Gain Compression Simulation

December 2003
Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.


Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries.

Microsoft®, Windows®, MS Windows®, Windows NT®, and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.

Pentium® is a U.S. registered trademark of Intel Corporation.

PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated.

UNIX® is a registered trademark of the Open Group.

Java™ is a U.S. trademark of Sun Microsystems, Inc.
Contents

1 Gain Compression Simulation
   Performing a Gain Compression Simulation.................................................. 1-2
   Example (ADS only) ...................................................................................... 1-3
   Gain Compression Concept ........................................................................... 1-8
   XDB Simulation Controller........................................................................... 1-9
      Freq ........................................................................................................... 1-10
      XdB ......................................................................................................... 1-11
   Defining Simulation Parameters ................................................................... 1-12
   Solver ......................................................................................................... 1-16

Index
Chapter 1: Gain Compression Simulation

To calculate the X dB gain compression point of an amplifier or mixer, use the XDB simulation component, from the Simulation-XDB palette. The simulator sweeps the input power upward from a small value, and when the required amount of gain compression is seen at the output, the analysis is complete. A common calculation is the 1-dB gain-compression point; this is the default.

Refer to the following topics for details of gain compression simulation:

- “Performing a Gain Compression Simulation” on page 1-2 describes the minimum setup requirements for a gain-compression simulation.

- “Example (ADS only)” on page 1-3 is a detailed setup for calculating gain compression, using a power amplifier as the example.

- “Gain Compression Concept” on page 1-8 is a brief explanation of the gain compression calculation, plus information on how it compares to a harmonic balance simulation.

- “XDB Simulation Controller” on page 1-9 provides details on the tabs and fields in the XDB simulation controller.

Note: You must have the Gain Compression license to run the simulator. You can build the examples in this chapter without the license, but you will not be able to simulate them.
Gain Compression Simulation

**Performing a Gain Compression Simulation**

Start by creating your design, then add current probes and identify the nodes from which you want to collect data.

For a successful analysis:

- Use port-type sources at the inputs, such as the P_1Tone under Sources-Freq Domain.
- Terminate outputs with port-impedance terminations. You can find this type of port under Simulation-S_Param. Verify the impedance value.
- The Num values in the port-impedance terminations are used to specify input and output ports.
- Add the Gain Compression control element to the schematic. Fill in the fields under the Freq and XdB tabs:
  - For Freq, set the fundamental frequency and order.
  - For X dB, specify the input and output ports, the frequency at each port, power variation for each port, and maximum input power.
- For a faster simulation of large circuits, use the Krylov option. Refer to the topic “Selecting a Solver” in the chapter “Harmonic Balance Basics” in the Harmonic Balance Simulation documentation for instructions on how to use this option.
- You can use previous simulation solutions to speed up the simulation process. For more information, refer to the topic “Reusing Simulation Solutions” in the chapter “Harmonic Balance Basics” in the Harmonic Balance Simulation documentation.

For details about each field, click Help from the dialog box.
Example (ADS only)

Figure 1-1 illustrates the setup for a basic gain compression simulation of a power amplifier circuit.

**Note** This design, XDB1.dsn, is in the examples directory under Tutorial/SimModels_prj. The simulation results are in XDB1.dds.

---

**Figure 1-1. Gain-compression simulation example**
Gain Compression Simulation

To perform a gain-compression simulation:

1. From the Sources-Freq Domain palette, select a port-type source such as a P_1Tone or P_nTone. Place the source at the input of the component or circuit under test, then define input power and edit other parameters as required.

2. From the Simulation-S_Param palette, select a Term component and place it at the output of the component or circuit under test. Edit the impedance if necessary.

3. Ensure that the input port source is identified as Num=1, and the output port termination as Num=2. Also ensure that you have labeled the inputs and outputs of nodes at which you want data to be reported.

4. From the Simulation-XDB palette list, select an XDB simulation component, and place it on the schematic, then edit it.

