, Input Atten
RF Port Power Range Auto

[:SENSe]:POWer [:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer [:RF]:RANGe:AUTO?

Select the RF port power range to be set either automatically or manually.

- **On** - power range is automatically set as determined by the actual measured power level at the start of a measurement.

- **Off** - power range is manually set

Factory Preset and *RST:* On

Remarks: You must be in the cdmaOne, EDGE (w/GSM), GSM, NADC, PDC, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INStrument:SELect to set the mode.

Front Panel Access: Input, Max Total Pwr (at UUT)
RF Port Power Range Maximum Total Power

[:SENSe]:POWer[:RF]:RANge[:UPPer] <power>
[:SENSe]:POWer[:RF]:RANge[:UPPer]?

Set the maximum expected total power level at the radio unit under test. This value is ignored if RF port power range is set to auto. External attenuation required above 30 dBm.

Factory Preset and *RST: −15.0 dBm
Range: −100.0 to 80.0 dBm for EDGE, GSM
−100.0 to 27.7 dBm for cdmaOne, iDEN
−200.0 to 50.0 dBm for NADC, PDC
−200.0 to 100.0 dBm for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib)

Default Unit: dBm
Remarks: Global to the current mode. This is coupled to the RF input attenuation. You must be in the Service, cdmaOne, EDGE(w/GSM), GSM, NADC, PDC, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTrument:SELect to set the mode.

Front Panel Access: Input, Max Total Pwr (at UUT)
Power Statistics CCDF Measurement

Commands for querying the statistical power measurement of the complimentary cumulative distribution function (CCDF) measurement results and for setting to the default values are found in the “MEASURE Group of Commands” on page 233. The equivalent front panel keys for the parameters described in the following commands, are found under the Meas Setup key, after the Power Stat CCDF measurement has been selected from the MEASURE key menu.

History: Added PSTatistic to Basic Mode version A.04.00

Power Statistics CCDF—Channel Bandwidth

[:SENSe]:PSTatistic:BANDwidth|BWIDth <freq>
[:SENSe]:PSTatistic:BANDwidth|BWIDth?

Set the bandwidth that will be used for acquiring the signal.

Factory Preset and *RST: 5.0 MHz

Range: 10.0 kHz to 6.7 MHz

Default Unit: Hz

Remarks: You must be in the Basic, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTrument:SELect to set the mode.

Power Statistics CCDF—Sample Counts

[:SENSe]:PSTatistic:COUNts <integer>
[:SENSe]:PSTatistic:COUNts?

Set the counts. Measurement stops when the sample counts reach this value.

Factory Preset and *RST: 10,000,000

Range: 1,000 to 2,000,000,000

Unit: counts

Remarks: You must be in the Basic, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTrument:SELect to set the mode.
Power Statistics CCDF—Sweep Time

[:SENSe]:PStatistic:SWEep:TIME <time>
[:SENSe]:PStatistic:SWEep:TIME?

Set the length of measurement interval that will be used.

Factory Preset
and *RST: 1.0 ms
Range: 0.1 ms to 10 ms
Default Unit: seconds
Remarks: You must be in the Basic, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTrument:SELect to set the mode.
Power vs. Time (Burst Power) Measurement

Commands for querying the power versus time measurement results and for setting to the default values are found in the “MEASURE Group of Commands” on page 233. The equivalent front panel keys for the parameters described in the following commands, are found under the Meas Setup key, after the Power vs Time measurement has been selected from the MEASURE key menu.

Power vs. Time—Number of Bursts Averaged

[:SENSe]:PVTime:AVERage:COUNt <integer>

[:SENSe]:PVTime:AVERage:COUNt?

Set the number of bursts that will be averaged. After the specified number of bursts (average counts), the averaging mode (terminal control) setting determines the averaging action.

Factory Preset and *RST: 10

Range: 1 to 10,000

Remarks: You must be in the EDGE(w/GSM), GSM or Service mode to use this command. Use INSTRument:SELection to set the mode.

Power vs. Time—Averaging State

[:SENSe]:PVTime:AVERage[:STATe] OFF|ON|0|1

[:SENSe]:PVTime:AVERage[:STATe]?

Turn averaging on or off.

Factory Preset and *RST: Off

Remarks: You must be in the EDGE(w/GSM), GSM or Service mode to use this command. Use INSTRument:SELection to set the mode.
Power vs. Time—Averaging Mode

[:SENSe]:PVTime:AVERage:TCONtrl EXPonential|REPeat

[:SENSe]:PVTime:AVERage:TCONtrl?

Select the type of termination control used for the averaging function. This specifies the averaging action after the specified number of bursts (average count) is reached.

- **Exponential** - Each successive data acquisition after the average count is reached is exponentially weighted and combined with the existing average.
- **Repeat** - After reaching the average count, the averaging is reset and a new average is started.

Factory Preset and *RST: **Exponential**

Remarks: You must be in the EDGE(w/GSM), GSM or Service mode to use this command. Use INStrument:SELect to set the mode.

Power vs. Time—Averaging Type

[:SENSe]:PVTime:AVERage:TYPE

LOG|MAXimum|MINimum|MXMinimum|RMS

[:SENSe]:PVTime:AVERage:TYPE?

Select the type of averaging to be performed.

- **Log** - The log of the power is averaged. (This is also known as video averaging.)
- **Maximum** - The maximum values are retained.
- **Minimum** - The minimum values are retained.
- **MXMinimum** - Both the maximum and the minimum values are retained.
- **RMS** - The power is averaged, providing the rms of the voltage.

Factory Preset and *RST: **RMS**

Remarks: You must be in the EDGE(w/GSM), GSM or Service mode to use this command. Use INStrument:SELect to set the mode.
Power vs. Time—Resolution BW

[:SENSe]:PVTime:BANDwidth|BWIDth[:RESolution] <freq>
[:SENSe]:PVTime:BANDwidth|BWIDth[:RESolution]?

Set the resolution BW. This is an advanced control that normally does not need to be changed. Setting this to a value other than the factory default, may cause invalid measurement results.

Factory Preset and *RST: 500 kHz
Range: 1 kHz to 5 MHz
Default Unit: Hz
Remarks: You must be in the EDGE (w/GSM), GSM or Service mode to use this command. Use INSTrument:SELect to set the mode.

Power vs. Time—RBW Filter Type

[:SENSe]:PVTime:BANDwidth|BWIDth[:RESolution]:TYPE FLATtop|GAUSSian
[:SENSe]:PVTime:BANDwidth|BWIDth[:RESolution]:TYPE?

Select the type of resolution BW filter. This is an advanced control that normally does not need to be changed. Setting this to a value other than the factory default, may cause invalid measurement results.

 Flattop - a filter with a flat amplitude response, which provides the best amplitude accuracy.
 Gaussian - a filter with Gaussian characteristics, which provides the best pulse response.

Factory Preset and *RST: Gaussian
Remarks: You must be in the EDGE (w/GSM), GSM or Service mode to use this command. Use INSTrument:SELect to set the mode.
Power vs. Time—Sweep Time

[:SENSe]:PVTime:SWEep:TIME <integer>

[:SENSe]:PVTime:SWEep:TIME?

Set the number of slots which are used in each data acquisition. Each slot is approximately equal to 570 ms. The measurement is made for a small additional amount of time (about 130 µs) in order to view the burst edges.

Factory Preset and *RST: 1

Range: 1 to 50 (for resolution BW = 500 kHz)

Remarks: You must be in the EDGE(w/GSM), GSM or Service mode to use this command. Use INSTRument:SELect to set the mode.

Power vs. Time—Trigger Source

[:SENSe]:PVTime:TRIGger:SOURce EXTernal1|EXTernal2|FRAME|IF|IMMediate|RF Burst

[:SENSe]:PVTime:TRIGger:SOURce?

Select the trigger source used to control the data acquisitions.

External 1 - front panel external trigger input

External 2 - rear panel external trigger input

Frame - uses the internal frame timer, which has been synchronized to the selected burst sync.

IF - internal IF envelope (video) trigger

Immediate - the next data acquisition is immediately taken, capturing the signal asynchronously (also called Free Run).

RF Burst - wideband RF burst envelope trigger that has automatic level control for periodic burst signals.

Factory Preset and *RST: RF burst

Remarks: You must be in the EDGE(w/GSM), GSM or Service mode to use this command. Use INSTRument:SELect to set the mode.
Radio Carrier Hopping

[:SENSe]:RAdio:CARRier:HOP OFF|ON|0|1

[:SENSe]:RAdio:CARRier:HOP?

Turns the carrier hopping mode on and off.

Factory Preset

and *RST: Off

Remarks: Global to the current mode.

You must be in the EDGE (w/GSM), GSM mode to use this command. Use INStrument:SELection to set the mode.

History: Version A.03.00 or later

Front Panel Access: Mode Setup, Radio, Carrier

Radio Carrier Multiple

[:SENSe]:RAdio:CARRier:NUMBer SINGle|MULTiple

[:SENSe]:RAdio:CARRier:NUMBer?

Select if single or multiple carriers are present on the output of the base station under test. This enables/disables a software filter for the rho and code domain power measurements.

Factory Preset

and *RST: Single

Remarks: You must be in the , iDEN mode to use this command. Use INStrument:SELection to set the mode.

Front Panel Access: Mode Setup, Demod, RF Carrier
Radio Carrier Burst

[:SENSe]:RADio:CARRier[:TYPE] BURSt|CONTinuous

[:SENSe]:RADio:CARRier[:TYPE]?

Select the type of RF carrier on the device to be tested.

Factory Preset
and *RST: Burst

Remarks: You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.

Global to the current mode.

History: Version A.03.00 or later

Front Panel Access: Mode Setup, Radio, Carrier

Radio Device Under Test

[:SENSe]:RADio:DEVice BS|MS

[:SENSe]:RADio:DEVice?

Select the type of radio device to be tested.

BS – Base station transmitter test.

MS – Mobile station transmitter test.

Factory Preset
and *RST: BS

Remarks: You must be in the NADC, or PDC mode to use this command. Use INSTrument:SELect to set the mode.

Global to current mode.

Front Panel Access: Mode Setup, Radio, Device
Radio Device Under Test

[:SENSe]:RAdio:DEVice BTS|MS
[:SENSe]:RAdio:DEVice?

Select the type of radio device to be tested.

BTS - Base station transmitter test
MS - Mobile station transmitter test

Factory Preset
and *RST: BTS

Remarks: Global to the current mode.

You must be in cdma2000, EDGE (w/GSM), GSM, W-CDMA (3GPP), or W-CDMA (Trial & Arib) mode to use this command. Use INSTRument:SELect to set the mode.

History: Version A.03.00 or later

Front Panel Access: Mode Setup, Radio, Device

Radio Device Under Test

[:SENSe]:RAdio:DEVice INBound|OUTBound
[:SENSe]:RAdio:DEVice?

Select the type of radio device to be tested. If you are testing a base station, it must be put into the test mode to transmit known bit patterns.

Outbound - Base station transmitter test
Inbound - Mobile station transmitter test

Factory Preset
and *RST: BS

Remarks: You must be in the iDEN mode to use this command. Use INSTRument:SELect to set the mode.

Global to current mode.

Front Panel Access: Mode Setup, Radio, Device
Radio Base Station Type

[:SENSe]:RADio:DEVice:BASE[:TYPE] NORMal|MICRo|PICO

[:SENSe]:RADio:DEVice:BASE[:TYPE]?

Select the type of base station to be tested. If you are testing a base station, it must be put into the test mode to transmit known bit patterns.

Factory Preset and *RST: Normal

Remarks: You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.

Global to current mode.

History: Added revision A.04.00 and later

Front Panel Access: Mode Setup, Radio, BTS Type

Frequency Offset of MS to BTS

[:SENSe]:RADio:FOFFset <freq>

[:SENSe]:RADio:FOFFset?

Set the amount of frequency offset (MS freq − BTS freq).

Factory Preset and *RST: 190.0 MHz

Range: −500.0 MHz to 500.0 MHz

Remarks: You must be in the W-CDMA (Trial & Arib) mode to use this command. Use INSTrument:SELect to set the mode.

Global to the current mode.

History: Version A.03.00 or later

Front Panel Access: Mode Setup, Radio, MS-BTS Offset
Radio Format (Standard)

[:SENSe]:RADio:FORMat ARIB|TGPP|TRIal
[:SENSe]:RADio:FORMat?

Select the format that testing will be compliant with when measurements are made.

- **ARIB**, is the standard format defined by the Association of Radio Industries and Business in Japan
- **TGPP**, is the standard format defined by the Third Generation Partnership Projects (3GPP)
- **Trial**, is a 1998 trial format being evaluated

Factory Preset and *RST: Trial

Remarks: You must be in the W-CDMA (Trial & Arib) mode to use this command. Use INSTrument:SELect to set the mode.

History: Version A.03.00 or later

Front Panel Access: Mode Setup, Radio, Standard

Radio Format (Standard)

[:SENSe]:RADio:FORMat M16QAM|M64QAM|DJSMR
[:SENSe]:RADio:FORMat?

Select the format that testing will be compliant with when measurements are made.

- **M16QAM**, is the standard iDEN format defined by Motorola
- **M64QAM**, is the standard iDEN format defined by Motorola
- **DJ SMR**, is Japanese standard format that is based on the ARIB RCR-32A standard

Factory Preset and *RST: M16QAM

Remarks: You must be in the iDEN mode to use this command. Use INSTrument:SELect to set the mode.

History: Version A.03.00 or later

Front Panel Access: Mode Setup, Radio, Format
Radio Standard Band

[:SENSe]:Radio:STANdard:BAND
ARIBT53|C95B|CKOR|IS95A|JSTD8|P95B|PKOR|CUSTom

[:SENSe]:Radio:STANdard:BAND?

Select the standard variant that applies to the radio to be tested.

- ARIBT53 - ARIB STD-T53
- C95B - EIA/TIA-95B Cellular
- CKOR - TTA.KO-06.0003 (Korea Cell)
- IS95A - IS-95A Cellular
- J STD8 - J-STD-008 PCS
- P95B - EIA/TIA-95B (PCS)
- PKOR - TTA.KO-06.0013 (Korea PCS)

Factory Preset
and *RST: IS-95A Cellular

Remarks: Global to the current mode.
You must be in the cdmaOne mode to use this command. Use INStrument:SELection to set the mode.

Front Panel
Access: Mode Setup, Radio, Band
Radio Standard Band

[:SENSe]:RADio:STANdard:BAND
PGSM|EGSM|RGSM|DCS|PCS|GSM450|GSM480|GSM850

[:SENSe]:RADio:STANdard:BAND?

Select the standard variant that applies to the radio to be tested.

- EGSM - Extended GSM in the 900 MHz band
- PGSM - Primary GSM in the 900 MHz band
- RGSM - Railway GSM in the 900 MHz band
- DCS - DSC1800 band; also known as GSM-1800
- PCS - PCS1900 band; also known as GSM-1900
- GSM450 - GSM450 band
- GSM480 - GSM480 band
- GSM850 - GSM850 band, for IS-136 HS

Factory Preset
and *RST: PGSM
Remarks: Global to the current mode.
You must be in EDGE(w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.

History: More standards added A.02.00, A.03.00

Front Panel Access: Mode Setup, Radio, Band

Radio Traffic Rate

[:SENSe]:RADio:TRATe FULL|HALF

[:SENSe]:RADio:TRATe?

Select the traffic rate.

- Full - full traffic rate (a slot is every 20 ms)
- Half - half traffic rate (a slot is every 40 ms)

Factory Preset
and *RST: Full
Remarks: You must be in the NADC or PDC mode to use this command. Use INSTrument:SELect to set the mode.
Reference Oscillator External Frequency

[:SENSe]:ROSCillator:EXTernal:FREQuency <frequency>

[:SENSe]:ROSCillator:EXTernal:FREQuency?

Set to the frequency of the external reference oscillator being supplied to the instrument. Switch to the external reference with ROSC:SOUR.

Preset and *RST: Value remains at last user selected value (persistent)

Factory default, 10 MHz

Range: 1 MHz to 40 MHz, with 1 Hz steps

Default Unit: Hz

Remarks: Global to system

Front Panel Access: System, Reference, Ref Oscillator

Reference Oscillator Rear Panel Output

[:SENSe]:ROSCillator:OUTPut [:STATE] OFF|ON|0|1

[:SENSe]:ROSCillator:OUTPut?

Turn on and off the 10 MHz frequency reference signal going to the rear panel.

Preset and *RST: Persistent State with factory default of On

Remarks: Global to system. Was SENS:ROSC:REAR

Front Panel Access: System, Reference, 10 MHz Out
Reference Oscillator Source

[:SENSe]:ROSCillator:SOURce INTernal|EXTernal

[:SENSe]:ROSCillator:SOURce?

Select the reference oscillator (time base) source. Use ROCS:EXT:FREQ to tell the instrument the frequency of the external reference.

 - Internal - uses internal 50 MHz reference signal
 - External - uses the signal at the rear panel external reference input port.

