Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.


Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries.

Microsoft®, Windows®, MS Windows®, Windows NT®, and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.

Pentium® is a U.S. registered trademark of Intel Corporation.

PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated.

UNIX® is a registered trademark of the Open Group.

Java™ is a U.S. trademark of Sun Microsystems, Inc.
## Contents

1 **WLAN Standard**

   The 802.11a Standard ................................................................. 1-1
   Frequency Allocations .............................................................. 1-1
   OFDM Signal Spectrum ............................................................. 1-2
   Generating an 802.11a Frame Using ADS .................................. 1-3
   OFDM Modulation ........................................................................ 1-4
   Inter-Carrier Interference Due to Frequency Offset ....................... 1-6
   Guard Interval ............................................................................ 1-7
   Windowing ................................................................................. 1-8
   Effects of Link Impairments on OFDM Modulation ...................... 1-10
   Effects of Power Amplifier Nonlinearity ...................................... 1-10
   Requirement for BER/PER Simulations ....................................... 1-12
   Effects of Oscillator Phase Noise ............................................. 1-13
   DesignGuide Examples Overview ............................................. 1-15

2 **80211a Power Amplifier**

   Introduction .............................................................................. 2-1
   Complementary Cumulative Distribution Function Measurements .... 2-2
   Error Vector Magnitude Measurements ...................................... 2-4
   Output RF Spectrum due to Modulation Measurements ................ 2-6
   Transmitted RF Carrier Power versus Time Measurements .......... 2-10
   Transmitted Waveform Measurements ....................................... 2-13

3 **80211a Transmitter**

   Introduction .............................................................................. 3-1
   36 Mbps Signal Source Implementation ....................................... 3-2
   Signal Source without Idle between Two Consecutive Bursts ........ 3-5
   Signal Source with Idle between Two Consecutive Bursts ............ 3-9
   Transmit Spectrum Mask Measurement ....................................... 3-12
   Error Vector Magnitude and Relative Constellation Error Measurements 3-15

4 **80211a Receiver**

   Introduction .............................................................................. 4-1
   Specification requirements ....................................................... 4-1
   Receiver Minimum Input Level Sensitivity Measurement at 6 Mbps ... 4-3
   Receiver Minimum Input Level Sensitivity Measurement at 24 Mbps ... 4-5
   Receiver Minimum Input Level Sensitivity Measurement at 54 Mbps ... 4-9
   Adjacent Channel Rejection Measurement at 9 Mbps ................... 4-11
   Adjacent Channel Rejection Measurement at 18 Mbps .................. 4-14
   Adjacent Channel Rejection Measurement at 36 Mbps ................. 4-17
   Non-Adjacent Channel Rejection Measurement at 12 Mbps ............ 4-20
Chapter 1: WLAN Standard

The 802.11a Standard

• 802.11 was adopted in July 1997 as a worldwide standard.
  • Supports 1 and 2 Mbps operation at 2.4 GHz band
  • Physical layers: DSSS, FHSS and Infrared
• 802.11b high rate extension adopted in 1999
  • Supports 5.5 Mbps and 11 Mbps at 2.4 GHz
  • CCK modulation, bandwidth compatible with DSSS
• 802.11a specs approved at the beginning of year 2000
  • Supports up to 54 Mbps at 5 GHz band
  • Uses OFDM modulation

Frequency Allocations
Following is a summary of the frequency allocations for this standard.

Unlicensed frequency bands for WLAN in 5GHz. Benign interference situation to be expected compared with the ISM bands in 2.4 GHz.
Spectrum globally available.
Lower band: 5150-5250 Europe, North America, Japan
Middle band: 5250-5350 Europe, North America
Upper band: 5725-5825 North America, 5470-5725 Europe
WLAN Standard

- Modulation: OFDM
- Uses 52 subcarriers: 48 data + 4 pilots
- Convolutional coding rate: 2/3
- The carriers can be BPSK, QPSK, 16QAM or 64QAM modulated. The RF bandwidth is approximately 16.6MHz.
- OFDM frame duration: 4μs with guard interval: 0.8μs
- Data rate: 6, 9, 12, 18, 24, 36, 48, 54Mbps (6, 12 and 24Mbps mandatory)

OFDM Signal Spectrum

Following are examples of OFDM Signal Spectrum.
Generating an 802.11a Frame Using ADS

Select Tutorial: Understanding the 802.11a Frame Format.
1-4 OFDM Modulation

Concepts of OFDM:

- A type of multi-carrier modulation
- Single high-rate bit stream is converted to low-rate N parallel bit streams
- Each parallel bit stream is modulated on one of N sub-carriers
- Each sub-carrier can be modulated differently, e.g. BPSK, QPSK or QAM
- To achieve high bandwidth efficiency, the spectrum of the sub-carriers are closely spaced and overlapped
- Nulls in each sub-carrier's spectrum land at the center of all other sub-carriers (orthogonal)
- OFDM symbols are generated using IFFT
Advantages of OFDM:

- Robustness in multipath propagation environment
- More tolerant to delay spread:
  - Due to the use of many sub-carriers, the symbol duration on the sub-carriers is increased, relative to delay spread.
  - Intersymbol interference is avoided through the use of guard interval.
  - Simplified or eliminate equalization needs, as compared to single carrier modulation.
  - More resistant to fading. FEC is used to correct for sub-carriers suffer from deep fade.

Design challenges of OFDM modulation:

- Sensitive to frequency offset; need frequency offset correction in the receiver.
- Sensitive to oscillator phase noise- clean and stable oscillator required.
- Large peak to average ratio; amplifier back-off, reduced power efficiency.
- IFFT/FFT complexity; fixed point implementation to optimize latency and performance.
- Intersymbol Interference (ISI) due to multipath; use guard interval.
Inter-Carrier Interference Due to Frequency Offset

Select Tutorial: Understanding OFDM Modulation > Inter-Carrier Interference (ICI) due to Freq. Offset.

Integer number of cycles of the sub-carrier ensures that the nulls of the spectrum lands on the FFT bin, condition to avoid inter-carrier interference (ICI).
Guard Interval

- Multipath delays up to the guard time do not cause inter-symbol interference.
- Subcarriers remain orthogonal for multipath delays up to guard time (no inter-carrier interference).
Windowing

- To reduce spectrum splatter, the OFDM symbol is multiplied by a raised-cosine window, \( w(t) \) before transmission to more quickly reduce the power of out-of-band subcarriers.
- Preceding illustration shows spectra for 64 subcarriers with different values of the rolloff factor, \( \beta \) of the raised cosine window.
- Larger \( \beta \), better spectral roll-off.
- However, a roll-off factor of \( \beta \) reduces delay spread tolerance by a factor of \( \beta T_\text{S} \).
Effects of Link Impairments on OFDM Modulation

This section summarizes the evaluation of the effects of link impairment when using the WLAN Design Library and the WLAN DesignGuide.

The following WLAN DesignGuide menu is shown as it appears when you have configured your program for dialog box access vs. cascading menus.

Effects of Power Amplifier Nonlinearity

Select Evaluating OFDM Performance > Effect of Power Amplifier Non-Linearity > EVM/Constellation.

Following is the behavioral model used in the PA non-linearity simulation:
Here the output 1-dB Compression Point (dBc\text{out}) is used along with the output Third-Order Intercept (TOI\text{out}) derived from it by adding 12 dB. The results can be evaluated for their effect on EVM (Error Vector Magnitude), Constellation diagram, spectrum and CCDF (Complementary Cumulative Density Function).

Here is a Constellation diagram at 6 dB backoff:

CCDF indicates the probability (starting from 100%) of the signal’s peak value in dB. The CCDF plot for the power amplifier response, operated at 6 dB backoff from saturation, indicates signal clipping at 7.8 dB, compared to the unamplified signal’s peak of 9.4 dB at 0.01%.

The bit error rate (BER) and packet error rate (PER) can also be measured against a particular impairment. For the non-linear PA, the BER can be shown to degrade when the amplifier is not sufficiently backed-off, as shown here.
Requirement for BER/PER Simulations

Due to the use of coding and the presence of non-linear impairments, a Monte Carlo BER simulation method must be used. Since a PSDU length of 1,000 bits is required, these simulations can be quite lengthy. Therefore, most of the saved datasets included with this DesignGuide reflect simulations performed with a much smaller length, e.g. 10 or 100, and will show degradation as the signal is more greatly impaired in some way. However, reliable estimates of the BER or PER for less-impaired signals will require multiple 1,000-bit packets to be simulated.

Effects of Frequency Offset

Frequency offset due to differences between the transmit and receive reference oscillators is expressed as a percentage of the 312.5 kHz sub-carrier frequency spacing. The receiver can perform frequency offset estimation and correction using preambles:
• Make use of short preamble for coarse frequency offset estimation and long preamble for fine frequency offset estimation.

• Short preamble symbol duration of 0.8μs allows frequency correction up to \(1/(2 \times 0.8\mu s) = \pm 625\) kHz

• Assume RF frequency=5.8GHz, the tolerable frequency offset (worst case) =0.5x625k/5.8G=\(\pm53.8\)ppm >\(\pm20\)ppm specified in 802.11a.

**Effects of Oscillator Phase Noise**

\[
S_n(f) = \frac{2 \pi f_j}{1 + f^2 / f_j^2}
\]

\(f_j = -3dB\) linewidth

An N_Tones model is used to model the phase noise.

**Effects of Fixed Point implementation of IFFT/FFT**

The IFFT and FFT function in the transceiver will have a fixed bit-width. This might have an effect on the system performance. The WLAN DesignGuide provides a
WLAN Standard

64-point implementation which uses the bit width as a parameter, so it can be changed or swept. It uses a decimation in frequency, Radix-2 algorithm.

Effects of Multipath

Multipath propagation is simulated using the user-defined channel model.

This defines an impulse response.

The RMS delay spread (defined as follows) varies. Typical values are 100-200 nsec.
Design examples are provided in the /examples/wlan directory. Projects and their corresponding design examples are:

802.11a Power Amplifier Design Examples: WLAN_80211a_PA_prj
- WLAN_80211a_PA_CCDF: complementary cumulative distribution function measurements.
- WLAN_80211a_PA_EVM: error vector magnitude measurements.
- WLAN_80211a_PA_MaskSpect: output RF spectrum due to modulation measurements.
- WLAN_80211a_PA_Power_vs_Time: transmitted RF carrier power versus time measurements.
- WLAN_80211a_PA_Waveform: transmitted waveform measurements.

802.11a Transmitter Test and Verification Design Examples: WLAN_80211a_Tx_prj
- WLAN_80211a_SignalSource: generates 802.11a burst with different data rates.
- WLAN_80211a_Src_Glacier: generates 802.11a burst with idle, and co-simulation with VSA89600.
- WLAN_80211a_TxSpectrum: measures the transmit spectrum mask.

\[
\bar{x} = \frac{\sum_k P(x_k) x_k}{\sum_k P(x_k)} \\
\sigma_x = \sqrt{\frac{\sum_k P(x_k) x_k^2}{\sum_k P(x_k)} - (\bar{x})^2}
\]
WLAN Standard

- WLAN_80211a_TxEVM: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy.

802.11a Receiver Test and Verification Design Examples: WLAN_80211a_Rx_prj
- WLAN_80211a_RxSensitivity_6Mbps: minimum receiver sensitivity measurement of 6 Mbps data rate.
- WLAN_80211a_RxSensitivity_24Mbps: minimum receiver sensitivity measurement of 24 Mbps data rate.
- WLAN_80211a_RxSensitivity_54Mbps: minimum receiver sensitivity measurement of 54 Mbps data rate.
- WLAN_80211a_RxAdjCh_9Mbps: adjacent channel rejection measurement of 9 Mbps data rate.
- WLAN_80211a_RxAdjCh_18Mbps: adjacent channel rejection measurement of 18 Mbps data rate.
- WLAN_80211a_RxAdjCh_36Mbps: adjacent channel rejection measurement of 36 Mbps data rate.
- WLAN_80211a_RxNonAdjCh_12Mbps: non-adjacent channel rejection measurement of 12 Mbps data rate.
- WLAN_80211a_RxNonAdjCh_48Mbps: non-adjacent channel rejection measurement of 48 Mbps data rate.

802.11a Turbo Mode Design Examples: WLAN_80211a_Turbo_prj
- WLAN_80211a_GI: measures the error vector magnitude under different guard intervals on fading channel.
- WLAN_80211a_Turbo_TxEVM: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy of 802.11a turbo mode.

802.11a BER/PER Performance Design Examples: WLAN_80211a_PER_prj
- WLAN_80211a_24Mbps_AWGN_System: BER and PER performance for 24 Mbps systems under AWGN channel.
- WLAN_80211a_24Mbps_PN_System: BER and PER performance for 24 Mbps systems under phase noise distortion.
- WLAN_80211a_24Mbps_Fading_System: BER and PER performance for 24 Mbps systems under fading channel.
• **WLAN_80211a_36Mbps_AWGN_Perfect**: raw BER performance for 16-QAM modulation with perfect channel estimator under AWGN channel.

• **WLAN_80211a_36Mbps_AWGN_System**: BER and PER performance for 36 Mbps systems under AWGN channel.

• **WLAN_80211a_36Mbps_Fading_System**: BER and PER performance for 36 Mbps systems under fading channel.

• **WLAN_80211a_48Mbps_AWGN_Perfect**: BER performance for 64-QAM modulation with perfect channel estimator under AWGN channel.

802.11a Practical Systems: WLAN_80211a_Practical_prj
• 802.11a Receiver Specifications - Sensitivity
• 802.11a Receiver Specifications - Adjacent Channel Rejection
• 802.11a Receiver Specifications - Alternate Channel Rejection

802.11a ESGc Link Design Examples: WLAN_80211a_ESGc_prj
• **WLAN_PA_80211a_Src_ESGc.dsn**: testing CCK power amplifier based on 802.11a Std using ADS-ESG 4438C link.

802.11a Receiver Minimum Input Level Sensitivity Test Using ADS-ESGc and VSA-ADS Links: WLAN_80211a_Sens_prj
• **WLAN_11a_36Mbps_Sen_ESGc.dsn**: generates WLAN signal for receiver minimum input level sensitivity test.
• **WLAN_11a_36Mbps_Sen_VSA.dsn**: receiver minimum input level sensitivity measurement.

802.11b Signal Source Design Examples: WLAN_80211b_SignalSource_prj
• **WLAN_80211_LowRate**: generates 802.11 burst with different data rates.
• **WLAN_80211b_CCK**: generates 802.11b CCK burst with different data rates.
• **WLAN_80211b_PBCC**: generates 802.11b PBCC burst with different data rates.

802.11b Transmitter Test and Verification Design Examples: WLAN_80211b_Tx_prj
• **WLAN_80211b_TxEVM**: measures EVM and tests the transmit modulation accuracy.

802.11b Receiver Test and Verification Design Examples: WLAN_80211b_Rx_prj
WLAN Standard

• WLAN_80211b_RxMinInput_Sensitivity.dsn: receiver minimum input level sensitivity measurement for 802.11b.
• WLAN_80211b_RxMaxInput_Sensitivity.dsn: receiver maximum input level sensitivity measurement for 802.11b.

802.11b CCK BER/PER Design Examples: WLAN_80211b_PER_prj

• WLAN_80211b_5_5Mbps_AWGN_System.dsn: BER and PER performance for CCK 5.5 Mbps systems under AWGN channel.
• WLAN_80211b_11Mbps_AWGN_System.dsn: BER and PER performance for CCK 11 Mbps systems under AWGN channel.

802.11b System Test Using Instrument Links Design Examples: WLAN_80211b_ESGc_prj

• WLAN_80211b_CCK_ESG4438C.dsn: demonstrates how to use the ADS-ESGc link to test a WLAN 802.11b/802.11g CCK transmitter system.
• WLAN_80211b_25M_Esgc.dsn: tests a WLAN IEEE 802.11b CCK transmitter under adjacent channel environment.

HiperLAN/2 Signal Source Design Examples: WLAN_HIPERLAN_SignalSource_prj

• WLAN_HIPERLAN_Broadcast: broadcast burst signal source.
• WLAN_HIPERLAN_DirectLink: direct link burst signal source.
• WLAN_HIPERLAN_Downlink: downlink burst signal source.
• WLAN_HIPERLAN_Uplink_Long: uplink burst with long preamble signal source.
• WLAN_HIPERLAN_Uplink_Short: uplink burst with short preamble signal source.

HiperLAN/2 Power Amplifier Design Examples: WLAN_PA_HIPERLAN_Test_prj

• WLAN_PA_HIPERLAN_ACPR: adjacent channel power ratio measurements.
• WLAN_PA_HIPERLAN_CCDF: complementary cumulative distribution function measurements.
• WLAN_PA_HIPERLAN_MaskSpect: output RF spectrum due to modulation measurements.
• WLAN_PA_HIPERLAN_Waveform: transmitted waveform measurements.
802.11g Design Examples: WLAN_80211g_prj

- WLAN_80211g_OFDM_TxEVM: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy for OFDM signal.

- WLAN_80211g_CCK_TxEVM: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy for CCK signal.

- WLAN_80211g_OFDM_36Mbps_Fading_System: BER and PER performance for 36 Mbps systems under fading channel.

- WLAN_80211g_CCK_11Mbps_AWGN_System: BER and PER performance for 802.11g 11Mbps systems with CCK modulation under AWGN channel.
WLAN Standard
Chapter 2: 80211a Power Amplifier

Introduction

WLAN_80211a_PA_prj design examples are described in this chapter.

• WLAN_80211a_PA_CCDF.dsn provides the characterization of power amplifier ratio (PAR) versus probability.

• WLAN_80211a_PA_EVM.dsn measures error vector magnitude. It performs the transmit modulation accuracy test.

• WLAN_80211a_PA_MaskSpect.dsn measures the transmitted spectral density. It must fall within the spectral mask shown in Figure 120 of Reference [1].

• WLAN_80211a_PA_Power_vs_Time.dsn measures instant and average power versus time. The maximum allowable output power according to FCC regulations is shown in Table 89 of Reference [1].

• WLAN_80211a_PA_Waveform.dsn measures the output waveform magnitude.
Complementary Cumulative Distribution Function Measurements

WLAN_80211a_PA_CCDF.dsn

Features

- Configurable signal source sub-network model.
- Sampling rate (such as T, T/2, T/4, T/8) can be controlled by setting Order variable in the schematic.
- DUT_Gain, FCarrier, Nf and Length parameter values can be set by the user.

Description

Complementary cumulative distribution function (CCDF) fully characterizes the power statistics of a signal. It provides PAR versus probability.

The top-level schematic for this design is shown in Figure 2-1. sub_80211a_PA_CCDF_Info.dsn contains measurement information and relevant technical specifications. sub_80211a_PA_CCDF_Measure.dsn, Figure 2-2, tests CCDF.

Figure 2-1. WLAN_80211a_PA_CCDF.dsn Schematic

Figure 2-2. sub_80211a_PA_CCDF_Measure.dsn Schematic
Simulation Results

Simulation results are displayed in WLAN_80211a_PA_CCDF.dds. Page Main, Figure 2-3, contains the most important results. In this measurement, the test would pass because there is no CCDF requirement in WLAN technical specification. Page Figures, Figure 2-4, shows the CCDF curve. Page equations contains all variable definitions and calculations.

<table>
<thead>
<tr>
<th>MeanPower (dBm)</th>
<th>PeakPower (dBm)</th>
<th>Peak_to_Mean (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.355</td>
<td>24.422</td>
<td>8.467</td>
</tr>
</tbody>
</table>

Figure 2-3. Page Main of Simulation Results

Benchmark

- Hardware platform: Pentium II 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 2 minutes

References

Error Vector Magnitude Measurements

WLAN_PA_80211a_PA_EVM.dsn

Features

- For IEEE 802.11a, the error vector between the vector representing the transmitted signal and the vector representing the error-free modulated signal defines modulation accuracy. The magnitude of the error vector is called error vector magnitude (EVM).
- The purpose of this test is to verify that the RMS EVM measured on the specific part of the burst does not exceed the conformance requirement.
- DUT_Gain and Length parameter values can be set by the user.
- Configurable signal source sub-network model is used.
- Configurable receiver sub-network model is used.
- T, T/2, T/4 and T/8 and etc. sampling rate is controlled by setting Order variable in the schematic.
- DUT_Gain and Length parameter values can be set by the user.

Description

EVM is a measure of the difference between the measured waveform and the theoretical modulated waveform (the error vector). It is the square root of the ratio of the mean error vector power to the mean reference signal power expressed as a percentage.

The top-level schematic for this design is shown in Figure 2-5. sub_80211a_PA_EVM_Info.dsn contains measurement information and technical specifications.
Simulation Results

Simulation results are displayed in WLAN_PA_80211a_EVM.dds. Page equations contains all variable definitions and calculations. Page Main, Figure 2-6, shows the most important simulation results and that the measurement meets the technical requirements.

<table>
<thead>
<tr>
<th>Channel Number 36</th>
<th>Channel Number 69</th>
<th>Channel Number 161</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Offset is zero EVM (%)</td>
<td>5.335E-4</td>
<td>2.338E-4</td>
</tr>
<tr>
<td>Carrier Offset is 50KHz EVM (%)</td>
<td>5.335E-4</td>
<td>2.338E-4</td>
</tr>
<tr>
<td>Carrier Offset is 100KHz EVM (%)</td>
<td>5.335E-4</td>
<td>2.338E-4</td>
</tr>
</tbody>
</table>

Figure 2-6. Simulation Results

Benchmark

- Hardware platform: Pentium II 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 7 minutes

References

Output RF Spectrum due to Modulation Measurements

WLAN_80211a_PA_MaskSpect.dsn

Features

- Configurable signal source sub-network model.
- Sampling rate (such as T, T/2, T/4, T/8) is controlled by setting Order variable in the schematic.
- DUT_Gain and Length parameters can be set by the user.

Description

The output RF spectrum due to modulation is the relationship between the frequency offset from the carrier and the power, measured in a specified bandwidth and time, produced by the mobile station due to the effects of modulation. The measurement provides information about distribution of the transmitter's channel spectral energy due to modulation.

The top-level schematic for this design is shown in Figure 2-7. sub_80211a_PA_Spectrum_Analyzer, Figure 2-8, implements the measurement.

Figure 2-7. WLAN_80211a_PA_MaskSpect.dsn
Simulation Results

Simulation results displayed in WLAN_80211a_PA_MaskSpect.dds. Page Equations contains variable definitions and calculations. Page Main, Figure 2-9, contains technical specification requirements.

Figure 2-10 and Figure 2-11 show the ORFS due to modulation.

<table>
<thead>
<tr>
<th>Frequency offset (MHz)</th>
<th>&lt;=-30</th>
<th>-20</th>
<th>-11</th>
<th>0</th>
<th>9</th>
<th>11</th>
<th>20</th>
<th>&gt;30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power level (dBm)</td>
<td>-40</td>
<td>-30</td>
<td>-20</td>
<td>0</td>
<td>0</td>
<td>-20</td>
<td>-20</td>
<td>-10</td>
</tr>
</tbody>
</table>

Test Results

Test Passed if the curve of RF Spectrum due to modulation does not exceed the mask.
Otherwise, test Failed.

Figure 2-9. Page Main Simulation Results
2-8 Output RF Spectrum due to Modulation Measurements
Benchmark

- Hardware platform: Pentium II 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References

Transmitted RF Carrier Power versus Time Measurements

WLAN_80211a_PA_Power_vs_Time.dsn

Features

- Configurable signal source sub-network model is used.
- Sampling rate (T, T/2, T/4, T/8, and so on) is controlled by setting Order variable in the schematic.
- DUT_Gain, FCarrier, and Length parameter values can be set by the user

Description

This example measures the power.