5. Select the Freq tab, and edit frequencies, orders, and fundamentals as required.

---

**Hint** In a one-tone simulation such as this one, MaxOrder is irrelevant.

- Ensure that values are established for all of the frequencies of interest (for example, RF, LO, and IF frequencies) in the design under test. (Where mixers are employed, set the LO frequency to Freq[1]; it is easier to achieve convergence if the frequency of the signal with the largest amplitude is assigned to Freq[1].) To add or delete frequencies, select them in the Select field, then click Add or Cut. Display them on the schematic to facilitate editing.
6. Select the **X dB** tab and set the following:

- In the Gain compression field, either accept the default or enter a new gain-compression value. The default is 1 dB.

- Under Port numbers, ensure that appropriate values are entered for the input port source (generally Num=1) and the output termination (generally Num=2).

- Under Port frequencies, set appropriate values for the input and output frequencies. In a circuit employing a mixer, the input frequency would be that of the RF input, the output frequency that of the IF output.

- Under Power tolerances, set appropriate values for acceptable variations in power at the input and output ports. In the Max. Input Power field, set the maximum input power over which the simulator is allowed to search.

7. To reduce memory requirements significantly where many frequencies and orders are involved, select the **Solver** tab, then select **Krylov Solver**.

---

**Note**  We do not recommend using the Krylov option on small problems. For details, refer to the topic “Selecting a Solver” in the chapter “Harmonic Balance Basics” in the Harmonic Balance Simulation documentation.
8. **Simulate.** Gain compression data items may be identified with an HB prefix. The following is a Rectangular plot of the results of the simulation. At the top are the gain compression results, with the standard harmonic balance results at the bottom for comparison.
The following graphs and their associated equations illustrate how to extract more meaningful results from the simulation. The equation Gain finds gain by subtracting the input power $P_{in}$ from the output voltage of the fundamental ($V_{out[1]}$). The equation linear adds input power to gain to produce the linear plot in the graph. To find the input power that leads to a compression point of approximately 1 dB, place a marker on each trace and move them so that their difference is as close to 1 dB as the simulation results allow. The simple equation compression subtracts the values of the markers, and a List plot of that equation shows the input power that yields a gain compression of approximately 1 dB.

**Equation**

\[ \text{Gain} = \text{Gain}[1] \times \text{XDB1.HB1.HB1.HB.Pi} \]

\[ \text{linear} = \text{Gain}[1] + \text{XDB1.HB1.HB1.HB.Pi} \]

\[ \text{dbn}(\text{XDB1.HB1.HB1.HB.Vout[1]}) - \text{XDB1.HB1.HB1.HB.Pi} \]

\[ \text{Pin} = 4.000000 \]

\[ \text{Linear} = 23.951017 \]

\[ \text{m1} \]

\[ \text{m2} \]

\[ \text{dbn}(\text{XDB1.HB1.HB1.HB.Vout[1]}) = 22.815169 \]

![Graph showing linear and compression plots with markers and equations](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.000</td>
<td>1.136</td>
</tr>
</tbody>
</table>
Gain Compression Simulation

**Gain Compression Concept**

Gain compression is the difference, in dB, between a point on an idealized linear (small-signal) power-gain slope and a corresponding point on the actual power curve. That is, for a gain compression of $x$ dB,

$$-x = 10 \log_{10} \left( \frac{G_x}{G_{ss}} \right)$$

where $G_x$ is the point on the idealized linear gain slope that is $x$ dB directly below the point $G_{ss}$ on the small-signal power curve, as illustrated below.

The simulator stops its analysis when it reaches that point. The default setting is 1 dB.

