## Contents

1. **Bipolar Transistor Characterization**
   - Bipolar Device Model 15
   - Simulators 16
   - Model Parameters 17
   - Test Instruments 23
     - Instrument-to-Device Connections 23
   - Measuring and Extracting 25
     - Measurement and Extraction Guidelines 25
     - Extracting Parameters 29
   - Extraction Algorithms 33
     - DC Parameter Extractions 33
     - Capacitance Parameter Extractions 34
     - Parasitic DC Parameter Extractions 34
     - AC Parameter Extractions 35
   - References 37

2. **MOSFET Characterization**
   - UCB MOSFET Model 41
   - Simulators 42
   - MOSFET Model Parameters 43
   - Test Instruments 49
     - Instrument-to-Device Connections 49
   - Measuring and Extracting 51
     - Measurement and Extraction Guidelines 51
4 BSIM 3v3 Characterization

What's new inside the BSIM 3 Modeling Package: 192

The BSIM 3 Model 197
Versions of the BSIM 3 Model 198

The Unified I-V Model of BSIM 3v3 200
Threshold Voltage 200
Carrier Mobility Reduction 210
Effective Channel Length and Width 212
Drain Current 215
Output Resistance 224
Substrate Current 230
Drain/ Bulk and Source/ Bulk Diodes 232
Consistency Check of DC measurement data for multiple measured devices 234

Capacitance Model 238
Junction Capacitance 239
Extrinsic Capacitance 244
Intrinsic Capacitance 247
The Overall Capacitance in BSIM 3 252

High Frequency Behavior 255
Macro Model for High Frequency Application 255
Single Subcircuit Model for BSIM 3v3 RF Transistors 257
Fully Scalable Subcircuit Model for BSIM 3v3 RF Transistors 261
Modeling Strategy 266

Temperature Dependence 271
Built-in Temperature Dependencies 271
Temperature Effects 271

Noise Model 279
Conventional Noise Model for MOS Devices 279
BSIM 3v3 Noise Model 281
5 BSIM 4 Characterization

What's new inside the BSIM 4 Modeling Package: 337

Basic Effects Modeled in BSIM 4 341
Enhanced drain current model 341
RF and high-speed model 341
Key Features of the BSIM 4 Modeling Package

DC Behavioral Modeling
- Threshold Voltage Model
- Basic Threshold voltage equation
- Gate Direct Tunneling Current Model
- Drain Current Model
- Unified Mobility Model
- Drain/Source Resistance Model
- Saturation Region Output Conductance Model
- Body Current Model
- Stress Effect Modeling

CV Modeling
- Capacitance Model
- Intrinsic Capacitance Modeling
- Intrinsic Capacitance Model Equations
- Fringing Capacitance Models
- Overlap Capacitance Model

Structure of the BSIM 4 RF Simulation Model

Test Structures for Deep Submicron CMOS Processes

Tutorials for the BSIM 4 Modeling Package
- Opening the Tutorial

SPICE Model Parameters
- New Model Parameters for BSIM 4.3.0
- Main Model Parameters
- Temperature Modeling Parameters
- Flicker Noise Model Parameters
- High-Speed / RF Model Parameters
- Layout-Dependent Parasitics Model Parameters
- Model Selection Flags

References
6  UCB GaAs MESFET Characterization

UCB GaAs MESFET Model  429
Simulators  430
Model Parameters  433
Test Instruments  435
  Instrument-to-Device Connections  435
Measuring and Extracting  436
  Measurement and Extraction Guidelines  436
  Extraction Procedure Overview  439
  Parameter Measurement and Extraction  440
  Alternate Extraction Method  442
Simulating  444
Displaying Plots  444
Optimizing  444
Extraction Algorithms  446
  Inductance and Resistance Extraction  446
  DC Parameter Extractions  446
  Capacitance Parameter Extractions  446
References  447

7  Curtice GaAs MESFET Characterization

Curtice GaAs MESFET Model  451
Simulators  452
Model Parameters  454
Test Instruments  458
  Instrument-to-Device Connections  458
Measuring and Extracting  460
  Measurement and Extraction Guidelines  460
  Extraction Procedure Overview  463
Parameter Measurement and Extraction 464
Alternate Extraction Method 467
Simulating 469
Displaying Plots 469
Optimizing 470
Extraction Algorithms 471
Inductance and Resistance Extraction 471
DC Parameter Extractions 471
Capacitance Parameter Extractions 472
References 473

8 MOS Model 9 Characterization

M OS Model 9 Model 477
The M M 9 Model File 479
Model Parameters 479
Model Variables 482
The extract DUT 489
The quick_ext DUT 497
The dutx DUT 502
Macros 506

Parameter Extraction 511
Data Organization 513
Scaling Rules 513
Device Geometries 514

Optimizing 516
Optimization Transforms and Macros 516

The J UNCAP Model 519
The area, locos, and gate DUTs 519
The analysis DUT 521
Macros 530
9 Circuit Modeling

Definition of an IC-CAP Circuit  538
IC-CAP Circuit Modeling Operations  539
Defining a Circuit  540
  Supported Circuit Components  540
Circuit Measurement  543
  Multiple Instrument Names  543
  Isolating Circuit Elements for Measurement and Extraction  543
Circuit Parameter Extraction  545
  Extracting Transistor Parameters Using Library Functions  545
  Extracting Parameters Through Optimization  546
Circuit Simulation  549
  Design Optimization  549
Test Circuits  551
  Syntax  551
Hierarchical Modeling  553
  Circuits Built from Sub-models  553
Functional Circuit Blocks  555
  Types of Circuits in IC-CAP  555
  Modeling the Reverse Active Region of an NPN Transistor  555
  Modeling an Operational Amplifier  557
References  566

10 1/f Noise Extraction Toolkit

  Types of Noise  568
This chapter describes the University of California at Berkeley bipolar transistor model supported in SPICE. Descriptions of model setup, instrument connections, and model parameters are included. Information is included for making DC, capacitance, and high-frequency AC measurements and their corresponding extractions.

The IC-CAP bipolar modeling module provides setups that can be used for general measurement and model extraction for bipolar devices. Two example files are provided for the bipolar model; the example files can also be used as a template for creating custom model configurations.

`bjt_npn.mdl` extracts parameters for NPN bipolar transistors

`bjt_pnp.mdl` extracts parameters for PNP bipolar transistors

The IC-CAP system offers the flexibility to modify any measurement or simulation specification.

The model extractions provided are also intended for general bipolar IC processes. If you have another method of extracting specific model parameters, you can do so with the Program
The following shows an example custom extraction for IS and NF:

```c
! Extraction for IS & NF
! Note: print statements go to the
!       window that started IC-CAP
print "Example Custom Extraction for IS & NF"
index = 0             ! array index
! pick two low current points
v1 = -ve[index]       ! get a point near Vbe = 0.4
   index = index + 1
   v1 = -ve[index]
END WHILE
i1 = ic.m[index]
v2 = -ve[index]       ! get a point near Vbe = 0.5
   index = index + 1
   v2 = -ve[index]
END WHILE
i2 = ic.m[index]
vt = 8.62e-5 * (TNOM + 273.15) ! thermal voltage
NF = 1 / vt * (v2 - v1) / log(i2 / i1)
IS = sqrt(i1 * i2) / exp((v1 + v2) / (2 * NF * vt))
print "IS = ";IS;
print "NF = ";NF
print "... end of custom extraction ...
```

function by writing a function in C and linking it to the function list. For Program function details or for writing user-defined C-language routines, refer to Chapter 9, “Using Transforms and Functions,” in the IC-CAP User’s Guide.
Bipolar Device Model

The UCB bipolar transistor model is a hybrid of the Ebers-Moll [2] and Gummel-Poon [3] models. With a minimum parameter specification of IS, BF, and BR, the model defaults to the more simple Ebers-Moll model. The Ebers-Moll model is ideal because it neglects base width modulation, parasitic resistances, and high current injection effects.

Inclusion of additional parameters activates elements of the Gummel-Poon integral charge control model, which can provide greater accuracy. The Gummel-Poon model provides superior representation of the current flow in the transistor's base. It also provides accurate representation of parasitic resistances at all terminals, capacitance across all junctions, current-frequency effects, and temperature effects.
1 Bipolar Transistor Characterization

Simulators

The UCB bipolar model is supported by all SPICE simulators currently included with IC-CAP: HPSPICE, SPICE2(G6), and SPICE3.

NOTE

Simulators are provided as a courtesy to IC-CAP users; they are not supported by Agilent Technologies.

The default nominal temperature for HPSPICE is 25°C. For SPICE2 and SPICE3 it is 27°C. To force a nominal temperature, set the $TNOM$ variable to the desired value.
Model Parameters

Model parameter extractions are based on the concept that, under steady-state conditions, specific sets of parameters uniquely simulate device performance. This allows extractions to be performed over isolated regions of the device’s electrical response.

Forward and reverse DC bias extractions and junction capacitance characteristics are virtually independent of each other. Series resistance and small-signal high-frequency extractions depend on DC and capacitance parameters.

Model parameter extractions produce parameters that are referenced to a temperature of 27°C. To perform extractions at other temperatures, change the system variable TEMP to the correct value.

Table 1 provides definitions and SPICE default values of the bipolar model parameters, which fall into four primary categories: DC, capacitance, AC, and temperature effects. DC parameters are divided into three categories: DC forward, DC reverse, and series resistance. The parameter values are displayed in the Model Parameters folder.

Table 2 lists setup attributes.

**Table 1** UCB Bipolar Transistor Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>Ideal Maximum Forward Beta. Basic parameter for Ebers-Moll and Gummel-Poon models.</td>
<td>100</td>
</tr>
<tr>
<td>IKF</td>
<td>Knee Current for Forward Beta High Current Roll-off. Models variation in forward Beta at high collector currents. Use if device is to be used with high collector currents.</td>
<td>∞ Amp</td>
</tr>
<tr>
<td>IS</td>
<td>Transport Saturation Current. Basic parameter for Ebers-Moll and Gummel-Poon models.</td>
<td>1×10⁻¹⁶ Amp</td>
</tr>
</tbody>
</table>
1 Bipolar Transistor Characterization

Table 1  UCB Bipolar Transistor Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISE</td>
<td>Base Emitter Leakage Saturation Current. Models variation in forward Beta at low base currents. Use if device is to be used with low base emitter voltage.</td>
<td>0 Amp</td>
</tr>
<tr>
<td>NE</td>
<td>Base Emitter Leakage Emission Coefficient. Models variation in forward Beta at low base currents. Use if device is to be used with low base emitter voltage.</td>
<td>1.5</td>
</tr>
<tr>
<td>NF</td>
<td>Forward Current Emission Coefficient. Used to model deviation of emitter base diode from ideal (usually approximately 1).</td>
<td>1.0</td>
</tr>
<tr>
<td>VAF</td>
<td>Forward Early Voltage. Models base collector bias effects. Use to model base collector bias on forward Beta and IS.</td>
<td>∞ volt</td>
</tr>
</tbody>
</table>

DC Large Signal Reverse Bias

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>Ideal Maximum Reverse Beta. The basic parameter for both Ebers-Moll and Gummel-Poon models. Use when the transistor is saturated or operating in reverse mode.</td>
<td>1.0</td>
</tr>
<tr>
<td>IKR</td>
<td>Knee Current for Reverse Beta High Current Roll-off. Specifies variation in reverse Beta at high emitter currents. Needed only if transistor is operated in reverse mode.</td>
<td>∞ Amp</td>
</tr>
<tr>
<td>ISC</td>
<td>Base Collector Leakage Saturation Current. Specifies variation in reverse Beta at low base currents. Models base current at low base collector voltage. Use only if transistor is operated in reverse mode.</td>
<td>0 Amp</td>
</tr>
<tr>
<td>NC</td>
<td>Base Collector Leakage Emission Coefficient. Specifies variation in reverse Beta at low currents. Models base current at low base collector voltage. Use only if transistor is operated in reverse mode.</td>
<td>2.0</td>
</tr>
<tr>
<td>NR</td>
<td>Reverse Current Emission Coefficient. Used to model deviation of base collector diode from the ideal (usually about 1).</td>
<td>1.0</td>
</tr>
<tr>
<td>VAR</td>
<td>Reverse Early Voltage. Models emitter base bias effects. Use to model emitter base bias on reverse Beta and IS.</td>
<td>∞ Volt</td>
</tr>
</tbody>
</table>

Series Resistance
Table 1  UCB Bipolar Transistor Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB</td>
<td>Base Resistance Roll-off Current. Models the base resistance at which the base resistance is halfway between minimum and maximum.</td>
<td>∞ Amp</td>
</tr>
<tr>
<td>RB</td>
<td>Zero Bias Base Resistance. Maximum value of parasitic resistance in base.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td>RBM</td>
<td>Minimum Base Resistance. The minimum value of base resistance at high current levels. Models the way base resistance varies as base current varies.</td>
<td>RB Ohm</td>
</tr>
<tr>
<td>RC</td>
<td>Collector Resistance. Parasitic resistance in the collector. Important in high current and high frequency applications.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td>RE</td>
<td>Emitter Resistance. Parasitic resistance in the emitter. Important in small signal applications.</td>
<td>0 Ohm</td>
</tr>
</tbody>
</table>

Capacitance

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJC</td>
<td>Base Collector Zero Bias Capacitance. Helps model switching time and high frequency effects.</td>
<td>0 Farad</td>
</tr>
<tr>
<td>CJE</td>
<td>Base Emitter Zero Bias Capacitance. Helps model switching time and high frequency effects.</td>
<td>0 Farad</td>
</tr>
<tr>
<td>CJS</td>
<td>Zero Bias Substrate Capacitance. Helps model switching time and high frequency effects.</td>
<td>0 Farad</td>
</tr>
<tr>
<td>MJ C</td>
<td>Base Collector Junction Grading Coefficient. Models the way junction capacitance varies with bias.</td>
<td>0.33</td>
</tr>
<tr>
<td>MJ E</td>
<td>Base Emitter Junction Grading Coefficient. Models the way junction capacitance varies with bias.</td>
<td>0.33</td>
</tr>
<tr>
<td>MJ S</td>
<td>Substrate Junction Grading Coefficient. Models the way junction capacitance varies with bias.</td>
<td>0.33</td>
</tr>
<tr>
<td>VJC</td>
<td>Base Collector Built-in Potential. Models the way junction capacitance varies with bias.</td>
<td>0.75 Volt</td>
</tr>
<tr>
<td>VJE</td>
<td>Base Emitter Built-in Potential. Models the way junction capacitance varies with bias.</td>
<td>0.75 Volt</td>
</tr>
<tr>
<td>VJS</td>
<td>Substrate Junction Built-in Potential. Models the way junction capacitance varies with bias.</td>
<td>0.75 Volt</td>
</tr>
</tbody>
</table>
## Bipolar Transistor Characterization

### Table 1  UCB Bipolar Transistor Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCJC</td>
<td>Fraction of Base Collector Capacitance that connects to the internal base node. Important in high frequency applications.</td>
<td>1.0</td>
</tr>
<tr>
<td>FC</td>
<td>Coefficient for Forward Bias Capacitance Formula. Provides continuity between capacitance equations for forward and reverse bias.</td>
<td>0.5</td>
</tr>
<tr>
<td>AC Small-Signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITF</td>
<td>High Current Parameter for Effect on TF. Models decline of TF with high collector current.</td>
<td>∞ Amp</td>
</tr>
<tr>
<td>PTF</td>
<td>Excess Phase at FT. Models excess phase at FT.</td>
<td>0 Degree</td>
</tr>
<tr>
<td>TF</td>
<td>Ideal Forward Transit Time. Models finite bandwidth of device in forward mode.</td>
<td>0 Sec</td>
</tr>
<tr>
<td>TR</td>
<td>Ideal Reverse Transit Time. Models finite bandwidth of device in reverse mode.</td>
<td>0 Sec</td>
</tr>
<tr>
<td>VTF</td>
<td>Voltage Describing TF Dependence on Base-Collector Voltage. Models base-collector voltage bias effects on TF.</td>
<td>∞ Volt</td>
</tr>
<tr>
<td>XTF</td>
<td>Coefficient for Bias Dependence on TF. Models minimum value of TF at low collector-emitter voltage and high collector current.</td>
<td>0</td>
</tr>
<tr>
<td>Temperature Effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>Energy Gap for Modeling Temperature. Effect on IS, ISE, and ISC. Used to calculate the temperature variation of saturation currents in the collector, and base-emitter and collector base diodes.</td>
<td>1.11EV</td>
</tr>
<tr>
<td>XTB</td>
<td>Forward and Reverse Beta Temperature Exponent. Models the way Beta varies with temperature.</td>
<td>0</td>
</tr>
<tr>
<td>XTI</td>
<td>Temperature Exponent for Modeling. Temperature Variation of IS. Models the way saturation current varies with temperature.</td>
<td>3.0</td>
</tr>
<tr>
<td>TNOM</td>
<td>This global variable can be assigned temperature values in degrees C, for use by extractions and simulations.</td>
<td>27°C</td>
</tr>
<tr>
<td>DUT/ Setup</td>
<td>Inputs</td>
<td>Outputs</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>dc/early</td>
<td>vb, vc, ve, vs</td>
<td>ic</td>
</tr>
<tr>
<td>dc/rearly</td>
<td>vb, vc, ve, vs</td>
<td>ie</td>
</tr>
<tr>
<td>dc/fgummel</td>
<td>vb, vc, ve, vs</td>
<td>ib, ic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dc/rgummel</td>
<td>vb, vc, ve, vs</td>
<td>ib, ie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cbe/cj</td>
<td>vbe</td>
<td>cbe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cbc/cj</td>
<td>vbc</td>
<td>cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ccs/cj</td>
<td>vcs</td>
<td>ccs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prdc/reflyback</td>
<td>ib, ic, ve, is</td>
<td>vc</td>
</tr>
<tr>
<td>prdc/rcsat</td>
<td>vb, vc, ve, vs</td>
<td>ic</td>
</tr>
</tbody>
</table>
## Bipolar Transistor Characterization