Preset and *RST: Persistent State with factory default of Internal

Remarks: Global to system.

Front Panel Access: System, Reference, Ref Oscillator
Spectrum (Frequency-Domain) Measurement

Commands for querying the spectrum measurement results and for setting to the default values are found in the "MEASure Group of Commands" on page 233. The equivalent front panel keys for the parameters described in the following commands, are found under the Meas Setup key, after the Spectrum (Freq Domain) measurement has been selected from the MEASURE key menu.

Spectrum—Data Acquisition Packing

[:SENSe]:SPECTrum:ACQuisition:PACKing
AUTO|LONG|MEDIUM|SHORT

[:SENSe]:SPECTrum:ACQuisition:PACKing?

Select the amount of data acquisition packing. This is an advanced control that normally does not need to be changed.

Factory Preset and *RST: Auto

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELect.

Spectrum—ADC Dither

[:SENSe]:SPECTrum:ADC:DITHer[:STATE] AUTO|ON|OFF|2|1|0

[:SENSe]:SPECTrum:ADC:DITHer[:STATE]?

Turn the ADC dither on or off. This is an advanced control that normally does not need to be changed.

Factory Preset and *RST: Auto

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELect.
Spectrum—ADC Range

[:SENSe]:SPECTrum:ADC:RANGe
AUTO|APEak|APLock|M6|P0|P6|P12|P18|P24|

[:SENSe]:SPECTrum:ADC:RANGe?

Select the range for the gain-ranging that is done in front of the ADC. This is an advanced control that normally does not need to be changed. Auto peak ranging is the default for this measurement. If you are measuring a CW signal please see the description below.

- Auto - automatic range

 For FFT spectrums - auto ranging should not be used. An exception to this would be if you know that your signal is “bursty”. Then you might use auto to maximize the time domain dynamic range as long as you are not very interested in the FFT data.

- Auto Peak - automatically peak the range

 For CW signals, the default of auto-peak ranging can be used, but a better FFT measurement of the signal can be made by selecting one of the manual ranges that are available: M6, P0 - P24. Auto peaking can cause the ADC range gain to move monotonically down during the data capture. This movement should have negligible effect on the FFT spectrum, but selecting a manual range removes this possibility. Note that if the CW signal being measured is close to the auto-ranging threshold, the noise floor may shift as much as 6 dB from sweep to sweep.

- Auto Peak Lock - automatically peak lock the range

 For CW signals, auto-peak lock ranging may be used. It will find the best ADC measurement range for this particular signal and will not move the range as auto-peak can. Note that if the CW signal being measured is close to the auto-ranging threshold, the noise floor may shift as much as 6 dB from sweep to sweep. For “bursty” signals, auto-peak lock ranging should not be used. The measurement will fail to operate, since the wrong (locked) ADC range will be chosen often and overloads will occur in the ADC.

- M6 - manually selects an ADC range that subtracts 6 dB of fixed gain across the range. Manual ranging is best for CW signals.

- P0 to 24 - manually selects ADC ranges that add 0 to 24 dB of fixed gain across the range. Manual ranging is best for CW signals.

Factory Preset
and *RST: Auto peak

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELect.
Spectrum—Average Clear

[:SENSe]:SPECTrum:AVERage:CLEAr

The average data is cleared and the average counter is reset.

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.

Spectrum—Number of Averages

[:SENSe]:SPECTrum:AVERage:COUNt <integer>

[:SENSe]:SPECTrum:AVERage:COUNt?

Set the number of ‘sweeps’ that will be averaged. After the specified number of ‘sweeps’ (average counts), the averaging mode (terminal control) setting determines the averaging action.

Factory Preset and *RST: 25

Range: 1 to 10,000

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.

Spectrum—Averaging State

[:SENSe]:SPECTrum:AVERage[:STATe] OFF|ON|0|1

[:SENSe]:SPECTrum:AVERage[:STATe]?

Turn averaging on or off.

Factory Preset and *RST: On

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.
Spectrum—Averaging Mode

[:SENSe]:SPECtrum:AVERage:TCONtrol EXPonential|REPeat

[:SENSe]:SPECtrum:AVERage:TCONtrol?

Select the type of termination control used for the averaging function. This determines the averaging action after the specified number of 'sweeps' (average count) is reached.

- Exponential - Each successive data acquisition after the average count is reached, is exponentially weighted and combined with the existing average.
- Repeat - After reaching the average count, the averaging is reset and a new average is started.

Factory Preset and *RST: Exponential

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELeCT.

Spectrum—Averaging Type

[:SENSe]:SPECtrum:AVERage:TYPE

LOG|MAXimum|MINimum|RMS|SCALAR

[:SENSe]:SPECtrum:AVERage:TYPE?

Select the type of averaging.

- Log – The log of the power is averaged. (This is also known as video averaging.)
- Maximum – The maximum values are retained.
- Minimum – The minimum values are retained.
- RMS – The power is averaged, providing the rms of the voltage.
- Scalar – The voltage is averaged.

Factory Preset and *RST: Log

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELeCT.
Spectrum—Pre-ADC Bandpass Filter

[:SENSe]:SPECtrum:BANDwidth|BWIDth:PADC OFF|ON|0|1

[:SENSe]:SPECtrum:BANDwidth|BWIDth:PADC?

Turn the pre-ADC bandpass filter on or off. This is an advanced control that normally does not need to be changed.

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELect.

Spectrum—Pre-FFT BW Auto

[:SENSe]:SPECtrum:BANDwidth|BWIDth:PFFT:AUTO OFF|ON|0|1

[:SENSe]:SPECtrum:BANDwidth|BWIDth:PFFT:AUTO?

Select auto or manual control of the pre-FFT BW. This is an advanced control that normally does not need to be changed.

 Auto - couples the pre-FFT BW to the frequency span.

 Manual - the pre-FFT BW is uncoupled from the frequency span.

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELect.

Spectrum—Pre-FFT BW

[:SENSe]:SPECtrum:BANDwidth|BWIDth:PFFT[:SIZE] <freq>

[:SENSe]:SPECtrum:BANDwidth|BWIDth:PFFT[:SIZE]?

Set the pre-FFT bandwidth. This is an advanced control that normally does not need to be changed.

Frequency span, resolution bandwidth, and the pre-FFT bandwidth settings are normally coupled. If you are not auto-coupled, there can be combinations of these settings that are not valid.

Factory Preset and *RST: 1.55 MHz

 1.25 MHz for cdmaOne

 155.0 kHz, for iDEN mode

Range: 1 Hz to 10.0 MHz

Remarks: To use this command, the appropriate mode should be selected with INSTRument:SELect.
SENSe Subsystem

Spectrum—Pre-FFT BW Filter Type

```
[:SENSe]:SPECtrum:BANDwidth|BWIDth:PFFT:TYPE FLAT|GAUSsian
[:SENSe]:SPECtrum:BANDwidth|BWIDth:PFFT:TYPE?
```

Select the type of pre-FFT filter that is used. This is an advanced control that normally does not need to be changed.

- **Flat Top**: a filter with a flat amplitude response, which provides the best amplitude accuracy.
- **Gaussian**: a filter with Gaussian characteristics, which provides the best pulse response.

Factory Preset

and *RST: Flat top

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.

Spectrum—Resolution BW

```
[:SENSe]:SPECtrum:BANDwidth|BWIDth[:RESolution] <freq>
[:SENSe]:SPECtrum:BANDwidth|BWIDth[:RESolution]?
```

Set the resolution bandwidth for the FFT. This is the bandwidth used for resolving the FFT measurement. It is not the pre-FFT bandwidth. This value is ignored if the function is auto-coupled.

Frequency span, resolution bandwidth, and the pre-FFT bandwidth settings are normally coupled. If you are not auto-coupled, there can be combinations of these settings that are not valid.

Factory Preset

and *RST: 20.0 kHz

- 250.0 Hz, for iDEN mode

Range: 0.10 Hz to 3.0 MHz

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.
Spectrum—Resolution BW Auto

[:SENSe]:SPECtrum:BANDwidth|BWIDth[:RESolution]:AUTO
OFF|ON|0|1

[:SENSe]:SPECtrum:BANDwidth|BWIDth[:RESolution]:AUTO?

Select auto or manual control of the resolution BW. The automatic mode couples the resolution bandwidth setting to the frequency span.

Factory Preset
and *RST: On
Off, for iDEN mode

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.

Decimation of Spectrum Display

[:SENSe]:SPECtrum:DECimate[:FACTor] <integer>

[:SENSe]:SPECtrum:DECimate[:FACTor]?

Set the amount of data decimation done by the hardware and/or the software. Decimation by 3 keeps every third sample, throwing away the two in between. Similarly, decimation by 5 keeps every fifth sample, throwing away the four in between.

Using zero (0) decimation selects the automatic mode. The measurement will then automatically choose decimation by “1” or “2” as is appropriate for the bandwidth being used. This is an advanced control that normally does not need to be changed.

Factory Preset
and *RST: 0

Range: 0 to 1,000, where 0 sets the function to automatic

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.

History: Version A.02.00 or later
Spectrum—FFT Length

[:SENSe]:SPECtrum:FFT:LENGth <integer>

[:SENSe]:SPECtrum:FFT:LENGth?

Set the FFT length. This value is only used if length control is set to manual. The value must be greater than or equal to the window length value. Any amount greater than the window length is implemented by zero-padding. This is an advanced control that normally does not need to be changed.

Factory Preset and *RST: 4096

32768, for iDEN mode

Range: 8 to 1,048,576

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.

History: Short form changed from LENgth to LENGth, A.03.00

Spectrum—FFT Length Auto

[:SENSe]:SPECtrum:FFT:LENGth:AUTO OFF|ON|0|1

[:SENSe]:SPECtrum:FFT:LENGth:AUTO?

Select auto or manual control of the FFT and window lengths.

This is an advanced control that normally does not need to be changed.

On - the window lengths are coupled to resolution bandwidth, window type (FFT), pre-FFT bandwidth (sample rate) and SENSe:SPECTrum:FFT:RBWPoints.

Factory Preset and *RST: On

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.

History: Short form changed from LENgth to LENGth, A.03.00
Spectrum—FFT Minimum Points in Resolution BW

[:SENSe]:SPECtrum:FFT:RBWPonts <real>
[:SENSe]:SPECtrum:FFT:RBWPonts?

Set the minimum number of data points that will be used inside the resolution bandwidth. The value is ignored if length control is set to manual. This is an advanced control that normally does not need to be changed.

Factory Preset and *RST: 1.30
Range: 0.1 to 100
Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.

Spectrum—Window Delay

[:SENSe]:SPECtrum:FFT:WINDow:DELay <real>
[:SENSe]:SPECtrum:FFT:WINDow:DELay?

Set the FFT window delay to move the FFT window from its nominal position of being centered within the time capture. This function is not available from the front panel. It is an advanced control that normally does not need to be changed.

Factory Preset and *RST: 0
Range: −10.0 to +10.0s
Default Unit: seconds
Remarks: To use this command, the Service mode must be selected with INStrument:SELect. In Service mode, it is possible to get an acquisition time that is longer than the window time so that this function can be used.
Spectrum—Window Length

[:SENSe]:SPECtrum:FFT:WINDow:LENGth <integer>

[:SENSe]:SPECtrum:FFT:WINDow:LENGth?

Set the FFT window length. This value is only used if length control is set to manual. This is an advanced control that normally does not need to be changed.

Factory Preset and *RST: 706

5648, for iDEN mode

Range: 8 to 1,048,576

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELeCT.

History: Short form changed from LENgth to LENGth, A.03.00

Spectrum—FFT Window

[:SENSe]:SPECtrum:FFT:WINDow[:TYPE] BH4Tap|BLACKman|FLATtop|GAUSsian|HAMMing|HANNing|KB70|KB90|KB110|UNIFORM

[:SENSe]:SPECtrum:FFT:WINDow[:TYPE]?

Select the FFT window type.

- BH4Tap - Blackman Harris with 4 taps
- Blackman - Blackman
- Flat Top - flat top, the default (for high amplitude accuracy)
- Gaussian - Gaussian with alpha of 3.5
- Hamming - Hamming
- Hanning - Hanning
- KB70, 90, and 110 - Kaiser Bessel with sidelobes at \(-70, -90,\) or \(-110\) dBC
- Uniform - no window is used. (This is the unity response.)

Factory Preset and *RST: Flat top

Remarks: This selection affects the acquisition point quantity and the FFT size, based on the resolution bandwidth selected.

To use this command, the appropriate mode should be selected with INSTrument:SELeCT.
Spectrum—Frequency Span

[:SENSe]:SPECTrum:FREQuency:SPAN \(<freq>\)

[:SENSe]:SPECTrum:FREQuency:SPAN?

Set the frequency span to be measured.

Factory Preset and *RST: 1.0 MHz
100.0 kHz for iDEN mode

Range: 10 Hz to 10.0 MHz (15 MHz when Service mode is selected)

Default Unit: Hz

Remarks: The actual measured span will generally be slightly wider due to the finite resolution of the FFT.

To use this command, the appropriate mode should be selected with INStrument:SELect.

Spectrum—Sweep (Acquisition) Time

[:SENSe]:SPECTrum:SWEep:TIME \(<time>\)

[:SENSe]:SPECTrum:SWEep:TIME?

Set the sweep (measurement acquisition) time. It is used to specify the length of the time capture record. If the specified value is less than the capture time required for the specified span and resolution bandwidth, the value is ignored. The value is set at its auto value when auto is selected. This is an advanced control that normally does not need to be changed.

Factory Preset and *RST: 188.0 \(\mu\)s
15.059 ms, for iDEN mode

Range: 100 ns to 10 s

Default Unit: seconds

Remarks: NOTE: You must be in the Service mode to use this command. Use INStrument:SELect to set the mode.

This command only effects the RF envelope trace.
Spectrum—Sweep (Acquisition) Time Auto

[:SENSe]:SPECTrum:SWEep:TIME:AUTO OFF|ON|0|1

[:SENSe]:SPECTrum:SWEep:TIME:AUTO

Select auto or manual control of the sweep (acquisition) time. This is an advanced control that normally does not need to be changed.

- **Auto** - couples the Sweep Time to the Frequency Span and Resolution BW
- **Manual** - the Sweep Time is uncoupled from the Frequency Span and Resolution BW.

*Factory Preset and *RST: Auto*

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.

Spectrum—Trigger Source

[:SENSe]:SPECTrum:TRIGger:SOURce

EXTernal[1]|EXTernal2|FRAME|IF|LINE|IMMediate|RF Burst

[:SENSe]:SPECTrum:TRIGger:SOURce?

Select the trigger source used to control the data acquisitions.

- **External1** - front panel external trigger input
- **External2** - rear panel external trigger input
- **Frame** - internal frame timer from front panel input
- **IF** - internal IF envelope (video) trigger
- **Line** - internal line trigger
- **Immediate** - the next data acquisition is immediately taken (also called free run)
- **RF Burst** - wideband RF burst envelope trigger that has automatic level control for periodic burst signals

*Factory Preset and *RST: Immediate (free run) RF burst, for GSM, iDEN mode*

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.
Sync Type

[:SENSe]:SYNC ESECond|EXTernal[1]|EXTernal2|NONE|PSEQuence

[:SENSe]:SYNC?

Select the demodulation sync type for the waveform accuracy (Rho) and code domain power measurements.

Even Second - Even second clock
External1 - front panel external trigger input
External2 - rear panel external trigger input
None - no demod sync (uses free run trigger)
Pilot Sequence - pilot sequence sync (uses frame trigger)

Factory Preset
and *RST: Even second

Remarks: Global to the current mode.
You must be in the cdmaOne mode to use this command. Use INSTrument:SELect to set the mode.

Front Panel
Access: Mode Setup, Trigger, Sync Type

History: Front/Rear panel swapped EXT2/EXT1, A.03.00

Sync Alignment

[:SENSe]:SYNC:ALIGnment GSM|HBIT

[:SENSe]:SYNC:ALIGnment?

Select the sync alignment to be either to the GSM standard or the standard offset by 1/2 bit.

GSM - burst alignment as defined in the GSM standard
HBIT - burst alignment is advanced by 1/2 bit, which corresponds to an earlier interpretation of the GSM standard

Factory Preset
and *RST: Half bit

Remarks: Global to the current mode.
You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.

Front Panel
Access: Mode Setup, Demod, Burst Align

Chapter 5

337
Burst Sync Delay

[:SENSe]:SYNC:BURSt:DELay <time>

[:SENSe]:SYNC:BURSt:DELay?

Set the delay for the burst measurement position from the reference position that is determined by sync word or the burst rising/falling edges.

Factory Preset and *RST: 0 sec
Range: −500 ms to 500 ms
Default Unit: seconds
Remarks: You must be in the iDEN, NADC or PDC mode to use this command. Use INSTRument:SELection to set the mode.

Sync Burst RF Amplitude Delay

[:SENSe]:SYNC:BURSt:RFAMplitude:DELay <time>

[:SENSe]:SYNC:BURSt:RFAMplitude:DELay?