The XDB simulator uses a harmonic balance algorithm, and as such shares many of the parameters and options that the Harmonic Balance simulator provides. However, this simulation requires that the input and output of the component or circuit whose gain compression is being simulated be defined by an appropriate source and termination.
XDB Simulation Controller

The Gain-Compression (Xdb) Simulation controller enables you to define these aspects of the simulation:

- **Frequency** — Frequencies of fundamentals.
- **Xdb** — Gain compression, port numbers and frequencies, and port tolerances
- **Parameters** — Parameters related to status level for summary information and device operating-point levels, as well as parameters related to FFT oversampling and convergence.
- **Solver** — Choose between a Direct or Krylov solver or an automatic selection.
- **Output** — Selectively save simulation data to a dataset. For details, refer to the topic “Selectively Saving and Controlling Simulation Data” in the chapter “Simulation Basics” in the Circuit Simulation documentation.
- **Display** — Control the visibility of simulation parameters on the Schematic. For details, refer to the topic “Displaying Simulation Parameters on the Schematic” in the chapter “Simulation Basics” in the Circuit Simulation documentation.
Gain Compression Simulation

**Freq**

Following are descriptions of the fields to set up frequency for this component. Simulator parameter names, as they appear in netlists and ADS schematics, are in parentheses.

<table>
<thead>
<tr>
<th>Table 1-1. XDB Simulation Freq Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Freq</strong></td>
</tr>
<tr>
<td><strong>Fundamental Frequencies</strong></td>
</tr>
<tr>
<td>Maximum order</td>
</tr>
<tr>
<td>(MaxOrder)</td>
</tr>
<tr>
<td>The maximum order of the intermodulation terms in the simulation. The combined order is the sum of the individual frequency orders that are added or subtracted to make up the frequency list. For example, assume there are two fundamentals and Order (see below) is 3.</td>
</tr>
<tr>
<td>If Maximum order is 0 or 1, no mixing products are simulated. The frequency list consists of the fundamental and the first, second, and third harmonics of each source.</td>
</tr>
<tr>
<td>If Maximum order is 2, the sum and difference frequencies are added to the list.</td>
</tr>
<tr>
<td>If Maximum order is 3, the second harmonic of one source can mix with the fundamental of the others, and so on.</td>
</tr>
<tr>
<td>Edit</td>
</tr>
<tr>
<td>Edit the Frequency and Order fields, then use the buttons to Add the frequency to the list displayed under Select.</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>(Freq[n])</td>
</tr>
<tr>
<td>The frequency of the fundamental(s). Change by typing over the entry in the field. Select the units (None, Hz, kHz, MHz, GHz) from the drop-down list.</td>
</tr>
<tr>
<td>Order</td>
</tr>
<tr>
<td>(Order[n])</td>
</tr>
<tr>
<td>The maximum order (harmonic number) of the fundamental(s) that will be considered. Change by typing over the entry in the field.</td>
</tr>
<tr>
<td>Select</td>
</tr>
<tr>
<td>Contains the list of fundamental frequencies. Use the Edit field to add fundamental frequencies to this window.</td>
</tr>
<tr>
<td>Add -- Allows you to add an item.</td>
</tr>
<tr>
<td>Cut -- Allows you to delete an item.</td>
</tr>
<tr>
<td>Paste -- Allows you to take an item that has been cut and place it in a different order.</td>
</tr>
</tbody>
</table>
**XdB**

Following are the fields used to define XDB simulation. Simulator parameter names, as they appear in netlists and ADS schematics, are in parentheses.

<table>
<thead>
<tr>
<th>X dB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Gain compression</strong>&lt;br&gt; (GC_XdB)</td>
<td>Enter the gain compression, the default is 1 dB.</td>
</tr>
<tr>
<td><strong>Port numbers</strong>&lt;br&gt; Input (GC_InputPort)</td>
<td>The number of the input port.</td>
</tr>
<tr>
<td><strong>Output (GC_OutputPort)</strong></td>
<td>The number of the output port.</td>
</tr>
<tr>
<td><strong>Port Frequencies</strong>—Ports must be placed and defined. Set the port number of the input source to 1, and the port number of the output Term (termination) component to 2, then set frequencies.&lt;br&gt; Input (GC_InputFreq)</td>
<td>The frequency of the input port.</td>
</tr>
<tr>
<td><strong>Output (GC_OutputFreq)</strong></td>
<td>The frequency of the output port.</td>
</tr>
<tr>
<td><strong>Power tolerances</strong>&lt;br&gt; Input (GC_InputPowerTol)</td>
<td>The variation in power, measured as a change in dB (delta dB), allowed at the input port.</td>
</tr>
<tr>
<td><strong>Output (GC_OutputPowerTol)</strong></td>
<td>The variation in power, measured as a change in dB (delta dB), allowed at the input port.</td>
</tr>
<tr>
<td><strong>Max. Input Power</strong>&lt;br&gt; (GC_MaxInputPower)</td>
<td>The maximum input power (in dBm) allowed before the simulator aborts. This setting is used to prevent the simulator from continuing to search if it is having difficulty finding a solution.</td>
</tr>
</tbody>
</table>
Gain Compression Simulation