The top-level schematic for this design is shown in Figure 2-12. 

sub_80211a_PA_Pwr_vs_Time_Info.dsn contains measurement information and relevant technical specifications. sub_80211a_PA_Pwr_vs_Time.dsn, Figure 2-13, implements the power measurement.

Figure 2-12. WLAN_80211a_PA_Pwr_vs_Time.dsn Schematic
Simulation Results

Simulation results displayed in WLAN_80211a_PA_Power_vs_Time.dds for instant and average power are shown in Figure 2-14.

Benchmark

- Hardware platform: Pentium II 400 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute
References

Transmitted Waveform Measurements

WLAN_80211a_PA_Waveform.dsn

Features

- Configurable signal source sub-network model is used.
- Sampling rate (T, T/2, T/4, T/8, and so on) is controlled by setting Order variable in the schematic.
- DUT_Gain, FCarrier and Length parameter values can be set by the user

Description

This example measures the waveform.

The top-level schematic for this design is shown in Figure 2-15. sub_80211a_PA_Waveform_Info.dsn contains measurement information and relevant technical specifications. sub_80211a_Wave_Meas.dsn, Figure 2-16, implements the output waveform measurement.

Figure 2-15. WLAN_PA_80211a_Waveform.dsn Schematic
Simulation Results
Simulation results displayed in WLAN_80211a_PA_Waveform.dds are shown in Figure 2-17.

Benchmark
- Hardware platform: Pentium II 400 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References
Chapter 3: 80211a Transmitter

Introduction

WLAN_80211a_Tx_prj IEEE 802.11a transmitter test and verification design examples are described in this chapter.

- WLAN_80211a_Demo.dsn: WLAN signal source at 36 Mbps data rate where all data matches Annex G of IEEE 80211a.
- WLAN_80211a_SignalSource.dsn: generates IEEE 802.11a burst with different data rates.
- WLAN_80211a_Src_Glacier.dsn: generates IEEE 802.11a burst with idle, and co-simulation with VSA89600.
- WLAN_80211a_TxSpectrum.dsn: measures the transmit spectrum mask.
- WLAN_80211a_TxEVM.dsn: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy.
36 Mbps Signal Source Implementation

WLAN_80211a_Demo.dsn

Description

This design demonstrates a WLAN signal source at a data rate of 36 Mbps. The PSDU bits and all parameters settings comply with annex G of IEEE Std 802.11a-1999.

The top-level schematic for this design is shown in Figure 3-1. Parameters that can be user-modified are contained in VAR Signal_Generation_VARS. Other parameters are set according to the specification and should not be changed.

The mapping mode is rate related; for 36 Mbps, 16-QAM mapping is used.

Figure 3-1. WLAN_80211a_Demo.dsn Schematic
Simulation Results
Simulation results displayed in WLAN_80211a_Demo.dds are the baseband burst (frame) data results in accordance with the IEEE specification (Figure 3-2) and the transmit spectrum (Figure 3-3).

<table>
<thead>
<tr>
<th>Index</th>
<th>Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-3.45E-17 + 0.000i</td>
</tr>
<tr>
<td>13</td>
<td>-0.09 + 0.141i</td>
</tr>
<tr>
<td>14</td>
<td>-0.009 + 0.141i</td>
</tr>
<tr>
<td>15</td>
<td>-0.046 + 0.006i</td>
</tr>
<tr>
<td>16</td>
<td>-0.079 + 0.012i</td>
</tr>
<tr>
<td>17</td>
<td>-0.14 + 0.141i</td>
</tr>
<tr>
<td>18</td>
<td>-0.143 + 0.004i</td>
</tr>
<tr>
<td>19</td>
<td>0.135 + 0.004i</td>
</tr>
<tr>
<td>20</td>
<td>0.163 + 0.004i</td>
</tr>
<tr>
<td>21</td>
<td>0.104 + 0.014i</td>
</tr>
<tr>
<td>22</td>
<td>0.013 + 0.004i</td>
</tr>
<tr>
<td>23</td>
<td>-0.142 + 0.004i</td>
</tr>
<tr>
<td>24</td>
<td>0.056 + 0.014i</td>
</tr>
<tr>
<td>25</td>
<td>-0.092 + 0.014i</td>
</tr>
<tr>
<td>26</td>
<td>-0.105 + 0.141i</td>
</tr>
<tr>
<td>27</td>
<td>-3.45E-17 + 0.000i</td>
</tr>
<tr>
<td>28</td>
<td>-0.013 + 0.141i</td>
</tr>
<tr>
<td>29</td>
<td>-0.009 + 0.141i</td>
</tr>
<tr>
<td>30</td>
<td>-0.046 + 0.006i</td>
</tr>
<tr>
<td>31</td>
<td>-0.079 + 0.012i</td>
</tr>
<tr>
<td>32</td>
<td>-0.14 + 0.141i</td>
</tr>
<tr>
<td>33</td>
<td>-0.143 + 0.004i</td>
</tr>
<tr>
<td>34</td>
<td>0.135 + 0.004i</td>
</tr>
<tr>
<td>35</td>
<td>0.163 + 0.004i</td>
</tr>
<tr>
<td>36</td>
<td>0.104 + 0.014i</td>
</tr>
</tbody>
</table>

Figure 3-2. Baseband Burst (Frame) Data Results
80211a Transmitter

Figure 3-3. Transmit Spectrum

Benchmark
- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References
Signal Source without Idle between Two Consecutive Bursts

WLAN_80211a_SignalSource.dsn Design

Features

- Configurable signal source sub-network model
- Various data rates can be simulated by setting the Rate variable in the schematic
- Sampling rate (T, T/2, T/4, T/8 and so on) is controlled by setting the Order variable in the schematic

Description

This design is an example of WLAN signal source at various data rates without idle between two consecutive bursts.

The top-level schematic for this design is shown in Figure 3-4. Parameters that can be user-modified are contained in VAR Signal_Generation_VARs.

The modulation mode is rate related, which is controlled by the Rate variable in the schematic. Table 3-1 shows the modulation mode with various data rates.

<table>
<thead>
<tr>
<th>Rate</th>
<th>Data Rate (Mbps)</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>BPSK</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>BPSK</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>QPSK</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>QPSK</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>16-QAM</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>16-QAM</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>16-QAM</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>64-QAM</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>64-QAM</td>
</tr>
</tbody>
</table>
Simulation Results

Simulation results displayed in WLAN_80211a_SignalSource.dds are shown in Figure 3-5 and Figure 3-6.
Signal Source without Idle between Two Consecutive Bursts

<table>
<thead>
<tr>
<th>Time (ns)</th>
<th>dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.027</td>
</tr>
<tr>
<td>11.8</td>
<td>0.039 + 0.116</td>
</tr>
<tr>
<td>23.6</td>
<td>0.127 + 0.233</td>
</tr>
<tr>
<td>35.4</td>
<td>0.573 + 0.771</td>
</tr>
<tr>
<td>47.2</td>
<td>-1.088 + 0.018</td>
</tr>
<tr>
<td>59.0</td>
<td>-1.842 - 0.364</td>
</tr>
<tr>
<td>70.8</td>
<td>-1.253 - 0.731</td>
</tr>
<tr>
<td>82.6</td>
<td>-0.880 - 0.837</td>
</tr>
<tr>
<td>94.4</td>
<td>-0.160 - 0.931</td>
</tr>
<tr>
<td>116.2</td>
<td>-0.062 + 0.783</td>
</tr>
<tr>
<td>128.0</td>
<td>-1.269 - 0.555</td>
</tr>
<tr>
<td>139.8</td>
<td>1.354 - 0.321</td>
</tr>
<tr>
<td>151.6</td>
<td>1.662 + 0.160</td>
</tr>
<tr>
<td>163.4</td>
<td>1.583 - 0.446</td>
</tr>
<tr>
<td>175.2</td>
<td>1.360 - 0.304</td>
</tr>
<tr>
<td>187.0</td>
<td>1.161 + 0.002</td>
</tr>
<tr>
<td>220.8</td>
<td>1.001 + 0.506</td>
</tr>
<tr>
<td>222.6</td>
<td>1.103 + 0.002</td>
</tr>
<tr>
<td>234.4</td>
<td>1.203 + 0.002</td>
</tr>
<tr>
<td>236.2</td>
<td>1.303 + 0.002</td>
</tr>
<tr>
<td>238.0</td>
<td>1.403 + 0.002</td>
</tr>
<tr>
<td>239.8</td>
<td>1.503 + 0.002</td>
</tr>
<tr>
<td>241.6</td>
<td>1.603 + 0.002</td>
</tr>
<tr>
<td>243.4</td>
<td>1.703 + 0.002</td>
</tr>
<tr>
<td>245.2</td>
<td>1.803 + 0.002</td>
</tr>
<tr>
<td>320.0</td>
<td>1.592 - 0.783</td>
</tr>
<tr>
<td>321.8</td>
<td>-0.090 + 0.987</td>
</tr>
<tr>
<td>333.6</td>
<td>-1.438 - 0.761</td>
</tr>
<tr>
<td>335.4</td>
<td>-1.678 - 0.418</td>
</tr>
<tr>
<td>337.2</td>
<td>-1.908 + 0.028</td>
</tr>
<tr>
<td>339.0</td>
<td>-2.178 + 0.456</td>
</tr>
<tr>
<td>340.8</td>
<td>-2.408 + 0.741</td>
</tr>
<tr>
<td>342.6</td>
<td>-2.588 + 0.741</td>
</tr>
<tr>
<td>344.4</td>
<td>-2.738 + 0.741</td>
</tr>
<tr>
<td>400.0</td>
<td>0.894 + 0.066</td>
</tr>
<tr>
<td>401.8</td>
<td>0.741 + 0.266</td>
</tr>
<tr>
<td>403.6</td>
<td>0.496 - 1.157</td>
</tr>
<tr>
<td>405.4</td>
<td>0.039 - 1.570</td>
</tr>
<tr>
<td>407.2</td>
<td>0.039 - 1.570</td>
</tr>
<tr>
<td>409.0</td>
<td>0.039 - 1.570</td>
</tr>
<tr>
<td>410.8</td>
<td>0.039 - 1.570</td>
</tr>
</tbody>
</table>

Figure 3-5. Random Burst of 802.11a

Figure 3-6. Transmit Spectrum

**Benchmark**

- Hardware platform: Pentium III 450 MHz, 512 MB memory
80211a Transmitter

- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References

Signal Source with Idle between Two Consecutive Bursts

WLAN_80211a_Src_Glacier.dsn

Features

- Configurable signal source sub-network model
- Various data rates can be simulated by setting the Rate variable in the schematic
- Sampling rate (T, T/2, T/4, T/8, and so on) is controlled by setting the Order variable in the schematic
- The Idle between two consecutive bursts can be set by the Idle variable in the schematic

Description

This design is an example of WLAN signal source at various data rates with idle between two consecutive bursts and co-simulation with Agilent VSA89600.

The top-level schematic for this design is shown in Figure 3-7. Parameters that can be user-modified are contained in VAR Signal_Generation_VARS.

The modulation mode is rate related, which is controlled by the Rate variable. Table 3-2 shows the modulation mode with various data rates.

<table>
<thead>
<tr>
<th>Rate</th>
<th>Data Rate (Mbps)</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>BPSK</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>BPSK</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>QPSK</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>QPSK</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>16-QAM</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>16-QAM</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>16-QAM</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>64-QAM</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>64-QAM</td>
</tr>
</tbody>
</table>
Simulation Results

Simulation results displayed in WLAN_80211a_Src_Glacier.dds are shown in Figure 3-8, Figure 3-9, and Figure 3-10.

Figure 3-8. Time Waveform of One Burst with Idle
Figure 3-9. Transmit Spectrum

<table>
<thead>
<tr>
<th>EVMrms_percent</th>
<th>EVM_dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000339</td>
<td>-109.401758</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPERms_percent</th>
<th>PilotEVM_dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000079</td>
<td>-111.366466</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IQ_Offset_dB</th>
<th>SyncCorrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-131.638040</td>
<td>0.997451</td>
</tr>
</tbody>
</table>

Figure 3-10. EVM, CPE, and IQ_Offset

Benchmark
- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References
Transmit Spectrum Mask Measurement

WLAN_80211a_TxSpectrum.dsn

Features

- IEEE 802.11a configurable signal source, adjustable data rate
- Adjustable sample rate
- Spectrum analysis
- Integrated RF section

Description

This design demonstrates the IEEE 802.11a transmitter signal spectrum due to modulation and wideband noise.

The schematic for this design is shown in Figure 3-11.

Measurements in this design are based on IEEE Standard 802.11a-1999 section 17.3.9.2. The transmitted spectrum must have a 0 dB (dB relative to the maximum spectral density of the signal) bandwidth not exceeding 18 MHz, –20 dB at 11 MHz frequency offset, –28 dB at 20 MHz frequency offset, and –40 dB at 30 MHz frequency offset and above. The transmitted spectral density of the transmitted signal must fall within the spectral mask, as shown in Figure 3-12.
Simulation Results

Simulation results displayed in WLAN_80211a_TxSpectrum.dds are shown in Figure 3-13, Figure 3-14, and Figure 3-15 for 5180 MHz (36 operating channels), 5280 MHz (56 operating channels), and 5805 MHz (161 operating channels) frequencies, respectively.
Figure 3-14. Transmit RF Spectrum, 5280 MHz

Figure 3-15. Transmit RF Spectrum, 5805 MHz

Benchmark

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References

Error Vector Magnitude and Relative Constellation Error Measurements

WLAN_80211a_TxEVM.dsn

Features

- IEEE 802.11a configurable signal source, adjustable data rate
- Adjustable sample rate
- Constellation display
- Integrated RF section

Description

This design tests IEEE 802.11a transmit modulation accuracy and transmitter constellation error by measuring the EVM. The schematic for this design is shown in Figure 3-16.

Measurements in this design are based on IEEE Standard 802.11a-1999 section 17.3.9.6. The transmit modulation accuracy test must be performed by instrumentation capable of converting the transmitted signal into a stream of complex samples at 20 Msamples per second or more, with sufficient accuracy in
terms of I/Q arm amplitude and phase balance, dc offsets, phase noise, and so on. A possible embodiment of such a setup is converting the signal to a low IF frequency with a microwave synthesizer, sampling the signal with a digital oscilloscope and decomposing it digitally into quadrature components.

The sampled signal must be processed in a manner similar to an actual receiver, according to the following, or equivalent steps:

- Start of frame must be detected.
- Transition from short sequences to channel estimation sequences must be detected, and fine timing (with one sample resolution) must be established.
- Coarse and fine frequency offsets must be estimated.
- The packet must be de-rotated according to estimated frequency offset.
- The complex channel response coefficients must be estimated for each subcarrier.
- For each data OFDM symbol: transform the symbol into subcarrier received values, estimate the phase from the pilot subcarriers, de-rotate the subcarrier values according to estimated phase, and divide each subcarrier value with a complex estimated channel response coefficient.
- For each data-carrying subcarrier, find the closest constellation point and calculate the Euclidean distance from it.
- Calculate the RMS average of all errors in a packet:

$$ \text{Error}_{\text{RMS}} = \frac{\sum_{i=1}^{N_f} \sum_{j=1}^{L_p} \sum_{k=1}^{52} \{(I(i, j, k) - I_0(i, j, k))^2 + (Q(i, j, k) - Q_0(i, j, k))^2\}}{52L_p \times P_0} \sqrt{\sum_{i=1}^{N_f} \sum_{j=1}^{L_p} \sum_{k=1}^{52} \{(I(i, j, k) - I_0(i, j, k))^2 + (Q(i, j, k) - Q_0(i, j, k))^2\}}$$

where

- $L_p$ is the length of the packet
- $N_f$ is the number of frames for the measurement
- $(I_0(i, j, k), Q_0(i, j, k))$ denotes the ideal symbol point of the ith frame, jth OFDM symbol of the frame, kth subcarrier of the OFDM symbol in the complex plane

80211a Transmitter
$(I(i, j, k), Q(i, j, k))$ denotes the observed point of the $i$th frame, $j$th OFDM symbol of the frame, $k$th subcarrier of the OFDM symbol in the complex plane (see Figure 3-17).

$P_0$ is the average power of the constellation.

The vector error on a phase plane is shown in Figure 3-17.

The test must be performed over at least 20 frames ($N_f$) and the RMS average must be taken. The packets under test must be at least 16 OFDM symbols long. Random data must be used for the symbols.

The EVM and relative constellation RMS error, averaged over subcarriers, OFDM frames, and packets, cannot exceed a data-rate dependent value according to Table 3-3.

**Table 3-3. Allowed EVM and Relative Constellation Error**

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Relative Constellation Error (dB)</th>
<th>EVM (% RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-5</td>
<td>56.2</td>
</tr>
<tr>
<td>9</td>
<td>-8</td>
<td>39.8</td>
</tr>
<tr>
<td>12</td>
<td>-10</td>
<td>31.6</td>
</tr>
<tr>
<td>18</td>
<td>-13</td>
<td>22.3</td>
</tr>
<tr>
<td>24</td>
<td>-16</td>
<td>15.8</td>
</tr>
<tr>
<td>36</td>
<td>-19</td>
<td>11.2</td>
</tr>
</tbody>
</table>
802.11a Transmitter

Simulation Results

Simulation results displayed in WLAN_80211a_TxEVM.dds are shown in Figure 3-18 for EVM and relative constellation error of 54 Mbps. The EVM is less than 0.6%; the constellation error is approximately -45dB which is much smaller than the specification requirements given in Table 3-3.

Table 3-3. Allowed EVM and Relative Constellation Error

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Relative Constellation Error (dB)</th>
<th>EVM (% RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>-22</td>
<td>7.9</td>
</tr>
<tr>
<td>54</td>
<td>-25</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Figure 3-18. EVM and Relative Constellation Error of 54 Mbps

Benchmark

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 30 minutes

References

Chapter 4: 80211a Receiver

Introduction

WLAN_80211a_Rx_prj project for IEEE 802.11a receiver test and verification design examples are described in this chapter.

- WLAN_80211a_RxSensitivity_6Mbps.dsn minimum receiver sensitivity measurement of data rate 6 Mbps.
- WLAN_80211a_RxSensitivity_24Mbps.dsn minimum receiver sensitivity measurement of data rate 24 Mbps.
- WLAN_80211a_RxSensitivity_54Mbps.dsn minimum receiver sensitivity measurement of data rate 54 Mbps.
- WLAN_80211a_RxAdjCh_9Mbps.dsn adjacent channel rejection measurement of data rate 9 Mbps.
- WLAN_80211a_RxAdjCh_18Mbps.dsn adjacent channel rejection measurement of data rate 18 Mbps.
- WLAN_80211a_RxAdjCh_36Mbps.dsn adjacent channel rejection measurement of data rate 36 Mbps.
- WLAN_80211a_RxNonAdjCh_12Mbps.dsn non-adjacent channel rejection measurement of data rate 12 Mbps.
- WLAN_80211a_RxNonAdjCh_48Mbps.dsn non-adjacent channel rejection measurement of data rate 48 Mbps.

Specification requirements

Receiver performance requirements are listed in Table 4-1.

Table 4-1. Receiver Requirements

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Minimum Sensitivity (dBm)</th>
<th>Adjacent Channel Rejection (dB)</th>
<th>Alternate Adjacent Channel Rejection (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-82</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>-81</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>-79</td>
<td>13</td>
<td>29</td>
</tr>
</tbody>
</table>
### Table 4-1. Receiver Requirements (continued)

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Minimum Sensitivity (dBm)</th>
<th>Adjacent Channel Rejection (dB)</th>
<th>Alternate Adjacent Channel Rejection (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>-77</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>24</td>
<td>-74</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>36</td>
<td>-70</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>48</td>
<td>-66</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>54</td>
<td>-65</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Receiver Minimum Input Level Sensitivity Measurement at 6 Mbps

WLAN_80211a_RxSensitivity_6Mbps.dsn

Features

- BPSK mapping
- Coding rate is 1/2
- Data rate is 6 Mbps
- NF is 10 dB

Description

This design is an example of WLAN receiver minimum input level sensitivity measurement at a data rate of 6 Mbps. According to specification [1] 17.3.10.1, the packet error rate (PER) must be less than 10% at a PSDU length of 1000 bytes and rate-dependent input levels (or less) according Table 91. The minimum input levels are measured at the antenna connector (NF of 10 dB and 5 dB implementation margins are assumed). For data rate of 6 Mbps, the value is -82 dBm.

The schematic for this design is shown in Figure 4-1. Parameters that can be changed by users are contained in Signal_Generation_VARS, RF_Channel_VARS, and Measurement_VARS.
**Simulation Results**

Simulation results displayed in WLAN_80211a_RxSensitivity.dds are shown in Figure 4-2. BER and PER at given input levels are simulated.

<table>
<thead>
<tr>
<th>Index</th>
<th>BER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

**Benchmark**

- Hardware platform: Pentium II 400 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 8 hours

**References**

Receiver Minimum Input Level Sensitivity Measurement at 24 Mbps

WLAN_80211a_RxSensitivity_24Mbps.dsn

Features

• 16-QAM mapping
• Coding rate is 1/2
• Data rate is 24 Mbps
• NF is 10 dB

Description

This design is an example of WLAN receiver minimum input level sensitivity measurement at a data rate of 24 Mbps.

According to specification [1] 17.3.10.1: the packet error rate (PER) must be less than 10% at a PSDU length of 1000 bytes; for rate-dependent input, levels must be according to Table 91 (or less). The minimum input levels are measured at the antenna connector (NF of 10 dB and 5 dB implementation margins are assumed). For data rate of 24 Mbps, the value is -74 dBm.

The RF signal is generated in two stages: first, to modulate a baseband signal to IF; second, to up-convert an IF signal to an RF signal. The first stage is implemented by subnetwork WLAN_80211a_RF. RF_Tx_Ifin is used to upconvert the IF signal to an RF signal. In the receiver, the RF signal is downconverted to IF frequency; then, an IF signal is demodulated in WLAN_80211a_RF_RxFSync.

The schematic for this design is shown in Figure 4-3.
In the schematic, Signal_Generation_VARS defines key transmitter variables, and RF_Channel_VARS defines key variables for up- and down-conversion.

Rate, Length, Order and Idle are used to define a baseband burst. Users can change Rate from 0 to 8 to perform sensitivity tests for 6, 9, 12, 18, 24, 27, 36, 48, and 54 Mbps data rates, respectively. SignalPower determines the transmitted power for an IF transmitter. VRef is the reference voltage for output power calibration. IF_BW is set to 20MHz for 802.11a systems.

There are seven key variables: IF_FREQ1, IF_FREQ2, RF_FREQ, RF_BW, Tx_GAIN and Prx in RF_Channel_VARS. IF_FREQ1 and IF_FREQ2 are two IF frequency. RF_FREQ means center frequency of IEEE 802.11a system in simulation system. RF_BW is set to 20MHz for 802.11a systems. Prx denotes 802.11a receiver power.

