Circuit Cosimulation Components

August 2005
Notice

The information contained in this document is subject to change without notice.
Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

© Agilent Technologies, Inc. 1983-2005
395 Page Mill Road, Palo Alto, CA 94304 U.S.A.

Acknowledgments

Mentor Graphics is a trademark of Mentor Graphics Corporation in the U.S. and other countries.

Microsoft®, Windows®, MS Windows®, Windows NT®, and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.

Pentium® is a U.S. registered trademark of Intel Corporation.

PostScript® and Acrobat® are trademarks of Adobe Systems Incorporated.

UNIX® is a registered trademark of the Open Group.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

SystemC® is a registered trademark of Open SystemC Initiative, Inc. in the United States and other countries and is used with permission.
Contents

1 Circuit Cosimulation Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>AMS_Interface</td>
<td>1-2</td>
</tr>
<tr>
<td>EnvOutSelector</td>
<td>1-4</td>
</tr>
<tr>
<td>EnvOutShort</td>
<td>1-6</td>
</tr>
<tr>
<td>RES</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Index
Chapter 1: Circuit Cosimulation Components

Introduction

In Advanced Design System, cosimulation between signal processing and circuits provides verification of the impact of real world analog/RF issues on the signal processing algorithm, and vice versa. The signal processing simulator cosimulates with either Circuit Envelope or Transient simulators.

A circuit subnetwork on the signal processing page is simply a component with input and output ports. Every time the circuit subnetwork is fired, the circuit engine generates output based on the input it receives from the signal processing interface. Once the circuit simulator is finished with the simulation of the signal it receives, it passes those results to the signal processing interface.

From the circuit engine, the signal processing input interface is viewed as an ideal source. Depending on the number of ports at the input interface to the circuit, there would be as many ideal sources feeding the circuit subnetwork. At the output interface of the circuit, there would be one or more interface nodes. At these nodes the signal processing interface receives a given voltage from the circuit.

In cosimulation with Transient engine, the interface does not require any special component. With Circuit Envelope certain information is needed for proper cosimulation; this is done by connecting an EnvOutSelector (or EnvOutShort) component to each output port of the subcircuit design. These two interface components are identical except EnvOutSelector is an open circuit model and EnvOutShort is a short circuit model. Using EnvOutShort will load the circuit with the circuit components (if any) directly on signal processing schematic; EnvOutSelector does not load these components. One or more EnvOutSelector (EnvOutShort) components can be connected to each output port of a circuit subnetwork.
Circuit Cosimulation Components

AMS_Interface

![Diagram of AMS_Interface component]

Description AMS Export Settings
Library Circuit Cosimulation

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PortType</td>
<td>port type: electrical, wreal</td>
<td>electrical</td>
<td>enum</td>
</tr>
<tr>
<td>TStep</td>
<td>output time step</td>
<td>0.0</td>
<td>real</td>
</tr>
</tbody>
</table>

Pin Inputs

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>input signal</td>
</tr>
</tbody>
</table>

Pin Outputs

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>output signal</td>
</tr>
</tbody>
</table>

Notes/Equations

1. This component is used for interfacing between ADS Ptolemy designs and AMS Designer cosimulation designs.

 To access usage examples, from the ADS Main window, choose File > examples > Tutorial > WLAN_ExportToAMSD_prj.

 For AMS Designer cosimulation details, refer to the ADS Ptolemy in AMSD-ADE manual in the RFDE documentation.

2. AMS_Interface components can be used as output ports in sources designs or input ports in sinks designs. The user must connect one end to a Port component and the other end to a DSP component.

3. The PortType parameter specifies the port type of the interface in AMS.
• electrical is a discipline of the Verilog-A construct that defines the types of nodes, ports, and branches. It consists of two natures: one for the potential (voltage) and one for the flow (current). The values are determined by analog kernel from beginning to end at each point in time.

• wreal, or real net data type, represents a real-valued physical connection between structural entities. A wreal net can be used for real-valued nets that are driven by a single driver, such as a continuous assignment. wreal nets must be connected to compatible interconnect and other wreals or real expressions only; they cannot be connected to any other wires.
EnvOutSelector

Description Envelope Output Selector (Open Circuit Model)
Library Circuit Cosimulation

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutFreq</td>
<td>output frequency options: Bandpass, Lowpass, Allpass</td>
<td>Bandpass†</td>
<td>enum</td>
</tr>
</tbody>
</table>

† When Bandpass is selected an output frequency value must also be specified.

Pin Inputs

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>input signal</td>
</tr>
</tbody>
</table>

Pin Outputs

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>output signal</td>
</tr>
</tbody>
</table>

Notes/Equations

4. This component is used for interfacing between circuit subnetwork output and signal processing input under Ptolemy - Circuit Envelope cosimulation. For more general cosimulation information, refer to “Introduction” on page 1-1.

To access usage examples, from the ADS Main window, choose File > examples > Com_Sys > Co_Sim_prj.