### Table 2  UCB Bipolar Model Setup Attributes (continued)

<table>
<thead>
<tr>
<th>DUT/Setup</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Transform</th>
<th>Function</th>
<th>Extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>prdc/rcactive</td>
<td>vb, vc, ve, vs</td>
<td>ib,ic</td>
<td>RC_active</td>
<td>Program</td>
<td>RC (active)</td>
</tr>
<tr>
<td>prdc/rbbib</td>
<td>vb, vc, ve, vs</td>
<td>ib</td>
<td>rbb</td>
<td>RBBcalc</td>
<td>none: calc rb vs ib</td>
</tr>
<tr>
<td>ac/rbbac</td>
<td>vb, vc, ve, vs, freq</td>
<td>h</td>
<td>extract</td>
<td>BJ TAC_rb_rbm_irb</td>
<td>RB, RBM, IRB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h11corr</td>
<td>H11corr</td>
<td>corrects H11 for Zout</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>htos</td>
<td>TwoPort</td>
<td>none: h-par to s-par</td>
</tr>
<tr>
<td>ac/h21svbe</td>
<td>vb, vc, ve, vs, freq</td>
<td>h</td>
<td>acextract</td>
<td>BJ TAC_high_freq</td>
<td>TF, ITF, XTF, VTF, PTF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>scale_params</td>
<td>Program</td>
<td>none: scales AC parameters</td>
</tr>
<tr>
<td>ac/h21svbc</td>
<td>vb, vc, ve, vs, freq</td>
<td>h</td>
<td>extract_TR</td>
<td>Optimize</td>
<td>TR</td>
</tr>
</tbody>
</table>
Test Instruments

The HP 4141, HP/Agilent 4142, or HP 4145 can be used to derive DC model parameters from measured DC voltage and current characteristics.

The HP 4271, HP 4275, HP 4280, HP/Agilent 4284, or HP 4194 can be used to derive capacitance model parameters from measured capacitance characteristics at the device junctions.

Instrument-to-Device Connections

When the device is installed in a test fixture, verify the correct connection of device nodes by checking the inputs and outputs for the appropriate DUTs. The following table is a cross-reference of the connections between the terminals of a typical bipolar transistor and various measurement units. These connections and measurement units are defined in the model file.

<table>
<thead>
<tr>
<th>DUT</th>
<th>Collector</th>
<th>Base</th>
<th>Emitter</th>
<th>Substrate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc</td>
<td>SM U1</td>
<td>SM U2</td>
<td>SM U3</td>
<td>SM U4</td>
<td></td>
</tr>
<tr>
<td>cbe</td>
<td>open</td>
<td>CM (H)</td>
<td>CM (L)</td>
<td>open</td>
<td>calibrate for stray capacitance</td>
</tr>
<tr>
<td>cbc</td>
<td>CM (L)</td>
<td>CM (H)</td>
<td>open</td>
<td>open</td>
<td>calibrate for stray capacitance</td>
</tr>
<tr>
<td>ccs</td>
<td>CM (H)</td>
<td>open</td>
<td>open</td>
<td>CM (L)</td>
<td>calibrate for stray capacitance</td>
</tr>
<tr>
<td>prdc</td>
<td>SM U1</td>
<td>SM U2</td>
<td>SM U3</td>
<td>SM U4</td>
<td></td>
</tr>
<tr>
<td>ac</td>
<td>NWA (Port2) and SM U1</td>
<td>NWA (Port1) and SM U2</td>
<td>ground</td>
<td>SM U4</td>
<td>calibrate for reference plane</td>
</tr>
</tbody>
</table>

Notes:
1. DUT is the name of the DUT as specified in DUT-Setup.
2. To read the table: dc has the dc measurement unit SM U1 connected to its collector, SM U2 connected to its base, SM U3 connected to its emitter, and SM U4 connected to its substrate.
1 Bipolar Transistor Characterization

Input and output tables in the various setups use abbreviations C (collector), B (base), E (emitter), and S (substrate) for the bipolar transistor nodes. These nodes are defined in the Circuit folder.

Measurement units (abbreviated as follows) are defined in Hardware Setup.

- SMU# for DC measurement units
- VM# for voltage monitor units
- VS# for voltage source units
- CM for capacitance measurement units
- NWA for network analyzer port units
Measuring and Extracting

Bipolar parameter extraction is divided into four categories: DC, capacitance, parasitic resistance, and AC. These categories correspond to the required supporting measurements described under Test Instruments.

The `bjt_npn.mdl` file provides DUTs and setups that correctly bias a typical device for the measurements needed to perform the associated parameter extractions.

Measurement and Extraction Guidelines

The following guidelines are provided to help you achieve more successful model measurements and extractions.

Setting Instrument Options

Before starting a measurement, you can quickly verify the instrument options settings. Save the current instrument option settings by saving the model file to `<file_name>.mdl`. Some of the Instrument Options specify instrument calibration. For the most accurate results, calibrate the instruments before taking IC-CAP measurements.

Typical DC and CV instrument options are:

• DC measurements are generally taken with Integration Time = Medium.

• CV measurements in the femtofarad region usually require High Resolution = Yes and Measurement Freq (kHz) = 1000.

When taking AC measurements with a network analyzer, several instrument settings are critical. And, calibration must be performed on structures that have impedances similar to the stray parasitics of the device under test (DUT).

Typical AC instrument options are:

• Input power to the device is typically $-10$ to $-30$ dBm (after port attenuation).

• Setting the averaging factor in the 2 to 4 range reduces measurement noise.
Because IC-CAP requires the instrument to perform error correction, set Use Internal Calibration = Yes.

The error terms saved to file during a network analyzer software calibration are not identified by error code.

The order shown below represents the order in which they are saved and displayed in IC-CAP:

0. EDF [directivity]
1. EDR [directivity]
2. EXF [isolation]
3. EXR [isolation]
4. ESF [source match]
5. ERF [ref freq response]
6. ESR [source match]
7. ERR [ref freq response]
8. ELF [load match]
9. ETF [trans freq response]
10. ELR [load match]
11. ETR [trans freq response]

Experiment with the other network analyzer options to obtain the best results with specific devices.

Measuring Instruments

Ensure that the measuring instruments (specified by unit names in the inputs and outputs) are correctly connected to the DUT. Refer to Table 3 for a list of nodes and corresponding measurement units. The quality of the measuring equipment (instruments, cables, test fixture, transistor sockets, and probes) can influence the noise level in the measurements.

The series resistance in test fixtures can also be critical when making high current measurements. For example, a 1-ohm resistance in series with the emitter at an $I_c = 20 \ mA$ can cause a factor-of-two error in the measured versus simulated DC performance. Series resistances that are not accounted for in the device model can be included by adding them to the test circuit for the DUT.
Ensure that all characteristics of the measurement stimulus and corresponding measured response are specified in the respective input and output tables.

For some measurements, the instruments or test hardware must be calibrated to remove non-device parasitics from the DUT. For bipolar devices, stray capacitance due to probe systems, bond pads, and so on should be calibrated out prior to each measurement.

In making high-frequency two-port measurements with a network analyzer, the reference plane of the instrument must be calibrated out to the DUT. IC-CAP relies on the internal calibration of the instruments for full error-corrected data. Calibration using OPEN, SHORT, THRU, and 50-ohm LOADS must be correctly performed.

Extracting Model Parameters

For a given setup, you can find the extraction transforms in the Extract/Optimize folder. IC-CAP’s extraction algorithms exist as functions; choose Browse to list the functions available for a setup.

When the Extract command is selected from the setup, all extractions in the setup are performed in the order listed in the setup. This order is usually critical to proper extraction performance. Extractions are typically completed instantly and the newly extracted model parameter values are placed in Model Parameters.

Simulating Device Response

Simulation uses model parameter values currently in Model Parameters. A SPICE deck is created and the simulation performed. The output of the SPICE simulation is then read into IC-CAP as simulated data.

Select a simulator from Tools > Hardware Setup or define a SIMULATOR variable. Simulations vary in the amount of time they take to complete. DC simulations generally run much faster than cv and AC simulations.
If simulated results are not as expected, use the Simulation Debugger (Tools menu) to examine the input and output simulation files. The output of manual simulations is not available for further processing by IC-CAP functions (such as transforms and plots). For more information refer to “Using the Simulation Debugger” in the IC-CAP User’s Guide.

**Displaying Plots**

The Display Plot function displays all graphical plots defined in a setup. The currently active graphs are listed in the Plots folder in each setup.

Measured data is displayed as a solid line; simulated data is displayed as a dashed or dotted line of the same color. After an extraction and subsequent simulation, view the plots for agreement between measured and simulated data. Plots are automatically updated each time a measurement or simulation is performed.

**Optimizing Model Parameters**

Optimization of model parameters improves the agreement between measured and simulated data. The bipolar model typically requires very little optimization because most of the extraction algorithms have some optimization built into them.

Capacitance parameter extractions are actually done through optimization. An Optimize Transform whose *Extract Flag* is set to *Yes* is automatically called after any extraction that precedes it in the Transform list.

Optimizing AC parameters can be very time-consuming because of the number of SPICE simulations required.

**PNP Transistors**

In the *bjt_pnp.mdl* file included with IC-CAP, PNP transistors are measured, extracted, and simulated in a manner similar to NPN transistors. The critical difference with a PNP device is that the bias voltages are of opposite polarity from an NPN device.
To extract the two models using the same algorithms, set a variable in Model Variables; POLARITY should have the value PNP. The extraction default NPN will result in incorrect parameter values or extraction errors on PNP data.

Another variable convenient for displaying PNP Plots is inv_plot. This variable can invert the plots in bjt_pnp.mdl so they plot in the same direction as NPN plots. Set inv_plot to -1 to do this.

**Extracting Parameters**

This section describes the general process for extracting model parameter data from the UCB bipolar transistor. The process applies to all types of parameters: DC, capacitance, and AC. The differences between extracting one type of parameter and another are primarily in the types of instruments used to measure the data and the specifications within the DUTs and setups.

Parameters are typically extracted from measured data but can also be extracted from simulated data. To extract from measured data, ensure that the outputs specified in the extraction transforms use the .m suffix. For example, IS and NF are extracted using the BJTDC_is_nf function. To extract from measured data, IC-CAP uses log10(ic.m) as the specification of the forward collector current. (Use the .s suffix when extracting from simulated data.)

When performing an extraction, accurate results depend on the sequence of steps. The top-to-bottom order of DUTs and setups in a model file is the suggested order of measurements and extractions. In the bjt_npn.mdl file, the large signal DC and junction capacitance parameters are independent of each other. However, for the parasitic resistances and AC parameters to be accurately extracted, the preceding two groups must be successfully extracted first. Setups in bjt_npn.mdl are designed for use with a typical bipolar transistor. You may be able to improve results with your own devices by modifying these setups to more closely conform to your needs.
Bipolar Transistor Characterization

The general extraction procedure is summarized next, starting with the measurement process.

1. Install the device to test in a test fixture and connect the measuring instruments.
2. Ensure the test fixture, signal sources and measuring instruments, and workstation are physically and logically configured to the IC-CAP system.
3. Load the model.
4. Select the DUT and setup.

NOTE

Execute measurements and extractions in the order listed in DUTs-Setups to ensure the correct order; otherwise, incorrect results may result.

5. Issue the Measure command.
6. Issue the Extract command.
7. Issue the Simulate command.
8. Display the results.
9. Fine tune the extracted parameters if needed by optimizing.

DC Large-Signal Parameters

Setups are provided for measuring and extracting the properties of the internal transistor (not including parasitic resistances); these are $f_{early}$, $r_{early}$, $f_{gummel}$, and $r_{gummel}$.

The $f_{early}$ and $r_{early}$ setups measure forward and reverse Early voltage characteristics, respectively. The Early voltage parameters VAF and VAR are extracted simultaneously in the $r_{early}$ setup, using measurements taken from both $f_{early}$ and $r_{early}$.

The $f_{gummel}$ and $r_{gummel}$ setups perform the forward and reverse Gummel plot measurements. Parameters IS, BF, NE, IKF, ISE, and NF are extracted by the $f_{gummel}$ setup, while the extractions in the $r_{gummel}$ setup produce the BR, NR, IKR, ISC, and NC parameters. The model uses the saturated current parameter IS to simulate current flow in both directions.
Junction Capacitance Parameters

Measuring bipolar transistor capacitance characteristics requires three DUTs. This is because each p-n junction is a physically different one-port connection. The base-emitter, base-collector, and collector-substrate junctions each have a different DUT and setup. While you will perform all three measurements on the same physical device, each measurement requires different instrument connections for the corresponding DUT and setup. The DUTs and instrument connections for each measurement are listed in Table 3.

Each p-n junction is measured from a small forward bias to a large reverse bias. The extractions are performed using the transform \( \text{set}_CJ \) to find the initial value of \( \text{C}J0 \), then optimizing the parameters of the general p-n junction capacitance equation to the measured data. This produces the capacitance, built-in voltage, and grading factors for each DUT: \( \text{C}JE, \text{V}JE, \text{M}JE; \text{C}JC, \text{V}JC, \text{M}JC; \text{C}JS, \text{V}JS, \text{M}JS \). For the most accurate extractions, calibrate out stray capacitance from cables, probes, and bond pads before taking each p-n junction capacitance measurement.

DC Parasitic Resistance Parameters

Three parasitic resistances are connected to the bipolar transistor: \( \text{RE}, \text{RC}, \) and \( \text{RB} \). \( \text{RE} \) and \( \text{RC} \) are constant value components, while \( \text{RB} \) is a function of base current. \( \text{RE} \) is measured by the setup \( \text{reflyback} \). This setup saturates the transistor, then measures the differential voltage drop from collector to emitter (with \( \text{I}c = 0 \)) versus the differential base-to-emitter current.

\( \text{RC} \) is measured by the setup \( \text{rcsat} \), which measures the parameter as the DC resistance from collector to emitter at the onset of saturation. Alternately, the \( \text{ractive} \) setup can be used to measure the collector resistance in the active region of device operation. However, this extraction is dependent on the operating point, which must be specified by manually placing a box on the Plot contained in the setup. For complete information on using this extraction, refer to HP Application Note Advanced Bipolar Transistor Modeling Techniques[1].
1 Bipolar Transistor Characterization

The setup \texttt{rbbib} does not actually measure or extract RB. Instead, it produces a characteristic curve of base-to-emitter bias versus DC base current. The resulting curve is used when the base resistance is measured and extracted using S-parameters.

\textbf{Base Resistance and Transit Time Parameters}

The AC DUT uses setups that measure S-parameters with a network analyzer. The quality of the measured S-parameters depends on the calibration of the network analyzer. IC-CAP does not perform error correction; it relies totally on the measuring instruments for the correction of errors.

Making high-frequency measurements on packaged transistors can lead to unexpected results. This is because of the stray capacitance and inductance that are a part of the package. Measure S-parameters with a high-quality microwave wafer probe.