Set the delay for the RF amplitude sync.

Factory Preset and *RST: 0 s
Range: −100 ms to 100 ms
Default Unit: seconds
Remarks: Global to the current mode.

You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTRument:SELection to set the mode.

Front Panel Access: Mode Setup, Trigger, RF Burst, Delay
Burst Search Threshold

[:SENSe]:SYNC:BURSt:STHReshold <rel_power>

[:SENSe]:SYNC:BURSt:STHReshold?

Set the relative power threshold, which is used to determine the timeslots that will be included in the search for GSM bursts. For measurements that have burst sync set to training sequence, these bursts will be the only ones that will be searched for valid TSC’s (training sequence codes). The threshold power is relative to the peak power of the highest power timeslot. This is useful when measuring a BTS with different power levels in different timeslots, and you want to exclude bursts with lower power levels.

Factory Preset and *RST: -10 dB

Range: -200 to -0.01 dB

Default Unit: dB

Remarks: You must be in the EDGE(w/GSM), GSM mode to use this command. Use INSTrument:SELect to set the mode.

Front Panel Access: Mode Setup, Trigger, Slot Threshold

Burst Search Threshold

[:SENSe]:SYNC:STHReshold <rel_power>

[:SENSe]:SYNC:STHReshold?

Set the power threshold, relative to the peak power, that is used to determine the burst rising edge and falling edge.

Factory Preset and *RST: -30 dB

Range: -200 to -0.01 dB

Default Unit: dB

Remarks: You must be in the iDEN, NADC or PDC mode to use this command. Use INSTrument:SELect to set the mode.

Front Panel Access: Mode Setup, Trigger, Burst Search Threshold
Waveform (Time-Domain) Measurement

Commands for querying the waveform measurement results and for setting to the default values are found in the “MEASure Group of Commands” on page 233. The equivalent front panel keys for the parameters described in the following commands, are found under the Meas Setup key, after the Waveform (Time Domain) measurement has been selected from the MEASURE key menu.

Waveform—Data Acquisition Packing

[:SENSe]:WAVeform:ACQuistion:PACKing AUTO|LONG|MEdium|SHORt

[:SENSe]:WAVeform:ACQuistion:PACKing?

This is an advanced control that normally does not need to be changed.

Factory Preset
and *RST: Auto

Remarks: You must be in the Service mode to use this command. Use INSTrument:SELect to set the mode.

Waveform—ADC Dither State

[:SENSe]:WAVeform:ADC:DITHer[:STATe] |OFF|ON|0|1

[:SENSe]:WAVeform:ADC:DITHer[:STATe]?

This is an Advanced control that normally does not need to be changed.

Factory Preset
and *RST: Off

Remarks: You must be in the Service mode to use this command. Use INSTrument:SELect to set the mode.

Waveform—Pre-ADC Bandpass Filter

[:SENSe]:WAVeform:ADC:FILTer[:STATe] OFF|ON|0|1

[:SENSe]:WAVeform:ADC:FILTer[:STATe]?

Turn the pre-ADC bandpass filter on or off. This is an Advanced control that normally does not need to be changed.

Preset: Off

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.
Waveform—ADC Range

```
[:SENSe]:WAVeform:ADC:RANGe
AUTO|APEak|APLock|GROund|M6|P0|P6|P12|P18|P24|
```

Select the range for the gain-ranging that is done in front of the ADC. This is an Advanced control that normally does not need to be changed.

- **Auto** - automatic range
- **Auto Peak** - automatically peak the range
- **Auto Peak Lock** - automatically peak lock the range
- **Ground** - ground
- **M6** - subtracts 6 dB of fixed gain across the range
- **P0 to 24** - adds 0 to 24 dB of fixed gain across the range

Factory Preset

and *RST: Auto

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.

Waveform—Number of Averages

```
[:SENSe]:WAVeform:AVERage:COUNT <integer>
[:SENSe]:WAVeform:AVERage:COUNT?
```

Set the number of sweeps that will be averaged. After the specified number of sweeps (average counts), the averaging mode (terminal control) setting determines the averaging action.

Factory Preset

and *RST: 10

Range: 1 to 10,000

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.
SENSe Subsystem

Waveform—Averaging State

[:SENSe]:WAVEform:AVERage[:STATe] OFF|ON|0|1

[:SENSe]:WAVEform:AVERage[:STATe]?

Turn averaging on or off.

Factory Preset and *RST: Off

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.

Waveform—Averaging Mode

[:SENSe]:WAVEform:AVERage:TCONtrol EXPonential|REPeat

[:SENSe]:WAVEform:AVERage:TCONtrol?

Select the type of termination control used for the averaging function. This determines the averaging action after the specified number of 'sweeps' (average count) is reached.

- **Exponential** - Each successive data acquisition after the average count is reached, is exponentially weighted and combined with the existing average.
- **Repeat** - After reaching the average count, the averaging is reset and a new average is started.

Factory Preset and *RST: Exponential

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.
Waveform—Averaging Type

[:SENSe]:WAVeform:AVERage:TYPE
LOG|MAXimum|MINimum|RMS|SCALar

[:SENSe]:WAVeform:AVERage:TYPE?

Select the type of averaging.

Log - The log of the power is averaged. (This is also known as video averaging.)

Maximum - The maximum values are retained.

Minimum - The minimum values are retained.

RMS - The power is averaged, providing the rms of the voltage.

Factory Preset
and *RST: RMS

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.

Waveform—Resolution BW

[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution] <freq>

[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution]?

Set the resolution bandwidth. This value is ignored if the function is auto-coupled.

Factory Preset
and *RST: 100.0 kHz for NADC, PDC, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & Arib), basic, service
500.0 kHz for GSM
2.0 MHz for cdmaOne

Range: 1.0 kHz to 5.0 MHz

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.
Waveform—Resolution BW Filter Type

[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution]:TYPE
FLATtop|GAUSSian

[:SENSe]:WAVeform:BANDwidth|BWIDth[:RESolution]:TYPE?

Select the type of Resolution BW filter that is used. This is an Advanced control that normally does not need to be changed.

- **Flat top** - a filter with a flat amplitude response, which provides the best amplitude accuracy.
- **Gaussian** - a filter with Gaussian characteristics, which provides the best pulse response.

Factory Preset and *RST: Gaussian

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.

Waveform—Decimation of Waveform Display

[:SENSe]:WAVeform:DECimate[:FACTor] <integer>

[:SENSe]:WAVeform:DECimate[:FACTor]?

Set the amount of data decimation done on the IQ data stream. For example, if 4 is selected, three out of every four data points will be thrown away. So every 4th data point will be kept.

Factory Preset and *RST: 1

Range: 1 to 4

Remarks: To use this command, the appropriate mode should be selected with INSTrument:SELect.
Waveform—Control Decimation of Waveform Display

[:SENSe]:WAVEform:DECimate:STATe OFF|ON|0|1

[:SENSe]:WAVEform:DECimate:STATe?

Set the amount of data decimation done by the hardware in order to decrease the number of acquired points in a long capture time. This is the amount of data that the measurement ignores.

Factory Preset and *RST: Off

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.

Waveform—Sweep (Acquisition) Time

[:SENSe]:WAVEform:SWEep:TIME <time>

[:SENSe]:WAVEform:SWEep:TIME?

Set the measurement acquisition time. It is used to specify the length of the time capture record.

Factory Preset and *RST: 2.0 ms

10.0 ms, for NADC, PDC

15.0 ms, for iDEN mode

Range: 1 µs to 100 s

Default Unit: seconds

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.
Waveform—Trigger Source

[:SENSe]:WAVeform:TRIGger:SOURce EXTernal[1] | EXTernal2|FRAME|IF|IMMEDIATE|LINE|RF Burst

[:SENSe]:WAVeform:TRIGger:SOURce?

Select the trigger source used to control the data acquisitions.

- **External 1** - front panel external trigger input
- **External 2** - rear panel external trigger input
- **Frame** - internal frame timer from front panel input
- **IF** - internal IF envelope (video) trigger
- **Immediate** - the next data acquisition is immediately taken (also called free run)
- **Line** - internal line trigger
- **RF Burst** - wideband RF burst envelope trigger that has automatic level control for periodic burst signals

Factory Preset and *RST: Immediate (free run), for Basic, cdmaOne, NADC, PDC mode

Remarks: To use this command, the appropriate mode should be selected with INStrument:SELect.
SERVice Subsystem

Provides SCPI access for the calibration manager.

Read and Write Calibration Data

:SERVice[:PRODuction]:CALibrate <cal_fid>,<idx>,<numeric_value>

:SERVice[:PRODuction]:CALibrate? <cal_fid>,<idx>

Write or read the calibration data specified by the cal_fid and idx. This write is done to NRAM, it is not stored to EEROM until DIAGnostic:CALibrate:STORe is executed.

Example: DIAGnostic:CALibrate 2,1,0

Range: cal_fid ::= numeric_value corresponds to the CALibrate file ID

idx, is the index into the CALibrate file specified by cal_fid

Prepare Calibration Files for Access

:SERVice[:PRODuction]:CALibrate:BEGin

Locks all of the calibration files for memory accesses.

Remarks: No query.

Load Default Calibration Data to NRAM

:SERVice[:PRODuction]:CALibrate:DEFault <cal_fid>

Loads the specified calibration data from EEROM to NRAM, initializing the alignment data to the factory defaults.

Range: cal_fid, corresponds to the Calibrate file ID

Remarks: No query.
Unlock Calibration Files

:SERVice[:PRODuction]:CALibrate:END

Unlocks all of the calibration files.

Set Default Calibration Data

:SERVice[:PRODuction]:CALibrate:INITialize <cal_fid>

Loads the specified calibration data with default values.

Range: cal_fid, corresponds to the calibration data file ID

Remarks: No query.

Store Calibration Data in EEROM

:SERVice[:PRODuction]:CALibrate:STORe <cal_fid>

Stores the specified calibration data into EEROM. The data will survive power cycles and will be reloaded into NRAM on power up.

Range: cal_fid, corresponds to the calibration data file ID

Remarks: No query.
STATus Subsystem

The STATus subsystem controls the SCPI-defined instrument-status reporting structures. Each status register has a set of five commands used for querying or masking that particular register.

Operation Register

Operation Condition Query

:STATus:OPERation:CONDition?

This query returns the decimal value of the sum of the bits in the Status Operation Condition register.

NOTE

The data in this register is continuously updated and reflects the current conditions.

Operation Enable

BASE

:STATus:OPERation:ENABle?

This command determines what bits in the Operation Event register, will set the Operation Status Summary bit (bit 7) in the Status Byte Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

NOTE

The preset condition is to have all bits in this enable register set to 0. To have any Operation Events reported to the Status Byte Register, one or more bits need to be set to 1. There is little reason to have any bits enabled for typical manufacturing tests. Enabling bits in this register would be of more value during test development.

Factory Preset
and *RST:

Range: 0 to 32767

Operation Event Query

:STATus:OPERation[:EVENT]?

This query returns the decimal value of the sum of the bits in the Operation Event register.
NOTE
The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.
The data in this register is latched until it is queried. Once queried, the register is cleared.

Operation Negative Transition

BASE
:STATus:OPERation:NTRansition?
This command determines what bits in the Operation Condition register will set the corresponding bit in the Operation Event register when the condition register bit has a negative transition (1 to 0). The variable <number> is the sum of the decimal values of the bits that you want to enable.
Factory Preset and *RST: 0
Range: 0 to 32767

Operation Positive Transition

BASE
:STATus:OPERation:PTRansition?
This command determines what bits in the Operation Condition register will set the corresponding bit in the Operation Event register when the condition register bit has a positive transition (0 to 1). The variable <number> is the sum of the decimal values of the bits that you want to enable.
Factory Preset and *RST:
Range: 0 to 32767
Preset the Status Byte

:STATus:PRESet

Questionable Register

Questionable Condition

:STATus:QUEStionable:CONDition?

This query returns the decimal value of the sum of the bits in the Questionable Condition register.

NOTE

The data in this register is continuously updated and reflects the current conditions.

Questionable Enable

:STATus:QUEStionable:ENABle <number>

:STATus:QUEStionable:ENABle?

This command determines what bits in the Questionable Event register will set the Questionable Status Summary bit (bit3) in the Status Byte Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

NOTE

The preset condition is all bits in this enable register set to 0. To have any Questionable Events reported to the Status Byte Register, one or more bits need to be set to 1. The Status Byte Event Register should be queried after each measurement to check the Questionable Status Summary (bit 3). If it is equal to 1, a condition during the test may have made the test results invalid. If it is equal to 0, this indicates that no hardware problem or measurement problem was detected by the analyzer.

Factory Preset and *RST:

Range: 0 to 32767
Questionable Event Query

`:STATus:QUEStionable[:EVENt]`?

This query returns the decimal value of the sum of the bits in the Questionable Event register.

NOTE

The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.

The data in this register is latched until it is queried. Once queried, the register is cleared.

Questionable Negative Transition

`:STATus:QUEStionable:NTRansition <number>`

`:STATus:QUEStionable:NTRansition?`

This command determines what bits in the Questionable Condition register will set the corresponding bit in the Questionable Event register when the condition register bit has a negative transition (1 to 0). The variable `<number>` is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Positive Transition

`:STATus:QUEStionable:PTRansition <number>`

`:STATus:QUEStionable:PTRansition?`

This command determines what bits in the Questionable Condition register will set the corresponding bit in the Questionable Event register when the condition register bit has a positive transition (0 to 1). The variable `<number>` is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767
Questionable Calibration Register

Questionable Calibration Condition

:STATus:QUEStionable:CALibration:CONDition?

This query returns the decimal value of the sum of the bits in the Questionable Calibration Condition register.

NOTE

The data in this register is continuously updated and reflects the current conditions.

Questionable Calibration Enable

:STATus:QUEStionable:CALibration:ENABle <number>

:STATus:QUEStionable:CALibration:ENABle?

This command determines what bits in the Questionable Calibration Condition Register will set bits in the Questionable Calibration Event register, which also sets the Calibration Summary bit (bit 8) in the Questionable Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

Example STAT:QUES:CAL:ENABLE 16384 could be used if you have turned off the automatic alignment and you want to query if an alignment is needed.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Calibration Event Query

:STATus:QUEStionable:CALibration[:EVENt]?

This query returns the decimal value of the sum of the bits in the Questionable Calibration Event register.

NOTE

The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.

The data in this register is latched until it is queried. Once queried, the register is cleared.
Questionable Calibration Negative Transition

:STATus:QUEStionable:CALibration:NTRansition <number>

:STATus:QUEStionable:CALibration:NTRansition?

This command determines what bits in the Questionable Calibration Condition register will set the corresponding bit in the Questionable Calibration Event register when the condition register bit has a negative transition (1 to 0). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Calibration Positive Transition

:STATus:QUEStionable:CALibration:PTRansition <number>

:STATus:QUEStionable:CALibration:PTRansition?

This command determines what bits in the Questionable Calibration Condition register will set the corresponding bit in the Questionable Calibration Event register when the condition register bit has a positive transition (0 to 1). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Frequency Register

Questionable Frequency Condition

:STATus:QUEStionable:FREQuency:CONDition?

This query returns the decimal value of the sum of the bits in the Questionable Frequency Condition register.

NOTE

The data in this register is continuously updated and reflects the current conditions.
Questionable Frequency Enable

:STATus:QUEStionable:FREQuency:ENABle <number>
:STATus:QUEStionable:FREQuency:ENABle?

This command determines what bits in the Questionable Frequency Condition Register will set bits in the Questionable Frequency Event register, which also sets the Frequency Summary bit (bit 5) in the Questionable Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

Factory Preset
and *RST:

Range: 0 to 32767

Questionable Frequency Event Query

:STATus:QUEStionable:FREQuency[:EVENt]?

This query returns the decimal value of the sum of the bits in the Questionable Frequency Event register.

NOTE
The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.

The data in this register is latched until it is queried. Once queried, the register is cleared.

Questionable Frequency Negative Transition

:STATus:QUEStionable:FREQuency:NTRansition <number>
:STATus:QUEStionable:FREQuency:NTRansition?

This command determines what bits in the Questionable Frequency Condition register will set the corresponding bit in the Questionable Frequency Event register when the condition register bit has a negative transition (1 to 0). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset
and *RST: 0

Range: 0 to 32767
Questionable Frequency Positive Transition

:STATus:QUESTionable:FREQuency:PTRansition <number>
:STATus:QUESTionable:FREQuency:PTRansition?

This command determines what bits in the Questionable Frequency Condition register will set the corresponding bit in the Questionable Frequency Event register when the condition register bit has a positive transition (0 to 1). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset
and *RST:

Range: 0 to 32767

Questionable Integrity Register

Questionable Integrity Condition

:STATus:QUESTionable:INTegrity:CONDition?

This query returns the decimal value of the sum of the bits in the Questionable Integrity Condition register.

NOTE

The data in this register is continuously updated and reflects the current conditions.

