Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 1998-2004, Agilent Technologies. All Rights Reserved.

Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries.

Microsoft®, Windows®, MS Windows®, Windows NT®, and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.

Pentium® is a U.S. registered trademark of Intel Corporation.

PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated.

UNIX® is a registered trademark of the Open Group.

Java™ is a U.S. trademark of Sun Microsystems, Inc.
Contents

1 Fixed Artwork

2 SMT Package Layout Artwork Library
 Using SMT Package Artwork as Artwork Replacement 2-2
 Ceramic Flat Pack (CFP) Packages .. 2-3
 Chip and MELF Components .. 2-4
 SOT, DPAK, D2PAK Packages .. 2-6
 Plastic Flat Pack (PFP) Packages ... 2-8
 Quad Flat Pack (QFP) Packages ... 2-8
 Plastic Leaded Chip Carrier (PLCC) .. 2-11
 Small Outline IC (SOIC) ... 2-13
 Using SMT PAL for Custom Components .. 2-15

3 Font Definitions
 din17.. 3-1
 iso3098... 3-1
 roman.. 3-2
 smooth... 3-2
 italic ... 3-3
 standard.. 3-3
 gothic... 3-4
 math... 3-4
 sans... 3-5
 sansbold.. 3-5
 filled... 3-6
 filledbold.. 3-6
 straight... 3-7
 straightfilled .. 3-7

Index
Chapter 1: Fixed Artwork

Numerics

- “145MILXP” on page 1-5
- “145ML4PK” on page 1-5
- “1D2J1A” on page 1-6
- “2D3H1A” on page 1-6
- “2D3J1C” on page 1-7
- “2D7C1A” on page 1-7

A, B

- “AFLANGE” on page 1-8
- “AK” on page 1-8
- “ALMK” on page 1-9
- “ALMK2” on page 1-9
- “AP” on page 1-10
- “AQ” on page 1-10
- “ATF36” on page 1-11
- “ATF70” on page 1-11
- “ATF76” on page 1-12
- “ATF84” on page 1-12
- “ATF86” on page 1-13
- “ATCCAP” on page 1-13
- “AVNK35” on page 1-14
- “AVNK70” on page 1-14
- “AVNK85” on page 1-15
- “AVNK86” on page 1-15
- “AXIAL_L” on page 1-16
- “AXIAL_M” on page 1-16
- “AXRES” on page 1-17
- “AXRES2” on page 1-17
- “AXRES3” on page 1-18
- “BFLANGE” on page 1-18
Fixed Artwork

C, D
“C-LL” on page 1-19
“C-LR” on page 1-19
“C-UL” on page 1-20
“C-UR” on page 1-20
“C145D01” on page 1-21
“C18202” on page 1-21
“C2003” on page 1-22
“C211D07” on page 1-22
“C211D07V2” on page 1-23
“C221CD02” on page 1-23
“C244D04” on page 1-24
“C249D05” on page 1-24
“C2904” on page 1-25
“C30301” on page 1-25
“C317D02” on page 1-26

G, H, L
“GD11” on page 1-34
“GD16” on page 1-35
“GD4” on page 1-35
“GD7” on page 1-36
“GD9” on page 1-36
“GF1” on page 1-37
“GF11” on page 1-37
“GF21” on page 1-38
“GF4” on page 1-38
<table>
<thead>
<tr>
<th>Letter</th>
<th>Model/Part Number</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>“M205”</td>
<td>1-43</td>
</tr>
<tr>
<td></td>
<td>“M253”</td>
<td>1-44</td>
</tr>
<tr>
<td></td>
<td>“MACROT”</td>
<td>1-44</td>
</tr>
<tr>
<td></td>
<td>“MACROX”</td>
<td>1-45</td>
</tr>
<tr>
<td></td>
<td>“ME”</td>
<td>1-45</td>
</tr>
<tr>
<td></td>
<td>“MICROX”</td>
<td>1-46</td>
</tr>
<tr>
<td>N</td>
<td>“NEC01”</td>
<td>1-49</td>
</tr>
<tr>
<td></td>
<td>“NEC03”</td>
<td>1-49</td>
</tr>
<tr>
<td></td>
<td>“NEC07”</td>
<td>1-50</td>
</tr>
<tr>
<td></td>
<td>“NEC08”</td>
<td>1-50</td>
</tr>
<tr>
<td></td>
<td>“NEC12”</td>
<td>1-51</td>
</tr>
<tr>
<td></td>
<td>“NEC13”</td>
<td>1-51</td>
</tr>
<tr>
<td></td>
<td>“NEC14”</td>
<td>1-52</td>
</tr>
<tr>
<td></td>
<td>“NEC15”</td>
<td>1-52</td>
</tr>
<tr>
<td></td>
<td>“NEC18”</td>
<td>1-53</td>
</tr>
<tr>
<td></td>
<td>“NEC19”</td>
<td>1-53</td>
</tr>
<tr>
<td></td>
<td>“NEC20”</td>
<td>1-54</td>
</tr>
<tr>
<td></td>
<td>“NEC30”</td>
<td>1-54</td>
</tr>
<tr>
<td></td>
<td>“NEC32”</td>
<td>1-55</td>
</tr>
<tr>
<td></td>
<td>“NEC33”</td>
<td>1-55</td>
</tr>
<tr>
<td>O, P, R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“OKI_1”</td>
<td>1-62</td>
</tr>
<tr>
<td></td>
<td>“PFLANGE”</td>
<td>1-63</td>
</tr>
<tr>
<td></td>
<td>“RADIAL_L”</td>
<td>1-63</td>
</tr>
<tr>
<td></td>
<td>“RADIAL_M”</td>
<td>1-64</td>
</tr>
<tr>
<td></td>
<td>“RADIAL_S”</td>
<td>1-64</td>
</tr>
<tr>
<td></td>
<td>“RESA”</td>
<td>1-65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“SFLANGE” on page 1-65</td>
<td>“SOT223” on page 1-75</td>
<td></td>
</tr>
<tr>
<td>“SMA _FEM” on page 1-66</td>
<td>“SOT223V2” on page 1-75</td>
<td></td>
</tr>
<tr>
<td>“SMSMICROX” on page 1-66</td>
<td>“SOT23” on page 1-76</td>
<td></td>
</tr>
<tr>
<td>“SOD123” on page 1-67</td>
<td>“SOT23V2” on page 1-76</td>
<td></td>
</tr>
<tr>
<td>“SOD323” on page 1-67</td>
<td>“SOT23V3” on page 1-77</td>
<td></td>
</tr>
<tr>
<td>“SOD80” on page 1-68</td>
<td>“SOT23V4” on page 1-77</td>
<td></td>
</tr>
<tr>
<td>“SOT103” on page 1-68</td>
<td>“SOT23V5” on page 1-78</td>
<td></td>
</tr>
<tr>
<td>“SOT143” on page 1-69</td>
<td>“SOT23V6” on page 1-78</td>
<td></td>
</tr>
<tr>
<td>“SOT143R” on page 1-69</td>
<td>“SOT23V7” on page 1-79</td>
<td></td>
</tr>
<tr>
<td>“SOT143RV2” on page 1-70</td>
<td>“SOT23V8” on page 1-79</td>
<td></td>
</tr>
<tr>
<td>“SOT143V2” on page 1-70</td>
<td>“SOT323” on page 1-80</td>
<td></td>
</tr>
<tr>
<td>“SOT143V3” on page 1-71</td>
<td>“SOT37” on page 1-80</td>
<td></td>
</tr>
<tr>
<td>“SOT143V4” on page 1-71</td>
<td>“SOT89” on page 1-81</td>
<td></td>
</tr>
<tr>
<td>“SOT143V5” on page 1-72</td>
<td>“SOT89V2” on page 1-81</td>
<td></td>
</tr>
<tr>
<td>“SOT143V6” on page 1-73</td>
<td>“SRP” on page 1-82</td>
<td></td>
</tr>
<tr>
<td>“SOT143V7” on page 1-74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T, U, W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“TO117” on page 1-82</td>
<td>“TPLAST” on page 1-86</td>
<td></td>
</tr>
<tr>
<td>“TO206AA” on page 1-83</td>
<td>“TUNCAP” on page 1-87</td>
<td></td>
</tr>
<tr>
<td>“TO206AF” on page 1-83</td>
<td>“UMD” on page 1-87</td>
<td></td>
</tr>
<tr>
<td>“TO226AA” on page 1-84</td>
<td>“UPRIGHT” on page 1-88</td>
<td></td>
</tr>
<tr>
<td>“TO39” on page 1-84</td>
<td>“URP” on page 1-88</td>
<td></td>
</tr>
<tr>
<td>“TO72” on page 1-85</td>
<td>“WIRE0” on page 1-89</td>
<td></td>
</tr>
<tr>
<td>“TO72V2” on page 1-85</td>
<td>“WIRE1” on page 1-89</td>
<td></td>
</tr>
<tr>
<td>“TO92” on page 1-86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
145MILXP

145 MIL X-PACK
4 ports
package and hole 145 mil diameter
3 leads 30 × 155.5 mil, 1 lead 30 × 391.5 mil
pads 60 mil square
BJT

145ML4PK

145 MIL FOUR-PACK
4 ports
package and hole 145 mil diameter
4 leads 30 × 168.7 mil
pads 60 mil square
BJT
Fixed Artwork

1D2J1A

1-2J1A
2 ports
package 59 × 110.2 mil
2 leads 23.6 × 255.9 mil
2 pads 43.6 mil square
Diode

![Diode diagram](image)

2D3H1A

2-3H1A
3 ports
flange 98.4 × 338.6 mil
package 98.4 mil square and circle 90 mil diameter
holes 63 mil diameter 240.2 mil center-to-center
2 leads 23.6 × 78.8 mil
2 pads 23.6 mil square
FET

![FET diagram](image)
2D3J1C

2-3J1C
4 ports
SMT
package 114.4×59 mil
2 short leads 15.8×21.8 mil, 1 long lead 15.8×33.6 mil
collector lead 23.6×53.6 mil
pads are lead size plus 10 mil
BJT