The AC setup \texttt{rbbac} measures H11 of the transistor in the common emitter mode. This input impedance is then used in the extraction to produce model parameters RB, IRB, and RBM.

The AC setup \texttt{h21vebe} measures H21 of the transistor in the common emitter mode. The measured current gain is then used to extract a small signal model that produces the parameters TF, ITF, VTF, XTF, and PTF.

The AC setup \texttt{h21vsebc} measures H21 of the transistor in the common collector mode. The measured current gain is then used to extract the parameter TR.
Extraction Algorithms

This section describes the extraction algorithms used for DC, capacitance, parasitic resistance, and AC model parameters of the bipolar transistor.

DC Parameter Extractions

The Early voltage extractions produce the model parameters $V_{AF}$ and $V_{AR}$. The output conductance of $I_c$ versus $V_{ce}$ for steps of $V_b$ is used in the calculation. Both Early parameters are extracted simultaneously, which requires both forward and reverse measurements prior to extraction. The actual extraction is performed under the rearly setup. The substrate bias should be held at a negative (positive) voltage for an NPN (PNP) transistor. For the extraction to function correctly, the device must be completely out of saturation at the 20 percent point of each curve, and the forward and reverse curves must have the same number of steps.

The forward Gummel measurement is used to extract $I_{S}, N_{F}, B_{F}, I_{KF}, I_{SE}$, and $N_{E}$. This measurement holds the base-collector voltage at approximately 0V and drives the emitter with a negative bias sweep. The bias should produce $I_c$ in the range of less than 1nA to more than 10 mA for a typical IC transistor.

First, $I_{S}$ and $N_{F}$ are extracted from the low current region of the $I_c$ versus $V_{be}$ data using a least-squares fit. The very low current region of the $I_b$ versus $V_{be}$ data is used to obtain $I_{SE}$ and $N_{E}$, the base recombination parameters. An internal optimization in the extraction algorithm is then used to produce $B_{F}$ and $I_{KF}$ and fine-tune the $I_{SE}$ and $N_{E}$ parameters. If insufficient high current data is available, $I_{KF}$ will be set to a default value of 10A. To guarantee that $I_{KF}$ is extracted, measure until beta has rolled off to approximately half of its peak value.

The reverse Gummel measurement is used to extract $N_{R}, B_{R}, I_{KR}, I_{SC}$, and $N_{C}$. This measurement and extraction is analogous to the forward measurement except that the transistor is now in the reverse active mode. If the measurement is made on an IC structure that has a substrate of opposite
polarity to the collector, it is possible that the plot of reverse 
Beta versus $I_e$ will not fit well. This is because the parasitic 
transistor formed by the base-to-collector-to-substrate begins to 
conduct, thus robbing current from the base of the transistor 
being modeled. There is a solution to this problem. The example 
file `nnpnwpnp.mdl` includes a compound structure of both an 
NPN transistor and its parasitic PNP device. This model allows 
you to produce an excellent fit of the NPN transistor operating 
in the reverse bias region. Refer to “Circuit Parameter 
Extraction” on page 545 for more information on using this 
file to characterize the reverse active mode of operation.

**Capacitance Parameter Extractions**

The capacitances are split into three different DUTs. The 
measurement is performed over a range of small forward bias 
(where $v < V_J \cdot FC$) to at least several volts of reverse bias. The 
parameter extraction is accomplished through optimization of 
the controlling parameters in the characteristic equation for the 
junction capacitance. The extraction from each produces the 
zero bias capacitance $C_{Jx}$, the built-in potential of the junction 
$V_{Jx}$, and the grading factor of the junction $M_{Jx}$. The forward 
bias coefficient $FC$ is set to the SPICE default value of 0.5. The 
purpose of this parameter is to switch the capacitance in the 
simulator into a linear model before the junction bias 
approaches $V_{Jx}$.

**Parasitic DC Parameter Extractions**

This set of setups uses DC measurements to obtain the emitter 
resistance $R_E$, the collector resistance $R_C$, and a DC $I$ versus $V$ 
relationship to be used later in the base resistance extraction. 
$RE$ is extracted from a measurement of the differential of 
collector voltage with respect to base current with the 
transistor biased into saturation. A linear fit is performed on 
the part of the curve that is most sensitive to the effects of $RE$.

In the `rcsat` setup $RC$ is extracted from a measurement of $I_C$ 
versus $V_{ce}$ with the base biased so that the transistor is near its 
peak Beta point and well into saturation. The extraction uses a
linear fit along with the known RE. In the reactive setup RC is extracted at a bias selected by placing a box on the Plot of $I_c$ versus $V_{ce}$.

The setup $rbbib$ is not actually used to extract any model parameters directly but is used by the following AC measurements in the extraction of the base resistance parameters. The base voltage bias specification used in this setup and in the $rbbac$ setup must be the same. To facilitate this, the start value, stop value, and number of points are set using four variables in the model level variable table. These are $rbbstart$, $rbbstop$, $rbbnpts$, and $rbbvc$. The start and stop bias voltages should sweep the transistor’s operating point from near peak Beta to well into Beta roll-off.

**AC Parameter Extractions**

Base resistance and transit time parameters are extracted from network analyzer measurements of the transistor’s S-parameters converted to H-parameters. Both of these sets of model parameters are highly dependent upon the prior extraction of the DC, capacitance, and parasitic resistance parameters.

The base resistance is extracted from $H11$ data versus frequency and bias. The $H11$ data traces a circular path on a Re-Im axis system versus frequency. The measurement frequency should be held low enough so that this circular pattern does not start to become linear. This characteristic is used to obtain the real value of $R_{base}$ versus base current. From the characteristic of $R_{base}$ versus $I_{base}$, the $RB$, $IRB$, and $RBM$ parameters are extracted.

The transit time parameters, $TF$, $XTF$, $ITF$, $VTF$, and $PTF$, are extracted from measurements of the common-emitter current gain $H21$. The measurement frequency should be higher than the -3dB roll-off frequency of the transistor at all bias levels. However, the measurement frequency should also be low enough so that the magnitude of $H21$ over the bias levels is always greater than 2.0. Regions of the $H21$ versus $V_{be}$ versus $V_{ce}$ data are isolated where each of these parameters has a dominating effect on an extraction performed there. The
ex extractions use an optimization routine that matches the performance of the complete small signal model to the measured data. The extraction assumes that all other model parameters have been accurately obtained. If the $H_{21}$ measurement has not calibrated out the stray capacitance (from bond pads, package, probe, or others) the initial extraction may fail and an extraction decoupled from the small signal model will be performed. These resulting parameters may need scaling using the *scale_params* transform, depending on any unaccounted stray capacitance in the small signal model.

The reverse transit time parameter $TR$ is extracted from measurements of the common-collector current gain $H_{21}$.

IC-CAP supports two different methods of calculating the $Q_1$ component of the base charge during the extractions.

\[
Q_1 = \frac{1}{1 - \frac{V_{be}}{V_{AR}} \frac{V_{bc}}{V_{AF}}} \quad \text{(default method)}
\]

\[
Q_1 = 1 + \frac{V_{be}}{V_{AR}} + \frac{V_{bc}}{V_{AF}} \quad \text{(alternate method)}
\]

The alternate method can be selected by defining a model parameter or variable named $GPQ_1$ and setting it equal to 0. If $GPQ_1$ is not defined or non-zero, the default method is used.
References


Bipolar Transistor Characterization
This chapter describes the UC Berkeley MOSFET transistor model supported in SPICE. Descriptions of model setup, instrument connections, and model parameters are included as well as test instrument information. Information is included for making DC and capacitance measurements and their corresponding extractions.

The HSPICE LEVEL 6 MOSFET model is an enhanced version of the MOSFET LEVEL 2 model; refer to the section “HSPICE LEVEL 6 MOSFET Model” on page 64 for parameter measurement and extraction information.

The IC-CAP MOSFET modeling module provides setups that can be used for general measurement and model extraction for MOS devices. Four example files are provided for the MOSFET model; the files can also be used as a template for creating custom model configurations.
nmos2.mdl extracts parameters for the LEVEL 2 N-channel model
pmos2.mdl extracts parameters for the LEVEL 2 P-channel model
nmos3.mdl extracts parameters for the LEVEL 3 N-channel model
pmos3.mdl extracts parameters for the LEVEL 3 P-channel model

The IC-CAP system offers the flexibility to modify any measurement or simulation specification.

The model extractions provided are also intended for general MOS IC processes. If you have another method of extracting specific model parameters, you can do so with the Program function or by writing a function in C and linking it to the function list. For Program function details or for writing user-defined C-language routines, refer to Chapter 9, “Using Transforms and Functions,” in the IC-CAP User’s Guide.
The UCB MOSFET model is fully compatible with the UCB model developed for use with the UCB SPICE simulator. The model is actually a combination of three models, each being specified by an appropriate value of the LEVEL parameter. After specifying the model, enter the correct set of parameters for that model. Some of these parameters are shared between different models, while others affect only a specific model.

Extraction for the LEVEL 1 model (Shichman-Hodges) is not supplied with this release of IC-CAP. The LEVEL 2 model [1] is an advanced version of LEVEL 1, and can use either electrical or process type parameters. The LEVEL 3 [1] model is semi-empirical because it uses parameters that are defined by curve fitting rather than by device physics.
Simulators

The MOSFET model is supported by the SPICE simulators included with IC-CAP: SPICE2, SPICE3 and HPSPICE. The model files provided can also be used with the HSPICE simulator and, with some modification, the Saber simulator.

**NOTE**

Simulators are provided as a courtesy to IC-CAP users; they are not supported by Agilent Technologies.

The default nominal temperature for HPSPICE is 25°C; for SPICE2 and SPICE3 it is 27°C. To force a nominal temperature, set the $TNOM$ variable to the desired value.
MOSFET Model Parameters

Table 4 lists parameters for the three model levels according to DC and cv extraction in IC-CAP. (Some of these parameters are redundant and therefore only a subset of them is extracted in IC-CAP.) Table 5 describes model parameters by related categories and provide default values. The parameter values are displayed in the Circuit folder. Table 6 lists setup attributes.

<table>
<thead>
<tr>
<th>Type</th>
<th>LEVEL 1</th>
<th>LEVEL 2†</th>
<th>LEVEL 3†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>VTO, GAMMA, PHI, KP, IS, J S, TOX</td>
<td>NSUB, UO, UCRIT, UEXP, UTRA, NFS, NSS, TPG</td>
<td>NSUB, UO, THETA, NFS, NSS, TPG</td>
</tr>
<tr>
<td>Short-channel</td>
<td>LD, XJ</td>
<td>LD, XJ</td>
<td></td>
</tr>
<tr>
<td>Narrow-width</td>
<td></td>
<td></td>
<td>DELTA, WD†††</td>
</tr>
<tr>
<td>Saturation</td>
<td></td>
<td>NEFF, VMAX</td>
<td>ETA, KAPPA</td>
</tr>
<tr>
<td>External resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction capacitance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidewall capacitance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap capacitance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-CAP Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
† LEVEL 2 and LEVEL 3 also include LEVEL 1 parameters.
†† Indicates device parameters (model and device parameters are listed together).
††† WD does not exist in the SPICE UCB version; it has been added to some SPICE versions and is included in IC-CAP. If WD is not in your simulator, ignore the result (set to zero), or subtract 2*WD from the channel width. In the MOS model files provided with IC-CAP, the width specification W in each of the DUTs has been modified to subtract the value of 2*WD from the drawn width. WD is specified in Model Variables.
### MOSFET Characterization

#### Table 5  UCB MOSFET Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Capacitance</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGBO</td>
<td>Gate to Bulk Overlap Capacitance. Capacitance due to design rules that require the gate be extended beyond the channel by some amount. Not voltage dependent. Total Cgb capacitance equals Cgbo times channel length.</td>
<td>0 F/m</td>
</tr>
<tr>
<td>CGDO</td>
<td>Gate to Drain Overlap Capacitance. Capacitance due to the lateral diffusion of the drain in an Si gate MOSFET. Not voltage dependent. Total Gcd capacitance equals Cgdo times the channel width.</td>
<td>0 F/m</td>
</tr>
<tr>
<td>CGSO</td>
<td>Gate to Source Overlap Capacitance. Capacitance due to the lateral diffusion of the source in an Si gate MOSFET. Not voltage dependent because it is not a junction capacitance. Total Cgs capacitance equals Cgso times channel width.</td>
<td>0 F/m</td>
</tr>
<tr>
<td>CJ SW</td>
<td>Zero Bias Junction Sidewall Capacitance. Models the nonlinear junction capacitance between the drain and the source junction sidewall. ((P_d + P_s) * C_j SW = total\ junction\ sidewall\ capacitance.)</td>
<td>0 F/m</td>
</tr>
<tr>
<td>MJ SW</td>
<td>Grading Coefficient of Junction Sidewall. Models the grading coefficient for the junction sidewall capacitance.</td>
<td>0.33</td>
</tr>
<tr>
<td>PB</td>
<td>Bulk Junction Potential. Models the built-in potential of the bulk-drain or bulk-source junctions. The default is usually adequate.</td>
<td>0.8 volt</td>
</tr>
<tr>
<td>FC</td>
<td>Forward Bias Non-Ideal Junction Capacitance Coefficient. Models the point ((FC * PB)) at which junction capacitance makes the transition between forward and reverse bias.</td>
<td>0.5</td>
</tr>
<tr>
<td><strong>Electrical Process</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>Substrate Junction Saturation Current. Helps model current flow through the bulk-source or bulk-drain junction.</td>
<td>(1 \times 10^{-16}) Amp</td>
</tr>
<tr>
<td>JS</td>
<td>Substrate Junction Saturation Current/ m². (J_s) equals Is divided by the junction area. For example, (I_{sd} = J_s * A_d) where (A_d) is the drain area.</td>
<td>(1 \times 10^{-4}) A/m²</td>
</tr>
<tr>
<td>RD</td>
<td>Drain Ohmic Resistance. This parameter is geometry independent in SPICE and IC-CAP. In fact, it is inversely proportional to channel width.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td>UCRIT</td>
<td>Critical Field for Mobility Degradation. Used in level=2 model only.</td>
<td>1000 V · cm⁻¹</td>
</tr>
<tr>
<td>UEXP</td>
<td>Critical Field Exponent. Used in level=2 model only.</td>
<td>0</td>
</tr>
<tr>
<td>UO</td>
<td>Surface Mobility at Low Gate Levels. Specifies mobility in level=2 and level=3 models. In the level=2 model, if (K_p) is UTRA</td>
<td>600 cm²/(V · S)</td>
</tr>
</tbody>
</table>
### MOSFET Characterization

#### Table 5  UCB MOSFET Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTRA</td>
<td>Transverse Field Coefficient. Used in level=2 model only. Set UTRA to 0 to obtain same result as SPICE.</td>
<td>0</td>
</tr>
<tr>
<td>VMAX</td>
<td>Maximum Drift Velocity of Carriers. Determines whether Vdsat is a function of scattering velocity limited carriers or a function of drain depletion region pinch-off. VMAX is valid only for level=2 and level=3 models. If VMAX is specified, the scattering velocity limited carrier model is used to determine Vdsat.</td>
<td>0 m/s⁻¹</td>
</tr>
<tr>
<td>NEFF</td>
<td>Total Channel Charge. A multiplicative factor of NSUB, NEFF determines saturated output conductance. Used only in the level=2 model, and only when Vmax is specified.</td>
<td>1.0</td>
</tr>
</tbody>
</table>

#### Physical Process

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>Lateral Diffusion Coefficient. Used to determine the effective channel length.</td>
<td>0 METER</td>
</tr>
<tr>
<td>TOX</td>
<td>Oxide Thickness. Used when calculating conduction factor, backgate bias effects, and gate-channel capacitances.</td>
<td>100x10⁻⁹ METER</td>
</tr>
<tr>
<td>TPG</td>
<td>Type of Gate. Indicates whether gate is of metal or poly-silicon material (0=aluminum; 1=opposite substrate; -1=same as substrate). Used in calculating threshold voltage when Vto is not specified.</td>
<td>1</td>
</tr>
<tr>
<td>WD</td>
<td>Channel Width Reduction. Used to determine the effective channel width. This parameter is assumed to be 0 in SPICE.</td>
<td>0 METER</td>
</tr>
<tr>
<td>XJ</td>
<td>Metallurgical Junction Depth. Defines the distance into the diffused region around the drain or source at which the dopant concentration becomes negligible. Used to model some short channel effects.</td>
<td>0 METER</td>
</tr>
</tbody>
</table>