**Defining Simulation Parameters**

Defining the simulation parameters consists of four basic parts:

- Enabling the budget simulation.
- Specifying the desired level of detail in the simulation status summary.
- Specifying the amount of device operating-point information to save.

Simulator parameter names, as they appear in netlists and ADS schematics, are in parentheses.

<table>
<thead>
<tr>
<th>Table 1-3. XDB Simulation Parameter Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Params</strong></td>
</tr>
<tr>
<td>Budget</td>
</tr>
<tr>
<td>Perform Budget simulation (OutputBudgetIV)</td>
</tr>
<tr>
<td>Levels—Enables you to set the level of detail in the simulation status report.</td>
</tr>
<tr>
<td>Status level (StatusLevel)</td>
</tr>
<tr>
<td>Device operating point level (DevOpPtLevel)—Enables you to save all the device operating-point information to the dataset. In ADS, if this simulation performs more than one XDB analysis (from multiple XDB controllers), the device operating point data for all XDB analyses will be saved, not just the last one. Default setting is None.</td>
</tr>
<tr>
<td>None (None)</td>
</tr>
<tr>
<td>Brief (Brief)</td>
</tr>
<tr>
<td>Detailed (Detailed)</td>
</tr>
<tr>
<td>FFT</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>More... (Oversample[n])</td>
</tr>
<tr>
<td>Convergence (ConvMode)</td>
</tr>
<tr>
<td>Advanced (Most Robust) (Advanced (Most Robust))</td>
</tr>
</tbody>
</table>
Gain Compression Simulation

Table 1-3. XDB Simulation Parameter Options (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic (Fastest) (Fastest)</td>
<td>Enables an advanced damped Newton solver. This solver guarantees a robust and steady march toward the solution with each harmonic balance iteration. The convergence rate is enhanced by its selection of a near-optimal damping constant, choice of several individual norms in the convergence checks, and control over the residual reduction threshold at each iteration.</td>
</tr>
<tr>
<td>ADS 1.5 mode</td>
<td></td>
</tr>
<tr>
<td>Max. iterations (MaxIters)</td>
<td>The maximum number of iterations to be performed. The simulation will iterate until it converges, an error occurs, or this limit is reached.</td>
</tr>
<tr>
<td>Restart (Restart)</td>
<td>Instructs the simulator to not use the last solution as the initial guess for the next solution.</td>
</tr>
<tr>
<td>Initial Guess</td>
<td></td>
</tr>
</tbody>
</table>
Use Initial Guess (UseInFile)

Check this box to enter a file name for a solution to be used as initial guesses. This file is typically generated from a previous simulation by enabling Write Final Solution. If no initial guess file name is supplied, a default name (using DC solution) is generated internally, using the design name and appending the suffix .hbs. A suffix is neither required nor added to any user-supplied file name. For example, if you have saved the Harmonic Balance solution from a previous simulation, you can later do a nonlinear noise simulation and use this saved solution as the initial guess, removing the time required to recompute the nonlinear Harmonic Balance solution. Or you could quickly get to the initial Harmonic Balance solution, then sweep a parameter to see the changes. In this latter case, you will probably either want to disable the Write Final Solution option or use a different file name for the final solution to avoid overwriting the initial guess solution. (See “Write Final Solution (UseOutFile)” on page 1-16.)