2D7C1A

2-7C1A
3 ports
flange 236.2×728.4 mil
package 236.2×267.8 mil and 220.4×267.8 mil
holes 98.4 mil diameter spaced 551.2 mil center-to-center
2 leads 27.6×157.5 mil
2 pads 27.6 mil square
FET
AFLANGE

(no name given by vendor)
3 ports
flange 820 × 250 mil
holes 120 mil diameter spaced 570 mil center-to-center
leads 50 × 150 mil
pads 50 mil square
FET

AK

AK
5 ports
open flange 976 × 256 mil
holes 130 mil diameter spaced 726 mil center-to-center
leads 60 × 205 mil
pads 60 mil square
FET
ALMK
Alignment marker
conductor diameter 30 mil
no ports

ALMK2
Alignment marker
conductor diameter 20 mil
no ports
Fixed Artwork

AP

AP
3 ports
flange 750 × 250 mil
holes 125 mil diameter 560 mil center-to-center
leads 60 × 200 mil
pads 60 mil square
FET

![AP Diagram]

AQ

AQ
5 ports
flange 750 × 250 mil
holes 130 mil diameter 560 mil center-to-center
leads 60 × 197.5 mil
pads 60 mil square
FET

![AQ Diagram]
ATF36

Avantek 36
4 ports
SMT
package 100 mil octagon and 83 mil diameter circle
leads 20×40 mil
pads 20 mil square
FET

![ATF36 Diagram]

ATF70

Avantek 70
4 port
SMT
package 70 mil square and circle
2 leads 40×212.5 mil, 2 leads 20×212.5 mil
2 pads 40 mil square, 2 pads 20 mil square
FET

![ATF70 Diagram]
Fixed Artwork

ATF76
Avantek 76
4 ports
SMT
package 70 mil octagon and circle
2 leads 40 × 69 mil, 2 leads 20 × 69 mil
2 pads 40 mil square, 2 pads 20 mil square
FET

![ATF76 Diagram](image)

ATF84
Avantek 84
4 ports
package 85 mil diameter
hole 85 mil diameter
leads 20 × 65 mil
pads 20 × 20 mil
FET

![ATF84 Diagram](image)
ATF86
Avantek 86
4 ports
SMT
package 85 mil diameter
leads 20×57.5 mil
pads 40×66.3 mil
FET

ATCCAP
Chip capacitor outline
2 ports
75 mil port-to-port
leads 110×25 mil
packages 110×75
Fixed Artwork

AVNK35
Avantek 35
4 ports
SMT
package 100 mil square
leads 20 × 175 mil
pads 40 mil square
BJT

AVNK70
Avantek 70
4 ports
SMT
package 70 mil square and circle
leads 40 × 212.5 mil and leads 20 × 212.5 mil
pads 40 mil square and pads 20 mil square
BJT
AVNK85
Avantek 85
4 ports
package and hole 85 mil diameter
leads 20 × 207.5 mil
pads 40 mil square
BJT

AVNK86
Avantek 86
4 ports
SMT
package 85 mil diameter
leads 20 × 57.5 mil
pads 40 × 66.3 mil
BJT
Fixed Artwork

AXIAL_L
Axial leaded components (large)
2 ports
leads 30×325
packages 300×770

AXIAL_M
Axial leaded components (medium)
2 ports
leads 30×270
packages 140×390
AXRES
Axial leaded components (small)
2 ports
leads 29×100 mil
resistor 95×249

AXRES2
Axial leaded components
2 ports
leads 17.5×60 mil
resistor 57×150
Fixed Artwork

AXRES3

Axial leaded components
2 ports, 500 mil port-to-port
leads 29.2 × 205 mil
resistor

![AXRES3 Diagram](image)

BFLANGE

no name given by vendor
3 ports
flange 820 × 250 mil
holes 120 mil diameter 570 mil center-to-center
leads 50 × 170 mil
pads 50 mil square
FET

![BFLANGE Diagram](image)
C-LL
Alignment corner marks
no ports
conductor 5 mil wide

![Diagram of C-LL configuration]

C-LR
Alignment corner marks
no ports
conductor 5 mil wide

![Diagram of C-LR configuration]
Fixed Artwork

C-UL
Alignment corner marks
no ports
conductor 5 mil wide

C-UR
Alignment corner marks
no ports
conductor 5 mil wide
C145D01

Motorola Case 145-01
4 ports
stud mount
package 375 mil diameter
hole 325 mil diameter
4 leads 225×317.5 mil
3 pads 225 mil square. 1 pad 225×205 mil
BJT

![Diagram of C145D01](image)

C18202

Motorola Case 182-02
2 ports
package 170 mil diameter cut \times 130 mil chord
holes 22 mil diameter and 22×20 mil
pads 40 mil square
Diode

![Diagram of C18202](image)
Fixed Artwork

C2003

Motorola Case 20-03
3 ports
case 219.5 mil diameter
holes 21 mil diameter 50 mil from case center
pads 40 mil square
BJT

![Diagram of C2003 Case](image)

C211D07

Motorola Case 211-07
4 ports
flange 975 × 250 mil
package 380 mil diameter
holes 120 mil diameter 725 mil center-to-center
leads 220 × 210 mil at 45°
pads 220 × 210 mil
FET

![Diagram of C211D07 Case](image)
C211D07V2

Motorola Case 211-07
4 ports
flange 975×250 mil
package 380 mil diameter
holes 120 mil diameter 725 mil center-to-center
leads 220×210 mil at 45°
pads 220×210 mil
BJT

C221CD02

Motorola Case 221C-02
3 ports
drawn as if flange
package 398×698 mil
hole 145 mil diameter
3 leads 132×33 mil and 58 mil
3 pads 58×132 mil
BJT
Fixed Artwork

C244D04

Motorola Case 244-04
4 ports
stud mount
package 282 mil diameter
hole 250 mil diameter
leads 220 × 294 mil
pads 220 × 220 mil
FET

![Diagram of C244D04](image)

C249D05

Motorola Case 249-05
4 ports
package and hole 282 mil diameter
4 leads 220 × 294 mil
4 pads 220 mil square
BJT

![Diagram of C249D05](image)
C2904

Motorola Case 29-04
3 ports
package 170 mil diameter cut × 135 mil chord
holes 22 mil diameter and 22 × 20 mil
pads 40 mil square
Diode

![Diagram of C2904](image)

C30301

Motorola Case 303-01
4 ports
SMT
100 mil square package
2 leads 40 × 197.5 mil, 2 leads 20 × 197.5 mil
pads 40 mil square
BJT

![Diagram of C30301](image)
C305D01

Motorola Case 305-01
4 ports
stud mount
package and hole 210 mil diameter
2 leads 60 × 330 mil, 2 leads 30 × 330 mil
2 pads 60 mil square, 2 pads 30 mil square
BJT

C317D02

Motorola Case 317-02
4 ports
190 mil diameter package and hole
1 lead 100 × 270.5 mil, 3 leads 36 × 207.5 mil
1 pad 100 mil square, 3 pads 72 mil square
BJT
C319BD01

Motorola Case 319B-01
5 ports
flange 975 × 233 mil
holes 130 mil diameter 725 mil center-to-center
leads 60 × 130 mil
pads 60 mil square
FET

C319D06

Motorola Case 319-06
3 ports
flange 975 × 233 mil
holes 130 mil diameter 725 mil center-to-center
4 leads 60 × 100 mil, 2 leads 120 × 100 mil (one notch)
4 pads 80 × 100 mil, 1 pad 40 × 120 mil
BJT
C369D03
Motorola Case 369-03
3 ports
drawn as for flange mount
package 240 × 258 mil
3 leads 30 × 365 mil
2 pads 63 × 118 mil, 1 pad 265 mil square
BJT

C5102
Motorola Case 51-02
2 ports
package 96 × 265 mil
2 leads 20 × 40 mil (bent)
2 holes 22 mil square
2 pads 44 mil square
Diode
C744AD01

Motorola Case 744A-01
8 ports
flange 385 × 900 mil
package 424 × 400 mil
holes 126 mil diameter 650 mil center-to-center
4 leads 182 × 70 mil, 4 leads 182 × 120 mil
4 pads 70 mil square, 4 pads 120 mil square
BJT

C751D03

Motorola Case 751-03
8 ports
SMT
single device inside
package 192 × 154 mil
8 leads 16.5 × 41.5 mil
8 pads 36.5 mil square
BJT
Fixed Artwork

C7904
Motorola Case 79-04
3 ports
package 352.5 mil diameter
holes 21 mil diameter
100 mil from package center
pads 40 mil square
BJT

CD
4 ports
package 250 mil square
2 leads 100 × 200 mil, 1 lead 90 × 200 mil, 1 lead 50 × 200 mil
2 pads 100 mil square, 1 pad 90 mil square, 1 pad 50 mil square
FET
CERECX

CEREC-X
4 ports
SMT
package 100.4 mil octagon and 86.6 mil diameter circle
leads 19.7 × 32.5 mil
pads 39.5 mil square
BJT

CERECXF

CEREC-XF
4 ports
SMT
package 70 mil octagon
leads 20 × 47.5 mil
pads 20 mil square
FET
CHPCAP
Surface mount components
conductor 40×30 mil
packages 60×120 mil
2 ports

CHPRES
2 ports
packages 60×120 mil
leads 40×30 mil

COIL1
General inductor outline
hand wound coil inductor
2 ports
dia.35 mil
DISK_L
Ceramic disk capacitors (large)
2 ports 200 mil port-to-port
packages 140 × 432 mil
leads 24 mil diameter

DISK_M
Ceramic disk capacitors (medium)
2 ports 200 mil port-to-port
packages 140 × 300 mil
leads 24 mil diameter
DISK_S

Ceramic disk capacitors (small)
2 ports 90 mil port-to-port
packages 140 × 200 mil
leads 24 mil diameter