#### Threshold Related

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS</td>
<td>Effective Fast Surface State Density. Used to determine subthreshold current flow. Not valid for extracting simple linear region classical parameters.</td>
<td>0 cm⁻²</td>
</tr>
<tr>
<td>NSS</td>
<td>Effective Surface Charge Density. Used to calculate threshold voltage when Vto is not specified.</td>
<td>0 cm⁻²</td>
</tr>
<tr>
<td>NSUB</td>
<td>Substrate Doping Concentration. Used in most calculations for electrical parameters. It is more accurate to specify Vto rather than deriving it from NSUB. However, NSUB should be specified when modeling the back gate bias dependency of Vto.</td>
<td>1 x 10¹⁵ cm⁻³</td>
</tr>
<tr>
<td>DELTA</td>
<td>Width Effect on Threshold Voltage. Used in LEVEL=2 and LEVEL=3 models to shift threshold voltage for different channel widths.</td>
<td>0</td>
</tr>
<tr>
<td>ETA</td>
<td>Static Feedback. Used in LEVEL=3 model to decrease threshold for higher drain voltage.</td>
<td>0</td>
</tr>
</tbody>
</table>
## 2 MOSFET Characterization

### Table 5 UCB MOSFET Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAMMA</td>
<td>Bulk Threshold. The proportionality factor that defines the threshold voltage to backgate bias relationship. Used in the derivation of Vto, Ids, and Vdsat. If not specified in LEVEL=2 and LEVEL=3 models, it is computed from NSUB.</td>
<td>0 V(^{1/2})</td>
</tr>
<tr>
<td>VTO</td>
<td>Extrapolated Zero Bias. Threshold Voltage Models the onset of strong inversion in the LEVEL=1 model. Marks the point at which the device starts conducting if weak inversion current is ignored.</td>
<td>0 Volt</td>
</tr>
<tr>
<td>KAPPA</td>
<td>Saturation Field Factor. Used in the level=3 model to control saturation output conductance.</td>
<td>0.2</td>
</tr>
<tr>
<td>KP</td>
<td>Intrinsic Transconductance. If not specified for the level=2 model, KP is computed from KP = (u_0*\text{Cox}). In some of the literature, KP may be shown as (k'). The default for the LEVEL=1 model is (2\times10^{-5}).</td>
<td>0 A/V(^2)</td>
</tr>
<tr>
<td>LAMDA</td>
<td>Channel Length Modulation Models. The finite output conductance of a MOSFET in saturation. It is equivalent to the inverse of Early Voltage in a bipolar transistor. Specifying this parameter ensures that a MOSFET will have a finite output conductance when saturated. In the level=1 model, if lambda is not specified a zero output conductance is assumed. In the level=2 model, if lambda is not specified, it will be computed.</td>
<td>0 V(^{-1})</td>
</tr>
<tr>
<td>PHI</td>
<td>Surface Potential Models. The surface potential at strong inversion. If not specified in level=2 and level=3 models, it is computed as PHI = (2kT/q \ln(N_{\text{sub}}/n_i)). PHI also may be shown as (2\times)PHIb.</td>
<td>0 Volt</td>
</tr>
<tr>
<td>THETA</td>
<td>Mobility Reduction. Used in level=3 to model the degradation of mobility due to the normal field.</td>
<td>0 V(^{-1})</td>
</tr>
</tbody>
</table>

### Device Geometry

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Drawn or Mask Channel Length. Physical length of the channel.</td>
<td>(1\times10^{-4}) Meter</td>
</tr>
<tr>
<td>W</td>
<td>Drawn or Mask Channel Width. Physical width of channel.</td>
<td>(1\times10^{-4}) Meter</td>
</tr>
<tr>
<td>AD</td>
<td>Area of Drain Area of drain diffusion. Used in computing Is (from Js), and drain and source capacitance from Cbd=CjAd.</td>
<td>0 m(^2)</td>
</tr>
<tr>
<td>AS</td>
<td>Area of Source diffusion. Can be used as described for AD.</td>
<td>0 m(^2)</td>
</tr>
<tr>
<td>NRD</td>
<td>Equivalent Squares in Drain Diffusion. Number of equivalent squares in the drain diffusion. Multiplied by Rsh to obtain parasitic drain resistance (Rd).</td>
<td>1.0</td>
</tr>
<tr>
<td>NRS</td>
<td>Equivalent Squares in Source Diffusion. Number of equivalent squares in the source diffusion. Multiplied by Rsh to obtain parasitic source resistance (Rs).</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 5  UCB MOSFET Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>Drain Junction Perimeter. Used with CJSW and MJSW to model the junction sidewall capacitance of the drain.</td>
<td>0 Meter</td>
</tr>
<tr>
<td>PS</td>
<td>Source Junction Perimeter. Used with CJSW and MJSW to model the junction sidewall capacitance of the source.</td>
<td>0 Meter</td>
</tr>
</tbody>
</table>

General

LEVEL  Extraction Level. Specifies one of four extraction levels. 1

Table 6  MOSFET Setup Attributes

<table>
<thead>
<tr>
<th>DUT/Setup</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Transform</th>
<th>Function</th>
<th>Extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL 2 Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large/idvg</td>
<td>vg, vb, vd, vs</td>
<td>id</td>
<td>extract MOSDC_lev2_lin_large optimize</td>
<td>NSUB, UO, UEXP, VTO NSUB, UO, UEXP, VTO</td>
<td></td>
</tr>
<tr>
<td>narrow/idvg</td>
<td>/ / / /</td>
<td>extract MOSDC_lev2_lin_narrow optimize</td>
<td>DELTA, WD DELTA, WD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>short/idvg</td>
<td>/ / / /</td>
<td>extract MOSDC_lev2_lin_short optimize</td>
<td>LD, Xj LD, RD, RS, Xj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>short/idvd</td>
<td>vd, vg, vb, vs</td>
<td>id</td>
<td>extract MOSDC_lev2_sat_short optimize</td>
<td>NEFF, VM AX NEFF, VM AX</td>
<td></td>
</tr>
<tr>
<td>cbd1/cjdarea</td>
<td>vb, vd</td>
<td>cbd</td>
<td>set_Cj extract Program</td>
<td>initial zero bias Cj</td>
<td></td>
</tr>
<tr>
<td>cbd2/cjdp3erimeter</td>
<td>vb, vd</td>
<td>cbd</td>
<td>extract MOSCV_total_cap</td>
<td>Cj, MJ, MJ SW, MJ SW, PB</td>
<td></td>
</tr>
<tr>
<td>LEVEL 3 Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large/idvg</td>
<td>vg, vb, vd, vs</td>
<td>id</td>
<td>extract MOSDC_lev3_lin_large optimize</td>
<td>NSUB, UO, THETA, VTO NSUB, UO, THETA, VTO</td>
<td></td>
</tr>
</tbody>
</table>
## MOSFET Characterization

### Table 6  MOSFET Setup Attributes

<table>
<thead>
<tr>
<th>DUT/Setup</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Transform</th>
<th>Function</th>
<th>Extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>narrow/idvg</td>
<td>/ /</td>
<td>/ /</td>
<td>extract</td>
<td>MOSDC_lev3_lin_narrow</td>
<td>DELTA, WD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optimize</td>
<td></td>
<td>DELTA, WD</td>
</tr>
<tr>
<td>short/idvg</td>
<td>/ /</td>
<td>/ /</td>
<td>extract</td>
<td>MOSDC_lev3_lin_short</td>
<td>LD, RD, RS, XJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optimize</td>
<td></td>
<td>LD, RD, RS, XJ</td>
</tr>
<tr>
<td>short/idvd</td>
<td>vd, vg, vb, vs</td>
<td>id</td>
<td>extract</td>
<td>MOSDC_lev3_sat_short</td>
<td>ETA, KAPPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optimize</td>
<td></td>
<td>ETA, KAPPA</td>
</tr>
<tr>
<td>cbd1/cjdarea</td>
<td>vb, vd</td>
<td>cbd</td>
<td>set_Cj</td>
<td>Program</td>
<td>initial zero bias CJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optimize</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cbd2/cjdperimeter</td>
<td>vb, vd</td>
<td>cbd</td>
<td>extract</td>
<td>MOSCV_total_cap</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

48 IC-CAP Nonlinear Device Models Volume 1
Test Instruments

The HP 4141, HP/Agilent 4142, or HP 4145 can be used to derive DC model parameters from measured DC voltage and current characteristics. The HP 4271, HP 4275, HP 4280, HP/Agilent 4284, or HP 4194 can be used to derive capacitance model parameters from measured capacitance characteristics at the device junctions.

Instrument-to-Device Connections

When the device is installed in a test fixture, verify the correct connection of device nodes by checking the inputs and outputs for the DUTs. Table 7 is a cross-reference of connections between the terminals of a typical MOSFET device and various measurement units. These connections and measurement units are defined in the model file.

Input and output tables in the various setups use abbreviations D (drain), G (gate), S (source), and B (bulk [substrate]) for the MOSFET device nodes. These nodes are defined in the Circuit folder.

Measurement units (abbreviated as follows) are defined in Hardware Setup.

- SMU# for DC measurement units
- VS# for voltage source units
- VM# for voltage monitor units
- CM for capacitance measurement units
- NWA for network analyzer ports units

Table 7  Instrument-to-Device Connections

<table>
<thead>
<tr>
<th>DUT</th>
<th>Drain</th>
<th>Gate</th>
<th>Source</th>
<th>Bulk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>large</td>
<td>SM U1</td>
<td>SM U2</td>
<td>SM U3</td>
<td>SM U4</td>
<td></td>
</tr>
<tr>
<td>narrow</td>
<td>SM U1</td>
<td>SM U2</td>
<td>SM U3</td>
<td>SM U4</td>
<td></td>
</tr>
<tr>
<td>short</td>
<td>SM U1</td>
<td>SM U2</td>
<td>SM U3</td>
<td>SM U4</td>
<td></td>
</tr>
</tbody>
</table>
## MOSFET Characterization

Table 7: Instrument-to-Device Connections (continued)

<table>
<thead>
<tr>
<th>DUT</th>
<th>Drain</th>
<th>Gate</th>
<th>Source</th>
<th>Bulk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbd1</td>
<td>CM (L)</td>
<td>open</td>
<td>open</td>
<td>CM (H)</td>
<td>calibrate for parasitic capacitance</td>
</tr>
<tr>
<td>cbd2</td>
<td>CM (L)</td>
<td>open</td>
<td>open</td>
<td>CM (H)</td>
<td>calibrate for parasitic capacitance</td>
</tr>
</tbody>
</table>

Notes:
DUT is the name of the DUT as specified in DUT-Setup. Example: DUT large has the DC measurement unit SM U1 connected to its drain, SM U2 connected to its gate, SM U3 connected to its source, and SM U4 connected to its bulk.
Measuring and Extracting

This section provides guidelines as well as procedures for performing measurements and extractions of MOSFET devices.

Measurement and Extraction Guidelines

The following guidelines are provided to help you achieve more successful model measurements and extractions.

Setting Instrument Options

Before starting a measurement, you can quickly verify instrument options settings. Save the current instrument option settings by saving the model file to `<file_name>.mdl` from the model window. Some of the Instrument Options specify instrument calibration. For the most accurate results, calibrate the instruments before taking IC-CAP measurements.

Typical DC and cv instrument options are:

- DC measurements are generally taken with Integration Time = Medium.
- CV measurements in the femtofarad region usually require High Resolution = Yes and Measurement Freq (kHz) = 1000.

Measuring Instruments

Ensure that the measuring instruments (specified by unit names in the inputs and outputs) are correctly connected to the DUT. Refer to Table 7 for a list of nodes and corresponding measurement units. The quality of the measuring equipment (instruments, cables, test fixture, transistor sockets, and probes) can influence the noise level in the measurements and extracted parameter values.

For some measurements the instruments or test hardware must be calibrated to remove non-device parasitics from the DUT. For MOS devices, stray capacitance due to probe systems, bond pads, and so on should be calibrated out prior to each measurement.
Extracting Model Parameters

For a given setup, you can find the extraction transforms in the Extract/Optimize folder. IC-CAP’s extraction algorithms exist as functions; choose **Browse** to list the functions available for a setup.

When the *Extract* command is selected from the setup, all extractions in the setup are performed in the order listed in the setup. This order is usually critical to proper extraction performance. Extractions are typically completed instantly and the newly extracted model parameter values are placed in Model Parameters.

Simulating Device Response

Simulation uses model parameter values currently in Model Parameters. A SPICE deck is created and the simulation performed. The output of the SPICE simulation is then read into IC-CAP as simulated data.

Select a simulator from Tools > Hardware Setup or define a **SIMULATOR** variable. DC simulations generally run much faster than CV simulations. CV simulations can be done in a much shorter time by executing the *calc_mos_cbd_model* transform instead of running the simulator.

If simulated results are not as expected, use the Simulation Debugger (Tools menu) to examine the input and output simulation files. The output of manual simulations is not available for further processing by IC-CAP functions (such as transforms and plots). For more information refer to "Using the Simulation Debugger" in the *IC-CAP User’s Guide*.

Displaying Plots

The Display Plot function displays all graphical plots defined in a setup. The currently active graphs are listed in the Plots folder in each setup.
Measured data is displayed as a solid line; simulated data is displayed as a dashed or dotted line. After an extraction and subsequent simulation, view the plots for agreement between measured and simulated data. Plots are automatically updated each time a measurement or simulation is performed.

**Optimizing Model Parameters**

Optimization of model parameters improves the agreement between measured and simulated data. An optimize transform whose *Extract Flag* is set to *Yes* is automatically called after any extraction that precedes it in the transform list.

**Extracting Parameters**

This section describes the general procedure for extracting model parameter data from the UCB MOSFET transistor. The general procedure applies to all types of parameters; differences between extracting one type and another are primarily in the types of instruments, setups, and transforms used. Also included in this section is information specific to DC and capacitance measurements and extractions.

Parameters are extracted from measured data taken directly from instruments connected to the inputs and outputs of the DUT. Using the extracted parameters simulated data can be generated by the simulator. Once measured and simulated data have been obtained, each data set can be plotted and the resulting Plots visually compared in the *Plot* window.

IC-CAP also extracts model parameters from simulated data. This capability is useful for creating a set of model parameters from the parameters of another model (parameter conversion) or for testing the accuracy of the extraction.

The general extraction procedure is summarized next, starting with the measurement process.

1. Install the device to test in a test fixture and connect the test instruments.
2. Ensure the test fixture, signal source and measuring instruments, and workstation are physically and logically configured for the IC-CAP system.
2 MOSFET Characterization

3 Load the model.
4 Select the DUT. In the DUT Parameters folder, enter the \( W \) and \( L \) device parameters for the selected DUT.
5 In the Macros folder, select the appropriate macro to enter the process parameters.
6 Select the setup.
7 Issue the Measure command.
8 Issue the Extract command.
9 Issue the Simulate command.
10 Display the results.
11 Fine tune the extracted parameters if needed by optimizing.

DC Measurement and Extraction

In DC parameter extraction, the extracted parameters are directly related to the geometries of the devices being tested. For a DUT to accurately extract DC model parameters, it must have the correct \( L \) (drawn or mask channel length) and \( W \) (drawn or mask channel width) device parameters. Before executing an extraction or simulation, edit each DUT to ensure the \( L \) and \( W \) parameters are correct.

Before starting the extraction, enter several process parameters. The most important of these is TOX. Determine TOX by reading the process information for the device, or by measuring the oxide capacitance; TOX is measured in meters. Enter its value directly in Model Parameters, or run the \texttt{init\_parameters} macro. Also use the \texttt{init\_parameters} macro to enter initial values for \( X_J \), \( L_D \), and \( R_S \). These initial values can contribute to the accuracy of the extracted parameters. They are overwritten by new values when the \( X_J \), \( L_D \), and \( R_S \) are extracted during the extraction process.

Accurate results depend on the sequence of the extraction. Follow this DC extraction sequence.
• Extract the classical parameters from the large device. Because length and width effects are not critical for the device used in this step, the classical parameters can be extracted very accurately. These parameters are used for the remainder of the extractions.

• Extract parameters from a narrow device, in which length effects are not important but the width effect and width parameters are.

• Extract length parameters using a short channel device and the classical parameter data acquired in the first extraction. RS and RD parameters, which predominate in this device, are also extracted in this step.