5. EnvOutSelector is an open circuit model; the components at the output of EnvOutSelector will not load the circuit.

6. EnvOutSelector selects the time waveform (associated with a fundamental frequency) from the circuit envelope output.

7. The OutFreq parameter specifies which time domain waveform is selected at the interface and passed to the connecting signal processing component.
• For the Bandpass option the user must specify an output frequency value. If the frequency specified does not exist in the list of fundamentals, the interface code will search and snap to the nearest fundamental. A frequency within 0.01% of a fundamental will be snapped to that fundamental frequency; if the frequency specified is not within 0.01% of the fundamental, a default value of 100 MHz will be used and a warning message issued.
• The Lowpass option will output the time-varying dc waveform to signal processing, setting the carrier frequency at the interface to zero.
• The Allpass option will output the composite time-varying signal; the carrier frequency is set to zero.

Note You cannot change between the Bandpass, Lowpass, and Allpass options on the Schematic window; the option must be selected in the component parameter dialog box. When Lowpass or Allpass is selected, changing the option in the Schematic window will reset the value of OutFreq to Allpass or Lowpass, respectively. When Bandpass is selected, OutFreq can be edited to any value. However, if arrow keys are used to set the value of OutFreq to Lowpass or All (or if the Lowpass or All value is typed in), the simulation will error out.

8. Circuit ports are input/output (bidirectional) ports. When a signal processing component has output connected to both a circuit port and another signal processing component input, an EnvOutSelector or EnvOutShort component is needed at the circuit port to the input of the second signal processing component.
EnvOutShort

Description Envelope Output Selector (Short Circuit Model)

Library Circuit Cosimulation

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutFREQ</td>
<td>output frequency options: Bandpass, Lowpass, Allpass</td>
<td>Bandpass†</td>
<td>enum</td>
</tr>
</tbody>
</table>

† When Bandpass is selected an output frequency value must also be specified.

Pin Inputs

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>input signal</td>
</tr>
</tbody>
</table>

Pin Outputs

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>output signal</td>
</tr>
</tbody>
</table>

Notes/Equations

1. This component is used for interfacing between circuit subnetwork output and signal processing input under Ptolemy - Circuit Envelope cosimulation. For more general cosimulation information, refer to “Introduction” on page 1-1.

 To access usage examples, from the ADS Main window, choose File > examples > Com_Sys > Co_Sim_prj.

2. EnvOutShort is a short circuit model; the components at the output of EnvOutShort will load the circuit.

3. EnvOutShort selects the time waveform (associated with a fundamental frequency) from the circuit envelope output.
4. The OutFreq parameter specifies which time domain waveform is selected at
the interface and passed to the connecting signal processing component.

- For the Bandpass option the user must specify an output frequency value. If
the frequency specified does not exist in the list of fundamentals, the
interface code will search and snap to nearest fundamental. A frequency
within 0.01% of a fundamental will be snapped to that fundamental
frequency; if the frequency specified is not within 0.01% of the fundamental,
a default value of 100 MHz will be used and a warning message issued.

- The Lowpass option will output the time-varying dc waveform to signal
processing, setting the carrier frequency at the interface to zero.

- The Allpass option will output the composite time-varying signal. Here again
the carrier frequency is set to zero.

Note You cannot change between the Bandpass, Lowpass, and Allpass options
on the Schematic window; the option must be selected in the component
parameter dialog box. When Lowpass or Allpass is selected, changing the option
in the Schematic window will reset the value of OutFreq to Allpass or Lowpass,
respectively. When Bandpass is selected, OutFreq can be edited to any value.
However, if arrow keys are used to set the value of OutFreq to Lowpass or All
(or if the Lowpass or All value is typed in), the simulation will error out.

5. Circuit ports are input/output (bidirectional) ports. When a signal processing
component has output connected to both a circuit port and another signal
processing component input, an EnvOutSelector or EnvOutShort component is
needed at the circuit port to the input of the second signal processing
component.
Circuit Cosimulation Components

RES

Description Resistor
Library Circuit Cosimulation

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
<th>Unit</th>
<th>Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>resistance</td>
<td>50 Ohm</td>
<td>ohms</td>
<td>real</td>
<td>[0, +∞)</td>
</tr>
<tr>
<td>Temp</td>
<td>temperature of resistor, in degrees C</td>
<td>Default/Temp</td>
<td>temperature</td>
<td>real</td>
<td>[-273.15, +∞)</td>
</tr>
</tbody>
</table>

Notes/Equations

1. RES is a resistor circuit component. Signal flow through this resistor includes thermal (Johnson) noise when Temp is greater than absolute zero (−273.15 °C).

2. This component operates only with timed baseband or RF (complex envelope) signals.
Index

A
AMS_Interface, 1-2

E
EnvOutSelector, 1-4
EnvOutShort, 1-6

R
RES, 1-8