GD11

GD11
4 ports
SMT
package 98.4 mil square and circle
2 leads 39.4 × 196.9 mil, 2 leads 19.7 × 196.9 mil
2 pads 39.4 mil square, 2 pads 19.7 mil square
FET
GD16
GD16
4 ports
SMT
package 75 mil octagon
2 leads 40 × 40 mil, 2 leads 20 × 40 mil
2 pads 40 mil square, 2 pads 20 mil square
FET

GD4
GD4
4 ports
SMT
package 75 mil octagon
2 leads 40 × 157.5 mil, 2 leads 20 × 157.5 mil
2 pads 40 mil square, 2 pads 20 mil square
FET
Fixed Artwork

GD7

GD7
4 ports
SMT
package 70 mil square (package is octagonal underneath)
2 leads 40 × 30 mil, 2 leads 20 × 30 mil
2 pads 40 mil square, 2 pads 20 mil square
FET

GD9

GD9
4 ports
SMT
package 70 mil square
2 leads 40 × 157.5 mil, 2 leads 20 × 157.5 mil
2 pads 40 mil square, 2 pads 20 mil square
FET

1-36
GF1
GF1
3 ports
flange 327 × 98 mil 10 mil rad corners
package 98 mil square
2 holes 63 mil diameter 213 mil center-to-center
2 leads 24 × 79 mil
2 pads 24 mil square
FET

GF11
GF11
3 ports
open flange 433 × 256 mil
holes 70 mil diameter 362 mil center-to-center
2 leads 20 × 79 mil
2 pads 20 mil square
FET
Fixed Artwork

GF21
GF21
3 ports
open flange 689 × 250 mil 30 mil corners
holes 98.4 mil diameter 563 mil center-to-center
2 leads 39.4 × 157.5 mil
2 pads 39.4 × 39.4 mil
FET

![Index cut](image1)

GF4
GF4
3 ports
flange 417 × 138 mil 12 mil corners
package 150 × 98 mil minus indentations
holes 63 mil diameter 264 mil center-to-center
2 leads 24 × 79 mil
2 pads 24 mil square
FET

![Index cut](image2)
GF7

GF7
3 ports
flange 551 × 173 mil
package 197 × 173 mil minus indentations
holes 87 mil diameter 354 mil center-to-center
2 leads 24 × 79 mil
2 pads 24 mil square
FET

![GF7 Diagram]

HP70GT

HPAC-70GT
4 ports
SMT
package 70 mil diameter
2 leads 30 × 165 mil, 2 leads 20 × 165 mil
pads 40 mil square
BJT

![HP70GT Diagram]
Fixed Artwork

HP85PLAS

HP85 Plastic
4 ports
package and hole 85 mil diameter
leads 20 × 100.5 mil
pads 40 mil square
BJT

```
index cut port 4
```

HPAC100

HPAC100
4 ports
SMT
package 100 mil square and diameter
2 leads 40 × 130 mil, 2 leads 20 × 130 mil
pads 40 mil square
BJT

```
port 4
index cut
```
HPAC100X

HPAC100X
4 ports
SMT
package 100 mil octagon and 83 mil diameter circle
4 leads 20 × 150 mil
pads 40 mil square
BJT

HPAC200

HPAC200
4 ports
package and hole 200 mil diameter
leads enter package at 128 mil diameter
2 leads 60 × 200 mil, 2 leads 30 × 200 mil
pads 60 mil square
BJT
Fixed Artwork

HPAC200V2

HPAC200
4 ports
package and hole 200 mil diameter
leads enter package at 128 mil diameter
2 leads 60×200 mil, 2 leads 30×200 mil
pads 60 mil square
BJT

LG

LG
4 ports
SMT
package 70 mil octagon
2 leads 40×59 mil, 2 leads 20×59 mil
2 pads 40 mil square, 2 pads 20 mil square
FET
LLD
2 ports
SMT
package 114.2 × 53.2 mil
2 leads 11.8 × 53.2 mil
2 pads 31.8 × 73.2 mil
Diode

M205
2 ports
SMT
package 60 × 106.3 mil
2 leads 21.7 × 21.5 mil
2 pads 41.7 × 41.5 mil
Diode
Fixed Artwork

M253

M253
4 ports
SMT
package 70 mil octagon
2 leads 40 × 59 mil, 2 leads 20 × 59 mil
2 pads 40 mil square, 2 pads 20 mil square
FET

![M253 Diagram](attachment:image.png)

MACROT

MACRO-T
3 ports
package and hole 190 mil diameter
2 pins 36 × 207.5 mil, 1 pin 36 × 337.5 mil
pads 72 mil square
BJT

![MACROT Diagram](attachment:image.png)
MACROX

MACRO-X
4 ports
package and hole 190 mil diameter
3 pins 36×207.5 mil, 1 pin 36×337.5 mil
pads 72 mil square
BJT

ME

ME
3 ports
flange 630×197 mil
package 197 mil square
holes 87 mil diameter 472 mil center-to-center
2 leads 39×79 mil
2 pads 39 mil square
FET
Fixed Artwork

MICROX

MICRO-X
4 ports
SMT
package 100 mil octagon and 83 mil diameter circle
leads 20 × 177.5 mil
pads 40 mil square
BJT

![Diagram of MICROX](image)

MOP

Mini Octal Package
8 ports
SMT
package 185.4 × 59 mil
8 leads 25 × 15.8 mil
8 pads 45 × 35.8 mil
Diode

![Diagram of MOP](image)
MW4
MW4
4 ports
SMT
package 51.2 × 114.2 mil
2 leads 31.5 × 25.6 mil, 2 leads 15.8 × 25.6 mil
2 pads 51.5 × 45.6 mil, 2 pads 35.8 × 45.6 mil
FET

MWT70
MWT70
4 ports
SMT
package 70 mil square and circle
2 leads 40 × 200 mil, 2 leads 20 × 200 mil
2 pads 40 mil square, 2 pads 20 mil square
FET
MWT71

MWT71
3 ports
flange 335 × 98 mil
package 98 mil square
holes 63 mil diameter 240 mil center-to-center
2 leads 24 × 201 mil
2 pads 24 mil square
FET

MWT73

MWT73
4 ports
SMT
package 70 mil octagon and circle
2 leads 40 × 157 mil, 2 leads 20 × 157 mil
2 pads 40 mil square, 2 pads 20 mil square
FET
NEC01

NEC01
3 ports
package 275.6 mil diameter circle cut to 244 mil width
1 lead 59 × 78.8 mil, 1 lead 59 mil square
1 pad 59 mil square, 1 pad 59 × 78.8 mil
emitter on bottom
BJT

NEC03

NEC03
4 ports
SMT
package 137.8 mil diameter
2 leads 78.7 × 196.9 mil, 2 leads 39.4 × 196.9 mil
pads 78.7 mil square
BJT
Fixed Artwork

NEC07
NEC07
4 ports
SMT
package 98.4 mil square and circle
2 leads 39.4 \times 196.9 mil, 2 leads 19.7 \times 196.9 mil
pads 39.4 mil square
BJT

NEC08
NEC08
4 ports
SMT
package 78.7 mil square
leads 23.6 \times 196.9 mil
pads 47.2 mil square
BJT
NEC12

NEC12
3 ports
package 229.9 mil diameter
holes 17.8 mil diameter
50 mil from package center
pads 40 mil square
BJT

NEC13

NEC13
3 ports
package 370.1 mil diameter
holes 17.8 mil diameter
100 mil from package center
pads 40 mil square
BJT
NEC14

NEC14
3 ports
package 370.1 mil diameter
holes 17.8 mil diameter
100 mil from package center
pads 40 mil square
BJT

NEC15

NEC15
3 ports
package 370.1 mil diameter
holes 17.8 mil diameter
100 mil from package center
pads 40 mil square
BJT
NEC18
NEC18
4 ports
SMT
package 49.2×78.7 mil
3 leads 11.8×15.8 mil, 1 lead 15.8 mil square
3 pads 31.8 mil square

NEC19
NEC19
3 ports
SMT
package 31.5×63 mil
2 leads 7.9×15.8 mil, 1 lead 11.8×15.8 mil
BJT
Fixed Artwork

NEC20

NEC20
4 ports
stud mount
package and hole 295.3 mil diameter
4 leads 78.8 × 196.9 mil
4 pads 78.8 mil square
BJT

![Diagram of NEC20](image)

NEC30

NEC30
3 ports
SMT
package 49.3 × 78.8 mil
leads 11.8 × 16.7 mil
pads 31.9 × 36.8 mil
BJT

![Diagram of NEC30](image)
NEC32

NEC32
3 ports
package 204.7 mil diameter circle cut × 149.9 mil chord
total y-axis height 165.4 mil
holes 19.7 mil diameter 69.7 mil down from chord spaced 50 mil center-to-center
pads 40 mil square
BJT

NEC33

NEC33
3 ports
SMT
package 115 × 51 mil
leads 16.5 × 21.5 mil
pads 41.5 × 39.4 mil
BJT
Fixed Artwork

NEC34

NEC34
3 ports
SMT
package 177.2 × 97.7 mil
2 leads 16.5 × 33.1 mil and 27.6 × 64.4 mil
2 pads 39.4 × 59.1 mil
BJT

NEC35

NEC35
4 ports
SMT
package 100.4 mil octagon and 82.7 mil diameter circle
leads 19.7 × 149.6 mil
pads 39.4 mil square
BJT

NEC37

NEC37
4 ports
package and hole 149.6 mil diameter
3 leads 23.6×157.5 mil, 1 lead 23.6×393.7 mil
pads 47.2 mil square
BJT

NEC38

NEC38
4 ports
SMT
package 70 mil octagon
leads 20×43.5 mil
pads 20 mil square
FET
NEC39

NEC39
4 ports
SMT
package 59.1×114.2 mil
3 leads 15.7×25.6 mil, 1 lead 23.6×25.6 mil
pads are leads 10 mil xy
BJT

NEC53E

NEC53E
3 ports
flange 800×250 mil
holes 130 mil diameter 563 mil center-to-center
1 lead 30×210 mil, 1 lead 115×210 mil
1 pad 30 mil square, 1 pad 115 mil square
BJT
NEC75