Power=10*Log10(SignalPower-Tx_GAIN) in the WLAN_80211a_RF signal source component and TX_GAIN=Tx_GAIN in the RF_TX_IFin component. So, the total transmitted power is the Signal_Generation_VARS SignalPower setting after up-conversion. Table 89 in the specification defines the maximum allowable output power for different frequency bands:

- SignalPower=16 dBm (40 mW) if RF_FREQ is 5.15-5.25GHz
- SignalPower=23 dBm (200 mW) if RF_FREQ is 5.25-5.35GHz
- SignalPower=29 dBm (800 mW) if RF_FREQ is 5.725-5.825GHz.

Users can set SignalPower and RF_FREQ as needed.
The GainRF attenuator subnetwork's Gain parameter is set as $\text{dbpolar(Prx-SignalPower,0)}$. After GainRF, the power of 802.11a is $\text{Prx-SignalPower+Tx_Gain+SignalPower-Tx_Gain}=\text{Prx}$. In the specification, NF of 10 and 5 dB implementation margins are assumed. So, $\text{Rx_NF}=10$ in $\text{RF_RX_IFout}$.

The $\text{RF_RX_IFout}$ subnetwork's $\text{RX_AntTemp}$ is the receiving antenna noise temperature (in Kelvin). $\text{RX_AntTemp}=20+273.15$ means the test is performed in an office environment; users can change the temperature setting. Moreover, $\text{RX_Gain}$ in $\text{RF_RX_IFout}$ varies with the Order parameter and the relation is described by equation $82-6*(\text{Order}-6)$.

Table 4-2 lists minimum sensitivity performance according to data rate in the 802.11a specification. Users can sweep Prx, run the design and observe the PER. If the Prx is less than the value in Table 4-2 when PER is less than 10%, the sensitivity measurement passes.

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Minimum Sensitivity (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-82</td>
</tr>
<tr>
<td>9</td>
<td>-81</td>
</tr>
<tr>
<td>12</td>
<td>-79</td>
</tr>
<tr>
<td>18</td>
<td>-77</td>
</tr>
<tr>
<td>24</td>
<td>-74</td>
</tr>
<tr>
<td>36</td>
<td>-70</td>
</tr>
<tr>
<td>48</td>
<td>-66</td>
</tr>
<tr>
<td>54</td>
<td>-65</td>
</tr>
</tbody>
</table>

**Simulation Results**

Simulation results displayed in WLAN_80211a_RxSensitivity.dds are shown in Figure 4-4. BER and PER at different input levels are simulated.

<table>
<thead>
<tr>
<th>Index</th>
<th>BER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

**Benchmark**

- Hardware platform: Pentium II 400 MHz, 512 MB memory
80211a Receiver

- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 3 hours

References

Receiver Minimum Input Level Sensitivity Measurement at 54 Mbps

WLAN_80211a_RxSensitivity_54Mbps.dsn

Features

- 64-QAM mapping
- Coding rate is 3/4
- Data rate is 54 Mbps
- NF is 10 dB

Description

This design is an example of WLAN receiver minimum input level sensitivity measurement at data rate of 54 Mbps. According to specification [1] 17.3.10.1, the packet error rate (PER) shall be less than 10% at a PSDU length of 1000 bytes for rate-dependent input levels shall be the numbers listed in Table 91 or less. The minimum input levels are measured at the antenna connector (NF of 10 dB and 5 dB implementation margins are assumed). For data rate of 54 Mbps, the value is -65 dBm.

The schematic for this design is shown in Figure 4-5. Parameters that can be changed by users are contained in Signal_Generation_VARs, RF_Channel_VARs, and Measurement_VARs.
Simulation Results

Simulation results displayed in WLAN_80211a_RxSensitivity.dds are shown in Figure 4-6. BER and PER at different input levels are simulated.

<table>
<thead>
<tr>
<th>Index</th>
<th>BER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure 4-6. WLAN_80211a_RxSensitivity.dds

Benchmark

- Hardware platform: Pentium II 400 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 2 hours

References

Adjacent Channel Rejection Measurement at 9 Mbps

- WLAN_80211a_RxAdjCh_9Mbps.dsn

Features
- PSDU length of 1000 bytes
- NF set to 10 dB (upper limit of implementation margins assumed in specification)
- 200 frames simulated to test PER
- Data rate of interfering signal is 24 Mbps with PSDU length of 256 and 20 MHz apart from the desired signal

Description
The adjacent channel rejection shall be measured by setting the desired signal’s strength 3 dB above the rate-dependent sensitivity as specified in Table 91 of IEEE Standard. 802.11a-1999 and raising the power of the interfering signal until the 10% packet error rate (PER) is caused for a PSDU length of 1000 bytes. The power difference between the interfering and the desired channel is the corresponding adjacent channel rejection. The interfering signal in the adjacent channel shall be a conforming OFDM PHY signal, unsynchronized with the signal in the channel under test. For a conforming OFDM PHY the corresponding rejection shall be no less than specified in Table 91 of IEEE Standard. 802.11a-1999.

In this design, the adjacent channel rejection of data rate 9 Mbps is measured; the power of interfering signal is raised to the rate-dependent adjacent channel rejection 15 dB as specified in Table 91 of IEEE Standard. 802.11a-1999, then a PER less than 10% shall be achieved.

The top-level schematic for this design is shown in Figure 4-7.
Simulation Results

Simulation results are shown in Figure 4-8.
The simulation results show that when the adjacent channel rejection value (ACR) is set to 15 dB according to Table 4-1, the PER is 0.000 which is much lower than 10%, so this system is consistent with the requirements of adjacent channel rejection of the IEEE Standard. 802.11a-1999.

Benchmark

- Hardware platform: Pentium III 800 MHz, 512 Mb memory
- Software platform: Windows NT, ADS 2002
- Simulation time: approximately 7 hours

References

Adjacent Channel Rejection Measurement at 18 Mbps

- WLAN_80211a_RxAdjCh_18Mbps.dsn

Features

- PSDU length of 1000 bytes
- NF is set to 10 dB (the upper limit of implementation margins as assumed in specification)
- 200 frames simulated to test PER
- Data rate of interfering signal is 24 Mbps with PSDU length of 256 and 20 MHz apart from desired signal

Description

The adjacent channel rejection shall be measured by setting the desired signal's strength 3dB above the rate-dependent sensitivity as specified in Table 91 of IEEE Standard. 802.11a-1999 and raising the power of the interfering signal until the 10% packet error rate (PER) is caused for a PSDU length of 1000 bytes. The power difference between the interfering and the desired channel is the corresponding adjacent channel rejection. The interfering signal in the adjacent channel shall be a conforming OFDM PHY signal, unsynchronized with the signal in the channel under test. For a conforming OFDM PHY the corresponding rejection shall be no less than specified in Table 91 of IEEE Standard. 802.11a-1999.

In this design, the adjacent channel rejection of data rate 18 Mbps is measured; The power of interfering signal is raised to the rate-dependent adjacent channel rejection 11dB as specified in Table 91 of IEEE Standard. 802.11a-1999, then a PER less than 10% shall be achieved.

The top-level schematic for this design is shown in Figure 4-9.
Simulation Results

Simulation results are shown in Figure 4-10.
The simulation results show that when the adjacent channel rejection value (ACR) is set to 11 dB according to Table 4-1, the PER is 0.000 which is much lower than 10%, so this system is consistent with the requirements of adjacent channel rejection of the IEEE Standard 802.11a-1999.

**Benchmark**

- Hardware platform: Pentium III 800 MHz, 512 Mb memory
- Software platform: Windows NT, ADS 2002
- Simulation time: approximately 3 hours

**References**

Adjacent Channel Rejection Measurement at 36 Mbps

- WLAN_80211a_RxAdjCh_36Mbps.dsn

Features

- PSDU length of 1000 bytes
- NF is set to 10 dB (upper limit of implementation margins assumed in specification)
- 200 frames simulated to test PER
- Data rate of interfering signal is 24 Mbps with PSDU length of 256 and 20 MHz apart from desired signal

Description

The adjacent channel rejection shall be measured by setting the desired signal’s strength 3dB above the rate-dependent sensitivity as specified in Table 91 of IEEE Standard. 802.11a-1999 and raising the power of the interfering signal until the 10% packet error rate (PER) is caused for a PSDU length of 1000 bytes. The power difference between the interfering and the desired channel is the corresponding adjacent channel rejection. The interfering signal in the adjacent channel must be a conforming OFDM PHY signal, unsynchronized with the signal in the channel under test. For a conforming OFDM PHY the corresponding rejection cannot be less than specified in Table 91 of IEEE Standard. 802.11a-1999.

In this design, the adjacent channel rejection of data rate 36 Mbps is measured. The power of interfering signal is raised to the rate-dependent adjacent channel rejection 4 dB as specified in Table 91 of IEEE Standard. 802.11a-1999, then a PER less than 10% shall be achieved.

The top-level schematic for this design is shown in Figure 4-11.
80211a Receiver

Simulation Results
Simulation results are shown in Figure 4-12.
The simulation results show that when the adjacent channel rejection value (ACR) is set to 4 dB according to Table 4-1, the PER is 0.000 which is much lower than 10%, so this system is consistent with the requirements of adjacent channel rejection of the IEEE Standard 802.11a-1999.

**Benchmark**

- Hardware platform: Pentium III 800 MHz, 512 Mb memory
- Software platform: Windows NT, ADS 2002
- Simulation time: approximately 3 hours

**References**

Non-Adjacent Channel Rejection Measurement at 12 Mbps

WLAN_80211a_RxNonAdjCh_12Mbps.dsn

Features

- PSDU length of 1000 bytes
- NF is set to 10 dB (upper limit of implementation margins as assumed in specification)
- 200 frames simulated to test PER
- Data rate of interfering signal is 54 Mbps with PSDU length of 100 and 40 MHz from desired signal

Description

The non-adjacent channel rejection shall be measured by setting the desired signal’s strength 3 dB above the rate-dependent sensitivity as specified in Table 91 of IEEE Standard. 802.11a-1999 and raising the power of the interfering signal until the 10% packet error rate (PER) is caused for a PSDU length of 1000 bytes. The power difference between the interfering and the desired channel is the corresponding non-adjacent channel rejection. The interfering signal in the non-adjacent channel shall be a conforming OFDM PHY signal, unsynchronized with the signal in the channel under test. For a conforming OFDM PHY the corresponding rejection shall be no less than specified in Table 91 of IEEE Standard. 802.11a-1999.

In this design, the non-adjacent channel rejection of data rate 12 Mbps is measured; the power of interfering signal is raised to the rate-dependent adjacent channel rejection 29 dB as specified in Table 91 of IEEE Standard. 802.11a-1999, then a PER less than 10% shall be achieved.

The top-level schematic for this design is shown in Figure 4-13.
Simulation Results

Simulation results are shown in Figure 4-14.
The simulation results show that when the non-adjacent channel rejection value (NACR) is set to 29 dB according to Table 4-1, the PER is 0.000 which is much lower than 10%, so this system is consistent with the requirements of non-adjacent channel rejection of the IEEE Standard 802.11a-1999.

**Benchmark**

- Hardware platform: Pentium III 450 MHz, 512 Mb memory
- Software platform: Windows NT 4.0, ADS 2002
- Simulation time: approximately 13 hours

**References**

Non-Adjacent Channel Rejection Measurement at 48 Mbps

- WLAN_80211a_RxNonAdjch_48Mbps.dsn

Features

- PSDU length of 1000 bytes
- NF is set to 10 dB (upper limit of implementation margins as assumed in specification)
- 200 frames simulated to test PER
- Data rate of interfering signal is 12 Mbps with PSDU length of 300 and 40 MHz from desired signal

Description

The non-adjacent channel rejection must be measured by setting the desired signal strength 3dB above the rate-dependent sensitivity as specified in IEEE Standard 802.11a-1999, Table 91, and raising the power of the interfering signal until the 10% packet error rate (PER) is caused for a PSDU length of 1000 bytes. The power difference between the interfering and the desired channel is the corresponding non-adjacent channel rejection.

The interfering signal in the non-adjacent channel must be a conforming OFDM PHY signal, unsynchronized with the signal in the channel under test. For a conforming OFDM PHY the corresponding rejection must not be less than specified in IEEE Standard 802.11a-1999, Table 91.

In this design, the non-adjacent channel rejection of data rate 48 Mbps is measured. Power of the interfering signal is raised to the rate-dependent adjacent channel rejection 16 dB as specified in IEEE Standard 802.11a-1999, Table 91, to achieve a PER less than 10%.

The top-level schematic for this design is shown in Figure 4-15.
80211a Receiver

Simulation Results

Simulation results are shown in Figure 4-16.
Simulation results show that when the non-adjacent channel rejection value (NACR) is set to 16 dB according to Table 4-1, the PER is 0.000 which is much lower than 10%; this system is consistent with the requirements of non-adjacent channel rejection of IEEE Standard 802.11a-1999.

**Benchmark**

- Hardware platform: Pentium III 450 MHz, 512 Mb memory
- Software platform: Windows NT 4.0, ADS 2002
- Simulation time: approximately 4 hours

**References**

802.11a Receiver

4-26  Non-Adjacent Channel Rejection Measurement at 48 Mbps
Chapter 5: 80211a EVM on Fading Channel and Turbo Mode

Introduction

WLAN_80211a_Turbo_prj design examples are described in this chapter.

- WLAN_80211a_GI.dsn: measures the error vector magnitude under different guard intervals on fading channel.

- WLAN_80211a_Turbo_TxEVM.dsn: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy of IEEE 802.11a Turbo mode.
Error Vector Magnitude Measurement on Fading channel

WLAN_80211a_GI.dsn

Features

- IEEE 802.11a configurable signal source, adjustable data rate by setting Rate in Signal_Generation_VARs
- Variable guard interval by setting GI in Signal_Generation_VARs
- Variable frequency offset by setting FreqOffset in Signal_Generation_VARs
- Adjustable sample rate by setting Order in Signal_Generation_VARs
- Fading channel (WLAN_ChannelModel parameter settings)
- Constellation display
- Integrated RF section

Description

This design tests transmit modulation accuracy by measuring the EVM under fading channel with different guard intervals. Guard interval is swept from 0.4 to 3.2 μsec with 0.4 msec step. The simulation fading channel is a 2-path channel (average relative powers are 0 and -5dB, the corresponding delays are 0 and 1.0 μsec).

The schematic for this design is shown in Figure 5-1.

Order is set to 7 in Signal_Generation_VARs, GI is swept from 16 to 128 (guard interval time is from 16 × 25 nsec=0.4 μsec to 2 μsec). The delay spread is set to 1.0 μsec in this design.
Simulation Results

Simulation results displayed in WLAN_80211a_GI.dds are shown here. Figure 5-2 shows the EVM at different guard intervals; the EVM becomes smaller as the guard interval becomes larger.

Figure 5-3 illustrates the demodulated constellation when the guard interval is 0.8 $\mu$sec (GI=32). The 64-QAM cannot be distinguished from the demodulated constellation because the guard interval time (0.8 $\mu$sec) is too small to overcome the effect of the delay spread (1.0 $\mu$sec).

Figure 5-4 illustrates the demodulated constellation when the guard interval is 1.6 $\mu$sec (GI=64). The 64-QAM can be distinguished from the demodulated constellation.
5-4 Error Vector Magnitude Measurement on Fading channel
Benchmark

- Hardware platform: Pentium IV 1.8 GHz, 512 MB memory
- Software platform: Windows XP, ADS 2002
- Simulation time: approximately 45 minutes

References

Error Vector Magnitude Measurement for Turbo Mode

WLAN_80211a_TxEVM_Turbo.dsn

Features

- IEEE 802.11a configurable signal source, adjustable data rate (Rate parameter in Signal_Generation_VARs)
- Adjustable sample rate (Order parameter in Signal_Generation_VARs)
- Integrated RF section

Description

This design tests IEEE 802.11a Turbo mode transmit modulation accuracy and transmitter constellation error by measuring the EVM. The spectrum bandwidth of turbo mode is 40 MHz; the OFDM symbol interval is 2 µsec.

The Turbo mode OFDM burst is transmitted with a symbol rate of 40 Mbaud in a 40 MHz channel allocation. Table 5-1 lists other parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate $f_s = 1/ T$</td>
<td>40 MHz</td>
</tr>
<tr>
<td>Useful prefix part duration $T_U$</td>
<td>$64 \times T$</td>
</tr>
<tr>
<td>Cyclic prefix duration $T_CP$</td>
<td>$16 \times T$</td>
</tr>
<tr>
<td>Symbol interval $T_S$</td>
<td>$80 \times T$</td>
</tr>
<tr>
<td></td>
<td>$2.0 , \mu$sec ($T_CP + T_U$)</td>
</tr>
<tr>
<td>Number of data sub-carriers $N_{SD}$</td>
<td>48</td>
</tr>
<tr>
<td>Number of pilot sub-carriers $N_{SP}$</td>
<td>4</td>
</tr>
<tr>
<td>Total number of sub-carriers $N_{ST}$</td>
<td>$52 (N_{SD} + N_{SP})$</td>
</tr>
<tr>
<td>Sub-carrier spacing $\Delta f$</td>
<td>$0.625 , \text{MHz} (1/ T_U)$</td>
</tr>
<tr>
<td>Spacing between the two outmost sub-carriers</td>
<td>$32.5 , \text{MHz} (N_{ST} \times \Delta f)$</td>
</tr>
</tbody>
</table>
The schematic for this design is shown in Figure 5-5.

![Schematic Diagram](image)

Figure 5-5. WLAN_80211a_TxEVM_Turbo.dsn Schematic

The SymbolRate setting must be $40 \times 2^{\text{Order-6}}$ in the User_Defined_Variables for 802.11a Turbo mode. Though the data rates are 6, 9, 12, 18, 24, 27, 36, 48, and 54 Mbps in the WLAN_80211aSignalSrc, the actual data rates are 12, 18, 24, 36, 48, 54, 72, 96, and 108 Mbps because of the IEEE 802.11a Turbo mode.

**Simulation Results**

Simulation results displayed in WLAN_80211a_TxEVM_Turbo.dds.

**Figure 5-6** is for EVM and relative constellation error of 108 Mbps. The EVM is less than 0.6%; the constellation error is approximately -45 dB.
5-8 Error Vector Magnitude Measurement for Turbo Mode

80211a EVM on Fading Channel and Turbo Mode

<table>
<thead>
<tr>
<th>Index</th>
<th>EVM</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.54229384</td>
<td>.45.31530665</td>
</tr>
<tr>
<td>31</td>
<td>0.54163025</td>
<td>.45.32594171</td>
</tr>
<tr>
<td>32</td>
<td>0.54170280</td>
<td>.45.32477633</td>
</tr>
<tr>
<td>33</td>
<td>0.54063653</td>
<td>.45.34169234</td>
</tr>
<tr>
<td>34</td>
<td>0.53943045</td>
<td>.45.37740767</td>
</tr>
<tr>
<td>35</td>
<td>0.53909226</td>
<td>.45.36689962</td>
</tr>
<tr>
<td>36</td>
<td>0.54192803</td>
<td>.45.32116772</td>
</tr>
<tr>
<td>37</td>
<td>0.54099260</td>
<td>.45.33618303</td>
</tr>
<tr>
<td>38</td>
<td>0.54163490</td>
<td>.45.32490504</td>
</tr>
<tr>
<td>39</td>
<td>0.53849973</td>
<td>.45.37774205</td>
</tr>
<tr>
<td>40</td>
<td>0.54158501</td>
<td>.45.32666726</td>
</tr>
<tr>
<td>41</td>
<td>0.54061397</td>
<td>.45.34226968</td>
</tr>
<tr>
<td>42</td>
<td>0.54031397</td>
<td>.45.34707613</td>
</tr>
<tr>
<td>43</td>
<td>0.54252720</td>
<td>.45.31156571</td>
</tr>
<tr>
<td>44</td>
<td>0.54423528</td>
<td>.45.28426610</td>
</tr>
<tr>
<td>45</td>
<td>0.54110168</td>
<td>.46.39442323</td>
</tr>
</tbody>
</table>

Figure 5-6. EVM and Relative Constellation Error for 108 Mbps

Benchmark

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 4 minutes

References

Chapter 6: 80211a BER/PER Performance

Introduction

WLAN_80211a_PER_prj design examples are described in this chapter.

- WLAN_80211a_24Mbps_AWGN_System.dsn: BER and PER performance for 24 Mbps systems under AWGN channel.
- WLAN_80211a_24Mbps_PN_System.dsn: BER and PER performance for 24 Mbps systems under phase noise distortion.
- WLAN_80211a_24Mbps_Fading_System.dsn: BER and PER performance for 24 Mbps systems under fading channel.
- WLAN_80211a_36Mbps_AWGN_Perfect.dsn: BER performance for 16-QAM modulation with perfect channel estimator under AWGN channel.
- WLAN_80211a_36Mbps_AWGN_System.dsn: BER and PER performance for 36 Mbps systems under AWGN channel.
- WLAN_80211a_36Mbps_Fading_System.dsn: BER and PER performance for 36 Mbps systems under fading channel.
- WLAN_80211a_48Mbps_AWGN_Perfect.dsn: BER performance for 64-QAM modulation with perfect channel estimator under AWGN channel.

When baseband simulation is performed, the signal power per bit can be calculated:

\[
E_b = \frac{P_s \times T_{FFT}}{N_{DBPS}} = \frac{P_s \times \frac{FFTSize}{FFTSize + Guard} \times T_{SYM}}{N_{DBPS}}
\]

where \(P_s\) = received signal power, \(T_{FFT}\) = IFFT/FFT period (3.2 \(\mu\)sec in IEEE802.11a), \(T_{SYM}\) = one OFDM symbol interval (4.0 \(\mu\)sec in IEEE802.11a), \(N_{DBPS}\) = number of data bits per OFDM symbol (refer to Table 78 in IEEE802.11a specification). The relation between \(N_{DBPS}\) and \(T_{SYM}\) is

\[
R_b = \frac{N_{DBPS}}{T_{SYM}}
\]

where \(R_b\) = data rate.
80211a BER/PER Performance

$E_b$ can be calculated:

$$E_b = P_s \times \frac{\text{FFTSize}}{\text{FFTSize} + \text{Guard}}\times \frac{1}{R_b}$$

The noise power per bit can be calculated:

$$N_0 = \frac{2 \times \sigma^2}{f_s} = 2 \times \sigma^2 \times T_s$$

where $T_s$ is the sample rate.

So, $E_b/N_0$ can be calculated:

$$E_b/N_0 = \frac{P_s \times \frac{\text{FFTSize}}{\text{FFTSize} + \text{Guard}}\times \frac{1}{R_b}}{2 \times \sigma^2 \times T_s}$$

And noise variance $\sigma^2$ is

$$\sigma^2 = \frac{P_s \times \frac{\text{FFTSize}}{\text{FFTSize} + \text{Guard}}\times \frac{1}{R_b}}{2 \times T_s \times E_b / N_0}$$

When RF simulation is performed, noise density is modeled using the AddNDensity component. According to the defining equation for parameter NDensity:

$$\text{NDensity} = 2 \times T_s \times \sigma^2$$

So, in WLAN_80211aPER_prj, NDensity can be calculated:

$$\text{NDensity}((\text{dBm})/(\text{Hz})) = \text{SignalPower}((\text{dBm}) + 10 \times \log\left(\frac{\text{FFTSize}}{\text{FFTSize} + \text{Guard}}\right) - 10 \times \log(R_b) - (E_b / N_0)(\text{dB})$$
BER and PER Performance, AWGN Channel 24 Mbps

WLAN_80211a_24Mbps_AWGN_System.dsn

Features

• Data rate = 24Mbps, coding rate = 1/2, modulation = 16-QAM
• Carrier frequency offset between transmitter and receiver is 100 kHz
• BER and PER vs. $E_b/N_0$ under AWGN channel curves displayed

Description

This design shows system performance with 24 Mbps data rate and channel coding under AWGN. A burst length of 1000 bytes is simulated.