Questionable Integrity Enable

:STATus:QUESTionable:INTegrity:ENABle <number>
:STATus:QUESTionable:INTegrity:ENABle?

This command determines what bits in the Questionable Integrity Condition Register will set bits in the Questionable Integrity Event register, which also sets the Integrity Summary bit (bit 9) in the Questionable Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

Factory Preset
and *RST:

Range: 0 to 32767
Questionable Integrity Event Query

:STATus:QUEStionable:INTegrity[:EVENt]?

This query returns the decimal value of the sum of the bits in the Questionable Integrity Event register.

NOTE

The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.

The data in this register is latched until it is queried. Once queried, the register is cleared.

Questionable Integrity Negative Transition

:STATus:QUEStionable:INTegrity:NTRansition <number>

:STATus:QUEStionable:INTegrity:NTRansition?

This command determines what bits in the Questionable Integrity Condition register will set the corresponding bit in the Questionable Integrity Event register when the condition register bit has a negative transition (1 to 0).

The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Integrity Positive Transition

:STATus:QUEStionable:INTegrity:PTRansition <number>

:STATus:QUEStionable:INTegrity:PTRansition?

This command determines what bits in the Questionable Integrity Condition register will set the corresponding bit in the Questionable Integrity Event register when the condition register bit has a positive transition (0 to 1). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767
Questionable Integrity Signal Register

Questionable Integrity Signal Condition

:STATus:QUEStionable:INTegrity:SIGNal:CONDition?

This query returns the decimal value of the sum of the bits in the Questionable Integrity Signal Condition register.

NOTE

The data in this register is continuously updated and reflects the current conditions.

Questionable Integrity Signal Enable

:STATus:QUEStionable:INTegrity:SIGNal:ENABle <number>

:STATus:QUEStionable:INTegrity:SIGNal:ENABle?

This command determines what bits in the Questionable Integrity Signal Condition Register will set bits in the Questionable Integrity Signal Event register, which also sets the Integrity Summary bit (bit 9) in the Questionable Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Integrity Signal Event Query

:STATus:QUEStionable:INTegrity:SIGNal[:EVENt]?

This query returns the decimal value of the sum of the bits in the Questionable Integrity Signal Event register.

NOTE

The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.

The data in this register is latched until it is queried. Once queried, the register is cleared.
Questionable Integrity Signal Negative Transition

:STATus:QUEStionable:INTegrity:SIGNal:NTRansition <number>

:STATus:QUEStionable:INTegrity:SIGNal:NTRansition?

This command determines what bits in the Questionable Integrity Signal Condition register will set the corresponding bit in the Questionable Integrity Signal Event register when the condition register bit has a negative transition (1 to 0). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Integrity Signal Positive Transition

:STATus:QUEStionable:INTegrity:SIGNal:PTRansition <number>

:STATus:QUEStionable:INTegrity:SIGNal:PTRansition?

This command determines what bits in the Questionable Integrity Signal Condition register will set the corresponding bit in the Questionable Integrity Signal Event register when the condition register bit has a positive transition (0 to 1). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Power Register

Questionable Power Condition

:STATus:QUEStionable:POWer:CONDition?

This query returns the decimal value of the sum of the bits in the Questionable Power Condition register.

NOTE

The data in this register is continuously updated and reflects the current conditions.
Questionable Power Enable

:STATus:QUEStionable:POWer:ENABLE <number>
:STATus:QUEStionable:POWer:ENABLE?

This command determines what bits in the Questionable Power Condition Register will set bits in the Questionable Power Event register, which also sets the Power Summary bit (bit 3) in the Questionable Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

Factory Preset
and *RST:
Range: 0 to 32767

Questionable Power Event Query

:STATus:QUEStionable:POWer[:EVENt]?

This query returns the decimal value of the sum of the bits in the Questionable Power Event register.

NOTE
The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.

The data in this register is latched until it is queried. Once queried, the register is cleared.

Questionable Power Negative Transition

:STATus:QUEStionable:POWer:NTRansition <number>
:STATus:QUEStionable:POWer:NTRansition?

This command determines what bits in the Questionable Power Condition register will set the corresponding bit in the Questionable Power Event register when the condition register bit has a negative transition (1 to 0). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset
and *RST:
Range: 0 to 32767
Questionable Power Positive Transition

:STATus:QUEStionable:POWer:PTRansition <number>
:STATus:QUEStionable:POWer:PTRansition?

This command determines what bits in the Questionable Power Condition register will set the corresponding bit in the Questionable Power Event register when the condition register bit has a positive transition (0 to 1). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset
and *RST:

Range: 0 to 32767

Questionable Temperature Register

Questionable Temperature Condition

:STATus:QUEStionable:TEMPerature:CONDition?

This query returns the decimal value of the sum of the bits in the Questionable Temperature Condition register.

NOTE
The data in this register is continuously updated and reflects the current conditions.

Questionable Temperature Enable

:STATus:QUEStionable:TEMPerature:ENABLE <number>
:STATus:QUEStionable:TEMPerature:ENABLE?

This command determines what bits in the Questionable Temperature Condition Register will set bits in the Questionable Temperature Event register, which also sets the Temperature Summary bit (bit 4) in the Questionable Register. The variable <number> is the sum of the decimal values of the bits you want to enable.

Factory Preset
and *RST:

Range: 0 to 32767
Questionable Temperature Event Query

:STATus:QUESTionable:TEMPerature[:EVENT]?

This query returns the decimal value of the sum of the bits in the Questionable Temperature Event register.

NOTE

The register requires that the associated PTR or NTR filters be set before a condition register bit can set a bit in the event register.

The data in this register is latched until it is queried. Once queried, the register is cleared.

Questionable Temperature Negative Transition

:STATus:QUESTionable:TEMPerature:NTRansition <number>

:STATus:QUESTionable:TEMPerature:NTRansition?

This command determines what bits in the Questionable Temperature Condition register will set the corresponding bit in the Questionable Temperature Event register when the condition register bit has a negative transition (1 to 0). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767

Questionable Temperature Positive Transition

:STATus:QUESTionable:TEMPerature:PTRansition <number>

:STATus:QUESTionable:TEMPerature:PTRansition?

This command determines what bits in the Questionable Temperature Condition register will set the corresponding bit in the Questionable Temperature Event register when the condition register bit has a positive transition (0 to 1). The variable <number> is the sum of the decimal values of the bits that you want to enable.

Factory Preset and *RST:

Range: 0 to 32767
SYSTem Subsystem

This subsystem is used to set the controls and parameters associated with the overall system communication. These are functions that are not related to instrument performance. Examples include functions for performing general housekeeping and functions related to setting global configurations.

GPIB Address

:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <integer>
:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?

Sets and queries the GPIB address.

Factory Preset
and *RST: Persistent State with factory default of 18
Range: Integer, 0 to 30
Front Panel Access: System, Config I/O, GPIB Addr

LAN IP Address & Domain Name

:SYSTem:COMMunicate:LAN[:SELF]:IP <string>
:SYSTem:COMMunicate:LAN[:SELF]:IP?

Set the IP (internet protocol) address, domain name and node name for the instrument.

<string> is a string that contains: <IP address> <domain name>, and <node name> with a form as shown in the following example:

15.4.402.222 at35 sr.hp.com at25 betabox

Front Panel Access: System, Config I/O, Config LAN
Hardware Configuration Query

:SYSTem:CONFigure:DEFault

Resets all instrument functions to the factory defaults, including the persistent functions. Persistent functions are system settings that stay at their current settings even through instrument power-on, such as I/O bus addresses and preset preferences.

Front Panel Access: System, Restore Sys Defaults

System Configuration Query

:SYSTem:CONFigure[:SYSTem]?

Returns a block of data listing of all the information on the Show System screen. For more information about how to use block data see the FORMat:DATA command or the Programming Fundamentals: SCPI Language Basics discussion on arbitrary length block data.

Front Panel Access: System, Show System

Set Date

:SYSTem:DATE <year>,<month>,<day>

:SYSTem:DATE?

Sets the date of the real-time clock of the instrument.

 Year - is a 4-digit integer
 Month - is an integer from 1 to 12
 Day - is an integer from 1 to 31 (depending on the month)

Front Panel Access: System, Time/Date, Set Date
Error Information Query

`:SYSTem:ERRor[:NEXT]`?

This command queries the earliest entry in the error queue and then deletes that entry. *CLS clears the entire error queue. It can be used to continuously monitor the error queue for errors to occur.

Front Panel
Access: System, Show Errors

Locate SCPI Command Errors

`:SYSTem:ERRor:VERBose OFF|ON|0|1

`:SYSTem:ERRor:VERBose?`

Adds additional information to the error messages returned by the `SYSTem:ERRor?` command. It indicates which SCPI command was executing and where in that command the error was detected.

`<error number>,"<error message>;annotated SCPI command>"`

Example: First set `SYST:ERR:VERBOSE ON`

If the command `SENSe:FREQuently:CENTer 942.6MHz` is sent, then sending `SYST:ERR?` returns:

−113,"Undefined header;SENSe:FREQuently:<Err>CENTer 942.6MHz $<NL>"

The `<Err>` shown after FREQuently shows you the spelling error. (The `$<NL>` is the typical representation for the command terminator.

If the command `SENSe:FREQuency:CENTer 942.6Sec` is sent, then sending `SYST:ERR?` returns:

−113,"Invalid suffix;SENSe:FREQuency:CENTer 942.6Sec<Err> $<NL>"

The `<Err>` shown after Sec shows you the invalid suffix.

Factory Preset and *RST: Off. This parameter is persistent, which means that it retains the setting previously selected, even through a power cycle.

Remarks: The verbose SCPI error debugging state is global to all the SCPI interfaces.

History: Added version A.04.00

Front Panel Access: System, Show Errors, Verbose
Exit Main Firmware for Upgrade

:SYSTem:EXIT

Exit the main firmware to allow the firmware to be upgraded.

Front Panel
Access: System, Install, Exit Main Firmware

SCPI Command Help Headers Query

:SYSTem:HELP:HEADers?

Outputs a list of valid SCPI commands from the instrument.

NOTE
The commands that are listed are only for the base instrument and for the currently selected mode (e.g. Service mode, GSM mode). Use INSTRument:SELection to change the mode. The core set of system-type commands are common to all modes.

Host Identification Query

:SYSTem:HID?

Returns a string that contains the host identification. This ID is required in order to obtain the license key that enables a new application (mode) or option.

Front Panel
Access: System, Show System
License Key for Installing New Applications

:SYSTem:LKEY <"option">,<"license key">

:SYSTem:LKEY? <"option">

Enter the license key required for installing the specified new application (mode) or option. The query returns a string that contains the license key for a specified application or option that is already installed in the instrument. The license key will also be returned if the application is not currently in memory, but had been installed at some previous time.

Option – is a string that is the 3-character designation for the desired option. For example: BAC is the option for cdmaOne.

License key – is a 12 character alphanumeric string given to you with your option.

Example: SYST:LKEY “BAC”, “123A456B789C”

Remarks: The license key is unique to the specific option installed in the instrument with the specified serial number.

Front Panel Access: System, Install, License Key

Delete a License Key

:SYSTem:LKEY:DELeete <"application">,<"license key">

Allows you to delete the license key, for the selected application, from instrument memory.

NOTE

Do not delete the license key number. If the license key is deleted, you will be unable to reload or update the application in instrument memory without re-entering the license key. The license key only works with one particular instrument serial number.

<application> - is a string that is the same as one of the enumerated items used in the INStrument[:SELect] command.

<license key> - is a 12 character alphanumeric string given to you with your application

Front Panel Access: None
Service Password

:SYSTem:PASSword[:CENable]<integer>

Enables access to the service functions by means of the password.

Front Panel
Access: System, Show System, Service Password

Preset

:SYSTem:PRESet

Returns the instrument to a set of defined conditions. This command does not change any persistent parameters.

Front Panel
Access: Preset

Set Time

:SYSTem:TIME <hour>,<min>,<sec>

:SYSTem:TIME?

Sets the time of the real-time clock of the instrument.

- Hour must be an integer from 0 to 23.
- Minute must be an integer from 0 to 59.
- Second must be an integer from 0 to 59.

Front Panel
Access: System, Time/Date, Set Time
Adjust Time

:SYSTem:TIME:ADJust <seconds>

Adjust the instruments internal time by the value entered.

Range: Larger than you should ever need

Example:

SYST:TIME:ADJ 3600 will advance the time one hour.

SYST:TIME:ADJ -86400 will back the date up one day, without changing the time of day (minutes or seconds).

History: In revision A.02.00 and later

Default Unit: seconds

SCPI Version Query

:SYSTem:VERSion?

Returns the SCPI version number with which the instrument complies.
TRIGger Subsystem

The TRIGger Subsystem is used to set the controls and parameters associated with triggering the data acquisitions. Other trigger-related commands are found in the INITiate and ABORT subsystems.

The trigger parameters are global within the selected Mode. The commands in the TRIGger subsystem set up the way the triggers function, but selection of the trigger source is made from each measurement. There is a separate trigger source command in the SENSE:<meas> subsystem for each measurement. The equivalent front panel keys for the parameters described in the following commands, can be found under the Mode Setup, Trigger key.

Automatic Trigger Control

:TRIGger[:SEQUence]:AUTO:STATE OFF|ON|0|1

:TRIGger[:SEQUence]:AUTO:STATE?

Turns the automatic trigger function on and off. This function causes a trigger to occur if the designated time has elapsed and no trigger occurred. It can be used with unpredictable trigger sources, like external or burst, to make sure a measurement is initiated even if a trigger doesn't occur. Use TRIGger[:SEQUence]:AUTO[:TIME] to set the time limit.

Factory Preset

and *RST

On for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB), NADC, or PDC

Front Panel

Key Access

Mode Setup, Trigger, Auto Trigger
Automatic Trigger Time

`:TRIGger[:SEQuence]:AUTO[:TIME] <time>`

`:TRIGger[:SEQuence]:AUTO[:TIME]?`

After the measurement is activated the instrument will take a data acquisition immediately upon receiving a signal from the selected trigger source. If no trigger signal is received by the end of the time specified in this command, a data acquisition is taken anyway. TRIGger[:SEQuence]:AUTO:STATE must be on.

Factory Preset and *RST: 100.0 ms

Range: 1.0 ms to 1000.0 s

0.0 to 1000.0 s for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB)

Default Unit: seconds

Front Panel External Trigger Delay Value

`:TRIGger[:SEQuence]:EXTernal[1]:DELay <time>`

`:TRIGger[:SEQuence]:EXTernal[1]:DELay?`

Set the amount of trigger delay when using the front panel external trigger input. Set the trigger value to zero (0) seconds to turn off trigger delay.

Factory Preset and *RST: 0.0 s

Range: −500.0 ms to 500.0 ms

−100.0 ms to 500.0 ms for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB)

Default Unit: seconds

Front Panel Access: Mode Setup, Trigger, Ext Front, Delay
Front Panel External Trigger Level

:TRIGger[:SEQUence]:EXTERNal[1]:LEVEL <voltage>

:TRIGger[:SEQUence]:EXTERNal[1]:LEVEL?

Set the trigger level when using the front panel external trigger input.

Factory Preset
and *RST: 2.0 V

Range: −5.0 to +5.0 V

Default Unit: volts

Front Panel Access: Mode Setup, Trigger, Ext Front, Level

Front Panel External Trigger Slope

:TRIGger[:SEQUence]:EXTERNal[1]:SLOPe NEGative|POSitive

:TRIGger[:SEQUence]:EXTERNal[1]:SLOPe?

Sets the triggering to occur on a positive-going edge or a negative-going edge of the trigger when using the front panel external trigger input.

Factory Preset
and *RST: Positive

Front Panel Access: Mode Setup, Trigger, Ext Front, Slope

Rear Panel External Trigger Delay

:TRIGger[:SEQUence]:EXTERNal2:DELAY <time>

:TRIGger[:SEQUence]:EXTERNal2:DELAY?

Set the trigger delay when using the rear panel external trigger.

Factory Preset
and *RST: 0.0 s

Range: −500.0 ms to 500.0 ms

−100.0 ms to 500.0 ms for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB)

Default Unit: seconds

Front Panel Access: Mode Setup, Trigger, Ext Rear, Delay
Rear Panel External Trigger Level

:TRIGger[:SEQuence]:EXTernal2:LEVel <voltage>
:TRIGger[:SEQuence]:EXTernal2:LEVel?

Set the trigger level when using the rear panel external trigger input.

Factory Preset
and *RST: 2.0 V
Range: −5.0 to +5.0 V
Default Unit: volts
Front Panel
Access: Mode Setup, Trigger, Ext Rear, Level

Rear Panel External Trigger Slope

:TRIGger[:SEQuence]:EXTernal2:SLOPe NEGative|POSitive
:TRIGger[:SEQuence]:EXTernal2:SLOPe?

Sets the trigger slope when using the rear panel external trigger input.