NEC75
3 ports
flange 385.8 × 90.6 mil
holes 70.8 mil diameter 275.6 mil center-to-center
2 leads 19.6 × 118.1 mil
2 pads 19.6 mil square
FET

NEC83

NEC83
4 ports
SMT
package 70 mil square
2 leads 40 × 157.5 mil, 2 leads 20 × 157.5 mil
2 pads 40 mil square, 2 pads 20 mil square
FET
Fixed Artwork

NEC84

NEC84
4 ports
SMT
package 70 mil octagon
leads 20 \(\times\) 157.5 mil
pads 20 mil square
FET

NEC84A

NEC84A
4 ports
SMT
package 70 mil octagon
leads 20 \(\times\) 157.5 mil
pads 20 mil square
FET
NEC87
NEC87
3 ports
package 114.2×137.8 mil octagon
2 leads 23.6×196.9 mil
2 pads 23.6 mil square
collector on bottom
BJT

NEC89
NEC89
4 ports
SMT
package 80 mil octagon
2 leads 80×157.5 mil, 2 leads 20×157.5 mil
2 pads 20 mil square, 2 pads 80 mil square
FET
NEC89A

NEC89A
4 ports
SMT
package 80 mil octagon
2 leads 80 × 157.5 mil, 2 leads 20 × 157.5 mil
2 pads 20 mil square, 2 pads 80 mil square
FET

OKI_1

(no name given by vendor)
3 ports
package and hole 130 × 185 mil
2 leads 19.7 × 78.8 mil
2 pads 19.7 mil square
2 support bars 5 × 20 mil
FET
PFLANGE
(no name given by vendor)
5 ports
flange 820 × 250 mil
holes 120 mil diameter 570 mil center-to-center
leads 60 × 200 mil
pads 60 mil square
FET

RADIAL_L
Radial leaded components
2 ports 400 mil port-to-port
packages 140 × 480 mil
leads 28 mil diameter
RADIAL_M

Radial leaded components
2 ports 200 mil port-to-port
packages 90 × 290 mil
leads 28 mil diameter

![RADIAL_M Diagram](image)

RADIAL_S

Radial leaded components
2 ports 200 mil port-to-port
packages 90 × 190 mil
leads 28 mil diameter

![RADIAL_S Diagram](image)
RESA

Chip resistor
2 ports 30 mil port-to-port
packages 20 × 30 mil
resi 20 × 50 mil

SFLANGE

(no name given by vendor)
4 ports
flange 975 × 250 mil
package 380 mil diameter
holes 120 mil diameter 725 mil center-to-center
leads 220 × 210 mil at 45°
pads 220 × 210 mil
FET
SMA_FEM

SMA connector outline female
no ports
conductor
cond2
leads

SMSMICROX

Siemens MICRO-X
4 ports
SMT
package 70 mil octagon
2 leads 20 × 47.5 mil, 2 leads 40 × 47.5 mil
2 pads 20 mil square, 2 pads 40 mil square
FET
WARNING: NOT identical to MICROX
SOD123

SOD123
2 ports
SMT
package 61 × 106.3 mil
2 leads 19.7 × 23.6 mil
2 pads 39.7 × 43.6 mil
Diode

```
  o
```

SOD323

SOD323
2 ports
SMT
package 49.2 × 98.6 mil
2 leads 11.8 × 15.8 mil
2 pads 31.8 × 35.8 mil
Diode

```
  o
```
SOD80

SOD80
2 ports
SMT
package 63×137.8 mil
2 leads 11.8×63 mil
2 pads 31.8×83 mil
Diode

SOT103

SOT103
4 ports
package and hole 189 mil diameter
3 leads 45.3×200.8 mil
1 lead 45.3×318.9 mil
pads 90.6 mil square
BJT
SOT143
SOT143
4 ports
SMT
package 51 × 115 mil
3 leads 16 × 20 mil, 1 lead 32 × 20 mil
3 pads 40 × 39.4 mil, 1 pad 55.2 × 40 mil
BJT

SOT143R
SOT143R
4 ports
SMT
package 51 × 115 mil
3 leads 16 × 20 mil, 1 lead 32 × 20 mil
3 pads 40 × 39.4 mil, 1 pad 55.2 × 40 mil
BJT
SOT143RV2
SOT143
4 ports
SMT
package 51×115 mil
3 leads 16×20 mil, 1 lead 32×20 mil
3 pads 40×39.4 mil, 1 pad 55.2×40 mil
BJT

SOT143V2
SOT143
4 ports
SMT
package 51×115 mil
3 leads 16×20 mil, 1 lead 32×20 mil
3 pads 40×39.4 mil, 1 pad 55.2×40 mil
BJT
SOT143V3

SOT143
4 ports
SMT
package 51×115 mil
3 leads 16×20 mil, 1 lead 32×20 mil
3 pads 40×39.4 mil, 1 pad 55.2×40 mil
Diode

![Diagram of SOT143V3](image)

SOT143V4

SOT143
4 ports
SMT
package 51×115 mil
3 leads 16×20 mil, 1 lead 32×20 mil
3 pads 40×39.4 mil, 1 pad 55.2×40 mil
Diode

![Diagram of SOT143V4](image)
SOT143V5

SOT143
4 ports
SMT
package 51 × 115 mil
3 leads 16 × 20 mil, 1 lead 32 × 20 mil
3 pads 40 × 39.4 mil, 1 pad 55.2 × 40 mil
Diode
SOT143V6

SOT143
4 ports
SMT
package 51 × 115 mil
3 leads 16 × 20 mil, 1 lead 32 × 20 mil
3 pads 40 × 39.4 mil, 1 pad 55.2 × 40 mil
Diode
SOT143V7

SOT143
4 ports
SMT
package 51×115 mil
3 leads 16×20 mil, 1 lead 32×20 mil
3 pads 40×39.4 mil, 1 pad 55.2×40 mil
Diode
SOT223

SOT223
4 ports
SMT
package 255.9 × 137.8 mil
3 leads 27.6 × 68.9 mil, 1 lead 118.1 × 68.9 mil
3 pads 98.5 × 59.2 mil, 1 pad 78.9 × 149.6 mil
BJT

SOT223V2

SOT223
3 ports
SMT
package 255.9 × 137.8 mil
3 leads 27.6 × 68.9 mil, 1 lead 118.1 × 68.9 mil
3 pads 98.5 × 59.2 mil, 1 pad 78.9 × 149.6 mil
Diode
Fixed Artwork

SOT23

SOT23
3 ports
SMT
package 115×51 mil
leads 16.5×21.5 mil
pads 41.5×39.4 mil
BJT

![Diagram of SOT23](Diagram)

SOT23V2

SOT23
2 ports
SMT
package 115×51 mil
leads 16.5×21.5 mil
pads 41.5×39.4 mil
Diode

![Diagram of SOT23V2](Diagram)
SOT23V3
SOT23
2 ports
SMT
package 115 × 51 mil
leads 16.5 × 21.5 mil
pads 41.5 × 39.4 mil
Diode

SOT23V4
SOT23
2 ports
SMT
package 115 × 51 mil
leads 16.5 × 21.5 mil
pads 41.5 × 39.4 mil
Diode
Fixed Artwork

SOT23V5
SOT23
3 ports
SMT
package 115×51 mil
leads 16.5×21.5 mil
pads 41.5×39.4 mil
Diode

![Diode SOT23V5 diagram](image1)

SOT23V6
SOT23
3 ports
SMT
package 115×51 mil
leads 16.5×21.5 mil
pads 41.5×39.4 mil
Diode

![Diode SOT23V6 diagram](image2)
SOT23V7

SOT23
3 ports
SMT
package 115 × 51 mil
leads 16.5 × 21.5 mil
pads 41.5 × 39.4 mil
Diode

SOT23V8

SOT23
3 ports
SMT
package 115 × 51 mil
leads 16.5 × 21.5 mil
pads 41.5 × 39.4 mil
Diode
SOT323

SOT323
3 ports
SMT
package 78.6 × 49.4 mil
leads 11.8 × 16.8 mil
pads 31.8 × 36.8 mil
BJT

SOT37

SOT37
3 ports
package and hole 189 mil diameter
2 leads 41.3 × 200.8 mil
1 lead 41.3 × 318.9 mil
pads 82.6 mil square
BJT
SOT89

SOT89
3 ports
SMT
package 177.2 × 97.7 mil
2 leads 16.5 × 33.1 mil
collector lead 18.6 × 33.1 mil and 27.6 × 64.64 mil
2 pads 59.1 × 39.4 mil
BJT

![SOT89 Diagram]

SOT89V2

SOT89
3 ports
SMT
package 177.2 × 97.7 mil
2 leads 16.5 × 33.1 mil
collector lead 18.6 × 33.1 mil and 27.6 × 64.64 mil
2 pads 59.1 × 39.4 mil
BJT

![SOT89V2 Diagram]
Fixed Artwork

SRP

SRP
2 ports
SMT
package 63 × 104.3 mil
2 leads 22.6 × 23.6 mil
2 pads 42.6 × 43.6 mil
Diode

![SRP Diagram](image1)

TO117

TO117
4 ports
stud mount package and hole 295.3 diameter
2 leads 157.5 × 393.7 mil, 2 leads 59.1 × 393.7 mil
2 pads 59.1 mil square, 2 pads 157.5 mil square
BJT

![TO117 Diagram](image2)
TO206AA

TO206AA
3 ports
package 219.5 mil diameter
holes 21 mil diameter 50 mil from package center
pads 40 mil square
BJT

TO206AF

TO206AF
3 ports
package 219.5 mil diameter
holes 21 mil diameter 50 mil from package center
pads 40 mil square
BJT
Fixed Artwork

TO226AA

TO226AA
3 ports
package 170 mil diameter cut $\times 135$ mil chord
holes 22 mil diameter and 22 \times 20 mil
pads 40 mil square
BJT