The top-level schematic is shown in Figure 6-1. This design contains four subnetworks named SignalSource, Noise, Receiver, and BERPER.

SignalSource parameters are contained in Signal_Generation_VARs; Noise, Receiver, and BERPER parameters are contained in RF_Channel_Measurement_VARs.

The SignalSource subnetwork, Figure 6-2, generates an IEEE 802.11a signal source based on user settings.

The Receiver subnetwork, Figure 6-3, receives an IEEE 802.11a RF signal and demodulates the signal as bits stream; it also detects the start of frame and the transition from short sequences to channel estimation sequences, estimates complex channel response coefficients for each subcarrier, transforms the symbol into subcarrier received values; it performs phase estimation from the pilot subcarrier, subcarrier derotation according to the estimated phase, and division of each subcarrier value with a complex estimated channel response coefficient.

The BERPER subnetwork, Figure 6-4, measures system BER and PER.
Schematics

Figure 6-1. WLAN_80211a_24Mbps_AWGN_System.dsn Schematic

Figure 6-2. WLAN_80211a_RF Schematic

6-4 BER and PER Performance, AWGN Channel 24 Mbps
Figure 6-3. WLAN_80211a_RF_RxSync.dsn Schematic

Figure 6-4. WLAN_80211a_BERPER Schematic
Simulation Results

Simulation results displayed in WLAN_80211a_24Mbp_AWGN_System.dds are shown in Figure 6-5.

For PER performance, it shows that WLAN_80211a_24Mbp_AWGN_System.dsn is approximately 0.5 dB better than that of Richard van Nee's text book (page 251 in [2]).

Reference data points are shown in page Equations.

Figure 6-5. WLAN_80211a_24Mbp_AWGN_System Simulation Results
Benchmark

- Hardware platform: Pentium IV, 1.8 GHz, 512 MB memory
- Software platform: Windows XP, ADS 2002
- Data points: $E_b/N_0$ values is set from 4 to 15 dB
- Simulation time: 10 hours

References


BER and PER Performance, Phase Noise Distortion 24 Mbps

Features
- Data rate = 24Mbps, coding rate = 1/2, modulation = 16-QAM
- Phase noise distortion was added in the transmitter by the N_Tones model
- BER and PER vs. Eb/N0 under phase noise distortion curves displayed

Description
This design demonstrates system performance with 24 Mbps data rate and channel coding under phase noise distortion. A burst length of 128 bytes is simulated.

The power density spectrum of an oscillator signal with phase noise is modeled by a Lorentzian spectrum. The single-sided spectrum \( S_S(f) \) is given by

\[
S_S(f) = \frac{2/\pi f_1}{1 + f^2/f_1^2}
\]

Figure 6-6 illustrates a Lorentzian phase noise spectrum with a single-sided -3 dB line width of the oscillator signal. The slope per decade is -20 dB.

---

Figure 6-6. Phase Noise Power Spectral Density (PSD)
In this phase noise distortion test, two cases of phase noise are used to measure PER/BER. The -3 dB line width of phase noise 1 is 30.0 Hz (=0.01% of subcarrier space of IEEE 802.11a); the -3 dB line width of phase noise 2 is 3.0 Hz (=0.001% of subcarrier space of IEEE 802.11a). And, an Ideal test case (no phase noise) is used as a reference.

The schematic for this design is shown in Figure 6-7.

Figure 6-7. WLAN_80211a_24Mbps_PN_System.dsn Schematic

N_Tones is used to model the phase noise. Figure 6-8 shows the N_Tones parameters and phase noise test cases of the oscillator used in this design. A variable AA is used to control the case of phase noise.

- AA = 0, Ideal (no phase noise)
- AA = 1, phase noise case 1
- AA = 2, phase noise case 2

The phase noise of N_Tones is implemented based on the Lorentzian spectrum and is characterized by -3dB line width.
802.11a BER/PER Performance

Ideal, phase noise 1, and phase noise 2 results are shown in Figure 6-9, Figure 6-10, and Figure 6-11.

Figure 6-9. Spectrum of Ideal Case
Simulation Results

Simulation results displayed in WLAN_80211a_24Mbps_PN_System.dds are shown in Figure 6-12 for BER and PER.

The BER performance of 3Hz -3dB line width is almost the same as that of no phase noise case (Ideal); the BER performance of 30 Hz -3dB line width is much poorer than those of 3Hz -3dB line width and no phase noise case.

The PER performance of 3Hz -3dB line width is a little gain lose than that of no phase noise case (Ideal); the PER performance of 30 Hz -3dB line width is much poorer than those of 3Hz -3dB line width and no phase noise case. In fact, frequency synchronization, phase tracking, and channel estimation functions, and so on, in the IEEE 802.11a receiver will cause phase noise. The phase noise of 3Hz -3dB line width is not very serious. So, its BER and PER performances are almost the same as those of Ideal case because the receiver will cause phase noise which is reasonable. For 30Hz -3dB line width, it causes serious phase noise; BER and PER performances are very poor.
802.11a BER/PER Performance

Figure 6-12. BER and PER Results for 3 Test Cases

Benchmark

- Hardware platform: Pentium III, 1.8 GHz, 512 MB memory
- Software platform: Windows XP, ADS 2002
- Data points: $E_b/N_0$ values is set from 4 to 14 dB
- Simulation time: 33 hours for phase noise 1 and phase noise 2; 20 minutes for no phase noise

References


BER and PER Performance, Fading Channel 24 Mbps

WLAN_80211a_24Mbps_Fading_System.dsn

Features

- Data rate = 24Mbps, coding rate = 1/2, modulation = 16-QAM, velocity = 0 km/hr
- Length and Order parameter default settings = 512 and 7, respectively
- BER and PER vs. $E_b/N_0$ under fading channel curves displayed

Description

This design shows system performance with 24 Mbps data rate and channel coding under fading channel. A burst length of 512 bytes is simulated.

The top-level schematic for this design is shown in Figure 6-13.

SignalSource parameters are contained in Signal_Generation_VARs; Receiver, and BERPER parameters are contained in RF_Channel_Measurement_VARs.

Figure 6-13. WLAN_80211a_24Mbps_Fading_System.dsn Schematic
According to reference 2, five model types have been designed. Model A, an 18-tap fading channel corresponding to a typical office environment for NLOS conditions and 50ns average rms delay spread, is selected in this example. In order to reduce the number of taps needed, the time spacing is non-uniform; for shorter delays, a more dense spacing is used. The average power declines exponentially with time. For model A all taps have Rayleigh statistics. The characteristics of this model are shown in Table 6-1.

Table 6-1. Model A Characteristics.

<table>
<thead>
<tr>
<th>Tap Number</th>
<th>Delay (ns)</th>
<th>Average Relative Power (dB)</th>
<th>Ricean K</th>
<th>Doppler Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>-0.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-1.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>-2.6</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>-3.5</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>-4.3</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>-5.2</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>-6.1</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>-6.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>-7.8</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>-4.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>12</td>
<td>140</td>
<td>-7.3</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>13</td>
<td>170</td>
<td>-9.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>-12.5</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>15</td>
<td>240</td>
<td>-13.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>16</td>
<td>290</td>
<td>-18.0</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>17</td>
<td>340</td>
<td>-22.4</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>18</td>
<td>390</td>
<td>-26.7</td>
<td>0</td>
<td>Class</td>
</tr>
</tbody>
</table>
Simulation Results

Simulation results displayed in WLAN_80211a_24Mbps_Fading_System.dds are shown in Figure 6-14 and Figure 6-15.

For PER performance, it shows that WLAN_80211a_24Mbps_Fading_System.dsn is approximately 2 dB better than that of WLAN_80211a_36Mbps_Fading_System.dsn.
Benchmark

- Hardware platform: Pentium III, 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0, ADS 2002
- Data points: $E_b/N_0$ values is set from 10 to 15 dB
- Simulation time: 50 hours

References


BER Performance, AWGN Channel 16-QAM Modulation

- WLAN_80211a_36Mbps_AWGN_Perfect.dsn

Features
- Raw data rate = 48Mbps, modulation = 16-QAM
- Length and Order parameter default settings = 128 and 6, respectively
- Gaussian simulation channels
- Without channel coding and interleaving
- BER curve displayed

Description
This design shows raw BER performance under AWGN channel with perfect channel estimator. In this design, the data rate is 36 Mbps; the raw data rate is 48 Mbps because there is no channel coding. The guard interval ratio is 1/4 and modulation mode is 16-QAM. The number of frames is set according to Eb/No.

Schematic
The top-level schematic for this design is shown in Figure 6-16.

The SignalSource subnetwork, Figure 6-17, multiplexes short and long preambles, one signal symbol and data OFDM symbols into a burst frame.

The sub_WLAN_Rx_RF_AWGN_Perfect.dsn subnetwork, Figure 6-18, performs the start of frame and the transition from short to channel estimation sequences detections, establishment of fine timing (with one sample resolution), and division of each subcarrier value with an ideal channel response coefficient.

The BERPER subnetwork, Figure 6-19, measures system BER and PER.
80211a BER/PER Performance

Figure 6-16. WLAN_80211a_36Mbps_AWGN_Perfect Schematic

Figure 6-17. WLAN_80211a_RF Schematic

6-18 BER Performance, AWGN Channel 16-QAM Modulation
BER Performance, AWGN Channel 16-QAM Modulation

**Figure 6-18. sub_WLAN_Rx_RF_AWGN_Perfect Schematic**

**Figure 6-19. WLAN_80211a_BERPER Schematic**

**Notes**
Order can be set to 6, 7 or 8 in Signal_Generation_VARs.
Simulation Results

Figure 6-20 shows Gaussian channel BER of different $E_b/N_0$.

The red curve, which represents the symbol error rate from Figure 5-2-16 [2], is converted using a dividing factor of 4 into the bit error rate of this design; for 16-QAM modulation, $n_b=4$. The blue curve shows the BER of this design. The difference in the two curves is less than 0.2 dB. The WLAN Design Library simulation result is consistent with the theoretical result.

To convert symbol error rate into bit error rate, $p_s$ is the probability of a symbol error, $p_b$ is the probability of a bit error. The relation between $p_s$ and $p_b$ is

$$p_s = 1 - (1 - p_b)^{n_b}$$
where $n_b =$ number of bits per symbol. Assuming the modulation signal is Gray coded, $p_b << 1$,
then,

$$p_s = 1 - (1 - p_b)^{n_b} = 1 - (1 - n_b 	imes p_b)$$

So,

$$p_b = \frac{1}{n_b} \times p_s$$

**Benchmark**

- Hardware platform: Pentium III, 800 MHz, 512 MB memory
- Software platform: Windows NT 4.0, ADS 2002
- Data points: $E_b/N_0$ value is set from 4 to 16 dB
- Simulation time: approximately 2 hours

**References**


BER and PER Performance, AWGN Channel 36 Mbps

Design Name
- WLAN_80211a_36Mbps_AWGN_System.dsn

Features
- Data rate = 36 Mbps, coding rate = 3/4, modulation = 16-QAM
- Carrier frequency offset is 100 kHz between transmitter and receiver
- BER and PER vs. $E_b/N_0$ under AWGN channel curves displayed

Description
This design shows BER and PER performance with 36 Mbps data rate and channel coding under AWGN. Burst lengths of 128, 256, and 512 bytes are simulated.

The top-level schematic is shown in Figure 6-21. This design contains four subnetworks named SignalSource, Noise, Receiver, and BERPER.

SignalSource parameters are contained in Signal_Generation_VARs; Noise, Receiver, and BERPER parameters are contained in RF_Channel_Measurement_VARs.

The SignalSource subnetwork, Figure 6-22, generates an IEEE 802.11a signal source based on user settings.

The Receiver subnetwork, Figure 6-23, receives an IEEE 802.11a RF signal and demodulates the signal as bits stream; it also detects the start of frame and the transition from short sequences to channel estimation sequences, estimates complex channel response coefficients for each subcarrier, transforms the symbol into subcarrier received values; it performs phase estimation from the pilot subcarrier, subcarrier derotation according to the estimated phase, and division of each subcarrier value with a complex estimated channel response coefficient.

The BERPER subnetwork, Figure 6-24, measures system BER and PER.
BER and PER Performance, AWGN Channel 36 Mbps

Figure 6-21. WLAN_80211a_36Mbps_AWGN_System Schematic

Figure 6-22. WLAN_80211a_RF Schematic
802.11a BER/PER Performance

Figure 6-23. WLAN_80211a_RF_RxFSync Schematic

Figure 6-24. WLAN_80211a_BERPER Schematic
Simulation Results
Simulation results displayed in WLAN_80211a_36Mbps_AWGN_System.dds are shown in Figure 6-25.

For BER performance, when $E_b/N_0$ is above 10dB, the curve for the 128-byte burst is slightly different from the 256-byte burst and the 512-byte burst curves; this is because the bit number of the 128-byte curve is approximately 10 million fewer than the 256-byte and the 512-byte curves, which are approximately 20 and 40 million bits, respectively. We can conclude that the BER performance for different burst lengths are the same when enough test bits are used.

For PER performance, it shows that the performance of the 128-byte curve is better than that of the 256-byte curve, which is better than that of 512-byte curve. We can conclude that the longer the burst length the worse the PER performance.
80211a BER/PER Performance

Benchmark
- Hardware platform: Pentium IV, 1.8 GHz, 512 MB memory
- Software platform: Windows XP, ADS 2002
- Data points: $E_b/N_0$ value is set from 4 to 15 dB.
- Simulation time: 1, 2 and 4 hours for 128-, 256-, and 512-byte burst lengths, respectively

References

BER Performance, AWGN Channel 64-QAM Modulation

- WLAN_80211a_48Mbps_AWGN_Perfect.dsn

Features

- Raw data rate = 72 Mbps, modulation = 64-QAM
- Length and Order default settings = 1000 bytes and 6, respectively
- Gaussian simulation channels
- Without channel coding and interleaving
- BER curve displayed

Description

This design shows raw BER performance under AWGN channel with perfect channel estimator. In this design, the data rate is 48 Mbps; the raw data rate is 72 Mbps because there is not channel coding. The guard interval ratio is 1/4 and modulation mode is 64-QAM.

The top-level schematic for this design is shown in Figure 6-26.

The SignalSource subnetwork, Figure 6-27, generates an IEEE 802.11a signal source based on user settings.

The sub_WLAN_Receiver_AWGN_Perfect subnetwork, Figure 6-28, detects the start of frame and the transition from short sequences to channel estimation sequences, establishes fine timing (with one sample resolution), and divides each subcarrier value with an ideal channel response coefficient.

The BERPER subnetwork, Figure 6-29, measures system BER and PER.
80211a BER/PER Performance

Figure 6-26. WLAN_80211a_48Mbps_AWGN Schematic

Figure 6-27. WLAN_80211a_RF Schematic

6-28 BER Performance, AWGN Channel 64-QAM Modulation
BER Performance, AWGN Channel 64-QAM Modulation
Notes
Order in Signal_Generation_VARs can be set to 6, 7 or 8.

Simulation Results
Simulation results are shown in Figure 6-30.

The red curve, calculated from Figure 5-2-16 [2], shows the symbol error rate. The symbol error rate is converted into the bit error rate; $p_s$ is the probability of a symbol error, $p_b$ is the probability of a bit error. The relation between $p_s$ and $p_b$ is

$$p_s = 1 - (1 - p_b)^{n_b}$$
where \( n_b \) = number of bits per symbol. Assuming the modulation signal is Gray coded, \( p_b \ll 1 \), then

\[
p_s = 1 - (1 - p_b)^{n_b} = 1 - (1 - n_b \times p_b)
\]

So, \( p_b = \frac{1}{n_b} \times p_s \)

In this design, the modulation is 64-QAM, \( n_b=6 \), the red curve was converted from [2] using a dividing factor of 6; the blue curve shows the BER of this design and the difference is less than 0.4 dB. Simulation results of this design are consistent with the theoretical results.

**Benchmark**

- Hardware platform: Pentium III, 800 MHz, 512 MB memory
- Software platform: Windows NT 4.0, ADS 2002
- Data points: \( E_b/N_0 \) value is set from 4 to 20 dB
- Simulation time: approximately 2 hours

**References**


BER and PER Performance, Fading Channel 36 Mbps

WLAN_80211a_36Mbps_Fading_System.dsn

Features
- Data rate=36 Mbps, coding rate=3/4, modulation=16-QAM, velocity=0 km/hr
- Length and Order parameter default settings = 512 and 7, respectively
- BER and PER vs. $E_b/N_0$ under fading channel curves displayed

Description
This design shows system performance with 36 Mbps data rate and channel coding under fading channel. A burst length of 512 bytes is simulated.

The top-level schematic for this design is shown in Figure 6-31. SignalSource parameters are contained in Signal_Generation_VARs; Noise, Receiver, and BERPER parameters are contained in RF_Channel_Measurement_VARs.

According to reference 2, five model types have been designed. Model A, an 18-tap fading channel corresponding to a typical office environment for NLOS conditions.
and a 50ns average rms delay spread, is used in this example. In order to reduce the number of taps needed, the time spacing is non-uniform; for shorter delays, a more dense spacing is used. The average power declines exponentially with time. For Model A, all taps have Rayleigh statistics. The characteristics of this model are listed in Table 6-2.

Table 6-2. Model A Characteristics

<table>
<thead>
<tr>
<th>Tap Number</th>
<th>Delay (ns)</th>
<th>Average Relative Power (dB)</th>
<th>Ricean K</th>
<th>Doppler Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>-0.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-1.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>-2.6</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>-3.5</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>-4.3</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>-5.2</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>-6.1</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>-6.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>-7.8</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>-4.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>12</td>
<td>140</td>
<td>-7.3</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>13</td>
<td>170</td>
<td>-9.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>-12.5</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>15</td>
<td>240</td>
<td>-13.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>16</td>
<td>290</td>
<td>-18.0</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>17</td>
<td>340</td>
<td>-22.4</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>18</td>
<td>390</td>
<td>-26.7</td>
<td>0</td>
<td>Class</td>
</tr>
</tbody>
</table>
Simulation Results

Simulation results displayed in WLAN_80211a_36Mbps_Fading_System.dds are shown in Figure 6-32 and Figure 6-33.

For PER performance, the WLAN_80211a_36Mbps_Fading_System.dsn is approximately 2 dB worse than that of WLAN_80211a_24Mbps_Fading_System.dsn.
Figure 6-33. 802.11a Fading Channel PER Performance

Benchmark
- Hardware platform: Pentium III, 500 MHz, 512 MB memory
- Software platform: Windows NT 4.0, ADS 2002
- Data points: $E_b/N_0$ values is set from 10 to 15 dB
- Simulation time: 50 hours
802.11a BER/PER Performance

References


Chapter 7: 802.11a Practical Systems

Receiver Test Benches

802.11a Receiver Specifications- Sensitivity

Defined as the minimum RF signal level required to achieve a Packet Error Rate (PER) <10% at PSDU length of 1,000 bytes.

802.11a Receiver Specifications-Adjacent Channel Rejection

The desired signal’s strength is set at 3dB above the rate-dependent sensitivity, the interfering signal is raised until 10% PER is caused for a PSDU length of 1,000 bytes. The power difference between the interfering signal and the desired signal is the adjacent channel rejection.

Note

Due to the increased bandwidth required by Adjacent and Alternate channel simulations, it is necessary to decrease the simulation time step by a factor of 2 to 4 times, and to increase the order of the IFFT/FFT from 6 to 8 or 9. The simulation time will correspondingly increase with these changes. Also, at this time data displays and datasets may not be provided for some Alternate channel test benches.

802.11a Receiver Specifications-Alternate Channel Rejection

The desired signal’s strength is set at 3dB above the rate-dependent sensitivity, the interfering signal is raised until 10% PER is caused for a PSDU length of 1000 bytes. The power difference between the interfering signal and the desired signal is the adjacent channel rejection.

Zero-IF Receiver Test Benches

The Zero-IF receiver topology is desirable for use in 802.11a systems for various reasons of cost, complexity and performance. However, it is prone to generating DC offsets due to Local Oscillator (LO) leakage. Also, an Automatic Gain Control (AGC) capability is required in any receiver implementation. The WLAN DesignGuide provides two test benches that can be used to investigate these effects.
Receiver LO leakage, DC Offset Compensation Test Bench

Test bench name: Test_DCComp_WLAN_80211a

This DesignGuide Receiver uses a direct down-conversion or zero-IF architecture. One problem inherent to the zero-IF architecture is the presence of DC offsets at the mixer output due to LO leakage at the mixer input. The DC offset due to LO leakage is a major factor at low input levels, where the offset can be on the same order of magnitude as the mixer output. This model provides means to evaluate and compensate for LO leakage effects.

In this model, the DC compensation operates on the I and Q outputs of the QAM_DemodExtOsc block. The DC compensation circuit runs with no input signal present. A switch is located at the receiver input to ensure no signal is present during DC compensation for LO leakage. A delay block has been placed in the signal path between the transmitter and receiver to allow DC compensation to run before the transmitted signal reaches the receiver.

The DC compensation circuit runs for 4 µsec to find the DC level of the I and Q outputs of the QAM_DemodExtOsc block. Then, the DC levels are latched and subtracted from the respective signals. This method will reduce LO leakage effects assuming that the leakage is constant at the mixer input.

The top-level model includes a transmitter block, a path loss block, a delay block, and a receiver block. Several TimedSink blocks are included to allow detailed evaluation of the receiver and DC compensation performance. The major points of interest included: I_at_Mixer_Output, Q_at_Mixer_Output, I_Corrected, Q_Corrected, I_ZIF_Output, and Q_ZIF_Output. Two data displays show the outputs of these time sinks. WLAN_DCComp_IandQ shows several points along the I and Q chains in the receiver along with the DC compensation for each chain. The plots show the I and Q outputs of the mixer, the detected DC levels, the compensation signals, and the corrected I and Q signals. WLAN_DCComp_EVM shows the EVM versus time plot of the receiver output.

Use the parameter sweeps of MixerLOtoRFIsolation and MixerLOtoRFPhaseShift to evaluate the effects of different LO leakage levels and phases. When using these sweeps, it might be necessary to remove some of the traces from the data displays for clarity. No matter what the initial DC offset of I and Q, all the corrected traces lie directly on top of each other and are centered about zero volts. This indicates that the DC compensation will correct any LO leakage level and phase properly.

The receiver used in this model includes an RX Front end (RF filter, T/R Switch, and LNA), a DEM QAM mixer, a DC compensation circuit, and I/Q baseband.
amplifier/AGC chains. The typical parameters for each stage are defined at the
top-level model - LNAGAIN, LNANF, BB2Gain, etc. The receiver uses a perfect AGC,
which is modeled using MatchedLoss blocks in the I and Q chains. The loss of these
blocks is calculated through the AGCcalc and AGC equations on the top level.

Each DC compensation circuit consists of a splitter, a filter, an inverting amplifier, a
sample/hold block, and a combiner. The mixer output is split into two paths; one path
goes to the DC compensation combiner and the other goes to the DC detection filter.
The filter reduces noise coming from the mixer output in order to determine the DC
level of the signal. The output of the filter (detected DC level) is then inverted
through the amplifier and input to the sample/hold block. The sample/hold block
latches its output 4 µsec after the DC compensation begins. This output is then
combined with the original signal, effectively removing the DC component.