Factory Preset
and *RST: Positive
Front Panel
Access: Mode Setup, Trigger, Ext Rear, Slope

Frame Trigger Adjust

:TRIGger[:SEQuence]:FRAMe:ADJust <time>

Lets you advance the phase of the frame trigger by the specified amount. It does not change the period of the trigger waveform. If the command is sent multiple times, it advances the phase of the frame trigger more each time it is sent.

Factory Preset
and *RST: 0.0 s
Range: 0.0 to 10.0 s
Default Unit: seconds
Front Panel
Access: None
Frame Trigger Period

:TRIGger[:SEQUence]:FRAME:PERiod <time>

:TRIGger[:SEQUence]:FRAME:PERiod?

Set the frame period that you want when using the external frame timer trigger. If the traffic rate is changed, the value of the frame period is initialized to the preset value.

Factory Preset and *RST: 250.0 µs for Basic, cdmaOne

4.615383 ms, for GSM

26.666667 ms for cdma2000

10.0 ms (1 radio frame) for W-CDMA (3GPP), W-CDMA (Trial & ARIB)

90.0 ms for iDEN

20.0 ms with rate=full for NADC, PDC

40.0 ms with rate=half for NADC, PDC

Range: 0.0 ms to 559.0 ms for Basic, cdmaOne, GSM, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB)

1.0 ms to 559.0 ms for iDEN, NADC, PDC

Default Unit: seconds

Front Panel Access: Mode Setup, Trigger, Frame Timer, Period

Frame Trigger Sync Mode

:TRIGger[:SEQUence]:FRAME:SYNCmode

EXTFront | EXTRear | OFF | RFBurst

:TRIGger[:SEQUence]:FRAME:SYNCmode?

Selects the input port location for the external frame trigger that you are using.

Factory Preset and *RST: Off

Front Panel Access: Mode Setup, Trigger, Frame Timer, Period
Frame Trigger Synchronization Offset

:TRIGger[:SEQuence]:FRAMe:SYNCmode:OFFSet <time>

Lets you adjust the frame triggering with respect to the external trigger input that you are using.

Factory Preset and *RST: 0.0 s
Range: 0.0 to 10.0 s
Default Unit: seconds
History: Revision A.03.27 or later
Front Panel Access: Mode Setup, Trigger, Frame Timer, Offset

Trigger Holdoff

:TRIGger[:SEQuence]:HOLDoff <time>

:TRIGger[:SEQuence]:HOLDoff?

Set the holdoff time between triggers. After a trigger, another trigger will not be allowed until the holdoff time expires. This parameter affects all trigger sources.

Factory Preset and *RST: 0.0 s
20.0 ms for iDEN
10.0 ms for NADC or PDC
Range: 0.0 to 500.0 ms
Default Unit: seconds
Front Panel Access: Mode Setup, Trigger, Trig Holdoff
Video (IF) Trigger Delay

:TRIGger[:SEQuence]:IF:DELay <time>

:TRIGger[:SEQuence]:IF:DELay?

Set the trigger delay when using the IF (video) trigger (after the Resolution BW filter).

Factory Preset and *RST: 0.0 s

Range: −500.0 ms to 500.0 ms

−100.0 ms to 500.0 ms for cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB)

Default Unit: seconds

Front Panel Access: Mode Setup, Trigger, Video (IF Envlp), Delay

Video (IF) Trigger Level

:TRIGger[:SEQuence]:IF:LEVel <power>

:TRIGger[:SEQuence]:IF:LEVel?

Set the trigger level when using the IF (video) trigger.

Factory Preset and *RST: −6.0 dBm for cdmaOne, GSM, Basic, Service, cdma2000, W-CDMA (3GPP), W-CDMA (Trial & ARIB)

−20.0 dBm for iDEN

−30.0 dBm for NADC, PDC

Range: −200.0 to 50.0 dBm

Default Unit: dBm

Front Panel Access: Mode Setup, Trigger, Video (IF Envlp), Level
Video (IF) Trigger Slope

`:TRIGger[:SEQuence]:IF:SLOPe NEGative|POSitive`
`:TRIGger[:SEQuence]:IF:SLOPe?`
Sets the trigger slope when using the IF (video) trigger.
Factory Preset and *RST: Positive
Front Panel Access: Mode Setup, Trigger, Video (IF Envlp), Slope

RF Burst Trigger Delay

`:TRIGger[:SEQuence]:RFBurst:DELay <time>`
`:TRIGger[:SEQuence]:RFBurst:DELay?`
Set the trigger delay when using the RF burst (wideband) trigger.
Factory Preset and *RST: 0.0 s
Range: −500.0 ms to 500.0 ms
−100.0 ms to 500.0 ms for cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & ARIB)
Default Unit: seconds
Front Panel Access: Mode Setup, Trigger, RF Burst, Delay
RF Burst Trigger Level

:TRIGger[:SEQuence]:RFBurst:LEVel <percent>

:TRIGger[:SEQuence]:RFBurst:LEVel?

Set the trigger level when using the RF Burst (wideband) Trigger. The value is relative to the peak of the signal. RF Burst is also known as RF Envelope.

Factory Preset and *RST: −6.0 dB

Range: −25.0 to 0.0 dB

−200.0 to 0.0 dB for NADC, PDC

Default Unit: dB

Front Panel Access: Mode Setup, Trigger, RF Burst, Peak Level

RF Burst Trigger Slope

:TRIGger[:SEQuence]:RFBurst:SLOPe NEGative|POSitive

:TRIGger[:SEQuence]:RFBurst:SLOPe?

Set the trigger slope when using the RF Burst (wideband) Trigger.

Factory Preset and *RST: Positive

Remarks: You must be in the cdmaOne, cdma2000, W-CDMA (3GPP), or W-CDMA (Trial & ARIB) mode to use this command. Use :INSTrument:SELect to set the mode.

Front Panel Access: Mode Setup, Trigger, RF Burst, Slope
6 Error Messages
Error Queues

If an error condition occurs in the instrument, it may be reported to both the history error queue (front panel display) and the SCPI error queue (remote interface). These two queues are viewed and managed separately. Some programming errors are not applicable to front panel operation, so they are only reported through the SCPI remote interface error queue.

Error messages will appear as they occur in the Status/Info bar that appears at the bottom of the display. To view error messages fully you will use keys in the System, Show Errors menu.

NOTE
If there are any messages in the history error queue, the Err annunciator will be activated on the instrument display.

Front Panel Error Messages

Annunciators

The display annunciators show the status of some of the transmitter tester functions and indicate error conditions of the instrument. Error annunciators are shown in red text on the instrument display. Where applicable, some states will appear in green, indicating that the feature is active and performing correctly. The state will change to red if the feature fails. The following annunciators are available:

- Unlock - This annunciator indicates that one or more of the internal phase-locked loops are unable to maintain a phase-locked state.
- Corr Off (corrections off) - This annunciator appears when the Corrections softkey is set to off.
- Err (error) - This annunciator appears when an error message is placed in the history error queue. It will persist until you use the Clear Error Queue(s) key to clear the history error queue.
Ext Ref **(external reference)** - The green Ext Ref annunciator indicates that the external reference has been selected and the instrument is locked to it. The red Ext Ref annunciator indicates that the external reference has been selected, but the instrument is not locked to that reference. Note that the external reference on this instrument can be set at any frequency between 1 and 30 MHz; if the entered value does not correspond to the external reference that is in use, a red Ext Ref annunciator will appear. Also, be aware that the value entered for the external reference frequency will persist, even after the instrument has been powered off. The user must manually enter a new value for the external reference if a different value is required, even if it corresponds with the default value. An Ext Ref annunciator will appear only if the external reference has been activated by the user.

ESec **(even second clock)** - The green ESec annunciator indicates that the external even second clock has been selected as the sync type and a sync signal is present at the even second input (rear panel Trigger In), and the measurement is using it as the demodulation sync type. The red ESec annunciator indicates that an external even second clock has been selected as the sync type but a sync signal is not present at the even second input (rear panel Trigger In). In this case, the error message **Even Second Clock Missing** will appear in the Status/Info bar at the bottom of the display. The even second clock detection is updated every 2 seconds.

The History Error Queue

This queue is designed in a circular (rotating) fashion. It can hold up to 250 error messages. If the queue is full, and additional error messages arrive, the oldest errors are lost. The previously read messages are not cleared from the queue; they remain in the queue until they are overwritten by a new error message.

The history error queue information can be accessed by pressing **System, Show Errors**. From this menu you can choose **Top Page, Last Page, Next Page, or Prev Page**, to switch between pages (if there are more than 17 error messages). To empty the queue, press **Clear Error Queue(s)**.

You can exit the error queue display by pressing either **ESC** or **Return**. Selecting a measurement under the **Measure** key will also exit the error queue display.
Error Message Format

Error messages will appear (in the format described below) in the Status/Info bar that appears at the bottom of the display. Generally the most recent message will appear, however there are occasions when an error message that has a higher priority will appear instead of the most recent one.

Error messages appear in the following format:

<error number><error message><context-specific information><occurrences>

<error number> - unique numeric identifier
(refer to the Error Message Descriptions section)
<error message> - generic description
<context-specific information> - (optional) additional information about this particular occurrence of the error
<occurrences> - Many repetitive type errors are counted rather than being individually logged. Occurrences (enclosed in parentheses) show the number of times the error has occurred since the queue was last cleared.
Error Messages

Chapter 6

SCPI Remote Interface Error Messages

Remote Error Queue

This queue is constructed in a linear first-in/first-out fashion. It can hold up to 30 error messages. As errors and events are detected, they are placed in the queue. Unlike the history error queue, errors in this queue are not overwritten by the latest incoming error messages. If the queue overflows, the last error in the queue is replaced with the error:

(-350) Queue overflow

When the queue overflows, the early errors remain in the queue, and the most recent error is discarded. Reading an error from the beginning of the queue removes that error from the queue, and opens a position at the end of the queue for a new error, if one is subsequently detected.

The queue overflow message remains in the queue until it is read. If errors continue to occur as the queue is read, the Queue Overflow message will be followed by as many of the new messages as will fit in the remaining queue space. If the queue fills again and another error occurs, another Queue Overflow message will be placed in the queue.

Querying the Error Queue

The SYSTem:ERRor[:NEXT]? query is a request for the next entry from the instrument’s error queue. The instrument responds to the query with the next error number in the queue and its description in the format:

<error number><error message><context-specific information>

The <error number> is a unique error identifier in the range from −32768 to 32767. A negative error value indicates a general SCPI programming error, while a positive error is more instrument specific. An error value of zero indicates that no error or event has occurred. Short descriptions of the standard error numbers are described in this section. The <context-specific information> section of the error message may contain information which allows you to determine the exact error and context. For example:

Invalid suffix; FREQuency:CENT 2.0E+5 dBmV

The maximum string length of the <error message> including the <context-specific information> is 255 characters. The <error message> will be sent exactly as indicated in this document, including case. In this example, the context-specific information was the FREQ:CENT command.

If there has been more than one error, the instrument will respond with the first one in the queue. Subsequent responses to SYSTem:ERRor? will return errors until the queue is empty.
Clearing the Error Queue

The error queue will only be cleared upon:

- power up
- receipt of a *CLS command
- reading the last error from the queue

No Error

When all the errors have been read from the queue, further error queries will return:

(0) No error

This message indicates that the error queue contains no errors.

(Number) Description

(0) No error

The queue is empty. Every error in the queue has been read or the queue was purposely cleared by power-on or *CLS.
Error Message Descriptions

Messages with No Numbers

Unnumbered messages are for operator information only and do not appear in any error queue.

Description

Acquiring Data...

A warning used when the data acquisition time is long enough to be noticeable.

AFUN not implemented

Awaiting Trigger, no AUTO Trig

Auto Trig is off and a trigger has not been detected for more than 4 seconds.

Break freq > FFT filter edge – clipping to %f kHz

Correction off

Data Acquisition FIFO_OVERFLOW, use AUTO DataPacking…”

Data acquisition malfunction; need to use auto data packing to resolve.

GSM Hopping enabled, waiting for valid burst

When GSM hopping is enabled, this indicates that a valid GSM burst has not yet been found.

IF synthesizer unlocked

LAN external loopback test failed

This message will appear during boot-up if the instrument is not connected to a LAN cable. You can ignore the message if you are not using the LAN.
Error Messages

Error Message Descriptions

Please wait - Printing

Waiting for the print job to complete.

Settling Hardware...

A warning used when the hardware settling time is long enough to be noticeable.

Sync is RF ampl (not Training Seq). Bits not accurate.
Query Error Messages

[-499 to -400]

An error number in the range [-499 to -400] indicates the instrument has found a problem when trying to respond to a SCPI query. The occurrence of any error in this class will cause the error query bit (bit 2) to be set in the event status register. If a query error occurs one of the following is true:

• An attempt is being made to read data from the output queue when no output is either present or pending.

• Data in the output queue has been lost.

Query Error Message Descriptions

(\text{Number}) \quad \text{Description}

(-440) \quad \text{Query UNTERMINATED after indefinite response}

\begin{align*}
\text{Indicates that a query was received in the same program message after a query requesting an indefinite response was executed (see IEEE 488.2, 6.3.7.5).}
\end{align*}

(-430) \quad \text{Query DEADLOCKED}

\begin{align*}
\text{Indicates that a condition causing a DEADLOCKED query error occurred (see IEEE 488.2, 6.3.1.7) (for example, both the input buffer and the output buffer are full and the device cannot continue).}
\end{align*}

(-420) \quad \text{Query UNTERMINATED}

\begin{align*}
\text{Indicates that a condition causing an UNTERMINATED query error occurred (see IEEE 488.2, 6.3.2.2) (for example, the device was addressed to talk and an incomplete program message was received).}
\end{align*}

(-410) \quad \text{Query INTERRUPTED}

\begin{align*}
\text{Indicates that a condition causing an INTERRUPTED query error occurred (see IEEE 488.2, 6.3.2.7) (for example, a query was followed by DAB or GET before a response was completely sent).}
\end{align*}

(-400) \quad \text{Query Error}

\begin{align*}
\text{This is a generic query error for devices that cannot detect more specific errors. The code indicates only that a query error as defined in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred.}
\end{align*}
Device-Specific Error Messages
[−399 to −300]

An error number in the range [−399 to −300] indicates that the instrument has detected an error where some device operations did not properly complete, possibly due to an abnormal hardware or firmware condition. This is not an error in response to a SCPI query or command, or command execution. These errors are also used for self-test response errors. The occurrence of any error in this class will cause the device-specific error bit (bit 3) in the event status register to be set.

Device-Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
</table>
| −362 | Framing error in program message
Indicates that a stop bit was not detected when data was received (for example, a baud rate mismatch). |
| −361 | Parity error in program message
Indicates that the parity bit was not correct when data was received (for example, an incorrect parity bit on a serial port). |
| −360 | Communication error
This is the generic communication error for devices that cannot detect more specific errors. |
| −350 | Queue overflow
This is a specific code entered into the queue in lieu of the code that caused the error. This message indicates that there is no more room in the queue and an error occurred but was not recorded. |
| −340 | Calibration failed
Indicates that the device has detected a failure during its calibration procedure. |
| −330 | Self-test failed
Indicates that the device has detected a failure during its self-test procedure. |
(-321) Out of memory

Indicates that an internal operation needed more memory than was available.

If this occurs during a memory catalog display, it means the system did not have enough free RAM to prepare the catalog.

(-320) Storage fault

Indicates that the firmware detected a fault when using data storage. This error is not an indication of physical damage or failure of any mass storage element.

(-315) Configuration memory lost

Indicates that non-volatile configuration data saved by the device has been lost. The meaning of this error is device-dependent.

(-314) Save/recall memory loss

Indicates that the non-volatile data saved by the *SAV? command has been lost.

(-313) Calibration memory lost

Indicates that non-volatile calibration data has been lost.

(-312) PUD memory lost

Indicates that the protected user data saved by the *PUD command has been lost.

(-311) Memory error

Indicates that an error was detected in the device's memory.

(-310) System error

Indicates that an error, termed “system error” by the device, has occurred.

(-300) Device-specific error

This is a generic device-dependent error for devices that cannot detect more specific errors. The code indicates only that a device-dependent error as defined in IEEE 488.2, 11.5.1.1.6 has occurred.
Execution Error Messages

[-299 to -200]

An error number in the range [-299 to -200] indicates that an error has been detected during instrument execution. The occurrence of any error in this class will cause the execution error bit (bit 4) in the event status register to be set. If this bit is set, one of the following events has occurred:

- A <program data> element following a header was evaluated by the device as outside of its legal input range or as otherwise inconsistent with the device capabilities.
- A valid program command could not be properly executed due to some device condition.

Execution errors will be reported by the device after rounding and expression evaluation operations have been completed. Rounding a numeric data element, for example, will not be reported as an execution error.