TO39

TO39
3 ports
package 352.5 mil diameter
holes 21 mil diameter 100 mil from package center
pads 40 mil square
BJT
TO72

TO72
3 ports
package 225.4 mil diameter
holes 21 mil diameter 50 mil from center
pads 40 mil square
BJT

TO72V2

TO72V2
3 ports
package 225.4 mil diameter
holes 21 mil diameter 50 mil from center
pads 40 mil square
BJT
Fixed Artwork

TO92

TO92
3 ports
package 170 mil diameter cut × 135 mil chord
holes 22 mil diameter and 22 × 20 mil
pads 40 mil square
BJT

![TO92 Diagram](image)

TPLAST

TPLAST
3 ports
package and hole 181.1 mil diameter
2 leads 35.4 × 196.85 mil, 1 lead 35.4 × 315 mil
pads 70.8 mil square
BJT

![TPLAST Diagram](image)
TUNCAP

Tunable chip capacitor
2 ports 75 mil port-to-port
leads 110 × 25 mil
packages 12 × 62
dielectric 110 × 115

UMD

UMD
2 ports
package 63 × 102.4 mil
2 leads 15.8 × 31.6 mil (bent)
2 pads 40 mil square
2 holes 20 mil square
Diode
Fixed Artwork

UPRIGHT

Upright mounted variable resistor
no ports
packages 170 × 250 mil
Text

![UPRIGHT diagram](image)

URP

URP
2 ports
SMT
package 52 × 70 mil
2 leads 10 × 15 mil
2 pads 30 × 35 mil
Diode

![URP diagram](image)
WIRE0

Wire loop outline
2 ports 133.5 mil port-to-port
conductor 15 mil wide × 47 mil
dielectric

WIRE1

one turn coil outline
2 ports 330 mil port-to-port
dielectric 35 mil wide
Chapter 2: SMT Package Layout Artwork Library

The SMT Package Layout Artwork Library (SMT PAL) defines the SMT package artwork for some of the most commonly-used packages. The SMT PAL consists of 131 artwork packages of 7 different types:

- Ceramic Flat Pack (CFP)
- Chip and MELF components
- SOT, DPAK and D2PAK
- Plastic Flat Pack (PFP)
- Quad Flat Pack (QFP)
- Plastic Leaded Chip Carrier (PLCC)
- Small Outline IC (SOIC)

This chapter describes the library, including the package type and name, the AEL interface function name (AEL macro name), and the dimensions of the package. A diagram is shown for each package type.

This chapter also describes how you can use the SMT PAL to define the SMT package artwork in a custom `create_item` and how you can use the AEL macro name defining the package artwork as an artwork replacement for sub-circuits or sub-systems.
Using SMT Package Artwork as Artwork Replacement

The procedure for using the SMT package artwork as an artwork replacement is similar to using the standard artwork replacements. In the Design Parameters dialog box, change the artwork type to AEL macro and define the two parameters, SMTPAD and OFFSET. Set the SMTPAD parameter type to string.

Figure 2-1 shows an example for using the SMT package layout artwork library AEL function as an artwork replacement, through the Parametric Subnetwork (PSN). Underlying the network 3PortSubNet is the element S3P, that can be viewed by pushing into the component. In the Design Parameters dialog for the subnetwork, 3PortSubNet, the Artwork Type is set to AEL macro and Name is set to smtart_SOT23. Two parameters, SMTPAD and OFFSET, are defined in the Design Parameters dialog. Set the SMTPAD parameter value to String, with “Pad1” as its default value. Set the OFFSET parameter type to real, with 0 as its default value.

Figure 2-1. SMT Artwork Replacement Examples
Ceramic Flat Pack (CFP) Packages

Table 2-1 lists 17 CFP packages and the associated layout artwork AEL macro name and dimensions for each package. Figure 2-2 shows the layout artwork for a typical CFP with the marked dimensions given in the table.

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package</th>
<th>Lead</th>
<th>Lead-lead Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Width (mm)</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
</tr>
<tr>
<td>CFP24</td>
<td>smtart_CFP24</td>
<td>15.36</td>
<td>9.65</td>
<td>0.43</td>
</tr>
<tr>
<td>CFP28</td>
<td>smtart_CFP28</td>
<td>18.78</td>
<td>9.14</td>
<td>0.43</td>
</tr>
<tr>
<td>CFP42</td>
<td>smtart_CFP42</td>
<td>27.16</td>
<td>16.24</td>
<td>0.43</td>
</tr>
<tr>
<td>CFP10-03</td>
<td>smtart_CFP10_03</td>
<td>7.36</td>
<td>3.81</td>
<td>0.305</td>
</tr>
<tr>
<td>CFP14-03</td>
<td>smtart_CFP14_03</td>
<td>9.9</td>
<td>3.81</td>
<td>0.305</td>
</tr>
<tr>
<td>CFP10-04</td>
<td>smtart_CFP10_04</td>
<td>7.36</td>
<td>6.35</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP14-04</td>
<td>smtart_CFP14_04</td>
<td>9.9</td>
<td>6.35</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP16-04</td>
<td>smtart_CFP16_04</td>
<td>11.17</td>
<td>6.35</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP16-21</td>
<td>smtart_CFP16_21</td>
<td>11.17</td>
<td>13.96</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP20-22</td>
<td>smtart_CFP20_22</td>
<td>13.71</td>
<td>16.5</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP24-19</td>
<td>smtart_CFP24_19</td>
<td>16.25</td>
<td>8.88</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP24-21</td>
<td>smtart_CFP24_21</td>
<td>16.25</td>
<td>13.96</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP28-19</td>
<td>smtart_CFP28_19</td>
<td>18.79</td>
<td>8.88</td>
<td>0.508</td>
</tr>
<tr>
<td>CFP36-20</td>
<td>smtart_CFP36_20</td>
<td>23.87</td>
<td>11.42</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP36-21</td>
<td>smtart_CFP36_21</td>
<td>23.87</td>
<td>13.96</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP36-23</td>
<td>smtart_CFP36_23</td>
<td>23.87</td>
<td>21.57</td>
<td>0.431</td>
</tr>
<tr>
<td>CFP40-20</td>
<td>smtart_CFP40_20</td>
<td>26.41</td>
<td>11.42</td>
<td>0.431</td>
</tr>
</tbody>
</table>
Table 2-2 lists 15 chip component packages and 4 MELF components, and the associated layout artwork AEL macro name and dimensions for each package. Figure 2-3 shows the layout artwork for a typical chip component, 0402, with the marked dimensions given in the table.

Table 2-2. Chip and MELF Component Packages

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package Width (mm)</th>
<th>Package Length (mm)</th>
<th>End-cap Termination Length (mm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0402</td>
<td>smtart_0402</td>
<td>0.508</td>
<td>1.00</td>
<td>0.127</td>
<td>Resistor</td>
</tr>
<tr>
<td>0603-Res</td>
<td>smtart_0603R</td>
<td>0.787</td>
<td>1.55</td>
<td>0.305</td>
<td>Resistor</td>
</tr>
<tr>
<td>0603-Cap</td>
<td>smtart_0603C</td>
<td>0.787</td>
<td>1.55</td>
<td>0.203</td>
<td>Capacitor</td>
</tr>
<tr>
<td>0805</td>
<td>smtart_0805</td>
<td>1.22</td>
<td>2.01</td>
<td>0.457</td>
<td>Resistor or capacitor</td>
</tr>
<tr>
<td>1005</td>
<td>smtart_1005</td>
<td>1.27</td>
<td>2.54</td>
<td>0.254</td>
<td>Capacitor</td>
</tr>
</tbody>
</table>
Table 2-2. Chip and MELF Component Packages (continued)

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package</th>
<th>End-cap Termination Length (mm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Width</td>
<td>Length (mm)</td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td>smtart_1206</td>
<td>1.57</td>
<td>3.20</td>
<td>0.558</td>
</tr>
<tr>
<td>1210</td>
<td>smtart_1210</td>
<td>2.49</td>
<td>3.20</td>
<td>0.558</td>
</tr>
<tr>
<td>1805</td>
<td>smtart_1805</td>
<td>1.27</td>
<td>4.57</td>
<td>0.305</td>
</tr>
<tr>
<td>1808</td>
<td>smtart_1808</td>
<td>2.03</td>
<td>4.57</td>
<td>0.305</td>
</tr>
<tr>
<td>1812</td>
<td>smtart_1812</td>
<td>3.17</td>
<td>4.57</td>
<td>0.305</td>
</tr>
<tr>
<td>1825</td>
<td>smtart_1825</td>
<td>6.35</td>
<td>4.57</td>
<td>0.305</td>
</tr>
<tr>
<td>2010</td>
<td>smtart_2010</td>
<td>2.54</td>
<td>5.1</td>
<td>0.40</td>
</tr>
<tr>
<td>2220</td>
<td>smtart_2220</td>
<td>5.08</td>
<td>5.58</td>
<td>1.27</td>
</tr>
<tr>
<td>2225</td>
<td>smtart_2225</td>
<td>6.35</td>
<td>5.58</td>
<td>1.27</td>
</tr>
<tr>
<td>2512</td>
<td>smtart_2512</td>
<td>3.2</td>
<td>6.3</td>
<td>0.40</td>
</tr>
<tr>
<td>2309</td>
<td>smtart_2309</td>
<td>2.3</td>
<td>5.9</td>
<td>1.0</td>
</tr>
<tr>
<td>1406</td>
<td>smtart_1406</td>
<td>1.55</td>
<td>3.5</td>
<td>0.80</td>
</tr>
<tr>
<td>SOD-80</td>
<td>smtart_SOD80</td>
<td>1.60</td>
<td>3.5</td>
<td>0.431</td>
</tr>
<tr>
<td>SOD-87</td>
<td>smtart_SOD87</td>
<td>1.6</td>
<td>3.5</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Note: The pads have been omitted in the figure.

Figure 2-3. Chip Component Layout Artwork
SMT Package Layout Artwork Library

SOT, DPAK, D2PAK Packages

Table 2-3 lists 20 SOT, DPAK, and D2PAK packages and the associated layout artwork AEL macro name and dimensions for each package.