• All of the parameters extracted are used to calculate the saturation parameters for the short channel device. The short channel device is used for this procedure because of the predominance of the saturation parameters.

Do all of the measurements, followed by all of the extractions, and finally, the simulations. Extraction usually provides a reasonable fit to the measured data, but you can optimize data to attain an increased level of accuracy. Execute the optimization after extracting the DC parameters for each setup.

To perform DC parameter measurements:

1. Choose File > Open > Examples. Select <filename>.mdl and choose OK. Open the model window.

   When the model window appears you are ready to begin measurement and extraction operations.

   **NOTE**

   P-channel and N-channel MOS extractions are handled the same. pmos2.mdl or pmos3.mdl files are used for P-channel extractions; nmos2.mdl and nmos3.mdl files are used for N-channel extractions.

2. Select the DUT large. Enter the values for L and W. To include the effect of WD, enter the following expression for W:

   \(< value > - 2 \cdot WD\)
where value is the drawn width and WD is defined as a model variable.

3 In Macros, select init parameters. Enter the values for TOX, XJ, LD, and RS. Default values can be used by simply choosing OK in each dialog box.

4 Select the idvg setup and issue the Measure command.

5 Repeat these steps for narrow/idvg, short/idvg, and short/idvd.

To perform DC parameter extractions:

1 Select large/ idvg. Select the transform extract and execute the selection to extract the LEVEL 2 classical parameters.

2 Repeat this procedure for narrow/idvg, short/idvg, and short/idvd.

All DC model parameters have now been extracted and their values are listed in Model Parameters.

Notes on DC Parameter Extraction

These procedures assume that the large device is large enough to make small geometry effects irrelevant. This condition exists when the device geometries are much larger than LD and WD. For a typical process, 50*50 microns should be sufficient. To improve accuracy, enter the approximate values of LD and WD in Model Parameters so they can be taken into consideration in the first extraction step. A more accurate value for each is produced by the second and third extractions.

When a very large device is not available and you cannot enter LD and WD, try the following:

1 Use the largest available device for the large setup and execute all four steps of the DC extraction.

2 Repeat the extraction sequence starting with the first step (you do not need to re-enter the parameters). The previously extracted parameters (particularly LD and WD) are used as the initial values.
To extract DC parameters when only one size of device is available, extract model parameters using the following sequence. This sequence does not extract geometry-dependent parameters but does extract a subset of parameters to fully model that size device.

1. Perform the \textbf{large/\textit{idvg}} extraction to obtain the classical parameters.

2. Perform the \textbf{short/\textit{idvd}} extraction to obtain the saturation parameters.

Enter the same L and W device parameters for both DUTs. The model can be reconfigured so that it has only one DUT with two setups, one similar to \textit{idvg} and one similar to \textit{idvd}. Copy the setup from \textit{large/\textit{idvg}} and the setup from \textit{short/\textit{idvd}} (copy complete setups so the appropriate extraction and optimization functions are included).

If you cannot determine the L and W for a single geometry device (as might be the case with a packaged transistor), set estimated values. The actual values are less important than the ratio between them. An incorrect ratio of $W/L$ results in extraction of an unreasonable value for $U_O$. In general, the mobility parameter $U_O$ should be set between 200 and 800. Start the extraction after setting the ratio of L and W to 1, then change the ratio of L to W to scale back the extracted value of $U_O$.

**Capacitance Measurement and Extraction**

Capacitance parameters can be extracted before or after the DC parameters. The extraction requires that two different DUTs be measured; model parameters are extracted from the second DUT.

The extraction in the \textit{cbd1/cjdarea} setup requires a single geometry to be measured and produces the parameters $C_J$, $M_J$, and $P_B$. The extraction uses a transform \textit{set\_CJ} to find the initial zero bias value of $C_J$ then uses optimization to obtain all three parameter values.
2 MOSFET Characterization

The extraction in the cbd2/cjdperimeter setup requires two geometries to be measured (one in the cbd1/cjdarea setup and one in the cbd2/cjdperimeter setup) that produces the parameters CJ, MJ, PB, CJSW, and MJSW—and therefore a more complete capacitance model.

The extract transform uses the MOSCV_total_cap function to simultaneously solve for the bottom area and sidewall capacitance parameters. To extract the capacitance contributions from the bottom area and the sidewall periphery the geometries must have different area-to-perimeter ratios. The device measured with the cbd1/cjdarea setup should have a high bottom area to perimeter area ratio and the device measured with the cbd2/cjdperimeter should have a low bottom area to perimeter area ratio.

Place the device to be measured into the test fixture. Ensure that the CMs (Capacitance Meters Units) connected to the device correspond to the same CMs in Table 7 for each of the next two measurements. Calibrate the capacitance meter before taking each measurement.

The extractions of the sidewall capacitance parameter sets use the measured data from both setups—measure both setups before performing the extraction.

1 In Macros, select init_cap_parameters and Execute.
2 Enter the drain area and perimeter information.
3 Connect the low terminal of the capacitance meter (CM low) to drain and connect the high terminal (CM high) to bulk.
4 Select cbd1/cjdarea and Measure to measure the first drain-bulk junction capacitance.
5 Repeat steps 3 and 4 for cbd2/cjdperimeter if both geometry sizes are being measured.

Perform the model parameter extractions.

1 If a single geometry was measured, select cbd1/cjdarea. If two different geometries were measured, select cbd2/cjdperimeter.
2 Choose Extract.

Optimization is usually not required for capacitance data.
Notes on Capacitance Parameter Extraction

The drain-to-substrate and source-to-substrate junction capacitances are modeled as a combination of the sidewall and bottom (area) capacitances. To extract the parameters for these capacitances, first measure capacitance against voltage on two different size capacitors. Then execute the extraction command using two setups: cjdarea and cjdperimeter. Execute cjdarea on a square-shaped capacitance with a small sidewall to bottom ratio, and cjdperimeter on a long, narrow junction with a large sidewall to bottom ratio.

Each p-n junction should be reverse-biased when measured. Extraction is performed by the MOSCV_total_cap function. The parameters CJ, MJ, CJSW, MJSW, and PB are calculated from a combination of the two measurements.

Before running the extraction, specify the area and perimeter of the capacitance. Enter these numbers by executing the init_cap_parameters macro. This sets the variables defined at the model level for the area and perimeter of the two DUTs. The parameters AD or AS (area) and PD or PS (perimeter) in the cbd1 and cbd2 DUTs are set by these variables.

Simulating

To simulate any individual setup choose Simulate with an active setup. Simulations can be performed in any order once all of the model parameters have been extracted.

IC-CAP provides a special function, MOSCVmodCBD, to speed up capacitance simulation in the cbd1 and cbd2 DUTs. This function models the simple pn junction capacitance and provides a fast simulation of the CBD capacitance. Use this function to execute a simulation by specifying the transform calc_mos_cbd_model in the setups for the two DUTs and Execute the Transform rather than issuing the Simulate command. For more information, refer to Chapter 9, “Using Transforms and Functions,” in the IC-CAP User’s Guide.

For more information on simulation, refer to Chapter 6, “Simulating,” in the IC-CAP User’s Guide.
Displaying Plots

Plots can be displayed from the Plots folder for the setup. To display plots issue the Plot Display command from a DUT to display the plots for all setups in that DUT. The plots use the most recent set of measured and simulated data. Viewing plots is an ideal way to compare measured and simulated data to determine if further optimization would be useful. For more information on plots, refer to Chapter 10, “Printing and Plotting,” in the IC-CAP User’s Guide.

Optimizing

The optimization operation uses a numerical approach to minimize errors between measured and simulated data. As with the other IC-CAP commands, optimization can be performed at either the DUT or setup level.

Optimization is typically interactive in nature, with the best results obtained when you specify the characteristics of the optimization function.

For more information, refer to Chapter 7, “Optimizing,” in the IC-CAP User’s Guide.
Extraction Algorithms

This section describes the extraction algorithms for the classical, narrow width, short channel, saturation region, and sidewall capacitance extractions.

Classical Parameter Extractions

This extraction calculates the classical model parameters \( U_0 \), \( V_{TO} \), \( NSUB \), and \( U_{EXP} \) from the \( ID \) versus \( V_g \) measurement at varying bulk voltages on a large device. Select the gate voltage range to cover the cutoff as well as the linear region, including the mobility reduction range. The bulk should be biased at 0V as well as at values that cover the normal operating range of the device.

Parameters \( U_0 \) and \( V_{TO} \) are first extracted from the \( V_b = 0 \) curve. To calculate these parameters, a least-squares fit is carried out to the maximum slope of the curve in the linear region. The parameter \( U_{EXP} \) is calculated to fit the reduction in the slope of the same curve when higher gate voltages are applied. The parameter is calculated based on the specified value of \( U_{CRIT} \).

The combination of \( U_0 \), \( U_{EXP} \) and \( U_{CRIT} \) has a redundant parameter. IC-CAP keeps the \( U_{CRIT} \) fixed at its specified value and extracts \( U_0 \) and \( U_{EXP} \). An unreasonable value for \( U_{CRIT} \) might result in an unexpected value for the mobility \( U_0 \).

The same curve fitting is carried out on the curve with the largest absolute value of bulk voltage. The threshold voltage at this bias is then calculated from the intersection of this line. The parameter \( NSUB \) is calculated from the difference in the two threshold voltages.

Narrow-Width Parameter Extractions

This extraction calculates the narrow device parameters \( WD \) and \( DELTA \) from the \( Id \) versus \( V_g \) measurement. The setup and extraction are similar to the classical extraction. The threshold voltage (\( V_{TH} \)) and \( \beta \) (effective mobility) are calculated using
least-squares fitting. The parameter WD is calculated from Beta and UO. The parameter DELTA is calculated from the shift in threshold voltage (the difference of VTH and VTO).

**Short-Channel Parameter Extractions**

This extraction calculates the short channel parameters LD and XJ from the Id versus Vg measurement. The setup and extraction are similar to the classical and narrow width. The effective Gamma (or effective NSUB) and Beta (effective mobility) are calculated using least-squares fitting. The parameter LD is calculated from Beta and UO. The parameter XJ is calculated from the change in Gamma (or NSUB).

The parameter XJ is the only parameter that controls the effect of channel length on the shift of threshold voltage due to bulk bias. This parameter is extracted by IC-CAP to fit the threshold shift and therefore its extracted value may not correspond to the metallurgical junction depth. In other words, XJ is an empirical (not a physical) parameter in this model.

**Saturation Parameter Extractions**

This extraction calculates the saturation parameters VMAX and NEFF from the Id versus Vd measurement. The measurement can be taken at a single gate voltage or at various gate voltages. Only the highest gate voltage curve is used in the extraction. Ensure the drain voltage sweep is sufficient to cover both the linear and saturation regions.

In this extraction, first the knee point or the saturation point is found from the shape of the curve for the maximum gate voltage. VMAX is calculated from the saturation point. NEFF is then calculated to fit the saturation portion of the curve.

**Sidewall and Junction Capacitance Parameter Extractions**

To accomplish total cv extraction (due to both bottom area and sidewall area), measure two DUTs using the same setup specifications. In these extractions, CJ and CJSW are calculated, then PB, MJ and MJSW are extracted.
CJ and CJSW Extractions

The values of CJ and CJSW are extracted from the measured capacitance data from the two different structures. The capacitors should have different ratios of their bottom area to sidewall area for best resolution of the equations.

The areas and perimeters used for the calculations are stored in the Model level variable table. The example MOS Model files provided with IC-CAP use variable names AreaCap1, PerimCap1, AreaCap2, and PerimCap2.

The capacitor in the cjdarea Setup has a capacitance dominated by the bottom area of the device. The capacitor in the cjdperimeter Setup has a capacitance whose perimeter area contribution is significant. The names in the variable table and in the DUT must match for the extraction to perform properly.

PB, MJ and MJSW Extractions

The parameter PB is extracted using the junction capacitance measurement not dominated by the sidewall effect. This is the DUT named cbd1 in the example MOS Model files.

The total capacitance is modeled by two equations that represent the bottom junction area and the sidewall junction area. The values of MJ and MJSW are obtained by simultaneously solving the two equations for total capacitance of each of the measured structures. An iterative method is used to obtain the built-in potential and grading factors.
HSPICE LEVEL 6 MOSFET Model

The general form of the Ids equation for the HSPICE LEVEL 6 MOSFET model is similar to the UCB MOS LEVEL 2 model. However, small geometry effects such as mobility reduction and channel length modulation are modeled differently. Also, the LEVEL 6 model can be used for modeling MOS transistors with ion-implanted channels due to its multi-level GAMMA capability.

The HSPICE MOS LEVEL 6 model is based on the ASPEC, MSINC, and ISPICE MOSFET model equations and has been enhanced by Meta-Software. Different versions of the model are invoked with the switch parameter UPDATE. There are more than 5 other switch parameters that are used for selecting different model equations. Refer to the HSPICE User’s Manual [2] for more information on this model.

The IC-CAP LEVEL 6 model parameter extraction routines and configuration file are described in this section. Three extraction functions for this model are included in the IC-CAP function library. The configuration file, hnmos6.mdl supports a limited number and combination of parameters in the LEVEL 6 model. However, different parameter combinations can be supported by modifying the included optimization strategy. This configuration file can also be used for the HSPICE MOS LEVEL 7 model, provided that the PHI parameter is set to PHI/2 following the extraction.

NOTE
Set the SIMULATOR variable to your version of HSPICE after loading the hnmos6.mdl configuration file into IC-CAP. Refer to Chapter 6, “Simulating,” in the IC-CAP User’s Guide for additional details on using HSPICE.

Model Parameters

The parameters used in the hnmos6.mdl example file are listed in Table 8. Six switch parameters are selected in the supplied configuration. The fixed parameter values are based on typical MOSFETs; they may need to be altered for certain devices.
An important feature of the HSPICE LEVEL 6 model is its multi-level Gamma capability. IC-CAP extraction routines support both single- and multi-level Gamma parameters extractions. If VBO is set to 0 before the Large IdVg extraction, only GAMMA is extracted. Otherwise, GAMMA, LGAMMA, and VBO are extracted. Optimization is necessary with the LEVEL 6 model for optimum agreement between measured and simulated data.

The IC-CAP Setup attributes for the LEVEL 6 model are listed in Table 9.