Execution Error Message Descriptions

<table>
<thead>
<tr>
<th>(Number)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-294)</td>
<td>Incompatible type</td>
</tr>
<tr>
<td>(-293)</td>
<td>Referenced name already exists</td>
</tr>
<tr>
<td>(-292)</td>
<td>Referenced name does not exist</td>
</tr>
<tr>
<td>(-291)</td>
<td>Out of memory</td>
</tr>
<tr>
<td>(-286)</td>
<td>Program runtime error</td>
</tr>
<tr>
<td>(-285)</td>
<td>Program syntax error</td>
</tr>
</tbody>
</table>
(-284) Program currently running
Indicates that certain operation related to programs may be illegal while the program is running (for example, deleting a running program may be illegal).

(-283) Illegal variable name
Indicates that an attempt was made to reference a nonexistent variable.

(-282) Illegal program name
Indicates that the name used to reference a program was invalid (for example, redefining an existing program, deleting a nonexistent program, or in general, referencing a nonexistent program).

(-281) Cannot create program
Indicates that an attempt to create a program was unsuccessful. This may be due to insufficient memory.

(-280) Program error
Indicates that a downloaded program-related execution error occurred. This error message is used when the device cannot detect more specific errors. The syntax used in a program and the mechanism for downloading a program is device-specific.

(-278) Macro header not found
Indicates that a syntactically legal macro label in the *GMC? query could not be executed because the header was not previously defined.

(-277) Macro redefinition not allowed
Indicates that the macro label defined in the *DMC command could not be executed because the macro label was already defined (see IEEE 488.2, 10.7.6.4).

(-276) Macro recursion error
Indicates that a syntactically legal macro program data sequence could not be executed because the device found it to be recursive (see IEEE 488.2, 10.7.6.4).

(-275) Macro definition too long
Indicates that a syntactically legal macro program data sequence could not be executed because the string or block contents were too long for the device to handle (see IEEE 488.2, 10.7.6.1).
Error Message Descriptions

(-274) Macro parameter error
Indicates that the macro definition improperly used a macro parameter place holder (see IEEE 488.2, 10.7.3).

(-273) Illegal macro label
Indicates that the macro label defined in the *DMC command was a legal string syntax, but could not be accepted by the device (see IEEE 488.2, 10.7.3 and 10.7.6.2) (for example, the label was too long, the same as a common command header, or contained invalid header syntax).

(-272) Macro execution error
Indicates that a syntactically legal macro program data sequence could not be executed due to an error within the macro definition (see IEEE 488.2, 10.7.6.3).

(-261) Math error in expression
Indicates that a syntactically legal expression program data element could not be executed due to a math error (for example, a divide-by-zero was attempted). The definition of a math error is device-specific.

(-260) Expression error
Indicates that an expression data element related error occurred. This error message is used when the device cannot detect more specific errors.

(-258) Media protected
Indicates that the device or user has attempted to write to a read-only memory subsystem (msus). The definition of a protected media is device-specific.

(-257) File name error
Indicates that a legal program command or query could not be executed because a file name on the device media was in error (for example, an attempt was made to copy to a duplicate filename). The definition of what constitutes a file name error is device-specific.

(-256) File name not found
Indicates that a legal program command or query could not be executed because the file name on the device media could not be found (for example, an attempt was made to read or copy a nonexistent file). The definition of what constitutes a file not being found is device-specific.
(-255) Directory full
Indicates that a legal program command or query could not be executed because the media directory was full. The definition of what constitutes a full media directory is device-specific.

(-254) Media full
Indicates that a legal program command or query could not be executed because the media was full (for example, there was no space left on the disk). The definition of what constitutes full media is device-specific.

(-253) Corrupt media
Indicates that a legal program command or query could not be executed because of corrupt media, for instance a bad disk or incorrect disk format. The definition of what constitutes corrupt media is device-specific.

(-252) Missing media
Indicates that a legal program command or query could not be executed because of missing media, for instance no disk in the disk drive. The definition of what constitutes missing media is device-specific.

If this occurs during a memory catalog display, it means the default memory system could not be located. The instrument is likely not functioning properly. Report this error to the nearest Agilent Technologies Sales and Service office. Refer to the Sales and Service Office table in the user’s guide for your instrument.

(-250) Mass storage error
Indicates that a mass storage error has occurred. This message is used when a device cannot detect more specific errors.

(-241) Hardware missing
Indicates that a legal program command or query could not be executed because of missing device hardware (for example, an option was not installed).

(-240) Hardware error
Indicates that a legal program command or query could not be executed because of a hardware problem in the device. The definition of what constitutes a hardware problem is completely device-specific. This error is used when the device cannot detect more specific errors.
(-233) Invalid version

Indicates that a legal program data element was parsed but could not be executed because the version of the data is incorrect to the device. This particular error is used when file or block data elements are recognized by the instrument, but cannot be executed for reasons of version incompatibility (for example, a non-supported file version or a non-supported instrument version).

(-232) Invalid format

Indicates that a legal program data element was parsed but could not be executed because the data format or structure is inappropriate (for example, when loading memory tables or when sending a SYSTem:SET parameter for an unknown instrument).

(-231) Data questionable

Indicates that the measurement accuracy is questionable.

(-230) Data corrupt or stale

Possibly invalid data. A new reading was started but not completed since last access.

(-226) Lists not same length

Attempted to use LIST structure having individual LISTs of unequal length.

(-225) Out of memory

The device has insufficient memory to perform the requested operation.

(-224) Illegal parameter value

Used where exact value, from a list of possibilities, was expected.

(-223) Too much data

Indicates that a legal program data element of block, expression or string type was received that contained more data than the device could handle due to memory or related device-specific requirements.

(-222) Data out of range

Indicates that a legal program data element was parsed but could not be executed because the interpreted value was outside the legal range defined by the device (see IEEE 488.2 11.5.1.1.5).
(-221) Settings conflict
Indicates that a legal program data element was parsed but could not be executed due to the current device state (see IEEE 488.2 11.5.1.1.5).

(-220) Parameter error
Indicates that a program data element related error has occurred. This particular error message is used if the device cannot detect more specific errors.

(-215) Arm deadlock
Indicates that the arm source for the initiation of a measurement is set to GET and a subsequent measurement query is received. The measurement cannot begin until a GET is received, but the GET would cause an INTERRUPTED error.

(-214) Trigger deadlock
Indicates that a trigger source for the initiation of a measurement is set to GET and a subsequent measurement query is received. The measurement cannot begin until a GET is received, but the GET would cause an INTERRUPTED error.

(-213) Init ignored
Indicates that a request for a measurement initiation was ignored as another measurement was already in progress.

(-212) Arm ignored
Indicates that an arming signal was received and recognized by the device, but was ignored.

(-211) Trigger ignored
Indicates that a GET, *TRG, or triggering signal was received and recognized by the device, but was ignored because of device timing considerations (for example, the device was not ready to respond).

(-210) Trigger error
Indicates that a GET, *TRG, or a triggering signal could not be executed due to an error.

(-202) Settings lost due to rtl
Indicates that a setting associated with a hard local control (see IEEE 488.2, 5.6.15) was lost when the device changed to LOCS from REMS or to LWLS from RWLS.
Error Messages

Error Message Descriptions

(-201) Invalid while in local

Indicates that a command is not executable while the device is in local mode due to a hard local control (see IEEE 488.2, 5.6.1.5) (for example, a device with a rotary switch receives a message which would change the switch’s state, but the device is in local, so the message cannot be executed).

(-200) Execution Error

This is a generic syntax error for devices that cannot detect more specific errors. The code indicates only that an execution error as defined in IEEE 488.2, 11.5.1.1.5 has occurred.
Command Error Messages
[-199 to -100]

An error number in the range [-199 to -100] indicates that an IEEE 488.2 syntax error has been detected by the instrument's parser. The occurrence of any error in this class will cause the command error bit (bit 5) in the event status register to be set. If this bit is set, one of the following events has occurred:

- An IEEE 488.2 syntax error has been detected by the parser. That is, a control-to-device message was received which is in violation of the IEEE 488.2 standard. Possible violations include a data element which violates device listening formats or whose type is unacceptable to the device.

- An unrecognized header was received. Unrecognized headers include incorrect device-specific headers and incorrect or unimplemented IEEE 488.2 common commands.

Command Error Message Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-184)</td>
<td>Macro parameter error</td>
</tr>
<tr>
<td></td>
<td>Indicates that a command inside the macro definition had the wrong number or type of parameters.</td>
</tr>
<tr>
<td>(-183)</td>
<td>Invalid inside macro definition</td>
</tr>
<tr>
<td></td>
<td>Indicates that the program message unit sequence, sent with a *DDT or a *DMC command, is syntactically invalid (see IEEE 488.2, 10.7.6.3).</td>
</tr>
<tr>
<td>(-181)</td>
<td>Invalid outside macro definition</td>
</tr>
<tr>
<td></td>
<td>Indicates that a macro parameter place holder ($<number>) was encountered outside of a macro definition.</td>
</tr>
<tr>
<td>(-180)</td>
<td>Macro error</td>
</tr>
<tr>
<td></td>
<td>This error is generated when using a macro or executing a macro. This error message is used if the device cannot detect a more specific error.</td>
</tr>
<tr>
<td>(-178)</td>
<td>Expression data not allowed</td>
</tr>
<tr>
<td></td>
<td>A legal expression data was encountered, but was not allowed by the device at this point in parsing.</td>
</tr>
</tbody>
</table>
(-171) Invalid expression

The expression data element was invalid (see IEEE 488.2, 7.7.7.2) (for example, unmatched parentheses or an illegal character).

This error also occurs if a command is executed that is not valid for the current selected instrument mode. Use INSTRument:SELECT to change the mode.

(-170) Expression data error

This error is generated when parsing an expression data element. This particular error message is used if the device cannot detect a more specific error.

(-168) Block data not allowed

A legal block data element was encountered, but not allowed by the device at this point in the parsing.

(-161) Invalid block data

A block data element was expected, but was invalid (see IEEE 488.2, 7.7.6.2) (for example, an END message was received before the end length was satisfied).

(-160) Block data error

This error is generated when parsing a block data element. This particular error message is used if the device cannot detect a more specific error.

(-158) String data not allowed

A string data element was encountered, but not allowed by the device at this point in the parsing.

(-151) Invalid string data

A string data element was expected, but was invalid (see IEEE 488.2, 7.7.5.2) (for example, an END message was received before the terminal quote character).

(-150) String data error

This error is generated when parsing a string data element. This particular error message is used if the device cannot detect a more specific error.
(-148) Character data not allowed

A legal character data element was encountered where prohibited by the device.

(-144) Character data too long

The character data element contains more than twelve characters (see IEEE 488.2, 7.7.1.4).

(-141) Invalid character data

Either the character data element contains an invalid character or the particular element received is not valid for the header.

(-140) Character data error

This error is generated when parsing a character data element. This particular error message is used if the device cannot detect a more specific error.

(-138) Suffix not allowed

A suffix was encountered after a numeric element which does not allow suffixes.

(-134) Suffix too long

The suffix contained more than twelve characters (see IEEE 488.2, 7.7.3.4).

(-131) Invalid suffix

The suffix does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the suffix is inappropriate for this device.

(-130) Suffix error

This error is generated when parsing a suffix. This particular error message is used if the device cannot detect a more specific error.

(-128) Numeric data not allowed

A legal numeric data element was received, but the device does not accept one in this position for the header.

(-124) Too many digits

The mantissa of a decimal-numeric data element contained more than 255 digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1).
Error Messages

Error Message Descriptions

(-123) Exponent too large

The magnitude of an exponent was greater than 32000 (see IEEE 488.2, 7.7.2.4.1).

(-121) Invalid character in number

An invalid character for the data type being parsed was encountered (for example, an alpha in a decimal numeric or a “9” in octal data).

(-120) Numeric data error

This error is generated when parsing a data element which appears to be numeric, including non-decimal numeric types. This particular error message is used if the device cannot detect a more specific error.

(-114) Header suffix out of range

The value of a header suffix attached to a program mnemonic makes the header invalid.

(-113) Undefined header

The header is syntactically correct, but it is undefined for this specific device (for example, *XYZ is not defined for any device).

The command (header) may not be valid for the current instrument mode. Use INST:SELect to change the mode.

The command may not be valid for the current (specified) measurement. (e.g. CALC:WAV:MARK:MAX is not valid because the waveform measurement does not use the marker maximum command.)

(-112) Program mnemonic too long

The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1).

(-111) Header separator error

A character which is not a legal header separator was encountered while parsing the header.

(-110) Command header error

An error was detected in the header. This message is used when the device cannot detect more specific errors.
(-109) Missing parameter

Fewer parameters were received than required for the header (for example, the *ESE common command requires one parameter, so receiving *ESE is not allowed).

(-108) Parameter not allowed

More parameters were received than expected for the header (for example, the *ESE common command only accepts one parameter, so receiving *ESE 0,1 is not allowed).

(-105) GET not allowed

A Group Execute Trigger was received within a program message (see IEEE 488.2, 7.7). Correct the GPIB controller program so that the GET does not occur within a line of GPIB program code.

(-104) Data type error

The parser recognized a data element that is not allowed (for example, numeric or string data was expected, but block data was encountered).

(-103) Invalid separator

The parser was expecting a separator and encountered an illegal character (for example, the semicolon was omitted after a program message unit).

(-102) Syntax error

An unrecognized command or data type was encountered (for example, a string was received when the device does not accept strings).

(-101) Invalid character

A syntactic command contains a character which is invalid for that type (for example, a header containing an ampersand, SETUP&).

(-100) Command error

This is a generic syntax error for devices that cannot detect more specific errors. The code indicates only that a command error as defined in IEEE 488.2, 11.5.1.1.4 has occurred.
Instrument-Specific Error Messages
[positive numbers]

Some instrument-specific error messages use the existing negative or “generic” SCPI error numbers with the addition of device-dependent or instrument-specific information following the semicolon in the error message. A positive error number indicates that the instrument has detected an error within the GPIB system, within the instrument firmware or hardware, during the transfer of block data, or during calibration.

An error number in the positive range indicates that the instrument has detected an error relating to the core operation [1 to 99], or to a personality loaded into the instrument, GSM [100 to 199] or CDMA [200 to 299].

Core-Specific Error Messages
[1 to 99]

An error number in the range [1 to 99] indicates the instrument has detected an error relating to the core functionality of the instrument.

Core-Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>(Number)</th>
<th>Description</th>
</tr>
</thead>
</table>
| (1) | Synthesizer unlocked
The A19 synthesizer assembly has lost phase lock.
Suspect a problem with the A19 hardware or absence of
10 MHz from the A18 reference assembly. |
| (2) | Frequency reference unlocked
The 100 MHz VCXO on the A18 reference assembly is no longer phase locked. Possible causes are; a faulty internal OCXO, the external reference bad or missing, or faulty phase lock circuitry on the A18 reference assembly. |
| (3) | Third LO unlocked
The third LO on the A12 analog IF assembly has lost phase lock. Possible causes are; a faulty A12 analog IF assembly, or a missing 10 MHz from the A18 reference assembly. |
| (4) | Cal oscillator unlocked
The 42.8 MHz calibrator oscillator on the A12 analog IF assembly is unlocked. |
(5) Analog IF sample rate osc unlocked
The 30 MHz sample rate oscillator on the A12 analog IF assembly is unlocked.

(6) Even second clock failing
The even second clock is unlocked.

(7) No application file

(8) Catalog incomplete

(9) Application not licensed
License key “word” is not entered into instrument memory.

(10) Application not installed
Measurement application could not be found.

(11) Invalid application file
Caused by an invalid personality file.

(12) Application load failed
Measurement application could not load.

(13) Invalid trace number
Caused by an invalid trace number. Some measurements only have 1 or 2 valid traces, rather than the indicated 4.

(14) Trace data not ready
This may be caused by sending a command that asks for trace data from a measurement that has not finished calculating, or from a measurement that is not currently active (running).

(15) Measurement data not available
This may be caused by sending a command that asks for data from a measurement that is not currently active (running).
Error Messages

Error Message Descriptions

(16) Input Overload Decrease max total power in input.

Excessive input power has been detected which will cause the ADC to clip the signal. Reduce the signal level, change the attenuator/max total power setting (under Input menu), or press Restart if the RF Input Range is Auto.

(17) Data Acquisition forcing SHORT packing

The data acquisition rate is too high to use longer word packing.

(18) Command not implemented

The requested command is not implemented.

(19) Function not implemented

The requested function is not implemented.

(20) Signal exceeds maximum allowable power – Reduce input power

Excessive input power has been detected which will cause the ADC to clip the signal.

(21) Memory Allocation FAILURE

(22) Memory limit caused Data Acquisition to be truncated

Caused by a Memory Allocation failure. The measurement limited the acquisition time in order to complete the measurement.

(23) Setup INVALID

The parameters chosen create a measurement request that is impossible to complete, often due to memory limitations.

(24) External reference missing

The external frequency reference signal either is missing, has too low an amplitude, or does not match the frequency value previously entered into the instrument memory by the operator.

(25) Even Second Clock missing

The even second clock signal supplied from the base station is missing. Check the external trigger input connection where the even second clock signal is fed into the instrument.
(26) Oven temp low
The oven-controlled crystal oscillator is not at the desired operating temperature.