It might prove helpful to evaluate the performance of the receiver without DC
compensation. To turn DC compensation off, disable all the blocks in the DC
compensation model and connect the I and Q outputs of the DEM QAM block to the
filters in the I and Q chains respectively.
Receiver Dynamic Range, CCA and AGC Test Bench

Test bench name: Test_AGCSettling_WLAN_80211a

Specification reference: Section 17.3.10.4, Section 17.3.3, Section 17.3.10.5

The 802.11a modulation requires a linear transmitter and receiver chain. This linearity requirement creates a difficult challenge for the receiver design. Typically, an automatic gain control (AGC) is used in the receiver to ensure that the linearity requirements are met. This model includes a fast, digital AGC that settles within ∼5 µsec. From the 802.11a standard (Section 17.3.3), the receiver design has 8 µsec to perform a signal detection, settle AGC, select diversity (if any), run coarse freq offset adjust and timing recovery.

In this model, AGC runs on the first 5-6 short symbols of the preamble, which produce a fairly constant envelope waveform. The variable AGC settling time (in µsec) defines how long AGC runs. Selection of this value is a tradeoff between the dynamic range of the receiver (the dynamic range required of the AGC), AGC step size and step timing, and the aforementioned functions that also need to run in the 8 µsec of 10 short symbols.

The top-level model includes a transmitter block, a path loss block, and a receiver block. To run quick simulations to observe various points in the receiver and AGC sections, enable the TKShowValues and TKPlots to observe real-time effects. For a more detailed analyses, disable these blocks and enable the TimedSinks at the various points on the top-level model. The major points of interest include: Filtered_AGCDetout, RSSI_CCA_Indicator, ReceiverEVM, and AGC_Value. A data display is set up, Test_AGCSettling_WLAN_80211a, which includes the outputs of many of these time sinks. If you are interested in the performance of AGC vs. the entire RX dynamic range, enable the Parameter Sweep for PathLoss and this will sweep the input signal to the receiver from –4 to –64 dBm.
Following are the variables used in the simulation:

**VAR VAR1**
- DelCP1: d1=0
- DCCompDelay=0
- BitError=1.95
- Tslice=0.5+DCCompDelay
- Nrframes=6+DCCompDelay
- FBDCCompCkPeriod=2.66
- FBDCCompCkPeriod2=2.66
- InjectedDC=0
- MixLOtoRFPhaseShift=0
- MixLOtoRFIsoaltion=200
- PathLoss=20
- FsOffset=0
- AGCLoss=0

**VAR VAR2**
- N=INT((16+5*Length+6)/192)
- LL=16+8*Length+6-192*N
- K<=f(LL==0) then 0 else 1 endif
- NSYM=N+K

**VAR VAR3**
- FC0=51500
- FreqOffset=50
- Length=256
- Order=7
- FFTSize=128
The data display shows many key parameters of the 8021.11a receiver. One of the most critical items is in this design is AGC settling time vs. EVM or BER/PER. The data display shows plots of AGC vs. time, RSSI (received signal strength indicator) vs. time, EVM vs. time and other important design considerations.

The receiver (push into RECEIVER_ZIF_AGC) used in this model includes a RX Front end component (RF filter, T/R Switch, and LNA), a DEM QAM mixer, a pair of linear baseband amplifiers (BB1), followed by an AGC block, with the last blocks being a pair of nonlinear baseband amplifiers (BB2). The typical parameters for each stage are defined at the top-level model: LNAGAIN, LNANF, BB2Gain, etc. For this model it was assumed that the non-linear effects of all stages prior to BB2 could be ignored.
For OFDM systems, like 802.11, there is a large >10 dB, peak-to-average value of the signal. This requires a backoff from $P_{1dB}$ for BB2 to keep this stage from compressing. This backoff is determined by the variable Det0P1dB on the top-level model. This variable defines the output signal level of BB2 that the AGC attempts to maintain. For example, if Det0P1dB=17 dBm, the digital AGC will try to keep the output of BB2 to +17dBm. Consequently, the backoff is determined by BB2 $P_{1dB}$ – Det0P1dB.

As previously mentioned, the digital AGC always tries to keep the output envelope of the BB2 pair at a constant level. It does this by first calculating the signal amplitude, at BB2 output, by a the math function $\sqrt{I^2+Q^2}$. This level is then compared with five detector levels which control four different AGC states: -5 dB, -1 dB, +1 dB, and +5 dB. The digital AGC works by comparing the input signal amplitude with 5 threshold values and applying an appropriate gain adjustment to attempt to keep BB2's output constant. For example, if the input signal is greater than the defined AGC trip point (Det0P1dB) by >5 dB, then the threshold for the -5 dB AGC is triggered, this results in a 5 dB increase in attenuation for that AGC time step. The next time step, a similar comparison is made. Eventually, if the signal is within the dynamic range of the receiver, AGC should converge between the +1 and -1 dB AGC trip points, when this occurs no more AGC is applied. Similarly, if the signal is too small or AGC overshoots it's defined value, attenuation can be taken out with the +1 and +5 dB stages. Due to its complexity, the AGC is not shown here, but you can push into AGC0v3B to view it after loading the design.

There are a few parameters that the AGC model uses that are important to note. The AGC time step is defined by the clock that feeds the five CounterSyn blocks. AGC can make a step every 0.167 $\mu$s. AGC is disabled or frozen by toggling the Port 8 which disables the AGC step clock. The current AGC model has 96 dB of dynamic range defined by the two constant blocks set to 0 and –96 dB. There are several ports available to monitor, real-time, AGC functions in this model such as detector output. This model also calculates RSSI/CCA with the blocks in the top-level. These take the measured detector value at the output of BB2, subtract all the linear gains of all the receiver blocks, and add the AGC value to calculate an input referred power.
IEEE 802.11a section 17.3.10.2 specifies the requirement for adjacent channel rejection. Section 17.3.10.3 specifies the requirements for alternate channel rejection.

Adjacent channel centers in IEEE 802.11a are offset from the desired channel center by 20 MHz. The alternate channels are offset by 40 MHz.

In this example, the data rate is 48 MHz. To perform adjacent channel rejection testing at this data rate, the specification requires the desired channel power input to the receiver be –63 dBm. An adjacent channel also applied at –63 dBm must not cause the Packet Error Rate (PER) to exceed 10%. To perform alternate channel rejection testing at this data rate, the desired channel power input to the receiver is –63 dBm. An alternate channel applied at –47 dBm must not cause the Packet Error Rate (PER) to exceed 10%.

WLAN library components are used to generate the short preamble, the long preamble, the signal field and the data of the 802.11a transmit signal. The final module in the 802.11a signal generator is the sub_RF_Mod_OFDM block. Transmit filtering is applied at baseband in the sub_RF_Mod_OFDM module and the IQ base band signal is mixed to the RF frequency, specified by the F carrier variable. The power level output from the signal generator is set in dBm by the SignalPower variable.

Two options for generating the interferer signal are provided. In one option, the interferer is produced by delaying and amplifying a copy of the desired channel signal. This technique runs more quickly, but results may be affected by correlation between the interferer and desired channels.
In the second option, a separate 802.11a signal generator is used to produce the interfering signal. To ensure that the desired and interfering channels are uncorrelated, the interferer generator uses a different data set and OFDM packet length than the desired channel. The packet length of the desired signal is set by the `Length` variable. The packet length of the interferer is set by the “`Length2`” variable. Using this interferer generation technique, simulations with `BlockNum` equal to 30 required about 3 times more time to run the same simulations using delayed desired signal as the interferer.

Both options use the `Interferer_dB` level variable to set the signal level of the interferer in dB relative to the desired signal and the `InterfererOffset` variable to set the frequency offset of the interfering channel from the desired channel in MHz.

The interferer and desired channel signals are combined and input to the Zero IF Receiver block. The RF section of the ZIF receiver represents the loss and gain of filters, matching circuits, and RF amplifiers. Following the receiver RF stage, the desired signal is mixed down to base band IQ signals. Base band filters provide rejection of the interfering adjacent or alternate channel signals. The automatic gain correction of the ZIF receiver is disabled, and fixed gain blocks are installed to replace it. This simplification reduces simulation time and should not affect adjacent or alternate channel rejection. The output of the ZIF receiver goes to amplifier block G6. The signal level required by the demodulation modules of the receiver is a function of the `Order` variable. Gain block G6 provides this required signal level adjustment.
WLAN library components, shown in the figure that follows demodulate the base band IQ signal into digital data. The WLAN_BERPER module compares the demodulated signal data output to the data input to the signal generator. The Bit-Error-Rate, BER and Packet-Error-Rate, PER, are then calculated. BER and PER are output to data sinks.

The display provides plots of the RF signal spectrum at the input the ZIF receiver input. The spectrum at the filter input and output on one receive base-band signal path is also plotted. A plot also shows the BER and PER values as PPDU frames are received.
Chapter 8: 80211a Transmitter System Test Using Instrument Links

Introduction

WLAN_80211a_ESGc_prj project for IEEE 802.11a transmitter test and verification design example is described in this chapter.

• WLAN_80211a_ESGc.dsn for generating 11a OFDM signal and Sending the signal to ESG4438C to test WLAN OFDM Transmitter components.

Specification Requirements

Receiver performance requirements are listed in Table 8-1.

Table 8-1. Receiver Requirements

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Modulation Accuracy - EVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 Mbps</td>
<td>11.2%</td>
</tr>
<tr>
<td>54 Mbps</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Transmitter System Test Using ADS-ESGc Link

WLAN_80211a_ESGc.dsn

Signal Parameters
- Data rate is 54 Mbps
- OFDM modulation
- PSDU length is 512 octets
- Carrier is 5.8 GHz

Description
This example demonstrates how to use the ADS-ESGc link to test an OFDM transmitter system. Hardware and software requirements and setup information are provided.

Hardware Requirements
- Agilent E4438C signal generator with 100 MHz clock rate and 6 GHz carrier frequency.
- Agilent 89641A Vector Signal Analyzer (VSA) with 6 GHz carrier frequency or 89640A with 2.7 GHz carrier frequency plus PSA E4440A as a down-converter.

Software Requirements
- Advanced Design System (ADS) version 2003A or later with WLAN option
  - To run complex designs of WLAN systems, 500 MB RAM and 500 MB virtual space is required.
- Agilent Instrument Library version 2003A with GPIB and/or LAN interface component model.

PC Setup and Software Installation
1. Install ADS version 2003A or later version on your PC (Win2000, XP).
2. Install WLAN library.
3. Install ADS instruments library and set up the IO library using VISA layer for communicating to instruments.
WLAN-ESGC Link Setup

1. Connect ADS, ESGC, the device under test (DUT), and Agilent 89641A as shown in Figure 8-1. With this setup users can bring waveforms captured from VSA back to ADS for performing BER/PER or other performances in ADS.

2. Switch on all instruments and the PC.

3. Start ADS and load schematic design WLAN_80211a_ESGc.dsn for signal generation as shown in Figure 8-2.

![Figure 8-1. Test Setup](image)

![Figure 8-2. WLAN Transmitter Test Using ADS-ESGc Link](image)

In the design, the model WLAN 802.11a OFDM signal source with hierarchical structure can generate an RF WLAN OFDM signal with specific data rate, burst length, symbol clock, carrier frequency, and power. All signal parameters can be easily modified in the top level of the design. Var blocks Signal Generation and RF_Measurement are designed for ease of setting key parameters. The data rate is set to 54 Mbps. The signal sent to ESG4438CSink E1, the ADS-ESGc interface for driving the Arb signal generator in ESGc.

Key parameters for ESG4438Csink E1 must be set properly:

- Interface is the HPIB/GPIB interface or IP address. In this example we set Interface=141.121.237.165 (IP address).
- Address is the instrument address. We set it to 20 (the ESGc address).
• Start and Stop define the signal sequence length sent to ESGc that must be carefully set to keep the signal sequence contents an integer number of burst. In the example projects for transmitter and receiver tests, Start is set to 0 and Stop is automatically set by an equation in the RF_Measurement block. For understanding the way to calculate the Stop, steps are described as below:

• Calculate the number of OFDM symbols per burst for WLAN data:

\[ N_{SyPB} = \text{ceiling} \left( \frac{16 + 8 \times \text{Length} + 6}{N_{DBPS}} \right) \]  

where \( N_{DBPS} \) is the number of data bits per OFDM Symbols, and Length is the octet number of PSDU (physical layer convergence procedure service data units). \( N_{DBPS} \) depends on data rate as shown in Table 8-2.

Table 8-2. WLAN Signal Parameters Specified by IEEE 802.11a Standard

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Modulation</th>
<th>Coding Rate (R)</th>
<th>Coded Bits per Subcarrier (N_{BPS})</th>
<th>Coded Bits per OFDM Symbol (N_{CBPS})</th>
<th>Data Bits per OFDM Symbol (N_{DBPS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>BPSK</td>
<td>1/2</td>
<td>1</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>BPSK</td>
<td>3/4</td>
<td>1</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>QPSK</td>
<td>1/2</td>
<td>2</td>
<td>96</td>
<td>48</td>
</tr>
<tr>
<td>18</td>
<td>QPSK</td>
<td>3/4</td>
<td>2</td>
<td>96</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>16-QAM</td>
<td>1/2</td>
<td>4</td>
<td>192</td>
<td>96</td>
</tr>
<tr>
<td>27</td>
<td>16-QAM</td>
<td>9/16</td>
<td>4</td>
<td>192</td>
<td>108</td>
</tr>
<tr>
<td>36</td>
<td>16-QAM</td>
<td>3/4</td>
<td>4</td>
<td>192</td>
<td>144</td>
</tr>
<tr>
<td>48</td>
<td>64-QAM</td>
<td>2/3</td>
<td>6</td>
<td>288</td>
<td>192</td>
</tr>
<tr>
<td>54</td>
<td>64-QAM</td>
<td>3/4</td>
<td>6</td>
<td>288</td>
<td>216</td>
</tr>
</tbody>
</table>

In this example, WLAN signal Length =512 and data rate=54 Mbps. Based on Table 8-1, \( N_{DBPS} \)=216. From equation (8-1), \( N_{SyPS} \)=20.

Total number of samples per burst:

\[ N_{SaPB} = (\text{preamble (short and long) time} + \text{signal time} + \text{idle time} + N_{SyPS} \times 4) / \text{tstep} \]

For this example, preamble time =16 \( \mu \text{sec} \), signal plus GI =4 \( \mu \text{sec} \), and the idle time set to 4 \( \mu \text{sec} \)

\[ N_{SaPB} = (20 + 4 + 4 \times 20) \times 1000/12.5 = 8320 \]
**ESGc Settings**

The ARB generator in ESGc is driven by the WLAN RF signal source in ADS through HPIB/LAN. Follow the ESGc setup sequence:

**ARB Settings**

1. Press panel button Mode > Dual ARB
2. Press ARB on/off to ARB off
3. Press ARB set up
4. Set the ARB sample clock to 80 MHz for this example
5. Set the ARB Reference to Int
6. Set the Reconstruction Filter to Through
7. Press Select/Waveform and select the name of the file defined in the model ESG4438CSink, for example wlan_24
8. Press panel button Mod On/Off to ensure Mod On
9. Press panel button RF On/Off to ensure RF On
10. Press Frequency and set to 5.8 GHz
11. Press Amplitude and set to -5dBm
12. Press ARB On/Off to ensure ARB On

Set up the design under test.

1. The DUT can be any component in a transmitter. As an example, we test a power amplifier called TT-64 as the DUT. The expected performances are: output power 17 dBm for carrier 5.8 GHz.
2. Connect the input to the ESGc and Output to VSA89641A.
3. Make sure the power supply is set properly and turned on.
VSA 89641A Settings

The VSA 89641A must be connected to a PC that has an IEEE 1394 card and VSA software with WLAN flavor (option B7R) installed. When installing the VSA software, the IEEE 1374 option must be turned on.

To set up the measurement settings:

1. Click **MeasSetUp** and set the demodulator type by clicking **Modulator**, then select **Wireless Networking > DSSS/OFDM/PBCC**

2. Click **Frequency**, then enter the correct center frequency and frequency span (you can use the **full span** button).

To set up the input settings:

1. Click **Input**, then set **data format to hardware**.

The VSA software settings for transmission test can now be saved as a set file; for example, 11a.set. The saved set file can then be called and will use the above settings. A set file has been made that can be found in the data directory under this project: make sure you use the correct set file.

Under this setting, the EVM is measured to see if the power amplifier can be used as a transmitter power amplifier based on IEEE 802.11a std. Simulation results are compared to the standard.

**Simulation Results**

EVM = 1.2%, which is less than the standard value 11.2%. So, the EVM passes the test.

**Benchmark**

- Hardware platform: Pentium IV 1.8GHz, 512 MB memory
- Software platform: Windows 2000, ADS 2002C
- Simulation time: approximately 10 minutes

**References**

Chapter 9: 80211a Receiver Min. Input Level Sensitivity Test Using Instrument Links

Introduction

WLAN_11a_Sens_prj project for receiver minimum input level sensitivity test based on IEEE 802.11a Standard; design examples described in this chapter are.

• WLAN_11a_36Mbps_Sen_ESGc.dsn shows how to generate a signal for the receiver minimum input level sensitivity test using the ADS-ESGc link.

• WLAN_11a_36Mbps_Sen_VSA.dsn is the receiver minimum input level sensitivity measurement using VSA-ADS link.

Specification Requirements

Receiver performance requirements are listed in Table 9-1.

Table 9-1. Receiver Requirements

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Minimum sensitivity (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>-70</td>
</tr>
<tr>
<td>54</td>
<td>-65</td>
</tr>
</tbody>
</table>
Signal Generation for Receiver Minimum Input Level Sensitivity Test Using ADS-ESGc Link

WLAN_11a_36Mbps_Sen_ESGc.dsn

Parameters
- Data rate is 36 Mbps
- OFDM modulation
- PSDU length is 1000 octets
- NF is 10 dB

Description
This example demonstrates how to use the ADS-ESGc link to generate a signal for testing an OFDM receiver.

Hardware Requirements
- Agilent E4438C Signal generator with 100 MHz clock rate and 6 GHz carrier frequency.
- Agilent 89641 A Vector Signal Analyzer (VSA) with 6GHz carrier or Agilent 89640A with 2.7 GHz carrier frequency plus PSA E4440A as a down-converter.

Software requirement
- Advanced Design System (ADS) version 2003A or later with WLAN option
  - To run complex designs of WLAN systems, 500 MB RAM and 500 MB virtual space is required.
- Agilent Instrument Library version 2003A with GPIB and/or LAN interface component model.

PC Setup and Software Installation
1. Install ADS version 2003A or later version on your PC (Win2000, XP)
2. Install WLAN library.
3. Install ADS instruments library and set up the IO library using VISA layer for communicating to instruments
WLAN-ESGC Link Setup

1. Connect ADS, ESGc, the device under test (DUT), and Agilent 89641A as illustrated in Figure 9-1. With this setup users can bring waveforms captured from VSA back to ADS for performing BER/PER or other performances in ADS.

2. Switch on all instruments and the PC.

3. Start ADS and load the schematic design, WLAN_80211a_ESGc.dsn for signal generation as shown in Figure 9-2.

In the design, the signal source block can generate an RF WLAN OFDM signal with specific data rate, burst length, symbol clock, carrier frequency, and power. All signal parameters can be easily modified in the top level of the design. Var blocks Signal Generation and RF_Measurement are designed for ease of setting key parameters. The data rate is set to 54 Mbps. The signal is sent to ESG4438CSink E3, the ADS-ESGc interface for driving the Arb signal generator in ESGc.

Key parameters for the ESG4438Csink E3 must be set properly.

- Interface is the HPIB/GPIB interface or IP address. In this example we use the IP address to set this parameter Interface=141.121.237.165 (IP address).
• Address is the instrument address. We set it to 20 (the ESGc address).
• Start and Stop define the signal sequence length sent to ESGc that must be set very carefully to keep the signal sequence contents an integer number of burst. In our example projects for transmitter and receiver tests, Start and Stop have been set automatically. For understanding the way to calculate them the process steps are described in the schematic design.
• FileName is the data file name. In this example, the file name is 11a_Sens_36_RF.

A signal generated by ADS will be sent to ESGc and data will be saved in a data file named 11a_Sens_36_RF in ESGc.
Receiver Minimum Input Level Sensitivity Test Using VSA-ADS Link

WLAN_11a_36Mbps_Sen_VSA.dsn

Parameters
- Data rate is 36 Mbps
- OFDM modulation
- PSDU length is 1000 octets
- NF is 10 dB

Description
This example demonstrates how to use the VSA-ADS link to test your OFDM receiver for the minimum input level sensitivity measurement.

The receiver minimum input level sensitivity will be measured to see if the designed component of receiver LNA meets the requirements given in the IEEE 802.11a Specification. For this measurement, the signal is in the ESGc data file 11a_Sen_36_RF that was sent from ADS (using WLAN_11a_36_ESGc.dsn) through the ADS-ESGc link.

The ESGc setup to test the DUT (LNA) is described.
ESGc Settings
The ARB generator in ESGc is driven by the WLAN RF signal source in ADS through HPIB/LAN. Follow the ESGc setup sequence:

ARB Settings
1. Press panel button Mode > Dual ARB
2. Press ARB on/off to ARB off
3. Press ARB set up
4. Set the ARB sample clock to 80 MHz for this example
5. Set the ARB Reference to Int
6. Set the Reconstruction Filter to Through
7. Press Select/Waveform and select the name of the file defined in the model ESG4438CSink, for example wlan_24
8. Press panel button Mod On/Off to ensure Mod On
9. Press panel button RF On/Off to ensure RF On
10. Press Frequency and set to 5.8 GHz
11. Press Amplitude and set to –70dBm
12. Press ARB On/Off to ensure ARB On

Set up the design under test.
1. The DUT can be any component in a receiver. As an example, we test a low noise amplifier (LNA) called ATF 55143 as the DUT. Expected performances are:
   • Gain 10 dB
   • NF 2dB
   • Carrier 5.725-5.825 GHz
2. Connect the input to the ESGc and Output to VSA89641A.
3. Make sure the power supply is set properly and turned on.
VSA 89641A Settings

VSA 89641A must be connected to a PC that has an IEEE 1394 card and VSA software with WLAN flavor (option B7R) installed. When installing VSA software, the IEEE 1374 option must be turned on.

Set up the measurement settings:

1. Click MeasSetUp then set the modulation type by clicking Modulator, then select Wireless Networking > DSSS/OFDM/PBCC.
2. Click Frequency, then enter the correct center frequency and frequency span (you can use the full span button).

Set up the input settings:

1. Click Input then set Data format to hardware.
2. Set recording by clicking recording, then specify the record length of the data with proper unit in the record window; for example
   - Input data rate = 6 (36 Mbps)
   - NDBPS = 144
   - FFT order = 8 (256)
   - Length = 1000
   - Idle time = 4 usec
   - Number of Symbols = ceiling [(16 + 8 * Length + 6) / 144] = 56
   - Burst duration = 56 * 4 usec + 20 usec + Idle time = 248 usec
   - Consider 200 burst then record length = 200 * 248 usec = 49.6 usec
3. Set Trigger by clicking Trigger and then select the type to External. The delay must be set properly in order to eliminate the instrument delay.

   To synchronize the recorded data with the original data generated from ESGc more process is needed please refer to reference [1].
4. To save the data, click the record button.