**Table 8** HSPICE LEVEL 6 Parameters used in hnmos6.mdl

<table>
<thead>
<tr>
<th>Switch Parameters</th>
<th>Fixed Parameters</th>
<th>Extracted Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE = 1</td>
<td>BULK = 99</td>
<td>KU</td>
</tr>
<tr>
<td>ACM = 0</td>
<td>FDS = 0.9</td>
<td>MAL</td>
</tr>
<tr>
<td>CAPOP = 4</td>
<td>LATD = 0.2</td>
<td>MBL</td>
</tr>
<tr>
<td>MOB = 1</td>
<td>ESAT = 86.0E3</td>
<td>PHI</td>
</tr>
<tr>
<td>CLM = 3</td>
<td>KL = 0.05</td>
<td>VT</td>
</tr>
<tr>
<td>WIC = 1</td>
<td>KA = 0.97</td>
<td>GAMMA</td>
</tr>
<tr>
<td></td>
<td>VSH = 0.7</td>
<td>LGAMMA (Optional)</td>
</tr>
<tr>
<td></td>
<td>KCL = 1.0</td>
<td>VBO (Optional)</td>
</tr>
<tr>
<td></td>
<td>MCL = 1.0</td>
<td>F1, LAMBDA, UB</td>
</tr>
<tr>
<td></td>
<td>TOX (Input Parameter)</td>
<td>F3</td>
</tr>
<tr>
<td></td>
<td>L (Input Parameter)</td>
<td>NFS</td>
</tr>
<tr>
<td></td>
<td>W (Input Parameter)</td>
<td>LD or LDEL, WD or WDEL, RD, RS, XJ, DELTA, NWM, SCM, CJ, MJ, PB, CJ SW, MJ SW</td>
</tr>
</tbody>
</table>
2 MOSFET Characterization

Table 9  HSPICE LEVEL 6 Model Setup Attributes

<table>
<thead>
<tr>
<th>DUT/Setup</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Tranform</th>
<th>Function</th>
<th>Extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>large/idvg</td>
<td>vg, vb, vd, vs</td>
<td>id</td>
<td>extract</td>
<td>MOSDC_lev6_lin_large</td>
<td>PHI, VT, GAMMA, LGAMMA, VBO, LAMBDA, UB, NFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optimize</td>
<td>Optimized</td>
<td>PHI, VT, GAMMA, LGAMMA, VBO F1, F3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>opt_NFS</td>
<td>Optimize</td>
<td>NFS</td>
</tr>
<tr>
<td>narrow/idvg</td>
<td>//</td>
<td>//</td>
<td>extract</td>
<td>MOSDC_lev6_lin_narrow</td>
<td>NWM, W D(EL), DELTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optimize</td>
<td>Optimize</td>
<td>NWM, W DEL</td>
</tr>
<tr>
<td>short/idvg</td>
<td>//</td>
<td>//</td>
<td>extract</td>
<td>MOSDC_lev6_lin_short</td>
<td>SCM, XJ, LD(EL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optimize</td>
<td>Optimize</td>
<td>SCM, XJ, LDEL, RD, RS</td>
</tr>
<tr>
<td>short/idvd</td>
<td>vd, vg, vb, vs</td>
<td>id</td>
<td>optimize</td>
<td>Optimize</td>
<td>KU, MAL, LAMBDA, MBL</td>
</tr>
<tr>
<td>cbd1/cjdarea</td>
<td>vb, vd</td>
<td>cbd</td>
<td>set_Cj</td>
<td>Program</td>
<td>initial zero bias Cj</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>extract</td>
<td>Optimize</td>
<td>Cj, MJ, PB</td>
</tr>
<tr>
<td>cbd2/cjdperimeter</td>
<td>vb, vd</td>
<td>cbd</td>
<td>extract</td>
<td>MOSCV_total_cap</td>
<td>Cj, MJ, CJ SW, MJ SW, PB</td>
</tr>
</tbody>
</table>

Measurement

The measurement setups are identical to the UCB MOS LEVEL 2 and LEVEL 3 model example files. However, to obtain accurate GAMMA and LGAMMA parameters for ion-implanted devices, the measured data must clearly express the body effects. Therefore, the bulk voltage should be set broadly on the Large IdVg measurement. The following sequence for DC measurements is recommended:

1 Large IdVg
2 Narrow IdVg
3 Short IdVg
4 Short IdVd
Extraction and Optimization

All DC parameters are extracted and optimized with the DCExtraction macro. Alternately, extractions and optimizations can be performed interactively as described for the LEVEL 2 and LEVEL 3 MOSFET models. There is no extraction routine in the short IdVd setup for saturation region parameters. Instead, the parameters KU, MAL, MBL, and LAMBDA must be optimized. For certain devices it may be necessary to alter the optimization setup and default parameter values for accurate results.
2 MOSFET Characterization

References


3 Using the BSIM Modeling Packages

Key Features of the BSIM 3 and BSIM 4 Modeling Packages 70
Data Structure inside the BSIM 3 and BSIM 4 Modeling Packages 72
DC and CV Measurement of MOSFET’s for the BSIM 3 and BSIM 4 Models 77
RF Measurement 123
Extraction of DC/ CV Parameters 137
Extraction of Parameters for the RF Models 176

This chapter discusses the measurement and extraction of parameters using the BSIM3 and BSIM4 Modeling packages developed by AdMOS. Both Modeling Packages use the same Graphic User Interface (GUI). Handling of the measurement and extraction tasks using one of the Modeling Packages is identical and therefore only needs to be described once.

There are a few exceptions: BSIM3 and BSIM4 use different model flags and parameter sets. Therefore, the initialization procedure is somewhat different. This is the reason that you will find — on places where necessary — screen shots from both modeling packages.

Model specific parts are located in Chapter 4, “BSIM3v3 Characterization” and Chapter 5, “BSIM4 Characterization.” Inside those chapters you will find some theoretical aspects for each of the models. Links are provided to bring you from this chapter to the respective chapters and vice versa.
3 Using the BSIM Modeling Packages

Key Features of the BSIM 3 and BSIM 4 Modeling Packages

- The new graphical user interface in Agilent’s IC-CAP enables the quick setup of tests and measurements followed by automatic parameter extraction routines.
- A new data management concept allows powerful and flexible handling of measurement data using an open and easy data base concept.
- The powerful extraction procedures can be easily adopted to different CMOS processes. They support all possible configurations of the BSIM3 and BSIM4 models.
- Quality assurance procedures are checking every step in the modeling flow from measurements to the final export of the SPICE model parameter set.
- The fully automatic generation of HTML reports is included to enable web publishing of a modeling project.
- The modeling package supports SPICE3e2 and major commercial simulator formats such as HSPICE, Spectre, and Agilent’s ADS.

The Modeling Packages Support Measurements on

- Single-finger (normal) transistors
- Parasitic diodes
- Capacitances:
  - Oxide
  - Overlap
  - Bulk-drain, source-drain junction
  - Intrinsic
- RF multifinger transistors
The Modeling Package Supports Extractions for

- Basic transistor behavior
- Parasitic diodes
- Capacitances
- RF behavior (S-parameters)
Data Structure inside the BSIM 3 and BSIM 4 Modeling Packages

The Modeling Packages are using a totally different, more advanced data storing concept compared to former modeling products inside IC-CAP. The drawback of recent modeling products was that measured data was always stored in model files together with transforms, macros, plot definitions, and so on.

This method has two major disadvantages:

- The additional information is stored \( n \) times and is therefore highly redundant.
• The combination of data and code makes it very difficult to introduce updates to the code.

Now, the new architecture of the BSIM3 and BSIM4 Modeling Packages overcome these disadvantages.

The measurement module contains all measurement related items like DUTs/Setups to perform measurements and setup of test and measurement conditions. The measured data is stored together with device information like gate length, pin numbers of a switch matrix used, and so forth in IC-CAP .mdm data base format. These .mdm files are organized as projects which can be identified by project name.

Now, the extraction module extracts the necessary data from stored .mdm files to perform model parameter extraction and visualization of measured and simulated results. In addition, this method allows the generation of new data representations where the scalability of a model can be easily verified.

Files resulting from Measurement and Extraction using the Modeling Packages

This section describes the files resulting from measurement and extraction of MOS devices using the BSIM3 and BSIM4 Modeling Packages. The following table shows how BSIM3/BSIM4 files names are being used. The bold printed words inside the left most column names the task the files are being used for and the normal printed names are the appropriate file names used to store the files for a specific project. The columns marked DC and RF list the task performed by each file. For example, measure+extract in the column DC means that this file is used in measurement and extraction of DC parameters.

NOTE

The following characters are excluded from use in file or project names: “/ \ , ; : * ? ~ $ ‘ ä Å ö Ō ü Ü” as well as “empty space.”
### Using the BSIM Modeling Packages

#### Table 10  Data Structure of BSIM 3 and BSIM 4 Modeling Packages

<table>
<thead>
<tr>
<th>File Usage</th>
<th>DC</th>
<th>RF</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Project search</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em><del>dc_idvg</del></em>K.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em><del>rf_s_dut</del></em>K.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Settings</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>dc_meas</del>settings.set</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>rf_meas</del>settings.set</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name~lwc(model name)~settings.set</td>
<td>extract</td>
<td>extract</td>
<td></td>
</tr>
<tr>
<td><strong>Boundaries</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*~lwc(model name)~boundaries.set</td>
<td>extract</td>
<td>extract</td>
<td>default for export, * = project_name</td>
</tr>
<tr>
<td><strong>MPS</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name~lwc(model name).mps</td>
<td>measure + extract</td>
<td>measure + extract</td>
<td>for scaled model</td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>lwc(model name).mps</td>
<td>extract</td>
<td>for single model</td>
<td></td>
</tr>
<tr>
<td><strong>LIB</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>Simulator~lwc(model name).lib</td>
<td>extract</td>
<td>for single model</td>
<td></td>
</tr>
<tr>
<td>project_name<del>Simulator</del>lwc(model name).lib</td>
<td>extract</td>
<td>for scaled model</td>
<td></td>
</tr>
</tbody>
</table>
### Table 10  Data Structure (continued) of BSIM 3 and BSIM 4 Modeling Packages

<table>
<thead>
<tr>
<th>File Usage</th>
<th>DC</th>
<th>RF</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logfile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name~lwc(model name)~log_fail.txt</td>
<td>extract</td>
<td>extract</td>
<td></td>
</tr>
<tr>
<td>MDMs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>dc_idvg~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>dc_idvd~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_bd_area~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_bd_perim~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_bd_perim_gate~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_bs_area~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_bs_perim~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_bs_perim_gate~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_d_g~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_g_ds~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>c_g_dsb~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>di_bd_area~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>project_name<del>DUT_name</del>di_bd_perim~TempK.mdm</td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Using the BSIM Modeling Packages

#### Table 10  Data Structure (continued) of BSIM 3 and BSIM 4 Modeling Packages

<table>
<thead>
<tr>
<th>File Usage</th>
<th>DC</th>
<th>RF</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>project_name~DUT_name~di_bd_perim_gate~TempK.mdm</code></td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~di_bs_area~TempK.mdm</code></td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~di_bs_perim~TempK.mdm</code></td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~di_bs_perim_gate~TempK.mdm</code></td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~rf_s_dut~TempK.mdm</code></td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~rf_id_bias_points~TempK.mdm</code></td>
<td>measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~rf_idvd~TempK.mdm</code></td>
<td>measure + extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~rf_s_open~TempK.mdm</code></td>
<td>measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~rf_s_short~TempK.mdm</code></td>
<td>measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>project_name~DUT_name~rf_s_through~TempK.mdm</code></td>
<td>measure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### HTML

<table>
<thead>
<tr>
<th>PathHTML/ index.htm</th>
<th>extract</th>
<th>extract</th>
<th>Start file</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathHTML/ *.htm</td>
<td>extract</td>
<td>extract</td>
<td></td>
</tr>
<tr>
<td>PathHTML/ menu.js</td>
<td>extract</td>
<td>extract</td>
<td>File structure</td>
</tr>
<tr>
<td>PathHTML/ imgmenu/ *</td>
<td>extract</td>
<td>extract</td>
<td>Pictures for file structure</td>
</tr>
<tr>
<td>PathHTML/ setups/ *.htm</td>
<td>extract</td>
<td>extract</td>
<td>Measurement Setups</td>
</tr>
<tr>
<td>PathHTML/ results/ *.htm</td>
<td>extract</td>
<td>extract</td>
<td>Pages with results</td>
</tr>
<tr>
<td>PathHTML/ results/ *.txt</td>
<td>extract</td>
<td>extract</td>
<td>Parameter set for displaying HTML</td>
</tr>
<tr>
<td>PathHTML/ results/ images/ *.gif</td>
<td>extract</td>
<td>extract</td>
<td>Images</td>
</tr>
<tr>
<td>PathHTML/ results/ imgzoom/ *.gif</td>
<td>extract</td>
<td>extract</td>
<td>Zoomed Images</td>
</tr>
</tbody>
</table>
DC and CV Measurement of MOSFET’s for the BSIM 3 and BSIM 4 Models

This section provides information to make the necessary measurements of your devices. It will provide information on features of the BSIM3 and BSIM4 Modeling Packages and how to use the graphic user interface (GUI). For hints on how to measure and what to measure using the right devices, see Chapter 4, “BSIM3v3 Characterization” and Chapter 5, “BSIM4 Characterization.”

The GUI is opened by double clicking the BSIM3 or BSIM4 Icon which appears in the IC-CAP/Main window after you open one of the example files. To open an example file, click File > Examples > model_files > mosfet > bsim3 (or bsim4) then select a Measure or Extract model file. Figure 1 shows all four files in one IC-CAP/Main window, using BSIM3 as an example.

After you have double clicked the icon, the GUI window of the BSIM3 (or BSIM4) Modeling Package (Figure 2) appears on your screen.
3 Using the BSIM Modeling Packages

The top row of the GUI shows a group of buttons on the left side that enable you to create a New project, to Open an existing project, to SaveAs or to Delete projects. You will be prompted before the selected action takes place.

The project name appears in the middle of the top row. In Figure 2, the project name is “bsim3_fully_binned” and is shown on a blue background.

The right side of the GUI’s top row shows a Print button, which opens a dialog box. In this dialog box, enter the command line for your specific printing device and choose OK. The folder will be printed.

**NOTE**

On Windows operating system, the command line is print /d:<printer name>. For example, if the printer is connected to a server named MYFS1 and the printer is named M Y0017, type:

```
print /d:\MYFS1\MY0017
```

**NOTE**

If you don’t enter a printer command, the output will be redirected to the IC-CAP/Status window.

---

![Figure 2](image-url) Part of the Graphic User Interface for the BSIM 3 and BSIM 4 Modeling Packages
The next button in the top row - *Help* - opens up the online manual - the file you are viewing right now.

In contrast to the function of this button, you'll find a *Help* button on each folder’s lower left corner, which also opens the manual at specific locations describing the task to be performed using that folder.

There are in depth hints for the task, for example, which device geometries to use or how to connect the instrument to the device under test to get the best extraction results from your measurements. You will find links that bring you to *Chapter 4, “BSIM3v3 Characterization”* and *Chapter 5, “BSIM4 Characterization.”* Use your Browsers *Back* button to return to the location you were at before following the link.

The *Info* button, which is located to the right of the help button, gives you some information about the creators of the BSIM3 and BSIM4 Modeling Packages.

The fourth button in this group is the *Demo* button. Use this button to explore the BSIM Modeling Packages features without starting actual measurements. This means, all measurement device drivers are disabled. Therefore, no measurement is possible in demo mode! This is also a convenient way to create a project without needing a measurement license!

There is a button far to the right of the top row to *Exit* the BSIM Modeling Packages.

Below the top row of buttons you will find a row of eight folders. Basically, each folder is assigned to a specific task in the measurement process. They are intended to be parsed from left to right, but you are not bound to that order. Some entries into one or the other folder will change settings on another folder. For the new user, we recommend to process the folders in the order from left to right.

Each of the following sections describe one folder of the GUI. BSIM3 and BSIM4 folders are usually equal to each other. In places where they differ - *Initialize*, for example - they will be described one after the other.
### Project Notes

The notes folder is provided to store notes you take on a specific project. Figure 3 shows the notes folder. You can enter general data like technology used to produce this wafer as well as lot, wafer, and chip number. There is a field to enter the operator's name and the date the measurement was taken. Space has been provided to enter notes on that project.

The notes you enter are saved under the project name in the middle of the top row using the *Save* button to the left of this folder. In our example, this project is called “bsim3_fully_binned”.

---

**Figure 3**

Notes folder of the BSIM3 and BSIM4 Modeling Package’s GUI

---

This is an example to demonstrate the full binning capability.
It contains measured DC data from a typical dataset at room temperatures.
The data is used in the BSIM3_DC.CV_Extract Module to generate
which is fully based on the principle of binning without taking
of the BSIM3 model itself.
DC Measurement Conditions

The next step in the modeling process is to set up measurement conditions for different measurement tasks like DC, CV, or diode measurements.

This folder is designed for easy setup of conditions for DC Transistor and Capacitance as well as DC Diode measurements. Figure 4 shows the folder used for setting up measurement conditions. On the left side of the folder, you will find a button to Save your setup under the name of the project in the middle of the top row. In this example, the name is “bsim4_for_experts”.

![Figure 4](image)

**Figure 4** Measurement Conditions Folder

The measurement conditions folder is divided into sections to enter the polarity of the devices to be measured and to define the conditions for DC Transistor, Capacitance, and DC Diode measurements.
There are three subfolders, one for the DC Transistor measurements, one for Capacitance measurements, and one for Diode measurements. It is now possible to switch from a *Linear* voltage sweep with Start/Stop/Step values to be entered to a *List* of values, if you would like to measure discrete voltage values.

If you switch from Linear to List mode, at first only a number of points of this list is displayed. To get the list itself, click into the number field and press "Return". The list will appear!

Below you will find a check box to activate a consistency check. If checked, the measured data will be checked for errors, see "Consistency Check of DC measurement data for multiple measured devices" on page 234 for details.

On the *Capacitance* measurement subfolder inside the BSIM3/4 Modeling Packages, it is now possible to switch the "High" input of the CV meter between the nodes by activating the field in front of the Transistor terminal, inside the area *Connect High* to, see Figure 5.

**Figure 5** Part of the Measurement Conditions Folder, Capacitance measurement subfolder
See the sections on “DC Transistor DUTs” on page 92, “Capacitance DUTs” on page 108, and “DC Diode DUTs” on page 116, respectively, for background information on connecting the source-measurement units (SMU’s) as well as the CV instrument to the devices under test.