Most packages require two parameters, SMTPAD and OFFSET. Packages that require two SMTPAD parameters are indicated by an asterisk (*). If lead 1 (e.g., SOT143) is of a different dimension than the other leads, the first SMTPAD identifies lead 1. If a lead other than lead 1 (e.g., DPAK1) is of a different dimension, then the second SMTPAD identifies the lead of a different dimension.

Figure 2-4 shows the layout artwork for a typical SOT-23 package with the marked dimensions given in the table.

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package</th>
<th>Lead 1</th>
<th>Other Leads</th>
<th>Lead-lead Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-23</td>
<td>smtart_SOT23</td>
<td>2.92</td>
<td>1.30</td>
<td>0.45</td>
<td>0.51</td>
</tr>
<tr>
<td>SOT-23, Metric</td>
<td>smtart_SOT23M1</td>
<td>2.92</td>
<td>1.50</td>
<td>0.45</td>
<td>0.50</td>
</tr>
<tr>
<td>SOT-23, Metric</td>
<td>smtart_SOT23M2</td>
<td>2.92</td>
<td>1.50</td>
<td>0.45</td>
<td>0.65</td>
</tr>
<tr>
<td>SOT-23, Metric</td>
<td>smtart_SOT23M3</td>
<td>1.60</td>
<td>0.80</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>SOT-23, Metric</td>
<td>smtart_SOT23M4</td>
<td>2.00</td>
<td>1.25</td>
<td>0.30</td>
<td>0.43</td>
</tr>
<tr>
<td>SOT-23, Metric</td>
<td>smtart_SOT23M5</td>
<td>2.90</td>
<td>1.30</td>
<td>0.40</td>
<td>0.55</td>
</tr>
<tr>
<td>SOT-25</td>
<td>smtart_SOT25A</td>
<td>2.92</td>
<td>1.50</td>
<td>0.30</td>
<td>0.65</td>
</tr>
<tr>
<td>SOT-25</td>
<td>smtart_SOT25B</td>
<td>2.00</td>
<td>0.90</td>
<td>0.20</td>
<td>0.60</td>
</tr>
<tr>
<td>SOT-25</td>
<td>smtart_SOT25C</td>
<td>2.00</td>
<td>1.25</td>
<td>0.20</td>
<td>0.43</td>
</tr>
<tr>
<td>SOT-25</td>
<td>smtart_SOT2 5D</td>
<td>2.90</td>
<td>1.60</td>
<td>0.30</td>
<td>0.60</td>
</tr>
<tr>
<td>SOT-36</td>
<td>smtart_SOT36</td>
<td>2.90</td>
<td>1.60</td>
<td>0.30</td>
<td>0.60</td>
</tr>
<tr>
<td>SOT-143*</td>
<td>smtart_SOT143A</td>
<td>2.90</td>
<td>1.30</td>
<td>0.88</td>
<td>0.75</td>
</tr>
<tr>
<td>SOT-143*</td>
<td>smtart_SOT143B</td>
<td>2.90</td>
<td>1.30</td>
<td>0.88</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Note: An asterisk (*) denotes that the artwork requires 2 SMTPAD components.
Table 2-3. SOT, DPAK, D2PAK Packages (continued)

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package</th>
<th>Lead 1</th>
<th>Other Leads</th>
<th>Lead-lead Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Width (mm)</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Length (mm)</td>
</tr>
<tr>
<td>SOT-223*</td>
<td>smtart_SOT223</td>
<td>6.50</td>
<td>3.50</td>
<td>3.00</td>
<td>1.75</td>
</tr>
<tr>
<td>DPAK*</td>
<td>smtart_DPAK1</td>
<td>5.50</td>
<td>5.50</td>
<td>5.20</td>
<td>2.79</td>
</tr>
<tr>
<td>DPAK*</td>
<td>smtart_DPAK2</td>
<td>5.50</td>
<td>5.50</td>
<td>5.20</td>
<td>12.0</td>
</tr>
<tr>
<td>DPAK*</td>
<td>smtart_DPAK3</td>
<td>6.09</td>
<td>6.09</td>
<td>5.20</td>
<td>2.74</td>
</tr>
<tr>
<td>DPAK*</td>
<td>smtart_DPAK4</td>
<td>5.87</td>
<td>6.10</td>
<td>4.83</td>
<td>2.74</td>
</tr>
<tr>
<td>DPAK*</td>
<td>smtart_DPAK5</td>
<td>8.15</td>
<td>5.82</td>
<td>5.38</td>
<td>4.45</td>
</tr>
<tr>
<td>D2PAK*</td>
<td>smtart_D2PAK</td>
<td>10.41</td>
<td>9.96</td>
<td>0.71</td>
<td>4.83</td>
</tr>
</tbody>
</table>

Note: An asterisk (*) denotes that the artwork requires 2 SMTPAD components.

Figure 2-4. SOT-23 Layout Artwork

Note: The pads have been omitted in the figure.
Plastic Flat Pack (PFP) Packages

Table 2-4 lists 3 Plastic Flat Pack (PFP) packages and the associated layout artwork AEL macro name and dimensions for each package. Figure 2-5 shows the layout artwork for a PFP with the marked dimensions given in the table.

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package Width (mm)</th>
<th>Package Length (mm)</th>
<th>Lead Width (mm)</th>
<th>Lead Length (mm)</th>
<th>Lead-lead Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFP-16</td>
<td>smtart_PFP16</td>
<td>10.18</td>
<td>6.85</td>
<td>0.43</td>
<td>8.88</td>
<td>1.27</td>
</tr>
<tr>
<td>PFP-18</td>
<td>smtart_PFP18</td>
<td>11.04</td>
<td>7.79</td>
<td>0.43</td>
<td>7.87</td>
<td>1.27</td>
</tr>
<tr>
<td>PFP-20</td>
<td>smtart_PFP20</td>
<td>15.49</td>
<td>9.27</td>
<td>0.43</td>
<td>7.72</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Note: The pads have been omitted in the figure.

Figure 2-5. Plastic Flat Pack (PFP) Layout Artwork

Quad Flat Pack (QFP) Packages

Table 2-5 lists 48 Quad Flat Pack (QFP) and the associated layout artwork AEL macro name and dimensions for each package. Figure 2-6 shows the layout artwork for a typical QFP package with the marked dimensions given in the table.
Table 2-5. Quad Flat Pack (QFP) Packages

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package</th>
<th>Lead</th>
<th>Lead-lead</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Width (mm)</td>
<td>Length (mm)</td>
<td>Width (mm)</td>
<td>Length (mm)</td>
</tr>
<tr>
<td>QFP32A</td>
<td>smtart_QFP32A</td>
<td>7.0</td>
<td>7.0</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP32B</td>
<td>smtart_QFP32B</td>
<td>5.0</td>
<td>5.0</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP40A</td>
<td>smtart_QFP40A</td>
<td>6.0</td>
<td>6.0</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP40B</td>
<td>smtart_QFP40B</td>
<td>5.0</td>
<td>5.0</td>
<td>0.15</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP40C</td>
<td>smtart_QFP40C</td>
<td>7.0</td>
<td>5.0</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP44A</td>
<td>smtart_QFP44A</td>
<td>10.5</td>
<td>11.5</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>QFP44B</td>
<td>smtart_QFP44B</td>
<td>10.1</td>
<td>10.1</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>QFP44C</td>
<td>smtart_QFP44C</td>
<td>10.6</td>
<td>10.6</td>
<td>0.3</td>
<td>1.9</td>
</tr>
<tr>
<td>QFP44D</td>
<td>smtart_QFP44D</td>
<td>10.0</td>
<td>10.0</td>
<td>0.3</td>
<td>1.61</td>
</tr>
<tr>
<td>QFP44E</td>
<td>smtart_QFP44E</td>
<td>10.0</td>
<td>10.0</td>
<td>0.41</td>
<td>1.99</td>
</tr>
<tr>
<td>QFP44F</td>
<td>smtart_QFP44F</td>
<td>14.0</td>
<td>14.0</td>
<td>0.35</td>
<td>1.61</td>
</tr>
<tr>
<td>QFP48A</td>
<td>smtart_QFP48A</td>
<td>12.7</td>
<td>12.7</td>
<td>0.3</td>
<td>2.3</td>
</tr>
<tr>
<td>QFP48B</td>
<td>smtart_QFP48B</td>
<td>12.0</td>
<td>12.0</td>
<td>0.3</td>
<td>1.65</td>
</tr>
<tr>
<td>QFP48C</td>
<td>smtart_QFP48C</td>
<td>7.0</td>
<td>7.0</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP48D</td>
<td>smtart_QFP48D</td>
<td>6.0</td>
<td>6.0</td>
<td>0.15</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP52A</td>
<td>smtart_QFP52A</td>
<td>16.7</td>
<td>16.7</td>
<td>0.3</td>
<td>2.3</td>
</tr>
<tr>
<td>QFP52B</td>
<td>smtart_QFP52B</td>
<td>10.0</td>
<td>10.0</td>
<td>0.3</td>
<td>1.61</td>
</tr>
<tr>
<td>QFP52C</td>
<td>smtart_QFP52C</td>
<td>10.0</td>
<td>10.0</td>
<td>0.3</td>
<td>2.05</td>
</tr>
<tr>
<td>QFP52D</td>
<td>smtart_QFP52D</td>
<td>7.0</td>
<td>5.0</td>
<td>0.15</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP54</td>
<td>smtart_QFP5</td>
<td>11.2</td>
<td>11.2</td>
<td>0.3</td>
<td>1.6</td>
</tr>
<tr>
<td>QFP56</td>
<td>smtart_QFP56</td>
<td>11.5</td>
<td>12.5</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>QFP60A</td>
<td>smtart_QFP60A</td>
<td>14.0</td>
<td>14.0</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td>QFP60B</td>
<td>smtart_QFP60B</td>
<td>10.0</td>
<td>7.0</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>QFP64A</td>
<td>smtart_QFP64A</td>
<td>15</td>
<td>15</td>
<td>0.35</td>
<td>1.3</td>
</tr>
<tr>
<td>QFP64B</td>
<td>smtart_QFP64B</td>
<td>19.4</td>
<td>15</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>QFP64C</td>
<td>smtart_QFP64C</td>
<td>15.3</td>
<td>15.3</td>
<td>0.35</td>
<td>1.5</td>
</tr>
<tr>
<td>QFP64D</td>
<td>smtart_QFP64D</td>
<td>21.3</td>
<td>15.3</td>
<td>0.41</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Table 2-5. Quad Flat Pack (QFP) Packages (continued)