The Annotate value specified in the DC Solutions tab in the Options block is also used to control the amount of annotation generated when there are topology changes detected during the reading of the initial guess file. Since HB simulations also utilize the DC solution, to get optimum speed-up, both the DC solution and the HB solution should be saved and re-used as initial guesses. See DC Simulation.

The initial guess file does not need to contain all the HB frequencies. For example, one could do a one-tone simulation with just a very nonlinear LO, save that solution away and then use it as an initial guess in a two tone simulation. The exact frequencies do not have to match between the present analysis and the initial guess solution. However, the fundamental indexes should match. For example, a solution saved from a two tone analysis with Freq[1] = 1GHz and Freq[2] = 1kHz would not be a good match for a simulation with Freq[1] = 1kHz and Freq[2] = 1 GHz.

If the simulator cannot converge with the supplied initial guess, it then attempts to a global node-setting by connecting every node through a small resistor to an equivalent source. It then attempts to sweep this resistor value to a very large value and eventually tries to remove it.

File (InFile)
Specify a filename to save results.

Final Solution

### Table 1-3. XDB Simulation Parameter Options (continued)

| Use Initial Guess (UseInFile) | Check this box to enter a file name for a solution to be used as initial guesses. This file is typically generated from a previous simulation by enabling Write Final Solution. If no initial guess file name is supplied, a default name (using DC solution) is generated internally, using the design name and appending the suffix .hbs. A suffix is neither required nor added to any user-supplied file name. For example, if you have saved the Harmonic Balance solution from a previous simulation, you can later do a nonlinear noise simulation and use this saved solution as the initial guess, removing the time required to recompute the nonlinear Harmonic Balance solution. Or you could quickly get to the initial Harmonic Balance solution, then sweep a parameter to see the changes. In this latter case, you will probably either want to disable the Write Final Solution option or use a different file name for the final solution to avoid overwriting the initial guess solution. (See “Write Final Solution (UseOutFile)” on page 1-16.)

The Annotate value specified in the DC Solutions tab in the Options block is also used to control the amount of annotation generated when there are topology changes detected during the reading of the initial guess file. Since HB simulations also utilize the DC solution, to get optimum speed-up, both the DC solution and the HB solution should be saved and re-used as initial guesses. See DC Simulation.

The initial guess file does not need to contain all the HB frequencies. For example, one could do a one-tone simulation with just a very nonlinear LO, save that solution away and then use it as an initial guess in a two tone simulation. The exact frequencies do not have to match between the present analysis and the initial guess solution. However, the fundamental indexes should match. For example, a solution saved from a two tone analysis with Freq[1] = 1GHz and Freq[2] = 1kHz would not be a good match for a simulation with Freq[1] = 1kHz and Freq[2] = 1 GHz.

If the simulator cannot converge with the supplied initial guess, it then attempts to a global node-setting by connecting every node through a small resistor to an equivalent source. It then attempts to sweep this resistor value to a very large value and eventually tries to remove it. |
Table 1-3. XDB Simulation Parameter Options (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write Final Solution (UseOutFile)</td>
<td>Check this box to save your final HB solution to the output file. If a filename is not supplied, a file name is internally generate using the design name, followed by an .hbs suffix. If a file name is supplied, the suffix is neither appended nor required. If this box is checked, then the last HB solution is put out to the specified file. If this is the same file as that used for the Initial Guess, this file is updated with the latest solution. Transient simulations can also be programmed to generate a harmonic balance solution that can then be used as an initial guess for an HB simulation. Refer to Harmonic Balance Simulation.</td>
</tr>
<tr>
<td>File (OutFile)</td>
<td>Specify a filename to save results.</td>
</tr>
</tbody>
</table>
Index

B
budget simulations
and harmonic balance simulations, 1-12

G
gain compression
definition, 1-8
gain compression simulations, 1-1
calculations of, 1-8
performing, 1-2

H
harmonic balance simulations
and budget simulations, 1-12

M
maximum order, 1-10

X
XDB simulation component, 1-1
XDB simulations
simulation parameters, 1-9