   Click the file, then follow the sequence save – save recording, then specify a proper name (*.sdf) for your recording and location.
Additional Down-Converter for VSA 89640A

For VSA 89640A with max frequency 2.7 GHz, an additional down-converter is needed. For example, a PSA 4440A can be used for this; setup information follows.

1. Press **Mode** and select **SpectrumAnalysis**, and then put in the proper Center frequency.
2. Press **Span X Scale** and select **Zero Span**
3. Set PSA to single trigger mode (otherwise it may give you bad results values)

**Designs for Receiver Test**

![Signal Source](image)

The WLAN_11a_36Mbps_Sen_VSA.dsn design in WLAN_11a_sen_prj of Demo package is for the receiver minimum input level sensitivity test. Several key models in the design are described.

**Test Signal Source SDFReader S1** This model is the interface for VSA-ADS link. S1 reads data captured from the VSA then provides a test signal based on captured data in ADS for the sensitivity test.

In this test ESGc is driven by the WLAN signal generated in ADS by WLAN_11a_36Mbps_Sen_ESGc.dsn in WLAN_11a_sen_prj of Demo package originally shown in Figure 9-2. Test data is sent from ESGc through the DUT (LNA in this case) to VSA, then captured by saving it to a sdf file Sen_36_321_n70.sdf.

Recorded data in Sen_36_321_n70.sdf can be used directly if the settings for VSA are set properly:

- Data for the Receiver test requires a waveform with integer number of Bursts.
To eliminate instrument delay, set Trigger for VSA software by clicking Trigger, select the type to External and the delay can be set properly. To set the correct delay, observe the waveform and measure the exact delay value, then specify delay equals the observed value.

The time step for the recorded data from Sen_36_321_n70.sdf also may not be what we want unless we specify a proper frequency span for VSA software. However, in the receiver sensitivity test we can select a proper frequency span and get a time step we want. For example, a time step of 21.703888 nsec is observed when the frequency span is 36 MHz using VSA. If we change the frequency span to 31.25 MHz, we will receive the wanted 25 nsec time step.

At this point, we can specify the parameter filename = “Sen_36_321_n70.sdf” and let the SDFReader read in the correct WLAN test data captured from VSA.

Reference Signal Source C1 provides an all-0 signal source for the hypothesis test. The basic principle of BER/PER measurement is based on the hypothesis test. If the recovered signal is still 0 there is no error, otherwise there is an error.

Attenuator GainRF is used for adjusting the test power level for proper Eb/No. The input power level can be measured by activating the TkPower model.

Receiver Minimum Input Level Sensitivity Test

From the requirements of section 17.3.10.1 of the IEEE 802.11a Standard, the packet error rate (PER) must be less than 10% at a PSDU length of 1000 bytes for rate-dependent input levels which must be the numbers given in Table 91 of the IEEE 802.11a Standard or less. The minimum input levels are measured at the antenna connector (NF of 10 and 5 dB implementation margins are assumed). For a 36 Mbps data rate, the value is –70 dBm.

Simulation Results

Based on the 11a standard, at the antenna connector the signal power level –70dBm is specified, and the Noise power contributed by LNA is reflected by the captured waveform. Simulation results are shown in Figure 9-4.

<table>
<thead>
<tr>
<th>Index</th>
<th>BER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure 9-4. Receiver Minimum Input Level Sensitivity Simulation Results
As can be seen under the -70dBm signal level, the PER is less than 10%, so the receiver sensitivity passes the test.

**Benchmark**

- Hardware platform: Pentium IV 1.8GHz, 512 MB memory
- Software platform: Windows 2000, ADS 2002c
- Simulation time: approximately 2 minutes

**References**

Chapter 10: 80211b Signal Source

Introduction

WLAN_80211b_SignalSource_prj design examples are described in this chapter.

- WLAN_80211_LowRate.dsn generates IEEE 802.11 burst with different data rates.
- WLAN_80211b_CCK.dsn generates IEEE 802.11b CCK burst with different data rates.
- WLAN_80211b_PBCC.dsn generates IEEE 802.11b PBCC burst with different data rates.
80211b Signal Source

1 and 2 Mbps Signal Source
WLAN_80211_LowRate.dsn

Features
- 1 and 2 Mbps configurable signal source, adjustable data rate by setting Rate in VAR1
- Adjustable sample rate by setting OverSampling in VAR1

Description
This design is an example of IEEE 802.11 low rate signal source (1 Mbps and 2 Mbps) at various data rates with idle between two consecutive bursts; ramp bits are not appended to the data.

The top-level schematic for this design is shown in Figure 10-1. Parameters that can be user-modified are contained in VAR1 User_DEFINED_Variables. Other parameters should be set according to the specification.

Note: If the sample rate is changed, the parameter VRef used in model RF_ModFIR must be re-calibrated.

Figure 10-1. WLAN_80211_SignalSource.dsn Schematic

Simulation Results
Simulation results displayed in WLAN_80211_LowRate.dds are the RF waveform data (Figure 10-2) and the transmit spectrum (Figure 10-3).
Figure 10-2. RF Waveform Data of 802.11 Low Rate Signal Source

Figure 10-3. RF Transmit Spectrum of 802.11 Low Rate Signal Source
802.11b Signal Source

Benchmark

• Hardware platform: Pentium III 450 MHz, 512 MB memory
• Software platform: Windows NT 4.0 Workstation, ADS 2002
• Simulation time: approximately 1 minute

References

CCK Signal Source with Idle and Ramp Time

WLAN_80211b_CCK.dsn

Features
- 5.5 and 11 Mbps configurable signal source with CCK modulation, adjustable data rate by setting Rate in VAR1
- Adjustable sample rate by setting OverSampling in VAR1

Description
This design is an example of IEEE 802.11b CCK modulation signal source with long PLCP at various data rates; idle and ramp times are added between two consecutive bursts.

The top-level schematic for this design is shown in Figure 10-4. Parameters that can be user-modified are contained in VAR1 User_DEFINED_Variables. Other parameters should be set according to the specification.

Note: If the sample rate is changed, the parameter VRef used in model RF_ModFIR must be re-calibrated.

Simulation Results
Simulation results displayed in WLAN_80211b_CCK.dds are the RF waveform data (Figure 10-5) and transmit spectrum (Figure 10-6).
802.11b Signal Source

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Value (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.00</td>
</tr>
<tr>
<td>0.0004</td>
<td>0.00</td>
</tr>
<tr>
<td>0.0008</td>
<td>0.00</td>
</tr>
<tr>
<td>0.0012</td>
<td>0.00</td>
</tr>
<tr>
<td>0.0016</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figure 10-5. RF Waveform data of 802.11b CCK modulation signal source

Figure 10-6. RF Transmit Spectrum of 802.11b CCK Modulation Signal Source
Benchmark

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References

PBCC Signal Source with Idle and Ramp Time

WLAN_80211b_PBCC.dsn

Features

• 5.5 and 11 Mbps configurable signal source with PBCC modulation, adjustable data rate by setting Rate in VAR1
• Adjustable sample rate by setting OverSampling in VAR1

Description

This design is an example of IEEE 802.11b PBCC modulation signal source with long PLCP at various data rates; the idle and ramp times are added between two consecutive bursts.

The top-level schematic for this design is shown in Figure 10-7. Parameters that can be user-modified are contained in VAR1 User_DEFINED_Variables. Other parameters should be set according to the specification.

Note: If the sample rate is changed, the parameter VRef used in model RF_ModFIR must be re-calibrated.

Simulation Results

Simulation results displayed in WLAN_80211b_PBCC.dds are the RF waveform data (Figure 10-8) and transmit spectrum (Figure 10-9).
<table>
<thead>
<tr>
<th>time</th>
<th>waveform</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>2.000E-03, 0.100E-03</td>
</tr>
<tr>
<td>48.45ns</td>
<td>-6.001E-06, 3.000E-06</td>
</tr>
<tr>
<td>96.9ns</td>
<td>5.004E-05, 1.008E-04</td>
</tr>
<tr>
<td>136ns</td>
<td>-7.705E-07, 1.033E-06</td>
</tr>
<tr>
<td>161.6ns</td>
<td>-1.200E-06, 1.517E-06</td>
</tr>
<tr>
<td>227.2ns</td>
<td>-4.021E-08, 3.107E-08</td>
</tr>
<tr>
<td>272.7ns</td>
<td>-3.000E-06, 1.500E-05</td>
</tr>
<tr>
<td>316ns</td>
<td>-6.501E-08, 9.992E-07</td>
</tr>
<tr>
<td>363.6ns</td>
<td>7.000E-07, -1.375E-06</td>
</tr>
<tr>
<td>408ns</td>
<td>3.000E-06, 4.929E-06</td>
</tr>
<tr>
<td>464ns</td>
<td>-5.000E-06, -1.000E-05</td>
</tr>
<tr>
<td>500ns</td>
<td>-1.250E-07, 1.750E-06</td>
</tr>
<tr>
<td>546.4ns</td>
<td>-7.001E-08, 1.400E-07</td>
</tr>
<tr>
<td>590.0ns</td>
<td>-7.923E-07, 4.003E-06</td>
</tr>
<tr>
<td>636ns</td>
<td>1.830E-06, 5.554E-06</td>
</tr>
<tr>
<td>681.0ns</td>
<td>-7.711E-06, 1.000E-05</td>
</tr>
<tr>
<td>727ns</td>
<td>-6.097E-06, 7.401E-06</td>
</tr>
<tr>
<td>772.7ns</td>
<td>-1.049E-05, 1.167E-05</td>
</tr>
<tr>
<td>818.2ns</td>
<td>1.119E-05, 4.313E-05</td>
</tr>
<tr>
<td>863.6ns</td>
<td>-1.041E-05, 1.009E-05</td>
</tr>
<tr>
<td>909ns</td>
<td>8.805E-06, 9.135E-06</td>
</tr>
<tr>
<td>954.4ns</td>
<td>-6.763E-06, 7.027E-06</td>
</tr>
<tr>
<td>1us</td>
<td>8.327E-06, 1.349E-05</td>
</tr>
<tr>
<td>1.09us</td>
<td>2.340E-06, 1.608E-05</td>
</tr>
<tr>
<td>1.19us</td>
<td>-1.045E-06, 1.167E-06</td>
</tr>
<tr>
<td>1.19us</td>
<td>-1.700E-05, 1.214E-05</td>
</tr>
<tr>
<td>1.22us</td>
<td>6.927E-06, 3.926E-06</td>
</tr>
<tr>
<td>1.27us</td>
<td>-2.379E-06, 1.167E-05</td>
</tr>
<tr>
<td>1.31us</td>
<td>-7.034E-06, 1.259E-05</td>
</tr>
<tr>
<td>1.36us</td>
<td>-1.700E-06, 1.167E-06</td>
</tr>
<tr>
<td>1.40us</td>
<td>5.249E-06, 1.167E-06</td>
</tr>
<tr>
<td>1.45us</td>
<td>4.490E-06, 1.490E-06</td>
</tr>
<tr>
<td>1.50us</td>
<td>1.182E-05, 1.317E-05</td>
</tr>
<tr>
<td>1.54us</td>
<td>-1.800E-06, 3.397E-06</td>
</tr>
<tr>
<td>1.59us</td>
<td>-1.402E-06, 8.550E-06</td>
</tr>
<tr>
<td>1.63us</td>
<td>-2.720E-07, 1.240E-06</td>
</tr>
<tr>
<td>1.68us</td>
<td>-2.265E-06, 9.255E-06</td>
</tr>
</tbody>
</table>

Figure 10-8. RF Waveform Data of 802.11b PBCC Modulation Signal Source
Figure 10-9. RF Transmit Spectrum of 802.11b PBCC Modulation Signal Source

Benchmark

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002
- Simulation time: approximately 1 minute

References

Chapter 11: 80211b Transmitter

Introduction

WLAN_80211b_Tx_prj IEEE 802.11b transmitter test and verification design examples are described in this chapter.

- WLAN_80211b_TxEVM.dsn: measures error vector magnitude and tests the transmit modulation accuracy.
Error Vector Magnitude Measurements

WLAN_80211b_TxEVM.dsn

Features

- IEEE 802.11b configurable signal source, adjustable data rate
- Adjustable sample rate
- CCK modulation

Description

This design tests IEEE 802.11b transmit modulation accuracy by measuring the EVM. The schematic for this design is shown in Figure 11-1.

Measurements in this design are based on IEEE Standard 802.11b-1999 section 18.4.7.8. The transmit modulation accuracy requirement for the High Rate PHY is based on the difference between the actual transmitted waveform and the ideal signal waveform. Modulation accuracy is determined by measuring the peak vector error magnitude during each chip period. Worst-case vector error magnitude cannot exceed 0.35 for the normalized sampled chip data. The ideal complex I and Q constellation points associated with DQPSK modulation, (0.707, 0.707), (0.707, 0.707), (0.707, 0.707), (-0.707, -0.707), must be used as the reference. These measurements must be from baseband I and Q sampled data after recovery through a reference receiver system. The measurement example is shown in Figure 11-2.
Simulation Results
Simulation results displayed in WLAN_80211b_TxEVM.dds are shown in Figure 11-3. The EVM results are smaller than the specification requirements.
11-4 Error Vector Magnitude Measurements

80211b Transmitter

Figure 11-3: EVM results

<table>
<thead>
<tr>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hardware platform: Pentium III 450 MHz, 512 MB memory</td>
</tr>
<tr>
<td>• Software platform: Windows NT 4.0 Workstation, ADS 2002C</td>
</tr>
<tr>
<td>• Simulation time: approximately 4 minutes</td>
</tr>
</tbody>
</table>

References

Chapter 12: 80211b Receiver

Introduction
WLAN_80211b_Rx_prj project for IEEE 802.11b receiver test and verification design examples are described in this chapter.

• WLAN_80211b_RxMinInput_Sensitivity.dsn minimum receiver sensitivity measurement.
• WLAN_80211b_RxMaxInput_Sensitivity.dsn minimum receiver sensitivity measurement.

Specification Requirements
Receiver performance requirements are.

• Data rate: 11 Mbps
• Modulation type: CCK
• PSDU length: 1024 octets
• Minimum sensitivity: -76 dBm
• Maximum sensitivity -10 dBm
80211b Receiver

**Receiver Minimum Input Level Sensitivity Measurement**

WLAN_80211b_RxMinInput_Sensitivity.dsn

**Features**

- Data rate is 11 Mbps
- CCK modulation
- PSDU Length is 1024 octets
- NF is 10 dB

**Description**

This design is an example of WLAN 802.11b receiver minimum input level sensitivity measurement. According to [1] 18.4.8.1, the packet error rate (PER) must be less than 8% at a PSDU length of 1024 octets for an input level of -76dBm measured at the antenna. This PER must be specified for 11 Mbps CCK modulation.

The schematic for this design is shown in Figure 12-1. Parameters that can be changed by users are contained in Signal_Generation_VARs, RF_Channel_VARs, and Measurement_VARs.

![Figure 12-1. WLAN_80211b_RxMinInput_Sensitivity Schematic](image)
Simulation Results
Simulation results displayed in WLAN_80211b_RxMinInput_Sensitivity.dds are shown in Figure 12-2. BER and PER at given input levels are simulated.

<table>
<thead>
<tr>
<th>Index</th>
<th>BER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figure 12-2. WLAN_80211b_RxMinInput_Sensitivity.dds

Benchmark
- Hardware platform: Pentium IV 1.8GHz, 512 MB memory
- Software platform: Windows 2000, ADS 2002c
- Simulation time: approximately 85 minutes

References
Receiver Maximum Input Level Sensitivity Measurement

WLAN_80211b_RxMaxInput_Sensitivity.dsn

Features

- Data rate is 11 Mbps
- CCK modulation
- PSDU Length is 1024 octets
- NF is 10 dB

Description

This design is an example of WLAN 802.11b receiver minimum input level sensitivity measurement. According to [1] 18.4.8.1, the packet error rate (PER) must be less than 8% at a PSDU length of 1024 octets for a maximum input level of -10dBm measured at the antenna. This PER shall be specified for 11 Mbps CCK modulation. The schematic for this design is shown in Figure 12-3. Parameters that can be changed by users are contained in Signal_Generation_VARs, RF_Channel_VARs, and Measurement_VARs.

Figure 12-3. WLAN_80211b_RxMaxInput_Sensitivity Schematic
Simulation Results

Simulation results displayed in WLAN_80211b_RxMaxInput_Sensitivity.dds are shown in Figure 12-4. BER and PER at given input levels are simulated.

<table>
<thead>
<tr>
<th>Index</th>
<th>BER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figure 12-4. WLAN_80211b_RxMaxInput_Sensitivity.dds

Benchmark

- Hardware platform: Pentium IV 1.8GHz, 512 MB memory
- Software platform: Windows 2000, ADS 2002C
- Simulation time: approximately 95 minutes

References

802.11b Receiver

12-6  Receiver Maximum Input Level Sensitivity Measurement
Chapter 13: 802.11b CCK BER and PER Performance

Introduction

WLAN_80211b_PER_prj design examples are described in this chapter.

- WLAN_80211b_5_5Mbps_AWGN_System.dsn: BER and PER performance for 802.11b 5.5 Mbps systems with CCK modulation under AWGN channel.
- WLAN_80211b_11Mbps_AWGN_System.dsn: BER and PER performance for 802.11b 11 Mbps systems with CCK modulation under AWGN channel.

For any digital communication system, the relationship between received signal power to noise-power spectral density $P_s/N_0$ and received bit energy to noise-power spectral density $E_b/N_0$ is as follows:

$$\frac{P_s}{N_0} = \frac{E_b}{N_0} R_b$$

where $R_b = \text{data rate (bits/s)}$, and solving for $N_0$ in dBm/Hz, we can obtain,

$$N_0(\text{dBm/Hz}) = P_s(\text{dBm}) - 10 \times \log (R_b) - (E_b/N_0)(\text{dB})$$

So, in WLAN_80211b_PER_prj, we can achieve NDensity according to above function.
BER and PER Performance, AWGN Channel 5.5 Mbps

WLAN_80211b_5_5Mbps_AWGN_System.dsn

Features

- Data rate = 5.5Mbps, modulation = CCK
- Carrier frequency offset between transmitter and receiver is 50 kHz
- BER and PER vs. $E_b/N_0$ on AWGN channel curves are displayed

Description

This design shows system performance of 802.11b with 5.5Mbps data rate and CCK modulation on an AWGN channel. A burst length of 500 bytes is simulated.

The top-level schematic is shown in Figure 13-1. This design contains SignalSource, Noise, Receiver, and BERPER subnetworks. SignalSource parameters are contained in Signal_Generation_VARS; Noise and BERPER parameters are contained in RF_Channel_Measurement_VARS; Receiver parameters are contained in the Receiver_VARS.

The SignalSource subnetwork, Figure 13-2, generates a signal source based on user settings.

The Receiver subnetwork, Figure 13-3, receives an RF signal and demodulates the signal as bit streams; it also detects the start of frame and completes the transition from received sequences to frequency offset estimation sequences, estimates the frequency offset caused by the carrier differences between transmitter and receiver. A decision feedback equalized is implemented to equalize the received signal and remove the fixed rotation caused by frequency offset. The equalized signal is then fed into the CCK demodulator and demodulated into bit streams.

The BERPER subnetwork, Figure 13-4, measures system BER and PER.
Schematics

Figure 13-1. WLAN_80211b_5_5Mbps_AWGN_System.dsn Schematic

Figure 13-2. Signal Source Subnetwork Schematic
Simulation Results
Simulation results displayed in WLAN_80211b_5_5Mbps_AWGN_System.dds are shown in Figure 13-5.
Reference data points are shown in page Equations.
BER and PER Performance, AWGN Channel 5.5 Mbps

Figure 13-5. Simulation Results

Benchmark

- Hardware platform: Pentium IV, 1.8 GHz, 512 MB memory
- Software platform: Windows XP, ADS 2003A
- Data points: $E_b/N_0$ values set from 7 to 10 dB
- Simulation time: 1.5 hours

References


BER and PER Performance, AWGN Channel 11 Mbps

WLAN_80211b_11Mbps_AWGN_System.dsn

Features
- Data rate = 11 Mbps, modulation = CCK
- Carrier frequency offset between transmitter and receiver = 50 kHz
- BER and PER vs. $E_b/N_0$ on AWGN channel curves are displayed

Description

This design shows system performance with 11 Mbps data rate and CCK modulation on an AWGN channel. A burst length of 500 bytes is simulated.

The top-level schematic is shown in Figure 13-6. This design contains SignalSource, Noise, Receiver, and BERPER subnetworks. SignalSource parameters are contained in Signal_Generation_VARS; Noise and BERPER parameters are contained in RF_Channel_Measurement_VARS; Receiver parameters are contained in Noise_VARS.

The SignalSource subnetwork, Figure 13-7, generates a signal source based on user settings.

The Receiver subnetwork, Figure 13-8, receives an RF signal and demodulates the signal into bit streams; it also detects the start of frame and completes the transition from received sequences to frequency offset estimation sequences, estimates the frequency offset caused by the carrier differences between transmitter and receiver. A decision feedback equalized is implemented to equalize the received signal and remove the fixed rotation caused by frequency offset. The equalized signal is then fed into the CCK demodulator and demodulated into bit streams.

The BERPER subnetwork, Figure 13-9, measures system BER and PER.
Schematics

Figure 13-6. WLAN_80211b_11Mbps_AWGN_System.dsn Schematic

Figure 13-7. Signal Source Subnetwork Schematic

BER and PER Performance, AWGN Channel 11 Mbps  13-7
802.11b CCK BER and PER Performance

**Figure 13-8. Receiver Subnetwork Schematic**

**Figure 13-9. BERPER Subnetwork Schematic**
Simulation Results

Simulation results displayed in WLAN_80211b_11Mbps_AWGN_System.dds are shown in Figure 13-10.

Reference data points are shown in page Equations.

Benchmark

- Hardware platform: Pentium IV, 1.8 GHz, 512 MB memory
- Software platform: Windows XP, ADS 2003A
- Data points: $E_b/N_0$ values is set from 7 to 10 dB
- Simulation time: 1.5 hours

References
802.11b CCK BER and PER Performance


Chapter 14: 80211b Transmitter Test Using Instrument Links

Introduction
WLAN_80211b_ESGc_prj project for IEEE 802.11b transmitter test design example is described in this chapter.

- WLAN_80211b_CCK_ESG4438C.dsn for generating CCK signal and sending the CCK signal to ESG 4438C to test WLAN CCK transmitter components.
- WLAN_80211b_25M_ESGc.dsn for providing adjacent channel test environment for testing CCK transmitter components.

Specification Requirements
Transmitter performance requirements are:

- Data rate: 11 Mbps
- Modulation type: CCK
- PSDU length: 1024 octets
- Modulation accuracy - EVM: 35%
Basic Transmitter System Test Using ADS-ESGc Link

WLAN_80211b_CCK_ESG4438C.dsn

Signal Parameters
- Data rate is 5.5 Mbps
- CCK modulation
- PSDU length is 100 octets

Description
This design demonstrates how to use the ADS-ESGc link to test a WLAN 802.11b/802.11g CCK transmitter system. Hardware and software requirements and setup information are provided.

Hardware Requirements
- Agilent E4438C signal generator with 100 MHz clock rate and 6 GHz carrier frequency.
- Agilent 89641A Vector Signal Analyzer (VSA) with 6 GHz carrier frequency or 89640A with 2.7 GHz carrier frequency.

Software Requirements
- Advanced Design System (ADS) version 2003A with WLAN option
  - To run complex designs of WLAN systems 500 MB RAM and 500 MB virtual space is required.
- Agilent Instrument Library version 2003A with GPIB and/or LAN interface component model.