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package Width (mm)</th>
<th>Package Length (mm)</th>
<th>Lead Width (mm)</th>
<th>Lead Length (mm)</th>
<th>Lead-lead Spacing (mm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFP64E</td>
<td>smtart_QFP64E</td>
<td>22.8</td>
<td>22.8</td>
<td>0.457</td>
<td>10.15</td>
<td>1.27</td>
<td>16 leads/side</td>
</tr>
<tr>
<td>QFP64F</td>
<td>smtart_QFP64F</td>
<td>14.0</td>
<td>14.0</td>
<td>0.381</td>
<td>1.61</td>
<td>0.8</td>
<td>13 × 19 leads</td>
</tr>
<tr>
<td>QFP64G</td>
<td>smtart_QFP64G</td>
<td>14.0</td>
<td>14.0</td>
<td>0.356</td>
<td>1.18</td>
<td>0.8</td>
<td>16 leads/side</td>
</tr>
<tr>
<td>QFP64H</td>
<td>smtart_QFP64H</td>
<td>20.0</td>
<td>14.0</td>
<td>0.432</td>
<td>1.61</td>
<td>1.0</td>
<td>13 × 19 leads</td>
</tr>
<tr>
<td>QFP64I</td>
<td>smtart_QFP64I</td>
<td>7.0</td>
<td>7.0</td>
<td>0.15</td>
<td>1.0</td>
<td>0.4</td>
<td>16 leads/side</td>
</tr>
<tr>
<td>QFP70</td>
<td>smtart_QFP70</td>
<td>23.6</td>
<td>10.4</td>
<td>0.3</td>
<td>2.5</td>
<td>0.8</td>
<td>11 × 24 leads</td>
</tr>
<tr>
<td>QFP72</td>
<td>smtart_QFP72</td>
<td>10.0</td>
<td>10.0</td>
<td>0.2</td>
<td>1.0</td>
<td>0.5</td>
<td>18 leads/side</td>
</tr>
<tr>
<td>QFP74</td>
<td>smtart_QFP74</td>
<td>20.6</td>
<td>20.6</td>
<td>0.4</td>
<td>1.3</td>
<td>1.0</td>
<td>18 × 19 leads</td>
</tr>
<tr>
<td>QFP76</td>
<td>smtart_QFP76</td>
<td>10.0</td>
<td>7.0</td>
<td>0.15</td>
<td>1.0</td>
<td>0.4</td>
<td>15 × 23 leads</td>
</tr>
<tr>
<td>QFP80A</td>
<td>smtart_QFP80A</td>
<td>14.0</td>
<td>14.0</td>
<td>0.3</td>
<td>1.6</td>
<td>0.65</td>
<td>20 leads/side</td>
</tr>
<tr>
<td>QFP80B</td>
<td>smtart_QFP80B</td>
<td>20.0</td>
<td>14.0</td>
<td>0.35</td>
<td>1.8</td>
<td>0.8</td>
<td>16 × 24 leads</td>
</tr>
<tr>
<td>QFP80C</td>
<td>smtart_QFP80C</td>
<td>20.0</td>
<td>14.0</td>
<td>0.35</td>
<td>2.35</td>
<td>0.8</td>
<td>16 × 24 leads</td>
</tr>
<tr>
<td>QFP80D</td>
<td>smtart_QFP80D</td>
<td>14.0</td>
<td>14.0</td>
<td>0.3</td>
<td>1.18</td>
<td>0.65</td>
<td>20 × 20 leads/side</td>
</tr>
<tr>
<td>QFP80E</td>
<td>smtart_QFP80E</td>
<td>20.0</td>
<td>14.0</td>
<td>0.36</td>
<td>2.1</td>
<td>0.8</td>
<td>16 × 24 leads</td>
</tr>
<tr>
<td>QFP80F</td>
<td>smtart_QFP80F</td>
<td>20.0</td>
<td>14.0</td>
<td>0.36</td>
<td>1.6</td>
<td>0.8</td>
<td>16 × 24 leads</td>
</tr>
<tr>
<td>QFP80G</td>
<td>smtart_QFP80G</td>
<td>12.0</td>
<td>12.0</td>
<td>0.203</td>
<td>1.0</td>
<td>0.5</td>
<td>20 × 20 leads/side</td>
</tr>
<tr>
<td>QFP80A</td>
<td>smtart_QFP80A</td>
<td>20.0</td>
<td>14.0</td>
<td>0.3</td>
<td>2.5</td>
<td>0.65</td>
<td>18 × 26 leads</td>
</tr>
<tr>
<td>QFP80B</td>
<td>smtart_QFP80B</td>
<td>12.0</td>
<td>12.0</td>
<td>0.2</td>
<td>1.0</td>
<td>0.5</td>
<td>22 leads/side</td>
</tr>
<tr>
<td>QFP80C</td>
<td>smtart_QFP80C</td>
<td>10.0</td>
<td>10.0</td>
<td>0.15</td>
<td>1.0</td>
<td>0.4</td>
<td>22 leads/side</td>
</tr>
<tr>
<td>QFP80D</td>
<td>smtart_QFP80D</td>
<td>14.0</td>
<td>10.0</td>
<td>0.2</td>
<td>1.0</td>
<td>0.5</td>
<td>18 × 26 leads</td>
</tr>
<tr>
<td>QFP94</td>
<td>smtart_QFP94</td>
<td>20.6</td>
<td>20.6</td>
<td>0.35</td>
<td>1.3</td>
<td>0.8</td>
<td>23 × 24 × 23 × 24 leads</td>
</tr>
</tbody>
</table>
Table 2-6 lists 11 Plastic Leaded Chip Carrier (PLCC) packages and the associated layout artwork AEL macro name and dimensions for each package. Figure 2-7 shows the layout artwork for a typical PLCC package with the marked dimensions given in the table.

Table 2-6. Plastic Leaded Chip Carrier (PLCC) Packages

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package Width (mm)</th>
<th>Package Length (mm)</th>
<th>Lead Width (mm)</th>
<th>Lead-lead Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLCC18AA</td>
<td>smtart_PLCC18A A</td>
<td>10.85</td>
<td>7.32</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC18AB</td>
<td>smtart_PLCC18 AB</td>
<td>12.52</td>
<td>7.42</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC20SQ</td>
<td>smtart_PLCC20 SQ</td>
<td>8.13</td>
<td>8.13</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC22RT</td>
<td>smtart_PLCC22 RT</td>
<td>11.62</td>
<td>6.54</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC28RT</td>
<td>smtart_PLCC28 RT</td>
<td>12.94</td>
<td>7.87</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC28SQ</td>
<td>smtart_PLCC28 SQ</td>
<td>10.67</td>
<td>10.67</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC32RT</td>
<td>smtart_PLCC32 RT</td>
<td>12.95</td>
<td>10.67</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC44SQ</td>
<td>smtart_PLCC44 SQ</td>
<td>15.48</td>
<td>15.48</td>
<td>0.431</td>
<td>1.27</td>
</tr>
</tbody>
</table>
Table 2-6. Plastic Leaded Chip Carrier (PLCC) Packages (continued)

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package Width (mm)</th>
<th>Package Length (mm)</th>
<th>Lead Width (mm)</th>
<th>Lead-lead Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLCC52SQ</td>
<td>smtart_PLCC52 SQ</td>
<td>18.02</td>
<td>18.02</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC68SQ</td>
<td>smtart_PLCC68 SQ</td>
<td>23.10</td>
<td>23.10</td>
<td>0.431</td>
<td>1.27</td>
</tr>
<tr>
<td>PLCC84SQ</td>
<td>smtart_PLCC84 SQ</td>
<td>28.17</td>
<td>28.17</td>
<td>0.431</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Note: The pads have been omitted in the figure.

Figure 2-7. Plastic Leaded Chip Carrier (PLCC) Layout Artwork
Small Outline IC (SOIC)

Table 2-7 lists 13 Small Outline IC (SOIC) packages and the associated layout artwork AEL macro name and dimensions for each package. Figure 2-8 shows the layout artwork for a typical SOIC package with the marked dimensions given in the table.