**Polarity**

There are polarity boxes to specify whether you are measuring NMOS or PMOS devices. Select NMOS or PMOS. Our example shows the measurement of NMOS devices.

**DC Transistor**

- Output ($I_D=f(V_D)$)

Here you specify the stimulus voltages used for measuring the output characteristic of your devices. There is a choice between a *Linear* sweep and a *List* of discrete voltage values, where you can enter a number of points and their respective value. For *Linear* sweep mode, you define *Start*, *Step*, and *Stop* voltages for drain, gate, and bulk nodes, respectively. Figure 6 shows a typically measured output characteristic of a MOSFET.

![Figure 6](image)

**Figure 6**  
Output diagram of a MOSFET
• Transconductance \( (I_D=f(V_G)) \)

This part of the measurement conditions folder is designed for transfer diagram measurements. Again, there is a choice between a *Linear* sweep and a *List* of discrete voltage values, where you can enter a number of points and their respective value. For *Linear* sweep mode, you specify *Start*, *Step*, and *Stop* voltages for gate, bulk, and drain nodes. Stop value of drain voltage is set to a fixed value in order to measure the relevant range of voltages for proper extraction of the parameters used to model this device behavior.

**Figure 7** shows the typical form of a transconductance diagram.

If you change the settings of the diagram in the figure above, one of the effects appearing in submicron semiconductor devices becomes visible. The following figure shows a typical transconductance diagram using a logarithmic y-axis to show the influence of the GIDL (gate induced drain leakage) effect on transistor behavior.
Using the BSIM Modeling Packages

Capacitance

This section is used to define capacitance measurement conditions for junction, oxide/overlap and intrinsic capacitances. See Figure 9 for a definition of capacitances on a MOSFET.
3 Using the BSIM Modeling Packages

- Junction
  Enter the Start, Step, and Stop values for the bulk voltage used to measure junction capacitance of drain/bulk and source/bulk junctions. If you are using the BSIM4 model, you can measure the BS and BD junctions separately.

- Oxide/Overlap
  Provide values for Step and Stop voltage used in measuring gate/source, gate/drain, and gate/bulk overlap capacities as well as oxide fringing capacity.

- Intrinsic
  Here you can specify values for drain and gate voltages used to measure intrinsic capacitances.

**DC Diode**

This part of the measurement conditions folder is used to define DC measurements on source/drain-bulk diodes. To be defined is the Start, Step, and Stop voltage for the SMU connected to the drain node.

If you are using the BSIM4 model, you are able to measure BS and BD Diodes separately and you can specify if you would like to measure the current at the Bulk node or at the Drain or Source node.

Figure 10 shows a cross section of a MOSFET with the source-bulk diode shown.

![Figure 10 Measurement of source/drain-bulk diodes](image)
**Temperature Setup**

This folder is intended to define measurements at specified temperatures. Basically, the measurement of all DUT's is to be performed at SPICE default temperature TNOM, which is set to 300 Kelvin (27° Celsius). This temperature can not be deleted. Figure 11 shows the Temperature Setup folder.

*NOTE*  
Be sure to set the Compliance values for your measurements by entering the required values into the fields provided!

*NOTE*  
Don’t forget to enter the actual temperature during measurement of the devices.

![Figure 11](image)  
Temperature Setup folder
Using the buttons provided on the left side of the folder, you can *Add* new temperatures. Enter the desired temperature into the dialog box. Please be sure to enter the appropriate value in degrees Kelvin (K).

If you would like to *Delete* a measurement temperature, you will be prompted for the temperature to be deleted. If there is a file containing measured data for this temperature, the data file will be deleted if you choose *OK* on the prompt dialog (see the following figure).

Adding new measurement temperatures results in adding a new column for each of these temperatures in the three DUTs folders (DC Transistor, Capacitance, and DC Diode).

Any changes on the Temperature Setup folder must be saved prior to selecting another folder.

**Switch Matrix / Wafer Prober**

Within this folder, which is shown in Figure 13, you select the kind of measurement you are using a switch matrix for. There are three options: Use a switch matrix for *DC*
Transistor Measurements, for Capacitance Measurements, and for Diode Measurements. You can select any one or more than one by checking the appropriate fields(s).

**NOTE**
If you are not using a switch matrix, leave all three check boxes unchecked. In this case, you do not have terminal assignment columns on the DC Transistor DUTs folder. Instead, you determine the connections by wiring the appropriate SMU to the desired transistor terminal.

**NOTE**
Assignments have to use SMU1...SM 4. This assignment is done inside the hardware setup of IC-CAP. Usually, the default of the appropriate DC-CV-Analyzer is SMU1...4. In rare cases, such as the Agilent 4142 for example, the default SMU number corresponds to the number of the slot, a module is inserted into the instrument. If your 4142 uses 4 SMU’s at slot No. 1, 3, 5, 6, the default names of the SMU’s are SMU1, SMU3, SMU5 and SMU6. You must change this default names to reflect SMU1, SMU2, SMU3 and SMU4 to properly communicate with the BSIM3/4 modules.

**NOTE**
To change or enter the names of the Source-Measurement-Units (SMU’s), go to the folder DUTs/Setup, sub folder Measure/Simulate in IC-CAP/ Main window. The different inputs/outputs are to be configured there.
3 Using the BSIM Modeling Packages

Figure 13  Defining the use of a switch matrix for measurements
The Basic Settings provide choice of several different Matrix Models, which are supported by IC-CAP. Type the appropriate Bus and GPIB address of the Switch Matrix (SWM Address; 22 in our example) as well as the GPIB-Interface name. See the IC-CAP Reference manual for a complete description of the GPIB settings for the switch matrix to be used. Our example shows the use of an Agilent E5250A matrix model. For this type of instrument, you have to define which port is connected to what SMU or C meter input pin and which slot is equipped with a card.

Again, you have to save your changes prior to leaving this folder.

The actual pin connections are entered into the folder selected to use a switch matrix (one or more of the DC Transistor DUTs, Capacitance DUTs, Diode DUTs folder, or all of them). For example, if you’ve selected DC Transistor measurements to use with a switch matrix, you must enter the switch matrix pin numbers in the fields below the node names of the transistors to be measured on the DC Transistor DUTs folder. This might be especially useful if you would like to make series measurements on wafers using a probe card (e.g., for quality control).

**NOTE**

For automatic measurements, macros are available. These macros allow you to make automatic series measurements of complete dies or arrays. They are created for automatic measurements with or without heated chucks.

For example, open the IC-CAP model for BSIM3_DC_CV.Measure (Right hand mouse button: Edit, with the pointer set over the DC_CV.Measure model in the IC-CAP/Main window): Under the folder macros you will find one called *Example_Wafer__Prober*.

You will find one inside the `$ICCAP_ROOT/examples/model_files/mosfet/BSIM3/examples/waferprober` directory as well as inside the `../BSIM4/examples/waferprober` directory named
Using the BSIM Modeling Packages

The automatic measurement of model curves using the macro described works without involving the GUI.

DC Transistor DUTs

The DC Transistor DUTs folder is used to enter DUT names, geometries, and connections to the appropriate DUTs. Since there are differences between BSIM3 and BSIM4, screen shots of both are provided here. The BSIM4 model allows stress effect modeling, which is not possible in BSIM3. Therefore, all stress effect parameters are only used inside the BSIM4 Modeling Package and are present only there!

Figure 14 shows the DC Transistor DUTs folder used.
At the bottom of the BSIM DC CV MEASURE module you will find fields to set BSIM4-specific values. You are able to use different area and perimeter values as well as Number of Squares for the Drain and Source regions of the transistors to be measured (AS, AD, PS, PD, NRD, NRS).

**Figure 14**  DC Transistor DUTs folder (default settings when starting a new project)
Further on it is possible to set stress effect parameters SA, SB, SD. See “Stress Effect Modeling” on page 372 inside the Chapter BSIM4 Characterization for details.

If you deselect one of the fields at the bottom of the DCTransistor DUTs folder, additional columns appear, as shown in Figure 15.

**Figure 15**  Additional columns for stress effect modeling added in BSIM4
Now you are able to enter STI-related parameters, refer to Figure 18 for details.

For your convenience, there are predefined DUTs on this folder. You can either use those predefined DUTs, only adjusting names, device geometries, connections and so on, or you can delete existing DUTs and add your own.

• Choose Add on the left side of the folder. You will be prompted for the number of DUTs to add. Enter the desired number and choose Add. It is also possible to use the arrows to increase or to decrease the number of DUTs to add. New lines are added according to the number you’ve entered.

For each line, enter a name for the DUT, gate length and width (L, W), drain and source areas (AD, AS), perimeter length of drain and source (PD, PS), and the number of device fingers (NF) of the transistor to be measured. If modeling stress effects in BSIM4, enter SA, SB, and SD as well. See Figure 16 as well as Figure 17 for details on device geometry, respective Figure 18 for details on STI modeling parameters.

**NOTE**

Remember, all geometries are to be given in microns (µm).

**Geometries**

Shown in the following two figures are views of MOSFET's, where you can find the geometries required by the BSIM3 and BSIM4 modeling packages.
Using the BSIM Modeling Packages

You are not bound to an order of entry. This means, it is not required to begin with the large transistor, the short transistor or the narrow one. Just type in the geometries into each line as you like.

In addition to the standard BSIM4 definitions, columns for SA, SB and SD are available, see Figure 18 for a definition of the parameters used in shallow trench isolation modeling.
Moreover, each transistor is assigned to two different categories as is described in the following section.

Categories

The DC Transistor DUTs folder shows one or two category columns: The first one is the size category, the second one is the STI category.

- Size category (applicable for BSIM3 and BSIM4): determines the properties of a transistor regarding channel length (L) and width (W).
- STI category (applicable only for BSIM4): determines the properties of a transistor regarding the actual value of SA/SB. Mainly, this category defines, whether a device belongs to the reference values SAREF, SBREF or has SA, SB values, which are different from the reference values.

**NOTE**

Devices at SA=SAREF and SB=SBREF are used to determine all other model parameters except the STI related parameters.

There are buttons to Sort the entries into an order or to Set the size category of your devices manually. See “Transistors for DC measurements” on page 293. You will find a graph of
recommended device geometries in the form of a diagram $W$ over $L$ of the transistors whose parameters are to be extracted. After entering your DUTs for BSIM3 modeling, use the *Display* button under *Size Category* on the left side of this folder to get a graph of the actual device geometries. See the following figure (applicable only for BSIM3).

![Figure 19 Display of device geometry distribution inside the BSIM 3 GUI](image)

You can use *Sort* to set the size category of your devices automatically. Otherwise, it is required to enter the size category manually using the form shown in Figure 21.
The device category is used for extraction purposes. See “Transistors for DC measurements” on page 293 in the BSIM3 Characterization chapter for an explanation of categories and requirements for proper extraction of device.
parameters as well as the paragraph about “Stress Effect Modeling” on page 372 inside the BSIM4 Characterization Chapter.

If you would like to delete DUTs:

• Choose Delete to the left of the folder. You will be prompted with a list of DUTs (Figure 22). Select the DUTs to be deleted and choose Delete on the Delete DUT form. A prompt dialog box appears. Select OK if you are satisfied with your choice of DUTs to be deleted.

![Delete DUT form](image)

Figure 22  Delete DUTs form

According to your choice of temperatures on the Temperature Setup folder, one or more columns marked with the temperatures you've entered appear. The fields of those columns show either (0) for no measured data available, (M) for DUT already measured or (-) for DUT not to be measured at that temperature.
• To select devices to be measured at different temperatures: Choose Temp Meas to the left of the folder. You will be prompted with a list of DUTs. Select the devices to be measured at those temperatures entered in the Temperature Setup folder and click OK. You are able to select more than one DUT at a time for temperature measurement by repeated clicks on the ones to be chosen.

**NOTE**

You cannot prevent a DUT from being measured at TNOM. All DUTs are to be measured at that temperature. If you have entered one or more temperatures on the Temperature Setup folder, the DUTs selected for temperature measurement are all measured at those temperatures. It is not possible to select a DUT for measurement at temperature T1 but not at another temperature T2.

**NOTE**

To extract temperature effects on parameters, a large, a short, and a small device is necessary!

You can enter a comment for each DUT. If you are using a switch matrix, you are able to enter a module name and you have to enter the pin numbers of the switch matrix pin connections to the transistor in the fields below the node names (those fields are present only if the use of a switch matrix is selected on the Switch Matrix Tab). See Figure 23 for details.

**NOTE**

For the Agilent E5250, the port number to be entered consists of 3 numbers.

If, for example, SMU1 shall be connected to Card No.1, Port No. 3: Enter the number 103 into the field below the transistors node name. Port No. 12 for Card No. 4 would have to be entered as 412.
Connections to the DUTs

The following figure shows an example for a connected device under test (DUT) to the source measurement units (SMUs) during DC Transistor measurements. The node numbers shown are to be entered into the fields below the terminal names on the DC Transistor DUTs folder, see Figure 14 on page 93. The above mentioned figure shows “0” under all terminal names. Those numbers have to be changed to “10” for the gate, “12” for the source, “11” for the bulk, and “9” for the drain terminal to reflect the connections used inside the following schematic. Please be careful to use the numbers SMU1...SMU4 during hardware setup in IC-CAP, since these are required by the measurement module of the BSIM3/4 Modeling Packages.

NOTE

When using module names to measure devices with probe cards, pay attention to the node numbers you are entering. Each device uses 4 connections to the switch matrix. You have to enter the correct pin numbers for each DUT and must not exceed the total pin count for each port of your matrix.
Once all DUTs are entered with their respective geometries, switch matrix pin connection and measurement temperatures, the actual measurement of devices can take place. You will find the appropriate buttons under the Measurement section on the left side of the DC Transistor DUTs folder.
• To start measurement of the devices: Click Measure and select the DUT or Module to be measured using the dialog box (Figure 24) that opens. You can select measurement temperature (if there is a temperature other than TNOM defined in the temperature setup folder) as well as a specific DUT or a Module (containing all DUTs to be measured at a specific temperature). If you select a temperature other than TNOM, (must be defined under TemperatureSetup), only the devices set up for measurement at that temperature are selectable for measurement. Start measurement with Measure (or MeasureDUT in BSIM4) on that dialog box. If measuring at elevated temperatures, be sure to wait until your devices are heated up or cooled down to the desired temperature.

For your convenience, you will find a supplemental model file called "prober_control.mdl" which is suitable to be used with automatic temperature measurements under the directories §ICCAP_ROOT/ examples/modelFiles/mosfet/BSIM3(4)/examples/waferprober. Tailor this model file to your specific Thermochuck model and requirements. Otherwise, be sure to set chuck temperature manually!

IC-CAP doesn’t support heated chuck drivers.

If you select measurement of a module, all DUTs in this module are measured automatically if the use of a switch matrix is activated.

The DUTs/Setup folder in the BSIM3/4_DC_CV_Measure model contains an AutoMeasure setup for the Configuration DUT. Using this AutoMeasure setup, you can program automatic measurements for all DUTs in one module.

Automatic measurement uses a macro for the wafer prober. This macro is programmed to start measurement as soon as the wafer prober has reached it’s programmed destination.
You’ll find the macro “Example_Wafer_Prober” and it’s transforms together with a description of the transforms in the Macro folder of the $BSIM3/4\_DC\_CV\_Measure$ model.

- If you would like to clear some or all measured data, use `Clear`. You can select whether you would like to clear measured data of some or all DUT(s) at specified temperatures and choose `Clear Data` to delete measured data files.

- Using `Synthesize`, you are able to simulate data from existing model parameters. By selecting this feature, already measured data files are overwritten with synthesized data. You will be prompted (Figure 25) before existing data files are overwritten.

There is the choice of either synthesizing data or loading an MPS File.
This synthesized data uses the voltages set on the Measurement Conditions folder to generate “measurement” data from a known set of SPICE parameters. This feature might be especially useful to convert parameters of other models into BSIM4 parameters by loading the created “measurement data” into the extraction routines and extract BSIM4 parameters.

• For a glance at the diagrams that have just been measured, choose Display Plots. You will see a dialog box (Figure 26) to select which measured data set to be displayed. After choosing the plots, choose Display Plots on that dialog box to open the selected plots. This is a convenient way to detect measurement errors before starting the extraction routines.

• If you are satisfied with the data plots you've just measured, choose Close Plots to close the displayed plots of measured data, either on the DisplayData window or on the GUI window.