PC Setup and Software Installation
1. Install ADS version 2003A or later version on your PC (Win2000, XP)
2. Install the WLAN Design Library.
3. Install ADS instruments library and set up the IO library using VISA layer for communicating to instruments
WLAN-ESGC link Setup

1. Connect ADS, ESGC, the device under test (DUT), and Agilent 89641A (or 89640A) as shown in Figure 14-1. With this setup users can bring waveforms captured from VSA back to ADS for performing BER/PER performance in ADS.

2. Switch on all instruments and the PC.

3. Start ADS and load schematic design WLAN_80211b_CCK_E4438C.dsn for signal generation as shown in Figure 14-2.

Figure 14-1. Transmitter Test System setup for WLAN 802.11b System

Figure 14-2. Signal Generation Design for CCK Transmitter

In the design, the model WLAN 802.11b/802.11g CCK signal source with hierarchical structure can generate an RF WLAN CCK signal with specific data rate, burst length, symbol clock, carrier frequency, and power. All signal parameters can be easily modified in the top level of the design. Two Var blocks (Signal Generation and RF_Measurement) are designed for ease of setting key parameters. The data rate is set to 5.5 Mbps. The signal is sent to ESG4438CSink E1, the ADS-ESGc interface for driving the Arb signal generator in ESGc.
Key parameters for the ESG4438C sink E1 must be set properly.

- Interface is the HPIB/GPIB interface or IP address. In this example we use the IP address to set this parameter Interface=141.121.237.165 (IP address).

- Address is the instrument address. We set it to 20 (the ESGc address).

- Start and Stop define the signal sequence length sent to ESGc that must be carefully set to keep the signal sequence contents an integer number of burst. In the example project, Start is set to 0, and Stop is set by an equation in RF_Var block.

Stop is calculated as described next.

\[
\text{Stop} = \left( \text{RampTime} \times 11\text{e}6 \times 2 + \text{Idletime} \times 11\text{e}6 + \text{PLCP} + \text{PSDU} \right) \times \text{Ratio};
\]

where \( \text{RampTime} \) and \( \text{Idletime} \) in \( \mu \text{sec} \) are the 11b Signal Source parameters, \( \text{PLCP} = 192 \times 11 \) for Long PLCP preamble, \( \text{PLCP} = (72+48/2) \times 11 \) for short PLCP preamble. \( \text{PSDU} = \text{Octets} \times 8 \times 2 \) for 5.5 Mbps, \( \text{PSDU} = \text{Octets} \times 8 \) for 11 Mbps.

Ratio is determined by the 11b Signal Source parameter, Oversampling:

- Ratio=2: OverSampling=0
- Ratio=2.5: OverSampling=1
- Ratio=3: OverSampling=2
- Ratio=3.5: OverSampling=3
- Ratio=4: OverSampling=4
- Ratio=4.5: OverSampling=5
- Ratio=5: OverSampling=6
- Ratio=5.5: OverSampling=7
- Ratio=6: OverSampling=8
- Ratio=6.5: OverSampling=9
- Ratio=7: OverSampling=10
- Ratio=7.5: OverSampling=11
- Ratio=8: OverSampling=12

ESGc Settings

ARB generator in ESGc is driven by WLAN RF signal source in ADS through HPIB/LAN. Follow the ESGc setup sequence

**ARB Settings**

1. Press panel button Mode > Dual ARB
2. Press ARB on/off to ARB off
3. Press **ARB set up**
4. Set the **ARB sample clock** to 80 MHz for this example
5. Set the **ARB Reference** to **Int**
6. Set the **Reconstruction Filter** to **Through**
7. Press **Select/Waveform** and select the name of the file defined in the model ESG4438CSink, for example **wlan_24**
8. Press panel button **Mod On/Off** to ensure **Mod On**
9. Press panel button **RF On/Off** to ensure **RF On**
10. Press **Frequency** and set to **2.4 GHz**
11. Press **Amplitude** and set to **-5dBm**
12. Press **ARB On/Off** to ensure **ARB On**

Set up the design under test.

1. The DUT can be any component in a transmitter. As an example, we test a power amplifier as the DUT. The expected performances are: output power 15 dBm for carrier 2.4 GHz.
2. Connect the input to the ESGc and Output to VSA89641A.
3. Make sure the power supply is set properly and turned on.

**VSA 89641A Settings**

The VSA 89641A must be connected to a PC that has an IEEE 1394 card and VSA software with WLAN flavor (option B7R) installed. When installing the VSA software, the IEEE 1374 option must be turned on.

Set up the measurement settings:

1. Click **MeasSetUp**, then set the demodulator type by clicking **Modulator**, then select **Wireless Networking > DSSS/CCK/PBCC**
2. Set frequency:
   - Click **Frequency**, then enter the correct **center frequency** and frequency span (you can use the full span button).

Set up the input settings:

1. Click **Input**, then set **data format** to **hardware**.
The VSA software settings for transmission test can now be saved as a set file for example, 11b.set. The saved set file can then be called and will use the above settings. A set file has been made that can be found in the data directory under this project; make sure you use the correct set file.

Under this setting, the EVM is measured to see if the power amplifier can be used as a transmitter power amplifier based on IEEE 802.11b std. Simulation results are compared to the standard.

**Simulation Results**

EVM = 3%, that is less than the standard value 35%.

**Benchmark**

- Hardware platform: Pentium IV 1.8GHz, 512 MB memory
- Software platform: Windows 2000, ADS 2002C
- Simulation time: approximately 10 minutes

**References**

Transmitter Test Under Adjacent Channel Environment

WLAN_80211b_25M_ESGc.dsn

Features

- Data rate is 11 Mbps
- CCK modulation
- PSDU length is 1024 octets
- In-channel carrier: 2.412 MHz, adjacent channel carrier: 2.437 MHz
- Adjacent channel power is 35 dB higher than in-channel

Description

This design tests a WLAN IEEE 802.11b CCK transmitter under adjacent channel environment. Hardware and software requirements and setup information are provided.

Hardware Requirements

- Agilent E4438C Signal generator with 100 MHz clock rate and 6 GHz carrier frequency.
- Agilent 89641 A Vector Signal Analyzer (VSA) with 6GHz carrier or Agilent 89640A with 2.7 GHz carrier frequency plus PSA E4440A as a down-converter.

Software Requirements

- Advanced Design System (ADS) version 2003A or later with WLAN option
  - To run complex designs of WLAN systems 500 MB and 500 M bytes virtual space is required.
- Agilent Instrument Library version 2003A with GPIB and/or LAN interface component model.

PC Setup and Software Installation

1. Install ADS version 2003A or later version on your PC (Win2000, XP).
2. Install WLAN library.
3. Install ADS instruments library for and set up the IO library using VISA layer for communicating to instruments.
WLAN-ESGC Link Setup

1. Connect ADS, ESGC, the device under test (DUT), and Agilent 89641A as shown in Figure 14-3. With this setup users can bring waveforms captured from VSA back to ADS for performing BER/PER performance in ADS.

2. Switch on all instruments and the PC.

3. Start ADS and load schematic design WLAN_80211b_CCK_E4438C.dsn for signal generation as shown in Figure 14-4.

In the design, the model WLAN 802.11b/802.11g CCK Signal Source with hierarchical structure can generate an RF WLAN CCK signal with specific data rate, burst length, symbol clock, carrier frequency, and power. All signal parameters can be easily modified in the top level of the design. Two Var blocks (Signal Generation and RF_Measurement) are designed for ease of setting key parameters. The data rate is 5.5 Mbps. The signal is sent to ESG4438CSink E1, the ADS-ESGc interface for driving the Arb signal generator in ESGc.

Key parameters for ESG4438Csink E1 must be set properly.

- Interface is the HPIB/GPIB interface or IP address. In this example we set Interface=141.121.237.165 (IP address).
Address is the instrument address. We set it to 20 (the ESGc address).

Start and Stop define the signal sequence length sent to ESGc that needs to be set very carefully to keep the signal sequence contents an integer number of burst. In our example projects for transmitter and receiver tests, Start and Stop have been set automatically. For understanding the way to calculate them the process steps are described in the schematic design.

**ESGc Settings**

The ARB generator in ESGc is driven by the WLAN RF signal source in ADS through HPIB/LAN. Follow the ESGc setup sequence.

Set up the ARB.

1. Press panel button **Mode > Dual ARB**
2. Press **ARB on/off** to **ARB off**
3. Press **ARB set up**
4. Set the **ARB sample clock** to **80 MHz** for this example
5. Set the **ARB Reference** to **Int**
6. Set the **Reconstruction Filter** to **Through**
7. Press **Select/Waveform** and select the name of the file defined in the model ESG4438CSink, for example **wlan_24**
8. Press panel button **Mod On/Off** to ensure **Mod On**
9. Press panel button **RF On/Off** to ensure **RF On**
10. Press **Frequency** and set to **5.8 GHz**
11. Press **Amplitude** and set to **–5dBm**
12. Press **ARB On/Off** to ensure **ARB On**

Set up the design under test.

1. The DUT can be any component in a transmitter. As an example, we test a power amplifier called TT-64 as the DUT. The expected performances are: output power 17 dBm for carrier 5.8 GHz.
2. Connect the input to the ESGc and Output to VSA89641A.
3. Make sure the power supply is set properly and turned on.
VSA 89641a Settings

The VSA 89641A must be connected to a PC that has an IEEE 1394 card and VSA software with WLAN flavor (option B7R) installed. When installing the VSA software, the IEEE 1374 option must be turned on.

Set up the measurement settings:

1. Click MeasSetUp and set demodulator type by clicking Modulator; then select Wireless Networking > DSSS/CCK/PBCC.
2. Set frequency:
   • Click Frequency and enter the correct center frequency and frequency span (you can use full span button).

Set up the input settings:

1. Click Input and set data format to hardware.

The VSA software settings for transmission test can now be saved as a set file; for example, 11b.set. The saved set file can then be called and will use the above settings. A set file has been saved in the data directory under this project: make sure you use the correct set file.

Simulation Results

Simulation results displayed in WLAN_80211b_RxMaxInput_Sensitivity.dds are shown in Figure 14-5. BER and PER at given input levels are simulated.

<table>
<thead>
<tr>
<th>Index</th>
<th>BER</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figure 14-5. WLAN_80211b_RxMaxInput_Sensitivity.dds

Benchmark

• Hardware platform: Pentium IV 1.8 GHz, 512 MB memory
• Software platform: Windows 2000, ADS 2002C
• Simulation time: approximately 85 minutes

References

Chapter 15: HiperLAN Signal Source

Introduction

WLAN_HIPERLAN_SignalSource_prj design examples are described in this chapter.

- WLAN_HIPERLAN_Broadcast.dsn: broadcast burst signal source
- WLAN_HIPERLAN_Directlink.dsn: direct link burst signal source
- WLAN_HIPERLAN_Downlink.dsn: downlink burst signal source
- WLAN_HIPERLAN_Uplink_Long.dsn: uplink burst with long preambles signal source
- WLAN_HIPERLAN_Uplink_Short.dsn: uplink burst with short preambles signal source
Broadcast Burst Signal Source

WLAN_HIPERLAN_Broadcast.dsn Design

Features
- Number of sectors per AP = 1
- PHY mode of BCH is BPSK mapping, code rate 1/2, data rate 6Mbits/s
- PHY mode of FCH is BPSK mapping, code rate 1/2, data rate 6Mbits/s
- PHY mode of ACH is BPSK mapping, code rate 1/2, data rate 6Mbits/s
- PDU train from DLC is composed by 1 BCH, 1 FCH and 1 ACH

Description
This design is an example of HIPERLAN/2 broadcast burst signal source.
The top-level schematic for this design is shown in Figure 15-1. Parameters that can
be modified by users are contained in VAR User_Defined_Variables. Other
parameters are set according to the specifications and should not be changed.
The contents of each PDU train from the DLC are scrambled with a length-127 scrambler.

- Broadcast PDU train when AP uses one sector: scrambler initialized at the 5th
  bit of BCH, at the 1st bit of FCH, at the 1st bit of ACH without priority, and 1st
  bit of ACH with priority.
- Broadcast PDU train when AP uses multiple sectors: scrambler initialized at
  the 5th bit of BCH
- FCH and ACH PDU train transmitted only for multiple sector AP: scrambler
  initialized at the 1st bit of FCH, at the 1st bit of ACH without priority, and at
  the 1st bit of ACH with priority.

The initial state is set to a pseudo non-zero state, which is determined by the Frame
counter field in the BCH at the beginning of the corresponding MAC frame. The
Frame counter field consists of the first four bits of BCH, represented by (n_4 n_3 n_2 n_1)_2,
and is transmitted unscrambled; n_4 is transmitted first. The initial state is derived by
appending (n_4 n_3 n_2 n_1)_2 to the fixed binary number (111)_2 in the form (111 n_4 n_3 n_2 n_1)_2.
As an example, in the design of HIPERLAN/2 broadcast burst the initial state of the
scrambler is (1110100)_2.
Two of the PDU train types (Broadcast PDU train and FCH and ACH PDU train in for multiple sector AP) are processed transport-channel-by-transport-channel. Tail bits are appended and additional puncturing performed individually to each transport channel. The encoder is also initialized once at the beginning of each transport channel (at the first bit of BCH, FCH, ACH without priority, and ACH with priority).

The mapping mode is rate related. In the example of HIPERLAN/2 broadcast burst signal source, the rate of BCH, FCH and ACH is 6Mbit/s and WLAN_BPSK Coder is used in this design according to technical specifications.

Subnetwork sub_Brd_PDU_Scr.dsn (Figure 15-2) performs PDU train generation and scrambling.

Subnetwork sub_Brd_FEC_Interleaving_Mapping.dsn (Figure 15-3) performs channel coding, interleaving, and mapping.

Subnetwork sub_OFDM.dsn (Figure 15-4) performs preamble generation, pilot inserting, and OFDM modulation.
HiperLAN Signal Source

Figure 15-2. sub_Brd_PDU_Scr.dsn Schematic
Figure 15-3. sub_FEC_Interleaving_Mapping.dsn Schematic
HiperLAN Signal Source

Figure 15-4. sub_OFDM.dsn Schematic
Simulation Results

Simulation results displayed in WLAN_HIPERLAN_Broadcast.dds for baseband frame data and RF spectrum are shown in Figure 15-5.

Benchmark

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 1 minute

References


HiperLAN Signal Source

Direct Link Burst Signal Source
WLAN_HIPERLAN_Directlink.dsn Design

Features
- PHY mode of LCH is 64QAM mapping, code rate 3/4, data rate 54Mbits/s
- PHY mode of SCH is QPSK mapping, code rate 3/4, data rate 18Mbits/s
- PDU train from DLC is composed by 2 DLCC users identified by DLCC ID, both the DLCC ID1 user and DLCC ID2 user are formed by 1 LCH and 1 SCH

Description
This design is an example of HIPERLAN/2 direct link burst signal source.
The top-level schematic for this design is shown in Figure 15-6. Parameters that can be modified by users are contained in VAR User_Defined_Variables. Other parameters are set according to the specifications and should not be changed.
The contents of each PDU train from the DLC are scrambled with a length-127 scrambler. In the case of direct link burst, the scrambler is initialized at the 1th bit of PDU train.
The initial state is set to a pseudo non-zero state, which is determined by the Frame counter field in the BCH at the beginning of the corresponding MAC frame. The Frame counter field consists of the first four bits of BCH, represented by (n4n3n2n1)2, and is transmitted unscrambled; n4 is transmitted first. The initial state is derived by appending (n4n3n2n1)2 to the fixed binary number (111)2 in the form (111n4n3n2n1)2. As an example, in the design of HIPERLAN/2 direct link burst the initial state of the scrambler is (1110100)2.
The first puncturing scheme P1 will be applied independently from the code rate. The puncturing is always applied to the first SCH-PDU of the last DLC Connection of the PDU train to be transmitted over the air interface. If there is SCH-PDU in the last DLC connection, P1 will be applied to the first LCH-PDU of the last DLC Connection of the PDU train.
Puncturing P2 provides code rates of 9/16 and 3/4 and is applied to bits from puncturing P1.
The mapping mode is rate related. In the example of HIPERLAN/2 direct link burst signal source, the rate of LCH is 54Mbit/s and WLAN_QAM64Coder is used in this...
design according to technical specifications; The rate of SCH is 18Mbit/s and WLAN_QPSK Coder is used in this design according to technical specifications.

Figure 15-6. WLAN_HIPERLAN_Directlink.dsn Schematic

Subnetwork sub_PDU.dsn (Figure 15-7) performs PDU train generation.

Subnetwork sub_FEC_Interleaving_Mapping.dsn (Figure 15-8) performs channel coding, interleaving, and mapping.

Subnetwork sub_OFDM.dsn (Figure 15-9) performs preamble generation, pilot inserting, and OFDM modulation.
HiperLAN Signal Source

Figure 15-7. sub_PDU.dsn Schematic

Figure 15-8. sub_FEC_Interleaving_Mapping.dsn Schematic
Simulation Results

Simulation results displayed in WLAN_HIPERLAN_Directlink.dds for baseband frame data and RF spectrum are shown in Figure 15-10.
HiperLAN Signal Source

Figure 15-10. Simulation Results

Benchmark
- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 1 minute

References
Downlink Burst Signal Source

WLAN_HIPERLAN_Downlink.dsn Design

Features

- PHY mode of LCH is 64QAM mapping, code rate 3/4, data rate 54Mbits/s
- PHY mode of SCH is QPSK mapping, code rate 3/4, data rate 18Mbits/s
- PDU train from DLC is composed by 2 DLCC users identified by DLCC ID, both the DLCC ID1 user and DLCC ID2 user are formed by 1 SCH and 1 LCH

Description

This design is an example of HIPERLAN/2 downlink burst signal source. The top-level schematic for this design is shown in Figure 15-11. Parameters that can be modified by users are contained in VAR_User_DEFINED_Variables. Other parameters are set according to the specifications and should not be changed.

The contents of each PDU train from the DLC are scrambled with a length-127 scrambler. In the case of downlink burst, the scrambler is initialized at the 1th bit of PDU train.

The initial state is set to a pseudo non-zero state, which is determined by the Frame counter field in the BCH at the beginning of the corresponding MAC frame. The Frame counter field consists of the first four bits of BCH, represented by \((n_4n_3n_2n_1)_2\), and is transmitted unscrambled; \(n_4\) is transmitted first. The initial state is derived by appending \((n_4n_3n_2n_1)_2\) to the fixed binary number \((111)_2\) in the form \((111n_4n_3n_2n_1)_2\). As an example, in the design of HIPERLAN/2 downlink burst the initial state of the scrambler is \((1110100)_2\).

The first puncturing scheme P1 will be applied independently from the code rate. The puncturing is always applied to the first SCH-PDU of the last DLC Connection of the PDU train to be transmitted over the air interface. If there is no SCH-PDU in the last DLC connection, P1 will be applied to the first LCH-PDU of the last DLC Connection of the PDU train.

Puncturing P2 provides code rates of 9/16 and 3/4 and is applied to bits from puncturing P1.

The mapping mode is rate related. In the example of HIPERLAN/2 downlink burst signal source, the rate of LCH is 54Mbit/s and WLAN_QAM64Coder is used in this
HiperLAN Signal Source

design according to technical specifications; The rate of SCH is 18Mbit/s and WLAN_QPSKCoder is used in this design according to technical specifications.

![Diagram](Image)

Figure 15-11. WLAN_HIPERLAN_Downlink.dsn Schematic

Subnetwork sub_DL_PDU.dsn (Figure 15-12) performs downlink burst PDU train generation.

Subnetwork sub_DL_FEC_Interleaving_Mapping.dsn (Figure 15-13) performs Downlink burst channel coding, interleaving, and mapping.
Subnetwork sub_OFDM.dsn (Figure 15-14) performs preamble generation, pilot inserting, and OFDM modulation.

Figure 15-12. sub_DL_PDU.dsn Schematic

Figure 15-13. sub_DL_FEC_Interleaving_Mapping.dsn Schematic
HiperLAN Signal Source

Simulation Results

Simulation results displayed in WLAN_HIPERLAN_Downlink.dds for baseband frame data and RF spectrum are shown in Figure 15-15.
Downlink Burst Signal Source

Figure 15-15. Simulation Results

Benchmark

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 1 minute

References


Uplink Burst with Long Preambles Signal Source

WLAN_HIPERLAN_Uplink_Long.dsn Design

Features

- The PHY mode of LCH is 64QAM mapping, code rate 3/4, data rate 54Mbit/s
- The PHY mode of SCH is QPSK mapping, code rate 3/4, data rate 18Mbit/s
- The PDU train from DLC is composed by 2 DLCC users identified by DLCC ID, both the DLCC ID1 user and DLCC ID2 user are formed by 1 LCH and 1 SCH

Description

This design is an example of HIPERLAN/2 uplink burst signal source with long preambles.

The top-level schematic for this design is shown in Figure 15-16. Parameters that can be modified by users are contained in VAR User_DEFINED_Variables. Other parameters are set according to the specifications and should not be changed.

The contents of each PDU train from the DLC are scrambled with a length-127 scrambler. In the case of uplink burst with long preambles, the scrambler is initialized at the 1th bit of PDU train.

The initial state is set to a pseudo non-zero state, which is determined by the Frame counter field in the BCH at the beginning of the corresponding MAC frame. The Frame counter field consists of the first four bits of BCH, represented by \((n_4n_3n_2n_1)_2\), and is transmitted unscrambled; \(n_4\) is transmitted first. The initial state is derived by appending \((n_4n_3n_2n_1)_2\) to the fixed binary number \((111)_2\) in the form \((111n_4n_3n_2n_1)_2\). As an example, in the design of HIPERLAN/2 uplink burst with long preambles the initial state of the scrambler is \((1110100)_2\).

The first puncturing scheme P1 will be applied independently from the code rate. The puncturing is always applied to the first SCH-PDU of the last DLC Connection of the PDU train to be transmitted over the air interface. If there is no SCH-PDU in the last DLC connection, P1 will be applied to the first LCH-PDU of the last DLC Connection of the PDU train.

Puncturing P2 provides code rates of 9/16 and 3/4 and is applied to bits from puncturing P1.

The mapping mode is rate related. In the example of HIPERLAN/2 uplink burst signal source with long preambles, the rate of LCH is 54Mbit/s and
WLAN_QAM64Coder is used in this design according to technical specifications; The rate of SCH is 18Mbits/s and WLAN_QPSKCoder is used in this design according to technical specifications.

Subnetwork sub_PDU.dsn (Figure 15-17) performs PDU train generation.

Subnetwork sub_FEC_Interleaving_Mapping.dsn (Figure 15-8) performs channel coding, interleaving, and mapping.

Subnetwork sub_OFDM.dsn (Figure 15-19) performs preamble generation, pilot inserting, and OFDM modulation.
HiperLAN Signal Source

Figure 15-17. sub_PDU.dsn Schematic

Figure 15-18. sub_FEC_Interleaving_Mapping.dsn Schematic

15-20 Uplink Burst with Long Preambles Signal Source
Simulation Results

Simulation results displayed in WLAN_HIPERLAN_Uplink_Long.dds for baseband frame data and RF spectrum are shown in Figure 15-20.
**Benchmark**

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 1 minute

**References**


Uplink Burst with Short Preambles Signal Source

WLAN_HIPERLAN_Uplink_Short.dsn Design

Features

• PHY mode of LCH is 64QAM mapping, code rate 3/4, data rate 54Mbits/s
• PHY mode of SCH is QPSK mapping, code rate 3/4, data rate 18Mbits/s
• PDU train from DLC is composed by 2 DLCC users identified by DLCC ID, both the DLCC ID1 user and DLCC ID2 user are formed by 1 LCH and 1 SCH

Description

This design is an example of HIPERLAN/2 uplink burst signal source with short preambles.