(27) Alignment Needed
The Auto Align routine needs to be run. At least 24 hours has passed since the last full alignment, or the temperature has changed 6°C.

(28) Printer failure
Check for proper printer operation.

(29) Printer not available
The requested printer is not available. Check for proper printer hookup.

(30) Printer out of paper
Put paper in the printer.

(31) Data Acquisition TIMEOUT, repairs underway...
Hardware malfunction, data acquisition subsystem.

(32) ADC Alignment Failure
One or more built-in alignment tests have failed.

(33) IF Alignment Failure
One or more built-in alignment tests have failed.

(34) RF Alignment Failure
One or more built-in alignment tests have failed.

(35) System Alignment Failure
One or more built-in alignment tests have failed.
GSM - Specific Error Messages
[100 to 199]

An error number in the range [100 to 199] indicates the instrument has detected an error relating to the GSM personality.

GSM - Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Not enough data to fit into GSM mask
An attempt to position a GSM trace into the mask, when not enough data was present. Try using the Restart key to clear the problem. This can be caused by a bad GSM burst, or the RF Sync Delay set too far.</td>
</tr>
<tr>
<td>101</td>
<td>GSM burst out of limits
The GSM signal did not fit into the mask in the Power vs. Time measurement.</td>
</tr>
<tr>
<td>102</td>
<td>Insufficient pre-Trig for demod - decrease Trig Delay</td>
</tr>
<tr>
<td>103</td>
<td>Incorrect RBW for demod - change RBW</td>
</tr>
<tr>
<td>104</td>
<td>Invalid GSM burst timing
A GSM-like burst was acquired, but it’s timing is not valid. Ensure the correct Burst Type has been selected.</td>
</tr>
<tr>
<td>105</td>
<td>Valid GSM burst not found
In a GSM measurement, data was acquired but a GSM burst was not found.</td>
</tr>
<tr>
<td>106</td>
<td>Cannot synchronize frame trigger
Cannot synchronize the frame trigger to the even second clock.</td>
</tr>
<tr>
<td>107</td>
<td>Dynamic range not optimum - set AUTO RF input</td>
</tr>
<tr>
<td>108</td>
<td>Cannot synchronize to RF amplitude (burst error)</td>
</tr>
<tr>
<td>109</td>
<td>GSM RF sync delay is out of range
Change RF Sync Delay.</td>
</tr>
</tbody>
</table>
Error Messages

Error Message Descriptions

(110) Sync word not found
In a GSM measurement using demodulation, the training sequence code (sync word) could not be found.

(111) Signal too noisy
In a GSM measurement, indicates that a burst could not be found in a signal that appears noisy.

(112) Incorrect trigger holdoff - set to 0 sec

(113) SCPI marker query not available in GSM Rise&Fall

(114) GSM Pwr Meas requires trig delay < −50us.
Delay set to −50us
cdmaOne - Specific Error Messages
[200 to 299]

An error number in the range [200 to 299] indicates the instrument has detected an error relating to the cdmaOne personality.

cdmaOne - Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(200)</td>
<td>Signal near noise floor - Power accuracy degraded</td>
</tr>
<tr>
<td>(201)</td>
<td>Signal exceeds maximum allowable power - Reduce input power</td>
</tr>
<tr>
<td>(202)</td>
<td>Input overload</td>
</tr>
<tr>
<td></td>
<td>Excessive input power has been detected which will cause the ADC to clip the signal. Reduce the signal level, change the attenuator/max total power setting (under Input menu), or press Restart if the RF Input Range is Auto.</td>
</tr>
<tr>
<td>(203)</td>
<td>Channel center frequency outside device’s transmit band</td>
</tr>
<tr>
<td>(205)</td>
<td>No power at carrier frequency</td>
</tr>
<tr>
<td></td>
<td>No power was detected as a CW or a modulated signal.</td>
</tr>
<tr>
<td>(206)</td>
<td>Cannot correlate to input signal</td>
</tr>
<tr>
<td></td>
<td>A correlation failure with the pilot CDMA channel occurred during synchronous demodulation.</td>
</tr>
</tbody>
</table>
NADC - Specific Error Messages [300 to 399]

An error number in the range [300 to 399] indicates the instrument has detected an error relating to the NADC personality.

NADC - Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(300)</td>
<td>Sync word not found</td>
</tr>
<tr>
<td></td>
<td>In an EVM measurement, the sync word is not found and the synchronization cannot be established when Sync Word is selected in the Burst Sync menu.</td>
</tr>
<tr>
<td>(301)</td>
<td>Valid NADC burst not found</td>
</tr>
<tr>
<td></td>
<td>A valid NADC burst is not found when the Device is MS.</td>
</tr>
<tr>
<td>(302)</td>
<td>Signal too noisy</td>
</tr>
<tr>
<td></td>
<td>The valid EVM measurement cannot be performed, because the input signal is too noisy.</td>
</tr>
<tr>
<td>(303)</td>
<td>Burst Delay exceeds 2 ms limit for EVM</td>
</tr>
<tr>
<td></td>
<td>In an EVM measurement, the Burst Delay value must be less than 2 ms.</td>
</tr>
</tbody>
</table>
PDC - Specific Error Messages

[400 to 499]

An error number in the range [400 to 499] indicates the instrument has detected an error relating to the PDC personality.

PDC - Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>(Number)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(400)</td>
<td>Sync word not found</td>
</tr>
<tr>
<td></td>
<td>In an EVM measurement, the sync word is not found and the synchronization cannot be established when Sync Word is selected in the Burst Sync menu.</td>
</tr>
<tr>
<td>(401)</td>
<td>Valid PDC burst not found</td>
</tr>
<tr>
<td></td>
<td>A valid PDC burst is not found when the Device is MS.</td>
</tr>
<tr>
<td>(402)</td>
<td>Signal too noisy</td>
</tr>
<tr>
<td></td>
<td>The valid EVM measurement cannot be performed, because the input signal is too noisy.</td>
</tr>
<tr>
<td>(412)</td>
<td>Burst Delay exceeds 2 ms limit for EVM</td>
</tr>
<tr>
<td></td>
<td>In an EVM measurement, the Burst Delay value must be less than 2 ms.</td>
</tr>
</tbody>
</table>
W-CDMA - Specific Error Messages

[500 to 599]

An error number in the range [500 to 599] indicates the instrument has detected an error relating to the W-CDMA personality.

W-CDMA - Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>(Number)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(501)</td>
<td>Signal too noisy</td>
</tr>
<tr>
<td>(502)</td>
<td>Input power too low</td>
</tr>
<tr>
<td>(503)</td>
<td>Cannot correlate to input signal</td>
</tr>
<tr>
<td></td>
<td>Cannot correlate to the input signal and no active channel is found. (from composite EVM measurement)</td>
</tr>
</tbody>
</table>

cdma2000 - Specific Error Messages

[600 to 699]

An error number in the range [600 to 699] indicates the instrument has detected an error relating to the cdma2000 personality.

cdma2000 - Specific Error Message Descriptions

<table>
<thead>
<tr>
<th>(Number)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(601)</td>
<td>Signal too noisy</td>
</tr>
<tr>
<td>(602)</td>
<td>Input power too low</td>
</tr>
<tr>
<td>(603)</td>
<td>Can not get long code phase (RS-232)</td>
</tr>
<tr>
<td></td>
<td>For MS (mobile station) measurements, the long code phase information could not be obtained from the signal at the RS-232 port. (from code domain power measurement or composite EVM measurement)</td>
</tr>
<tr>
<td>(604)</td>
<td>Cannot correlate to input signal</td>
</tr>
<tr>
<td></td>
<td>Cannot correlate to the input signal and no active channel is found. (from composite EVM measurement)</td>
</tr>
</tbody>
</table>
Error Messages
Error Message Descriptions
Symbols
*CLS, 70
*ESE, 82
*ESR?, 82
*SRE, 78
*STB?, 78

Numerics
10 MHz reference adjustment, 202
321.4 MHz reference adjustment, 205
50 MHz reference adjustment, 206, 207, 208, 244
50 ohm input IQ impedance, 230
600 ohm IQ input impedance, 230

A
abort calibration, 198
abort command, 177
abort commands, 177
ACP
averaging, 263, 268
FFT, 265, 266, 270, 271
limit testing, 178
offset frequencies, 268, 283
offset ref attenuation, 274, 275
offset sideband choice, 280
offset sweep time, 282, 283, 288
setting amplitude levels, 266
testing, 265, 266, 270, 271, 273, 274, 275, 280, 282, 283, 285, 286, 288
trigger source, 288
view of data, 211
ACPR
amplitude levels, 276, 278
averaging, 263, 268
offset frequencies, 271
resolution bandwidths, 268
sweep time, 287
testing, 265, 266, 270, 271
testing choices, 263, 268, 273, 274, 275, 280, 282, 283, 285, 286, 288, 289
acquisition packing
WA Veform, 340
active license key, 45
how to locate, 45
active license key ID, 366
ADC calibration, 198, 199, 202, 203
ADC dithering
SPECtrum, 325
WA Veform, 340
ADC filter
WA Veform, 340
ADC RAM calibration, 199
ADC range
SPECtrum, 326
WA Veform, 341
adjacent channel power measurement, 262, 265, 266, 270, 271
adjacent channel power ratio measurement, 236, 262
add also ACPR
adjust timebase frequency, 254
adjustment
50 MHz reference, 244
align
now, 176, 199
align 50 MHz reference, 244
alignment commands, 198
alignments
programming example, 139
amount of block data, 65
input range, 308
maximizing input signal, 309
angle units, 65
annunciators, 380
aplet, 115
application
uninstalling, 257
application installation, 257
application, deleting, 367
applications
currently available, 231
applications, selecting, 231, 232
arbitrary block data, 66
ARFCN setting, 291, 292, 293
ARIBT53, 321
ASCII data format, 220
attenuation
setting, 307
attenuator alignment, 200
averaging
ACP, 262, 263
ACPR, 262, 263
CHPower, 299, 300
power vs. time, 312, 313
SPECtrum, 327, 328
WA Veform, 341, 342, 343
averaging state
power vs. time, 312

B
background alignment, 200
band power marker, 188
bandwidth
ACP, 264
CHPower, 300
power vs. time, 312
PVTime, 314
SPECtrum, 330, 331
WA Veform, 343, 344
base station
loss correction, 304
base station testing, 317, 318
type, 319
base transmit station
loss correction, 304
basic mode
measurements available, 40
basic mode commands, 366
Basic mode, selection, 232
BASIC programming, 106
binary data, 66
binary data order, 220
bit patterns, 66
block data, 66
BMP screen files, 260
boolean settings, 64
burst carriers, 317
burst search threshold, 339
burst trigger level, 378
bus
GPIB, 58
LAN, 57, 98
LAN cable, 121
bus configuration, 167, 363
byte order of data, 220

C
C language
addressing sessions, 91
closing sessions, 92
compiling and linking, 86
creating, 84
example, 88
opening session, 89
sessions, 89
using VISA library, 84
using VISA transition library, 85, 88
C programming socket LAN, 115
C programming socket LAN, 141, 155
cable
LAN, 121
cables	nRS-232, 50
calibrate
immediately
align
now, 171
calibrate, IEEE command, 171
calibration, 199
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>abort, 198</td>
</tr>
<tr>
<td>ADC, 198, 199, 202, 203</td>
</tr>
<tr>
<td>ADC RAM, 199</td>
</tr>
<tr>
<td>all, 199</td>
</tr>
<tr>
<td>amount displayed, 201</td>
</tr>
<tr>
<td>attenuator, 200</td>
</tr>
<tr>
<td>automatic, 200</td>
</tr>
<tr>
<td>corrections on/off, 201</td>
</tr>
<tr>
<td>defaults, 204</td>
</tr>
<tr>
<td>IF flatness, 201</td>
</tr>
<tr>
<td>image filter, 203</td>
</tr>
<tr>
<td>internal reference, 202, 205, 206, 207, 208</td>
</tr>
<tr>
<td>pause, 209</td>
</tr>
<tr>
<td>pre-filter, 204, 205</td>
</tr>
<tr>
<td>programming example, 139</td>
</tr>
<tr>
<td>RF gain, 203</td>
</tr>
<tr>
<td>trigger delay, 209</td>
</tr>
<tr>
<td>trigger interpolation, 209</td>
</tr>
<tr>
<td>calibration commands, 198</td>
</tr>
<tr>
<td>calibration condition register, 353, 354</td>
</tr>
<tr>
<td>carrier</td>
</tr>
<tr>
<td>type, 316, 317</td>
</tr>
<tr>
<td>carrier selection, 316</td>
</tr>
<tr>
<td>CCDF measurement, 246</td>
</tr>
<tr>
<td>CDMA</td>
</tr>
<tr>
<td>measurements available, 40</td>
</tr>
<tr>
<td>PN offset number, 294</td>
</tr>
<tr>
<td>remove the mode, 257</td>
</tr>
<tr>
<td>understanding measurements, 39</td>
</tr>
<tr>
<td>CDMA installation, 257</td>
</tr>
<tr>
<td>CDMA measurement, 245, 262, 299</td>
</tr>
<tr>
<td>CDMA standards, 321</td>
</tr>
<tr>
<td>cdma2000</td>
</tr>
<tr>
<td>ACP measurement, 266, 273, 274, 283, 285, 286</td>
</tr>
<tr>
<td>cdma2000 measurement, 236, 246, 262, 310</td>
</tr>
<tr>
<td>cdma2000 mode, selection, 232</td>
</tr>
<tr>
<td>cdmaOne</td>
</tr>
<tr>
<td>ACP measurement, 266, 273, 274, 283, 285, 286</td>
</tr>
<tr>
<td>cdmaOne measurement, 236</td>
</tr>
<tr>
<td>cdmaOne mode, selection, 232</td>
</tr>
<tr>
<td>center frequency setting, 306</td>
</tr>
<tr>
<td>center frequency step size, 306, 307</td>
</tr>
<tr>
<td>changing</td>
</tr>
<tr>
<td>instrument settings, 262</td>
</tr>
<tr>
<td>mass storage location, 258</td>
</tr>
<tr>
<td>channel burst type, 294</td>
</tr>
<tr>
<td>channel number</td>
</tr>
<tr>
<td>ARFCN, 291, 292, 293</td>
</tr>
<tr>
<td>channel number, setting, 295</td>
</tr>
<tr>
<td>channel power measurement</td>
</tr>
<tr>
<td>See also CHPower</td>
</tr>
<tr>
<td>channel power measurement, 245, 299</td>
</tr>
<tr>
<td>Choose Option key, 46</td>
</tr>
<tr>
<td>CHPower</td>
</tr>
<tr>
<td>number of points, 301, 302</td>
</tr>
<tr>
<td>sweep time, 302, 303</td>
</tr>
<tr>
<td>trigger source, 303</td>
</tr>
<tr>
<td>CKOR, 321</td>
</tr>
<tr>
<td>clear status, IEEE command, 171</td>
</tr>
<tr>
<td>CLS command, 71</td>
</tr>
<tr>
<td>code updates, 44</td>
</tr>
<tr>
<td>color printing, 224</td>
</tr>
<tr>
<td>command complete, 173</td>
</tr>
<tr>
<td>command keywords, 64</td>
</tr>
<tr>
<td>commands, 169</td>
</tr>
<tr>
<td>available in Mode, 40</td>
</tr>
<tr>
<td>parameters, 64</td>
</tr>
<tr>
<td>programming different functions, 166</td>
</tr>
<tr>
<td>syntax, 62</td>
</tr>
<tr>
<td>using multiple commands, 67</td>
</tr>
<tr>
<td>valid commands, 62</td>
</tr>
<tr>
<td>commands, listing of, 366</td>
</tr>
<tr>
<td>comments in a program, 48</td>
</tr>
<tr>
<td>compiling C with VTL, 86</td>
</tr>
<tr>
<td>computers</td>
</tr>
<tr>
<td>RS-232 cables, 50</td>
</tr>
<tr>
<td>condition of instrument, 69</td>
</tr>
<tr>
<td>condition register, 70</td>
</tr>
<tr>
<td>configuring the instrument, 167</td>
</tr>
<tr>
<td>connection errors, 116</td>
</tr>
<tr>
<td>connection refused, 118</td>
</tr>
<tr>
<td>connection refused error, 118</td>
</tr>
<tr>
<td>connection timed out, 118</td>
</tr>
<tr>
<td>continuous carriers, 317</td>
</tr>
<tr>
<td>continuous measurement, 167</td>
</tr>
<tr>
<td>continuous vs. single measurement mode, 228</td>
</tr>
<tr>
<td>control measurement commands, 228</td>
</tr>
<tr>
<td>controlling via LAN, 105</td>
</tr>
<tr>
<td>controller, 93</td>
</tr>
<tr>
<td>correction</td>
</tr>
<tr>
<td>base station loss, 304</td>
</tr>
<tr>
<td>base transmit station loss, 304</td>
</tr>
<tr>
<td>mobile station loss, 305</td>
</tr>
<tr>
<td>correction constant default, 204</td>
</tr>
<tr>
<td>correction constants on/off, 201</td>
</tr>
<tr>
<td>Corrections Off error annunciator, 380</td>
</tr>
<tr>
<td>creating a simple program, 48</td>
</tr>
<tr>
<td>current measurement, 210</td>
</tr>
<tr>
<td>curve fit the data, 179, 183</td>
</tr>
<tr>
<td>custom printer, 222, 223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
</tr>
<tr>
<td>querying, 179, 183</td>
</tr>
<tr>
<td>data decimation, 331</td>
</tr>
<tr>
<td>WAveform, 344, 345</td>
</tr>
<tr>
<td>data format, 166, 220</td>
</tr>
<tr>
<td>data from measurements, 233</td>
</tr>
<tr>
<td>data, blocks of, 66</td>
</tr>
<tr>
<td>data, setting, 364</td>
</tr>
<tr>
<td>DCS1800, 322</td>
</tr>
<tr>
<td>decimation</td>
</tr>
<tr>
<td>SPECtrum, 331</td>
</tr>
<tr>
<td>decimation of data WAveform, 344, 345</td>
</tr>
<tr>
<td>default value, setting, 64</td>
</tr>
<tr>
<td>default values for measurements, 234</td>
</tr>
<tr>
<td>defaults</td>
</tr>
<tr>
<td>for persistent functions, 364</td>
</tr>
<tr>
<td>LAN, 57, 116</td>
</tr>
<tr>
<td>degree units, 65</td>
</tr>
<tr>
<td>delete the mode/application, 257</td>
</tr>
<tr>
<td>deleting an application/personality, 44</td>
</tr>
<tr>
<td>delta markers, 190</td>
</tr>
<tr>
<td>diagnostic commands, 198, 347</td>
</tr>
<tr>
<td>digital communications application notes, 39</td>
</tr>
<tr>
<td>disk</td>
</tr>
<tr>
<td>selecting, 258</td>
</tr>
<tr>
<td>disk drive commands, 258</td>
</tr>
<tr>
<td>display error annunciators, 380</td>
</tr>
<tr>
<td>on/off, 212</td>
</tr>
<tr>
<td>saving to a file, 226</td>
</tr>
<tr>
<td>spectrum window, 214, 218</td>
</tr>
<tr>
<td>tiling, 213</td>
</tr>
<tr>
<td>title, 211, 212</td>
</tr>
<tr>
<td>trace, 215</td>
</tr>
<tr>
<td>window tile, 213</td>
</tr>
<tr>
<td>zoom, 213</td>
</tr>
<tr>
<td>display ACP data, 211</td>
</tr>
<tr>
<td>display commands, 211</td>
</tr>
<tr>
<td>display EVM data, 212</td>
</tr>
<tr>
<td>display file types, 166</td>
</tr>
<tr>
<td>displays</td>
</tr>
<tr>
<td>different views, 166</td>
</tr>
<tr>
<td>saving/recalling, 168</td>
</tr>
<tr>
<td>storing, 259, 260</td>
</tr>
<tr>
<td>displays, no. per page, 225</td>
</tr>
<tr>
<td>dithering of ADC WAveform, 340</td>
</tr>
<tr>
<td>dithering the ADC, 325</td>
</tr>
<tr>
<td>DJ SMR, 320</td>
</tr>
<tr>
<td>domain name, 363</td>
</tr>
</tbody>
</table>
Index