<table>
<thead>
<tr>
<th>Part Name</th>
<th>AEL Macro Name</th>
<th>Package Width (mm)</th>
<th>Package Length (mm)</th>
<th>Lead Width (mm)</th>
<th>Lead Length (mm)</th>
<th>Lead-lead Spacing (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO8N</td>
<td>smtart_SO8N</td>
<td>3.90</td>
<td>4.87</td>
<td>0.432</td>
<td>1.05</td>
<td>1.27</td>
</tr>
<tr>
<td>SO14N</td>
<td>smtart_SO14N</td>
<td>3.90</td>
<td>8.63</td>
<td>0.432</td>
<td>1.05</td>
<td>1.27</td>
</tr>
<tr>
<td>SO16N</td>
<td>smtart_SO16N</td>
<td>3.90</td>
<td>9.90</td>
<td>0.432</td>
<td>1.05</td>
<td>1.27</td>
</tr>
<tr>
<td>SO14M</td>
<td>smtart_SO14M</td>
<td>5.59</td>
<td>9.910</td>
<td>0.432</td>
<td>1.01</td>
<td>1.27</td>
</tr>
<tr>
<td>SO16M</td>
<td>smtart_SO16M</td>
<td>5.59</td>
<td>11.20</td>
<td>0.457</td>
<td>1.01</td>
<td>1.27</td>
</tr>
<tr>
<td>SO8L</td>
<td>smtart_SO8L</td>
<td>7.50</td>
<td>5.20</td>
<td>0.432</td>
<td>1.40</td>
<td>1.27</td>
</tr>
<tr>
<td>SO14L</td>
<td>smtart_SO14L</td>
<td>57.50</td>
<td>9.010</td>
<td>0.432</td>
<td>1.40</td>
<td>1.27</td>
</tr>
<tr>
<td>SO16L</td>
<td>smtart_SO16L</td>
<td>7.50</td>
<td>10.30</td>
<td>0.432</td>
<td>1.40</td>
<td>1.27</td>
</tr>
<tr>
<td>SO18L</td>
<td>smtart_SO18L</td>
<td>7.50</td>
<td>11.55</td>
<td>0.432</td>
<td>1.40</td>
<td>1.27</td>
</tr>
<tr>
<td>SO20L</td>
<td>smtart_SO20L</td>
<td>7.50</td>
<td>12.80</td>
<td>0.432</td>
<td>1.40</td>
<td>1.27</td>
</tr>
<tr>
<td>SO24L</td>
<td>smtart_SO24L</td>
<td>7.50</td>
<td>15.37</td>
<td>0.432</td>
<td>1.40</td>
<td>1.27</td>
</tr>
<tr>
<td>SO28L</td>
<td>smtart_SO28L</td>
<td>7.50</td>
<td>17.92</td>
<td>0.432</td>
<td>1.40</td>
<td>1.27</td>
</tr>
<tr>
<td>SO32L</td>
<td>smtart_SO32L</td>
<td>7.50</td>
<td>20.50</td>
<td>0.432</td>
<td>1.70</td>
<td>1.27</td>
</tr>
</tbody>
</table>
Figure 2-8. Small Outline IC (SOIC) Package Layout Artwork

Note: The pads have been omitted in the figure.
Using SMT PAL for Custom Components

This section describes how to use SMT package artwork for a custom component. An example of this process uses the AEL function defining the SMT package artwork in the SMT PAL. This artwork is used in the SMT component libraries: capacitors, resistors, inductors, amplifiers, filters, and mixers. In the SMT amplifier library, the layout artwork (SOT143 package) for HP's Model No. MSA-2111 uses the SMT PAL primitive AEL function in the following sequence:

- The AEL `create_item` function calls the AEL macro function `sa_hp_SOT143`. The AEL macro function `sa_hp_SOT143` is located in the library artwork file `SMT_AmplifierLibrary_artwork.ael`.
- In turn, `sa_hp_SOT143` calls the primitive AEL function `smtart_draw_SMT`. The primitive AEL function `smtart_draw_SMT` is located in the SMT PAL file `smtpal.atf`.
- Then the AEL function `smtart_draw_SMT` passes the parameters that are necessary for customizing the artwork, as shown in Figure 2-9.

```plaintext
defun sa_hp_SOT143 (de_set_global_db_factor(), smtpad, smtpad2, offset)
{
    decl initialD1, initialD2, portS2x, port3Y;
    //initialD1 = 0.5 * (0.00293 - 0.0017125 - 0.5*0.00085 - 0.5*0.000455);
    //initialD2 = 0.5 * (0.00293 - 0.00191 - 0.5*0.000455 - 0.5*0.000455);
    initialD1 = 0.0002825;
    initialD2 = 0.0002825;
    portS2x = 0.0013 + 2 * (0.0005375 - 0.5*0.000455);
    smtart_draw_SMT (list(smtpad,smtpad2),offset,0.0013,0.00293,0,0,
        list(0.0017125,0,0.00191,0), list(initialD1,0,initialD2,0),
        list(2,0,2,0), list(0.000455, 0.0005375, 0.00085, 0.0005375, NULL,
            0.000455, 0.0005375, 0.000455, 0.0005375, NULL, "side1"),
        list(0,0,-90, 0,-0.00191,-90.0, portS2x,-0.0017125,90,
            portS2x,0.0,90),0,"mts", "portOpt6",0,
        list(1,3));
}
```

Figure 2-9. Example of Customizing Artwork Using the AEL Function `smtart_draw_smt`
SMT Package Layout Artwork Library
Chapter 3: Font Definitions

din17

```
abcdefghijkl
mnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890-=|
~!@#$%^&*()_+\
[]()<>;:'".,/?
```

iso3098

```
abcdefghijkl
mnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890-=|
~!@#$%^&*()_+\
[]()<>;:'".,/?
```
Font Definitions

roman

a b c d e f g h i j k l
m n o p q r s t u v w x y z
A B C D E F G H I J K L
M N O P Q R S T U V W X Y Z
□ 1 2 3 4 5 6 7 8 9 0 — = □
□ ! □ □ $ % ’ & * () □ + □
□ □ □ □ ‘ ; : ’ ” , . / ?

smooth

a b c d e f g h i j k l
m n o p q r s t u v w x y z
A B C D E F G H I J K L
M N O P Q R S T U V W X Y Z
` 1 2 3 4 5 6 7 8 9 0 — = |
□ ! @ # $ % ^ & * () _ + \\
[] □ □ < > ; : ’ ” , . / ?
Font Definitions

gothic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
01234567890
! , $ % & * () \ + \ - \ = \ < \ > \ \ / \ ?

math

αβγδεζηθικλμν

ουπρστυφχψωθφ

ΑΒΓΔΕΖΗΘΙΚΛΜΝ

ΟΠΡΣΤΤΥΦΧΨΩνα

.1234567890

≠ ≡ ≈ ≥ ≤ ø x () + \ - \ / \ %\ ^
Font Definitions

filled

```
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
`1234567890-='\n~!@#$%^&*()_+\[
{}<>;:'",./?
```

filledbold

```
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
`1234567890-='\n~!@#$%^&*()_+\[
{}<>;:'",./?
```
Font Definitions

3-8 straightfilled
Index

Numerics
145MILXP, 1-5
145ML4PK, 1-5
1D2J 1A, 1-6
2D3H1A, 1-6
2D3J 1C, 1-7
2D7C1A, 1-7

A
AFLANGE, 1-8
AK, 1-8
ALMK, 1-9
ALMK2, 1-9
AP, 1-10
AQ, 1-10
artwork
fixed, 1-1
ATCCAP, 1-13
ATF36, 1-11
ATF70, 1-11
ATF76, 1-12
ATF84, 1-12
ATF86, 1-13
AVNK35, 1-14
AVNK70, 1-14
AVNK85, 1-15
AVNK86, 1-15
AXIAL_L, 1-16
AXIAL_M, 1-16
AXRES, 1-17
AXRES2, 1-17
AXRES3, 1-18

B
BFLANGE, 1-18

C
C145D01, 1-21
C18202, 1-21
C2003, 1-22
C211D071, 1-22
C211D07V2, 1-23
C221CD02, 1-23
C244D04, 1-24
C249D05, 1-24

C2904, 1-25
C30301, 1-25
C305D01, 1-26
C317D02, 1-26
C319BD01, 1-27
C319D06, 1-27
C369D03, 1-28
C744AD01, 1-29
C751D03, 1-29
C7904, 1-30
CD, 1-30
CERECX, 1-31
CERECXF, 1-31
CHPCAP, 1-32
CHPRES, 1-32
C-LL, 1-19
C-LR, 1-19
C-UL, 1-20
C-UR, 1-20

D
DISK_L, 1-33
DISK_M, 1-33
DISK_S, 1-34

G
GD11, 1-34
GD16, 1-35
GD4, 1-35
GD7, 1-36
GD9, 1-36
GF1, 1-37
GF11, 1-37
GF21, 1-38
GF4, 1-38
GF7, 1-39

H
HP70GT, 1-39
HP85PLAS, 1-40
HPAC100, 1-40
HPAC100X, 1-41
HPAC200, 1-41
HPAC200V2, 1-42
L
LG, 1-42
LLD, 1-43

M
M205, 1-43
M253, 1-44
MACROT, 1-44
MACROX, 1-45
ME, 1-45
MICROX, 1-46
MOP, 1-46
MW4, 1-47
MWT70, 1-47
MWT71, 1-48
MWT73, 1-48

N
NEC01, 1-49
NEC03, 1-49
NEC07, 1-50
NEC08, 1-50
NEC12, 1-51
NEC13, 1-51
NEC14, 1-52
NEC15, 1-52
NEC18, 1-53
NEC19, 1-53
NEC20, 1-54
NEC30, 1-54
NEC32, 1-55
NEC33, 1-55
NEC34, 1-56
NEC35, 1-56
NEC37, 1-57
NEC38, 1-57
NEC39, 1-58
NEC53E, 1-58
NEC75, 1-59
NEC83, 1-59
NEC84, 1-60
NEC84A, 1-60
NEC87, 1-61
NEC89, 1-61
NEC89A, 1-62

O
OKI_1, 1-62

P
PFLANGE, 1-63

R
RADIAL_L, 1-63
RADIAL_M, 1-64
RADIAL_S, 1-64
RESA, 1-65

S
SFLANGE, 1-65
SMA_FEM, 1-66
SMSMICROX, 1-66
SMT Package Layout Artwork Library, 2-1
SOD123, 1-67
SOD323, 1-67
SOD80, 1-68
SOT103, 1-68
SOT143, 1-69
SOT143R, 1-69
SOT143RV2, 1-70
SOT143V2, 1-70
SOT143V3, 1-71
SOT143V4, 1-71
SOT143V5, 1-72
SOT143V6, 1-73
SOT143V7, 1-74
SOT223, 1-75
SOT223V2, 1-75
SOT23, 1-76
SOT23V2, 1-76
SOT23V3, 1-77
SOT23V4, 1-77
SOT23V5, 1-78
SOT23V6, 1-78
SOT23V7, 1-79
SOT23V8, 1-79
SOT323, 1-80
SOT37, 1-80
SOT89, 1-81
SOT89V2, 1-81
SRP, 1-82

T
TO117, 1-82
TO206AA, 1-83
TO206AF, 1-83