The top-level schematic for this design is shown in Figure 15-21. Parameters that can be modified by users are contained in VAR User_DEFINED_Variables. Other parameters are set according to the specifications and should not be changed.

The contents of each PDU train from the DLC are scrambled with a length-127 scrambler. In the case of uplink burst with short preambles, the scrambler is initialized at the 1th bit of PDU train.

The initial state is set to a pseudo non-zero state, which is determined by the Frame counter field in the BCH at the beginning of the corresponding MAC frame. The Frame counter field consists of the first four bits of BCH, represented by \(n_4n_3n_2n_1\), and is transmitted unscrambled; \(n_4\) will be transmitted first. The initial state is derived by appending \(n_4n_3n_2n_1\) to the fixed binary number \((111)_{2}\) in the form \((111n_4n_3n_2n_1)_{2}\). As an example, in the design of HIPERLAN/2 uplink burst with short preambles the initial state of the scrambler is \((1110100)_{2}\).

The first puncturing scheme P1 will be applied independently from the code rate. The puncturing is always applied to the first SCH-PDU of the last DLC connection of the PDU train to be transmitted over the air interface. If there is no SCH-PDU in the last DLC connection, P1 will be applied to the first LCH-PDU of the last DLC Connection of the PDU train.

Puncturing P2 provides code rates of 9/16 and 3/4 and is applied to bits from puncturing P1.

The mapping mode is rate related. In the example of HIPERLAN/2 uplink burst signal source with short preambles, the rate of LCH is 54Mbits/s and
HiperLAN Signal Source

WLAN_QAM64Coder is used in this design according to technical specifications; The rate of SCH is 18Mbit/s and WLAN_QPSK Coder is used in this design according to technical specifications.

Figure 15-21. WLAN_HIPERLAN_Uplink_Short.dsn Schematic

Subnetwork sub_PDU.dsn (Figure 15-22) performs PDU train generation.

Subnetwork sub_FEC_Interleaving_Mapping.dsn (Figure 15-23) performs channel coding, interleaving, and mapping.

Subnetwork sub_OFDM.dsn (Figure 15-24) performs preamble generation, pilot inserting, and OFDM modulation.
Simulation Results

Simulation results displayed in WLAN_HIPERLAN_Uplink_Short.dds for baseband frame data and RF spectrum are shown in Figure 15-25.
### Benchmark

- **Hardware platform:** Pentium III 450 MHz, 512 MB memory
- **Software platform:** Windows NT 4.0 Workstation, ADS 2001
- **Simulation time:** approximately 1 minute

### References


HiperLAN Signal Source
Chapter 16: HiperLAN Power Amplifier

Introduction

WLAN_PA_HIPERLAN_Test_prj design examples are described in this chapter.

- WLAN_PA_HIPERLAN_ACPR.dsn: adjacent channel power ratio measurements
- WLAN_PA_HIPERLAN_CCDF.dsn: complementary cumulative distribution function measurements
- WLAN_PA_HIPERLAN_MaskSpect.dsn: output RF spectrum due to modulation measurements
- WLAN_PA_HIPERLAN_Waveform.dsn: transmitted waveform measurements
Adjacent Channel Power Ratio Measurements

WLAN_PA_HIPERLAN_ACPR.dsn

Features

- DUT Gain and Nf parameter values can be set by the user.

Description

Adjacent channel power ratio (ACPR) is the ratio of adjacent-channel power to the average power level of the channel. It is a reasonable measurement for adjacent channel interference.

The top-level schematic for this design is shown in Figure 16-1.

sub_HIPERLAN_ACPR_Info.dsn contains measurement information and relevant technical specifications.

sub_HIPERLAN_SignalSource.dsn (Figure 16-2) generates RF band signal for measurement; sub_HIPERLAN_SignalSource_Uplink_Long.dsn (Figure 16-3) generates base band signal source at uplink burst with long preambles; sub_PA_HIPERLAN_ACPR.dsn (Figure 16-4) tests ACPR.

Figure 16-1. WLAN_PA_HIPERLAN_ACPR.dsn Schematic
### Simulation Results

Simulation results are shown in **Figure 16-5.**

<table>
<thead>
<tr>
<th>ACPR1</th>
<th>ACPR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPR1(1)</td>
<td>ACPR1(2)</td>
</tr>
<tr>
<td>-36.215</td>
<td>-33.269</td>
</tr>
<tr>
<td>ACPR2(1)</td>
<td>ACPR2(2)</td>
</tr>
<tr>
<td>-36.215</td>
<td>-33.269</td>
</tr>
</tbody>
</table>

**Figure 16-5. Simulation Results**

### Benchmark

- Hardware platform: Pentium II 400 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 1 minute

### References

1. ETSI TS 101 475 v1.2.1, “Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) layer,” November, 2000.
Complementary Cumulative Distribution Function Measurements

WLAN_PA_HIPERLAN_CCDF.dsn

Features

- DUT_Gain and Nf parameter values can be set by the user

Description

Complementary cumulative distribution function (CCDF) fully characterizes the power statistics of a signal. It provides PAR versus probability.

The top-level schematic for this design is shown in Figure 16-6. sub_PA_HIPERLAN_CCDF_Info.dsn contains measurement information and relevant technical specifications.

sub_HIPERLAN_SignalSource.dsn (Figure 16-7) generates RF band signal for measurement; sub_HIPERLAN_SignalSource_Uplink_Long.dsn (Figure 16-8) generates base band signal source at uplink burst with long preambles; sub_PA_HIPERLAN_CCDF_Measure.dsn (Figure 16-9) tests CCDF.

Figure 16-6. WLAN_PA_HIPERLAN_CCDF.dsn Schematic
HiperLAN Power Amplifier

Figure 16-7. sub_HIPERLAN_SignalSource.dsn Schematic

Figure 16-8. sub_HIPERLAN_SignalSource_Uplink_Long.dsn Schematic

Figure 16-9. sub_PA_HIPERLAN_CCDF_Measure.dsn Schematic
Simulation Results

Simulation results displayed in WLAN_PA_HIPERLAN_CCDF.dds are shown in Figure 16-10.

![Figure 16-10. Simulation Results](image)

**Benchmark**

- Hardware platform: Pentium II 400 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 2 minutes

**References**


HiperLAN Power Amplifier

Output RF Spectrum due to Modulation Measurements

WLAN_PA_HIPERLAN_MaskSpect.dsn

Features

• DUT_Gain parameters can be set by the user

Description

The output RF spectrum due to modulation is the relationship between the frequency offset from the carrier and the power, measured in a specified bandwidth and time. The measurement provides information about distribution of the transmitter’s channel spectral energy due to modulation.

The top-level schematic for this design is shown in Figure 16-11. sub_HIPERLAN_RF_Spectrum_Mod_Infodsn contains measurement information and relevant technical specifications. In this measurement, channels 40 and 120 are swept; corresponding channel center frequencies are 5200 and 5600 MHz, respectively.

sub_HIPERLAN_SignalSource.dsn, Figure 16-12, generates RF band signal for measurement; sub_HIPERLAN_SignalSource_Uplink_Long.dsn, generating base band signal source at uplink burst with long preambles, is shown in Figure 16-13; sub_PA_HIPERLAN_Spectrum_Analyzer.dsn, Figure 16-14, implements the measurement.
Output RF Spectrum due to Modulation Measurements 16-9
HiperLAN Power Amplifier

Figure 16-13. sub_HIPERLAN_SignalSource_Uplink_Long.dsn Schematic

Figure 16-14. sub_PA_HIPERLAN_Spectrum_Analyzer.dsn Schematic

16-10 Output RF Spectrum due to Modulation Measurements
Simulation Results

Simulation results displayed in WLAN_PA_HIPERLAN_MaskSpect.dds are shown in Figure 16-15.

Figure 16-15. Simulation Results

Benchmark

• Hardware platform: Pentium II 400 MHz, 512 MB memory
• Software platform: Windows NT 4.0 Workstation, ADS 2001
• Simulation time: approximately 1 minute

References


HiperLAN Power Amplifier

Transmitted Waveform Measurements

WLAN_PA_HIPERLAN_Waveform.dsn

Features

- DUT_Gain and FCarrier parameter values can be set by the user

Description

This example measures the waveform.

The top-level schematic for this design is shown in Figure 16-16. Subnetwork sub_PA_HIPERLAN_Waveform_Info.dsn contains measurement information and relevant technical specifications.

sub_HIPERLAN_SignalSource.dsn (Figure 16-17) generates RF band signal for measurement; sub_HIPERLAN_SignalSource_Uplink_Long.dsn (Figure 16-18) generating base band signal source at uplink burst with long preambles; sub_HIPERLAN_Wave_Meas.dsn (Figure 16-19) implements the waveform measurement.

Figure 16-16. WLAN_PA_HIPERLAN_Waveform.dsn Schematic
Simulation Results

Simulation results displayed in WLAN_PA_HIPERLAN_Waveform.dds are shown in Figure 16-20.

Benchmark

- Hardware platform: Pentium II 400 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 1 minute

References


Chapter 17: 802.11g EVM and BER/PER Performance

Introduction

WLAN_80211g_prj design examples are described in this chapter.

- WLAN_80211g_OFDM_TxEVM.dsn: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy for an OFDM signal.
- WLAN_80211g_CCK_TxEVM.dsn: measures error vector magnitude and relative constellation error and tests the transmit modulation accuracy for a CCK signal.
- WLAN_80211g_OFDM_36Mbps_Fading_System.dsn: BER and PER performance for 36 Mbps systems on a fading channel.
- WLAN_80211g_CCK_11Mbps_AWGN_System.dsn: BER and PER performance for 11 Mbps systems with CCK modulation on an AWGN channel.
Error Vector Magnitude and Relative Constellation Error Measurements

WLAN_80211g_OFDM_TxEVM.dsn

Features

- IEEE 802.11g configurable signal source, adjustable data rate
- Adjustable sample rate
- Constellation display
- Integrated RF section

Description

This design tests IEEE 802.11g transmit modulation accuracy and transmitter constellation error by measuring the EVM. The schematic for this design is shown in Figure 17-1.

Measurements in this design are based on IEEE Standard 802.11a-1999 section 17.3.9.6. The transmit modulation accuracy test must be performed by instrumentation capable of converting the transmitted signal into a stream of complex samples at 20 Msamples per second or more, with sufficient accuracy.
terms of I/Q arm amplitude and phase balance, dc offsets, phase noise, and so on. A possible embodiment of such a setup is converting the signal to a low IF frequency with a microwave synthesizer, sampling the signal with a digital oscilloscope and decomposing it digitally into quadrature components.

The sampled signal must be processed in a manner similar to an actual receiver, according to the following, or equivalent steps:

- Start of frame must be detected.
- Transition from short sequences to channel estimation sequences must be detected, and fine timing (with one sample resolution) must be established.
- Coarse and fine frequency offsets must be estimated.
- The packet must be de-rotated according to estimated frequency offset.
- The complex channel response coefficients must be estimated for each subcarrier.
- For each data OFDM symbol: transform the symbol into subcarrier received values, estimate the phase from the pilot subcarriers, de-rotate the subcarrier values according to estimated phase, and divide each subcarrier value with a complex estimated channel response coefficient.
- For each data-carrying subcarrier, find the closest constellation point and calculate the Euclidean distance from it.
- Calculate the RMS average of all errors in a packet:

$$\text{Error}_{\text{RMS}} = \frac{\sum_{i=1}^{N_f} \sum_{j=1}^{L_p} \sum_{k=1}^{52} (I(i, j, k) - I_0(i, j, k))^2 + (Q(i, j, k) - Q_0(i, j, k))^2}{52L_p \times P_0}$$

where

- $L_p$ is the length of the packet
- $N_f$ is the number of frames for the measurement
- $(I_0(i, j, k), Q_0(i, j, k))$ denotes the ideal symbol point of the ith frame, jth OFDM symbol of the frame, kth subcarrier of the OFDM symbol in the complex plane
17-4 Error Vector Magnitude and Relative Constellation Error Measurements

(\(i(i, j, k), Q(i, j, k)\)) denotes the observed point of the \(i\)th frame, \(j\)th OFDM symbol of the frame, \(k\)th subcarrier of the OFDM symbol in the complex plane (see Figure 17-2)

\(P_0\) is the average power of the constellation.

The vector error on a phase plane is shown in Figure 17-3.

The test must be performed over at least 20 frames \((N_f)\) and the RMS average must be taken. The packets under test must be at least 16 OFDM symbols long. Random data must be used for the symbols.

![Figure 17-2. Constellation Error](image)

The EVM and relative constellation RMS error, averaged over subcarriers, OFDM frames, and packets, cannot exceed a data-rate dependent value according to Table 17-1.

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Relative Constellation Error (dB)</th>
<th>EVM (% RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-5</td>
<td>56.2</td>
</tr>
<tr>
<td>9</td>
<td>-8</td>
<td>39.8</td>
</tr>
<tr>
<td>12</td>
<td>-10</td>
<td>31.6</td>
</tr>
<tr>
<td>18</td>
<td>-13</td>
<td>22.3</td>
</tr>
<tr>
<td>24</td>
<td>-16</td>
<td>15.8</td>
</tr>
<tr>
<td>36</td>
<td>-19</td>
<td>11.2</td>
</tr>
</tbody>
</table>
Simulation Results

Simulation results displayed in WLAN_80211g.TxEVM.dds are shown in Figure 17-3 for EVM and relative constellation error of 54 Mbps. The EVM is less than 0.6%; the constellation error is approximately -45dB which is much smaller than the specification requirements given in Table 17-1.

![Figure 17-3. EVM and Relative Constellation Error of 54 Mbps](image)

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Relative Constellation Error (dB)</th>
<th>EVM (% RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>-22</td>
<td>7.9</td>
</tr>
<tr>
<td>54</td>
<td>-25</td>
<td>5.6</td>
</tr>
</tbody>
</table>

### Table 17-1. Allowed EVM and Relative Constellation Error

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>EVM (dB RMS)</th>
<th>Relative Constellation Error (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>3.9227951</td>
<td>-45.315538657</td>
</tr>
<tr>
<td>31</td>
<td>3.9431578</td>
<td>-45.32517374</td>
</tr>
<tr>
<td>32</td>
<td>3.943188676</td>
<td>-45.32509481</td>
</tr>
<tr>
<td>33</td>
<td>3.9432263</td>
<td>-45.34211564</td>
</tr>
<tr>
<td>34</td>
<td>3.94341672</td>
<td>-45.37762929</td>
</tr>
<tr>
<td>35</td>
<td>3.9436981</td>
<td>-45.3571596</td>
</tr>
<tr>
<td>36</td>
<td>3.94371458</td>
<td>-45.3315323</td>
</tr>
<tr>
<td>37</td>
<td>3.9437621</td>
<td>-45.33649457</td>
</tr>
<tr>
<td>38</td>
<td>3.94380956</td>
<td>-45.32512891</td>
</tr>
<tr>
<td>39</td>
<td>3.9438996</td>
<td>-45.3435922</td>
</tr>
<tr>
<td>40</td>
<td>3.9437077</td>
<td>-45.32589571</td>
</tr>
<tr>
<td>41</td>
<td>3.94359331</td>
<td>-45.34249028</td>
</tr>
<tr>
<td>42</td>
<td>3.94329940</td>
<td>-45.34731027</td>
</tr>
<tr>
<td>43</td>
<td>3.9435125</td>
<td>-45.33100484</td>
</tr>
<tr>
<td>44</td>
<td>3.9432042</td>
<td>-45.28455333</td>
</tr>
<tr>
<td>45</td>
<td>3.9436667</td>
<td>-45.33463326</td>
</tr>
</tbody>
</table>

**Benchmark**

- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2001
- Simulation time: approximately 30 minutes

**References**

17-6 Error Vector Measurement for a CCK Signal

IEEE 802.11g EVM and BER/PER Performance

Error Vector Measurement for a CCK Signal
WLAN_80211g_CCK_TxEVM.dsn

Features
- IEEE 802.11g configurable signal source, adjustable data rate
- Adjustable sample rate
- CCK modulation

Description
This design tests IEEE 802.11g transmit modulation accuracy by measuring the EVM. The schematic for this design is shown in Figure 17-4.

Measurements in this design are based on IEEE Standard 802.11b-1999 section 18.4.7.8. The transmit modulation accuracy requirement for the high rate PHY is based on the difference between the actual transmitted waveform and the ideal signal waveform. Modulation accuracy is determined by measuring the peak vector error magnitude during each chip period. Worst-case vector error magnitude cannot exceed 0.35 for the normalized sampled chip data. The ideal complex I and Q constellation points associated with DQPSK modulation, (0.707, 0.707), (0.707, -0.707), (-0.707, 0.707), (-0.707, -0.707), will be used as the reference. These measurements are from baseband I and Q sampled data after recovery through a reference receiver system. The measurement example is shown in Figure 17-5.
Simulation Results

Simulation results displayed in WLAN_80211g_TxEVM.dds are shown in Figure 17-6. The EVM results smaller than the specification requirements.
802.11g EVM and BER/PER Performance

Figure 17-6. EVM Results

Benchmark
- Hardware platform: Pentium III 450 MHz, 512 MB memory
- Software platform: Windows NT 4.0 Workstation, ADS 2002c
- Simulation time: approximately 4 minutes

References
BER and PER Performance, Fading Channel 36 Mbps

WLAN_80211g_OFDM_36Mbps_Fading_System.dsn

Features
- Data rate=36 Mbps, coding rate=3/4, modulation=16-QAM, velocity=0 km/hr
- Length and Order parameter default settings = 512 and 7, respectively
- BER and PER vs. $E_b/N_0$ on fading channel curves displayed

Description
This design shows system performance with 36 Mbps data rate and channel coding on fading channel. A burst length of 512 bytes is simulated.

The top-level schematic for this design is shown in Figure 17-7. SignalSource parameters are contained in Signal_Generation_VARs; Noise, Receiver, and BERPER parameters are contained in RF_Channel_Measurement_VARs.

Figure 17-7. WLAN_80211g_OFDM_36Mbps_Fading_System.dsn Schematic
According to reference [2], five model types have been designed. Model A, an 18-tap fading channel corresponding to a typical office environment for NLOS conditions and a 50ns average rms delay spread, is used in this example. In order to reduce the number of taps needed, the time spacing is non-uniform; for shorter delays, a more dense spacing is used. The average power declines exponentially with time. For Model A, all taps have Rayleigh statistics. The characteristics of this model are listed in Table 17-2.

<table>
<thead>
<tr>
<th>Tap Number</th>
<th>Delay (ns)</th>
<th>Average Relative Power (dB)</th>
<th>Ricean K</th>
<th>Doppler Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>-0.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-1.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>-2.6</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>-3.5</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>-4.3</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>-5.2</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>-6.1</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>-6.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>-7.8</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>-4.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>12</td>
<td>140</td>
<td>-7.3</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>13</td>
<td>170</td>
<td>-9.9</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>-12.5</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>15</td>
<td>240</td>
<td>-13.7</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>16</td>
<td>290</td>
<td>-18.0</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>17</td>
<td>340</td>
<td>-22.4</td>
<td>0</td>
<td>Class</td>
</tr>
<tr>
<td>18</td>
<td>390</td>
<td>-26.7</td>
<td>0</td>
<td>Class</td>
</tr>
</tbody>
</table>
Simulation Results

Simulation results are shown in Figure 17-8 and Figure 17-9.

For PER performance, the WLAN_OFDM_80211g_36Mbps_Fading_System.dsn is approximately 2 dB worse than that of WLAN_80211g_24Mbps_Fading_System.dsn.

Figure 17-8. Fading Channel BER Performance
802.11g EVM and BER/PER Performance

Benchmark

- Hardware platform: Pentium III, 500 MHz, 512 MB memory
- Software platform: Windows NT 4.0, ADS 2002
- Data points: $E_b/N_0$ values is set from 10 to 15 dB
- Simulation time: 50 hours

References


BER and PER Performance, AWGN Channel 11 Mbps for CCK Signal

WLAN_80211g_CCK_11Mbps_AWGN_System.dsn

Features

• Data rate = 11Mbps
• Modulation = CCK
• Carrier frequency offset between transmitter and receiver = 50 kHz
• BER and PER vs. E_b/N_0 on AWGN channel curves are displayed

Description

This design shows system performance of 802.11g with 11Mbps data rate and CCK modulation on an AWGN channel. A burst length of 500 bytes is simulated.

The top-level schematic is shown in Figure 17-10. This design contains SignalSource, Noise, Receiver, and BERPER subnetworks. SignalSource parameters are contained in the Signal_Generation_VARS; Noise and BERPER parameters are contained in the RF_Channel_Measurement_VARS; and, Receiver parameters are contained in the Receiver_VARS.

The SignalSource subnetwork, Figure 17-11, generates a signal source based on user settings.

The Receiver subnetwork, Figure 17-12, receives an RF signal and demodulates the signal as bit streams; it also detects the start of frame and completes the transition from received sequences to frequency offset estimation sequences, estimates the frequency offset caused by carrier differences between transmitter and receiver. A decision feedback equalizer is implemented to equalize the received signal and remove the fixed rotation caused by frequency offset. The equalized signal is then fed into the CCK demodulator and demodulated into bit streams.

The BERPER subnetwork, Figure 17-13, measures system BER and PER.
802.11g EVM and BER/PER Performance

Schematics

Figure 17-10. WLAN_80211b_11Mbps_AWGN_System.dsn Schematic

Figure 17-11. SignalSource Subnetwork Schematic
Simulation Results

Simulation results are shown in Figure 17-14.

Reference data points are shown in page Equations.
802.11g EVM and BER/PER Performance

Figure 17-14. Simulation Results

**Benchmark**
- Hardware platform: Pentium IV, 1.8 GHz, 512 MB memory
- Software platform: Windows XP, ADS 2003A
- Data points: $E_b/N_0$ values is set from 7 to 10 dB
- Simulation time: 1.5 hours

**References**


Index

Numerics
802.11a Standard, 1-1
802.11b, 13-1
802.11g, 17-1

A
ADS-ESGc link, 9-1

B
BER performance
  802.11b CCK, 13-1
  802.11g EVM, 17-1
  80211a, 6-1

E
EVM, 5-1

F
frame format, 1-3
frequency allocations, 1-1

G
guard interval, 1-7

H
HiperLAN tests
  power amplifier, 16-1
  signal source, 15-1

I
instrument links, 8-1, 9-1, 14-1
inter-carrier interference, 1-6

M
Monte Carlo, 1-12

O
OFDM
  modulation, 1-4
  signal, 1-2
  transceiver, 1-9

P
PER performance
  802.11b CCK, 13-1
  802.11g EVM, 17-1
  80211a, 6-1
  phase noise, 1-13
  power amplifier, 2-1

R
receiver, 4-1
receiver specifications, 7-1
receiver tests
  80211a, 9-1

S
signal source tests
  80211b, 10-1

T
test benches, 7-1
transmitter, 3-1
transmitter tests
  80211a, 8-1
  80211b, 11-1, 14-1

V
VSA-ADS link, 9-1

W
windowing, 1-8