E
echo, lack of, 102
EDGE mode, selection, 232
EGSM
RGSM
DCS, 322
enable register
service request, 74
error
connection refused, 118
connection timed out, 118
no response from host, 118
Error annunciator, 380
error annuncators, 380
error handling commands, 166
error messages, 120
front panel error queue, 380
front panel error/status bar, 380
error monitoring, 175, 349
error queue, 381, 383
errors
0, 384
1 to 99, 402
100 to 199, 406
-199 to -100, 397
200 to 299, 408, 411
300 to 399, 409
-399 to -300, 388
400 to 499, 410
-499 to -400, 397, 390
connecting remotely, 116
descriptions, 385
file moving/copying, 117
instrument specific, 402
LAN troubleshooting, 116
not in list, 385
packets lost, 117
querying the error queue, 383
SCPI remote interface error queue, 383
timeout, 117
with no number, 385
errors, querying, 365
ESE command, 71
Even Second error annunciator, 381
even second synchronization, 337
event enable register, 70
event register, 70
event status enable, IEEE command, 171
event status register
query and clear, 172
EVM
view of data, 212
example
alignment, 139
saving instrument state, 136
saving trace data, 130, 133
using markers, 127
Exit Core Firmware key, 44
external reference, 323, 324
External Reference error annunciator, 381
external trigger
delay, 371, 372
level, 372, 373
slope, 372, 373

F
factory default for persistent functions, 364
factory defaults, 204
LAN, 57, 116
FFT
SPECTrum, 332, 333, 334
FFT bandwidth, SPECTrum, 329, 330
file copying/moving errors, 117
file name rules, 49
file type, screen, 260
file types, 166
filter
negative transition, 70
positive transition, 70
filter calibration, 204, 205
firmware updates, 44
firmware upgrading, 366
flatness calibration of IF, 201
form feed printer, 224
format, data, 220
format, setting spread rate, 320
formatting data, 166
formatting data, 166
frame trigger adjustment, 373, 375
frame trigger period, 374
frame trigger sync mode, 374
frequencies offset
ACP, 268, 283
frequency
carrier setting, 316
center, 306
step size, 306, 307
frequency condition register, 354, 355, 356
frequency offset
base to mobile station, 319
frequency span
CHPower, 301
SPECTrum, 335
frequency units, 64
functions, commands used for, 166

G
gif files, 166
GIF screen files, 260
GPIB
bus, 58
using, 58
GPIB address, 363
GPIB bus information, 93
GPIB command statements, 93
graphics file types, 166
GSM
measurements available, 40
remove the mode, 257
understanding measurements, 39
GSM installation, 257
GSM measurement, 312
GSM mode, selection, 232
GSM450, 322
GSM480, 322
GSM850, 322

H
hardcopy output, 222
hardware status, 69, 349
hardware status commands, 347
hexadecimal bit patterns, 66
hopping carriers, 316
host identification query, 366
HP 13242G Cable, 52
HP 24542G/H Cable, 51
HP 24542M Cable, 52
HP 24542U Cable, 50, 54, 55
HP 5181-6639 Adapter, 55, 56
HP 5181-6640 Adapter, 54, 55
HP 5181-6641 Adapter, 54, 55
HP 5181-6642 Adapter, 54, 56
HP 92219J Cable, 51
HP BASIC, 106
HP C2913A/C2914A Cable, 53
HP F1047-80002 Cable, 366
HP F1047-80002 Cable, 51
HP VEE, 114
HP-IB, 58
HP-IB, See GPIB

I
iDEN
ACP measurement, 266, 273, 274, 283, 285, 286
iDEN mode, selection, 232
iDEN offset frequencies, 268, 283
iDEN trigger source, 288
identity, IEEE command
options, query
model number, query, 172
IEEE common commands
Index

commands, IEEE, 171
IF flatness adjustment, 201
IF trigger delay, 376
IF trigger level, 376
IF trigger slope, 377
image filter calibration, 203
impedance, IQ inputs, 230
initiate measurement, 176, 229
input attenuation, 307
input configuration, 230
input impedance, 230
input port selection, 305
input power maximum, 309
range, 308
input/output, 167
inputs configuration, 363
install application, 257, 367
Install Now key, 46
installing measurement personalities, 44
instrument memory functions, 257
instrument configuration, 231
instrument firmware updates, 44
instrument memory, 258
instrument preset, 168, 174, 368
instrument states programming example, 136
instrument status, 69, 349
monitoring, 175
monitoring status monitoring, 175
instrument-specific errors
positive numbers, 402
integrity condition register, 356, 357
integrity signal condition register, 358, 359
internal reference, 323, 324
internal reference selection, 305
internet location for information, 38
internet protocol address, 363
invert display printout, 227
invert screen background, 260
IP, 168
IP address, 363
IP, instrument preset, 368
IQ input impedance, 230
IQ port selection, 305
IS-95A, 321
IS-95B, 321
IS-95C, 321
J
Java program, 115
Java program example, 158
Java programming socket LAN, 115
J STD8, 321
L
LAN bus, 57, 98
C program, 115
C program example, 141, 155
cable, 121
IP address, 363
Java program, 115
Java program example, 158
SICL, 106
socket programming, 105
telnet, 101
using, 57, 98
VEE program, 114
LAN defaults, 57, 116
LAN troubleshooting, 116
landscape printing, 225
language reference, 169
license key, 367
license key ID, 366
limit line testing, 178
limit testing
ACP, 178
NADC, 178
PDC, 178
linking C C with VTL, 86
list of all commands, 366
listener, 93
loading modes/application, 257
loading an application/personality, 44
local echo, lack of, 102
LRN, IEEE command, 173
M
M16QAM, 320
M64QAM, 320
markers, 167, 185
assigning them to traces, 191
bandpower, 188
maximum, 189
minimum, 190
noise, 188
off, 188, 191
programming example, 127
trace assignment, 195, 196
turn off, 188
type, 190
valid measurement, 185
value, 196
value of, 189
x-axis location, 195, 196
y-axis, 196
mass storage
selecting, 258
mass storage commands, 258
maximum value of trace data, 179, 183
mean value of trace data, 179, 183
measurement
adjacent channel power, 262
adjacent channel power ratio, 262
channel power, 299
currents used, 166
currents used of, 228
controlling commands, 167
controlling, 167
markers, 185
mode setup, 167
power statistics CCDF measurement, 310
power vs. time, 312
query current, 210
selecting modes, 167
setting it up, 167
single/continuous, 228
spectrum (frequency domain), 325
waveform (time domain), 340
measurement modes currently available, 231
selecting, 231, 232
measurements
adjacent channel power ratio, 236
CCDF, 246
channel power, 245
cable, 245
configuration, 233
gaining results, 233
gaining power stat, 246
power vs. time, 248
spectrum (frequency domain), 251
waveform (time domain), 255
measurements available in different modes, 40
measurement, programming one, 48
memory available, 258
memory commands, 258
memory, instrument commands, 257
micro base station, 319
minimum value of trace data, 179, 183
mobile station
loss correction, 305
mobile station testing, 317, 318
mode
setting up, 167
mode, deleting, 367
modem
handshaking, 96
monitoring errors, 175
monitoring instrument condition, 166
monitoring instrument status, 349
monitoring status, 175
monitoring the instrument, 69
Mouse Adapter (typical), 53

N
NADC
burst power threshold, 339
offset frequencies, 268, 283
trigger source, 288
NADC measurement, 262
NADC mode, selection, 232
naming a file, 49
negative transition filter, 70
no response from host, 118
node name, 363
noise marker, 188
normal marker, 190
number of data values in block, 65

O
offset frequencies
ACP, 268, 283
offset frequency
mobile to base station, 319
OPC command, 71
openSocket, 115, 141, 155
operation complete, IEEE command, 173
operation condition register, 349, 350
operation status, 349
operation status register, 83
options
query, 174
options, IEEE command, 174
output data, identifying block size, 65
outputs
configuration, 363

P
packet errors, 117
packing
SPECTrum, 325
page orientation, 225
parsing block data output
data output, identifying block size, 65
pass/fail test, 178
password for service, 368
pause alignments, 209
pc cables for RS-232, 50
PCS, 322
PCS1900, 322
PDC
burst power threshold, 339
offset frequencies, 268, 283
trigger source, 288
PDC measurement, 262
PDC mode, selection, 232
percent range, 65
persistent function defaults, 364
persistent settings, 57, 116
personalities
currently available, 231
selecting, 231, 232
PGSM, 322
phase units, 65
pico base station, 319
pinging the analyzer, 119
PKOR, 321
PN offset number setting, 294
points/measurement
CHPower, 301, 302
portrait printing, 225
positive transition filter, 70
power condition register, 359, 360, 361
power statistic CCDF
cdma2000, 197
store reference, 197
W-CDMA (3GPP), 197
power statistics CCDF measurement, 310
See also PSTat
power threshold setting, 339
power units, 65
power vs. time
averaging state, 312
power vs. time - averaging mode, 313
power vs. time - averaging type, 313
power vs. time - number of bursts averaged, 312
power vs. time - resolution bandwidth, 314
power vs. time - trigger source, 315
power vs. time measurement, 248, 312
See also PVT
pre-ADC bandpass filter
SPECTrum, 329
pre-FFT bandwidth, SPECTrum, 329, 330
preset, 168, 174, 368
status registers, 351
preset defaults
LAN, 57, 116
print file types, 166
print now, 224, 227
print the image again, 226
printer
color capability, 222
device, 227
language selection, 223
type selection, 223
printers
RS-232 cables, 50
printing, 168, 222
color, 224
form feed, 224
device, 227
page orientation, 225
device, 225
print per page, 225
reprint, 226
product information on the web, 38
program
creating, 48
program example
C, 141, 155
Java, 158
socket LAN, 141, 155, 158
programming
command syntax, 62
commands for desired functions, 166
creating a simple program, 40
describe using C language, 88
device, 88
making a measurement, 48
describe parameters, 64
SCPI basics, 61
using C language, 84
describe using multiple commands, 67
describe valid commands, 62
via LAN, 105
describe with C, 115
describe with Java, 115
describe with VEE, 114
programming commands, 169
programming example
alignments, 139
saving instrument state, 136
saving traces, 130, 133
describe using markers, 127
Index

programming guidelines, 48
programming socket LAN, 114, 115
programming, socket, 105
PVTime
bandwidth, 314
sweep time, 315
Q
query data, 179, 183
questionable condition register, 351, 352
questionable status register, 83
quit command, 177
R
radio format setting, 320
real number data format, 220
rear panel external trigger delay, 372
rear panel external trigger slope, 373
recall display, 168
recall states, 168
recall traces, 168
recall, IEEE command, 174
reference
external, 323, 324
internal, 323, 324
reference adjustment, 202, 205, 206, 207, 208
reference, selecting internal, 305
register
calibration condition, 353, 354
frequency condition, 354, 355, 356
integrity condition, 356, 357
integrity signal condition, 358, 359
operation, 83
operation condition, 349, 350
power condition, 359, 360, 361
questionable, 83
questionable condition, 351, 352
temperature condition, 361, 362
registers, 74
condition, 70
event, 70
event enable, 70
service request enable, 79
standard event status, 80
status byte, 78
reprint, 226
reset persistent functions, 364
reset, IEEE command, 174
restart measurement, 229
results data
identifying block size, 65
results from measurements, 233
return data, 179, 183
RF gain calibration, 203
RF input, selection, 305
RMS of trace data, 179, 183
RS-232 bus, 95
configuration, 95
RS-232 cables, 50
S
sample program
alignment, 139
saving instrument state, 136
saving trace data, 130, 133
using markers, 127
sampling trace data, 179, 183
save display, 168
save states, 168
save traces, 168
save, IEEE command, 175
saving a display, 226
saving screens, 259, 260
SCPI
version of, 369
SCPI command
keywords, 64
SCPI commands, 169
SCPI language
basic info, 61
command syntax, 62
parameters, 64
using multiple commands, 67
valid commands, 62
screen
saving to a file, 226
screen background invert, 260
screen file type, 260
screens
storing, 259, 260
selecting channel, 294
self-test, 176
sensors, temperature, 250
serial bus, 95
serial number, query, 172
service commands, 347
service mode
measurements available, 40
service mode commands, 366
Service mode, selection, 232
service password, 368
service request enable register, 74, 79
service request, IEEE command, 175
service requests, 69, 74
setting default values, 234
settings for measurements, 167
Show Errors key, 381
SICL LAN, 106
single measurement, 167
single vs. continuous measurement mode, 228
size of block data, 65
slots, setting, 315
socket LAN
C program example, 141, 155
Java program example, 158
with C program, 115
with Java program, 115
with VEE program, 114
socket programming, 105
span
CHPower, 301
SPEcTrum, 335
SPECTrum acquisition packing, 325
ADC range, 326
data decimation, 331
FFT length, 332
FFT resolution BW, 333
FFT window, 334
FFT window delay, 333
frequency span, 335
sweep time, 335, 336
trigger source, 336
spectrum (frequency domain)
measurement, 251, 325
See also SPEcTrum spectrum measurement display, 214, 218
spectrum measurement, IF flatness, 201
spread rate setting, 320
SRE command, 71
SRQ, 69, 175
SRQ command, 74
standard deviation of trace data, 179, 183
standard event status, 80
enable register, 82
standard event status byte enable and read event status byte enable and read, 171
standard event status register, IEEE command, 172
standard, selecting for GSM, 322
start measurement, 167, 176, 229
state changing, 262

418
Index

writing a program, 48
www location for information, 38

Z
zero span measurement, 255, 340
zoom the display, 213