• There is a Data consistency check available to see if measurement errors have occurred. Click Display Plots to choose the desired type of plot out of a list of available plots for a quick consistency check.
• Select one of the available plots to see a normalized display of the saturation current of all measured devices, for example. The plot to be displayed looks similar to the one shown below. For an explanation of this consistency check feature, see “Consistency Check of DC measurement data for multiple measured devices” on page 234.
3 Using the BSIM Modeling Packages

**Capacitance DUTs**

This folder is used to measure capacitances of devices and to display measured data.

![Capacitance DUTs folder]

**Figure 27** Capacitance DUTs folder
This folder provides fields to enter names of DUTs, geometries and switch matrix connections, and to select temperatures at which to measure the DUTs.

- To add new DUTs: Choose Add to the left of the folder. You will be prompted for a group of capacitances to add DUTs to (Figure 28). Select the desired group (junction bulk-drain or bulk-source, oxide, overlap, or intrinsic) and choose Add. New lines are added according to the selection you made.

NOTE

Selecting overlap capacitances actually adds two DUTs: Overlap_GDS and Overlap_GDSB. It is required for proper parameter extraction to measure both DUTs and extract the parameters from both measurements. Therefore, it only makes sense to add those DUTs together.

Since oxide capacitance requires only one test structure, you are able to have only one oxide capacitance DUT.

For each line, you can change the predefined name for the DUT and enter necessary geometrical data. For your convenience, only relevant data should be entered for a specific group of capacities. Relevant data fields are shown with white background and can be edited. Gray shaded data fields are not editable. For example, DUTs to measure bulk-drain junction capacitances do not require gate length and width (L, W), source area (AS) and perimeter length of...
Using the BSIM Modeling Packages

source (PS) geometrical data. You only have to provide drain area (AD) and drain perimeter (PD) as well as the number of device fingers (NF) of the transistor to be measured. See Figure 29 for some details on capacitances and geometries.

**NOTE**

W, AD, AS, PD, and PS are total values including all fingers of the device!

**NOTE**

Usually, you use single finger transistors for DC measurements. Multifinger devices are common only in high frequency characterization of MOS devices, since the input resistance of a network analyzer is typically 50 Ohm.

Remember, all geometries are to be given in microns (µm).

![Device geometries](image)

**Figure 29** Device geometries

According to your choice of temperatures on the Temperature Setup folder, one or more columns marked with the temperatures you’ve entered appear. The fields of
those columns show either (0) for no measured data available, (M) for DUT already measured or (-) for DUT not to be measured at that temperature.

You can enter a comment for each DUT. When using a switch matrix for capacitance measurements, you are able to enter a module name to measure one complete module with all its DUTs at once. This is intended for use with a prober card and taking measurements using the “step and repeat” function of a wafer prober. If you are using a switch matrix, you must enter the pin numbers of the switch matrix pin connections to the capacity you're about to measure. The fields for high and low connection of the CV measuring instrument is marked H or L respectively. See “Test Structures for CV Measurements” on page 296 for details on device geometries and requirements for proper extraction of capacitances of your devices like test lead connections and so on.

- To delete DUTs: Choose Delete to the left of the folder. You will be prompted with a list of DUTs. Select the DUT(s) to be deleted and choose Delete on the Delete DUT folder. A prompt dialog box appears. Select OK if you are satisfied with your choice of DUTs to be deleted.

- To select devices to be measured at different temperatures: Choose Temp Meas on the left side of the folder. You will be prompted with a list of DUTs. Select the devices to be measured at those temperatures entered in the Temperature Setup folder and click OK.

**NOTE**
You cannot prevent a DUT from being measured at Tном. All DUTs are measured automatically at that temperature. If you have entered one or more temperatures on the Temperature Setup folder, the DUTs selected for temperature measurement are all measured at those temperatures. It is not possible to select a DUT for measurement at temperature T1 but not at another temperature T2.
To start measurement of the devices: Choose Measure and select the DUT(s) to be measured on the dialog box that opens. You can select measurement temperature (if there is a temperature other than TNOM defined in the temperature setup folder) as well as a specific DUT or all DUTs. Start the measurement with Measure on that dialog box. If measuring at elevated temperatures, be sure to wait until your devices are heated up or cooled down to the desired temperature.

If you would like to clear some or all measured data, choose Clear. You can select whether you would like to clear measured data of some or all DUT(s) at specified temperatures and click Clear Data to delete measured data files.
Using Synthesize, you can simulate capacitance data from existing parameters. This synthesized data uses the voltages set on the Measurement Conditions folder to generate “measurement” data from a known set of SPICE parameters. This might be especially useful to convert parameters of other models into BSIM3 or BSIM4 parameters by loading the created “measurement data” into the extraction routines and extract parameters for the desired model.

For a glance at the diagrams that have been measured, click Display Plots. You will see a dialog box to select which measured data set you would like to display. After choosing the plots you would like to see, click Display Plots on that dialog box to open the selected plots. This is a convenient way to detect measurement errors before starting the extraction routines.

Figure 31  Selecting capacitance DUTs to be deleted

Figure 32  Synthesize Data Prompt
Using the BSIM Modeling Packages

Choose the plots of measured data to be displayed.

If you are satisfied with the data you have just measured, choose Close Plots to close the windows that show diagrams of measured data.

Physically connecting Test Structures to Your Capacitance Measurement Device

Figure 34 shows how to connect the CV instrument to measure oxide and overlap capacitances. See also the paragraph on test structures for CV measurement. In Table 21 on page 296 you’ll find recommended test structures for specific capacitances to be measured together with recommended instrument connections.
The following figure shows a typical gate-to-drain/source overlap capacitance diagram that you would expect to measure with this type of connection and the default values for Start, Step, and Stop voltage $V_G$.

**Figure 34** Measurement of oxide and overlap capacitance

To correctly extract overlap capacitance effects, two devices are essential: Standard CV measurement masks the channel capacity in short channel devices. This is the so called Short Channel Effect.

To overcome this masking, you need a short channel device for proper extraction of overlap capacitance parameters. To extract the parameter $N_{GATE}$, you need to measure a long channel device in inversion since there is no short channel effect present in such a device.
Using the BSIM Modeling Packages

Test Structures for CV Measurements

See Table 21 on page 296 for a table of recommended test structures for CV measurements.

DC Diode DUTs

This folder provides fields to enter names of DUTs, geometries and switch matrix connections, and to select temperatures at which to measure the DUTs. Don’t forget to Save your setup after you enter the DUT data. Table 21 on page 296 briefly describes usable test structures to characterize diode behavior.

Figure 35  Example diagram of measured overlap capacity
• To add new DUTs: Choose Add on the left side of the folder. You will be prompted with a list to select DUTs to add. Select the desired DUT(s) and click Add. New lines are added according to the selection you’ve made.

If you have entered all necessary categories, clicking Add will not open a window to select new diode DUTs, since all are present. Measuring more diode DUTs will not create new information, since the measured values will be the same as the one’s that have been measured already.

For each line, enter a name for the DUT and necessary geometrical data. For your convenience, only relevant data is to be entered for specific diodes. Relevant data fields show a
For example, DUTs to measure bulk-drain diodes do not require source area (AS) and perimeter length of source (PS) geometrical data. You only have to enter drain area (AD) and drain perimeter (PD) as well as the number of device fingers (NF) of the diode to be measured. Remember, all geometries are to be given in microns (µm).

NOTE

W, AD, AS, PD, and PS are total values including all fingers of the device!

According to your choice of temperatures on the Temperature Setup folder, one or more columns marked with the temperatures you’ve entered appear. The fields of those columns show either (0) for no measured data available, (M) for DUT already measured or (-) for DUT not to be measured at that temperature.

• You can enter a comment for each DUT. If you are using a switch matrix, you can enter a module name as well as the pin numbers of the switch matrix pin connections to the transistor. Only relevant connections are to be entered, in case of the bulk-drain diode, no source connection must be entered (the appropriate field shows a dashed line). See Figure 29 on page 110 for details on device geometries and Table 20 on page 296 for requirements on a proper extraction of diode data.

• To delete DUTs: Choose Delete to the left of the folder. You will be prompted with a list of DUTs. Select the DUT(s) to be deleted and click Delete on the Delete DUT folder. A prompt dialog box appears. Choose OK if you are satisfied with your choice of DUTs to be deleted.

• To select devices to be measured at different temperatures: Choose Temp Meas on the left side of the folder. You will be prompted with a list of DUTs (see the following figure). Select the devices to be measured at the temperatures entered in the Temperature Setup folder and click OK.
• To start measurement of the devices: Click *Measure* and select the DUT(s) to be measured on the dialog box that opens (Figure 38). You can select measurement temperature (if there is a temperature other than TNOM defined in the temperature setup folder) as well as a specific DUT. Start the measurement with *Measure* on that dialog box. If measuring at elevated temperatures, be sure to wait until your devices are heated or cooled down to the desired temperature.

**NOTE**

You cannot prevent a DUT from being measured at TNOM. All DUTs are measured automatically at that temperature. If you have entered one or more temperatures on the Temperature Setup folder, the DUTs selected for temperature measurement are all measured at those temperatures. It is not possible to select a DUT for measurement at temperature T1 but not at another temperature T2.
3 Using the BSIM Modeling Packages

- If you would like to clear data of some or all measured DUTs, use **Clear**. Select whether you would like to clear measured data of some or all DUT(s) at specified temperatures, (see Figure 39) and click **Clear Data** to delete measured data files.

- Using **Synthesize**, you can simulate data from existing parameters. This synthesized data uses the voltages set on the **Measurement Conditions** folder to generate “measurement” data from a known set of SPICE parameters.
• For a glance at diagrams that have just been measured, use *Display Plots*. You will see a dialog box to select which measured data set you would like to display. Choosing the plots you would like to see, opens the selected plots. This is a convenient way to detect measurement errors before starting the extraction routines.

![Display plots dialog box](image)

*Figure 40  Display plots dialog box*

• If you are satisfied with the data you just measured, use *Close Plots* to close the windows that show diagrams of measured data.

**Drain/ Source - Bulk Diodes for DC Measurements**

For test structures to measure DC Drain/Source-to-Bulk diodes, see “Drain/Source – Bulk Diodes for DC Measurements” on page 121.

**Options**

This folder lets you define options for the appearance of the plot windows.
3 Using the BSIM Modeling Packages

To change the plot window size, deselect the \texttt{FIX\_PLOT\_SIZE} check box and enter the desired X- and Y-size into the respective fields. You are able to change the background color of the plot window from black to white by activating the \textit{White background of plots} field, \texttt{GWIND\_WHITE}. There is a check box “Show Plots during measurements,” which when activated, enables the display of the measured data.

\textbf{Figure 41} Options folder
RF Measurement

This section provides information on RF measurements using the BSIM3/BSIM4 Modeling Package. Starting the RF module opens a GUI divided into a number of folders for each task. The top row buttons are the same as in the DC and CV measurement module. Assuming that you are already familiar with the functions of these buttons, we will not describe their purpose. You can easily check their use in “DC and CV Measurement of MOSFET’s for the BSIM3 and BSIM4 Models” on page 77.

RF Measurement Notes

The RF measurement module also contains a Notes folder to take notes on the project. It has the same look as the Notes folder of the DC/CV-measurement module, see “Project Notes” on page 80.

RF Measurement Conditions

The first task during RF modeling is to set up measurement conditions. Use the Measurement Conditions folder shown in the following figure to enter the measurement conditions at which you would like to measure and extract RF parameters.
Select the **Polarity** of the transistor to be measured (NMOS or PMOS) using the appropriate check box. Enter the measurement temperature $T_{NOM}$, if the measurement is being conducted at any other temperature than the default of 300K.

**NOTE**

Be sure to enter the temperature value in Kelvin!

The **DC Transistor** fields in this folder allow you to set sweep values for gate and drain voltages respectively. Enter **Step** values for the Output fields. For an in-depth description, see “DC Measurement Conditions” on page 81.

The purpose of this field is to define measurement of DC characteristics of multifinger transistors used for RF NWA measurements. This step is necessary, since the DC behavior of a multifinger transistor differs from that of a single finger...
transistor. During DC measurement and extraction, a single finger transistor is being used, whereas a multifinger transistor is used in RF measurements to deliver sufficient drain currents for network analyzers to improve the measurement accuracy. Actual transistor DC measurements are used to set start points for S-parameters at low frequencies and control extraction at those points.

<table>
<thead>
<tr>
<th>S-Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Sweep</td>
</tr>
<tr>
<td>1 Frequency</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Freq. Points</td>
</tr>
<tr>
<td>Freq. Points/Decade</td>
</tr>
</tbody>
</table>

**Figure 43**  S-parameter part of the Measurement Conditions folder

The *Measurement Conditions* folder provides fields to enter conditions for S-Parameter measurements. Enter *Start* and *Stop* frequency, choose the desired sweep (*Linear* or *Logarithmic*) and enter the number of Frequency Points to be measured during linear sweep or the number of Frequency Points/Decade for logarithmic sweep. Only the field ahead of the chosen sweep type (Lin or Log) is enabled allowing data to be entered.
Use the field *Bias Conditions* to enter sweep voltage *Start*, *Step*, and *Stop* values for drain and gate voltages during S-Parameter measurements.

**NOTE**

Be careful not to exceed the maximum DC Input voltage of the Network Analyzer used during measurements!

### Deembedding/Pad Structures

The Deembedding/Pad Structures folder enables you to select the type of pad structure used for deembedding the parasitics of the measurements. Measurement of the transistors for parameter extraction requires connecting the devices to the instruments. Therefore, the basic transistor element to be measured must be connected using pads and metal connections on the wafer. In order to get the parameters of the basic transistor without metal connections and pads, the parasitics must be deembedded from measurement results. A device library should contain only the basic transistor element. The connections to other elements in a circuit have to be modeled separately since this is part of the interconnection between elements on a chip.

Basically, you perform error correction of your network analyzer in order to eliminate measurement errors resulting from cable connections used to interface the analyzer to the wafer prober and up to the probe tips. Your test chip design must contain structures to eliminate the parasitics as a result of connecting prober needles via metal lines to transistor terminals.

This folder is intended to define the structures used to deembed the transistor parameters from measured ones.
The section *De-embedding Method* provides check boxes to select the method for de-embedding to be used. Check one of *No De-embedding*, *Open*, *Open-Short*, or *User defined*. Your selection of the de-embedding method will affect the definition of de-embedding sets described later in this paragraph.

There is a section *Verification of De-embedding* where you can check a box to perform verification of de-embedding using the through device, if applicable.

**Figure 44** Deembedding pad parasitics
The field *Pad Structures* is intended to declare dummy pads for de-embedding purposes. Click Add Pads and select the type of pad by clicking *Open*, *Short*, or *Through* on the appearing window, see below.

A new line will be inserted inside the field *Pad Structures*. You can change the name of the dummy pads as you like. The following rows are showing the type of deembedding pad (open, short, or through), status (not measured, showing “0”, measured, showing “M” or not applicable, showing “-“) as well as a user comment.

The command buttons under *Measurement* are used to perform the measurement of the defined pads. Press *Measure* and select the pad you would like to measure at the appearing *Measure* form before clicking *Measure*. 
After the measurement has been performed, plots will be displayed so that the measured results could be checked for plausibility of the measured data. Click Close Plots to close the displayed plots of measured pads.

It is possible to view the measured pad data at any time after measurement has been performed by clicking Display Plots under the Diagrams part of the command buttons menu and select the pad to be displayed, see screen shot below. The data will be displayed on Smith charts and can be closed using the Close Plots button.

If you have chosen to perform a Verification of de-embedding by activating the Perform Verification of de-embedding Using... check box on the top right part of the folder, the field Deembedding Sets is being activated and you are able to configure the sets for use within the DUTs folder. Save the settings before configuring de-embedding sets.
Chapter 3 Using the BSIM Modeling Packages

A de-embedding set actually is a combination of pad structures to be used for de-embedding of measured devices. They can be used for one or more devices and can consist of any available pad structure.

Click the Add Set button once for each set to be used. A line for each set will be added. You are able to overwrite the predefined name of the sets.

Click Configure Set to assign a pad structure to a selected de-embedding set on the Configuration of de-embedding Sets form. Depending on the type of de-embedding you have chosen (No de-embedding, Open, Short or User Defined) in the De-embedding Method part of this folder, you are able to assign the respective pads to the sets. In other words, if you select Open as the de-embedding method, you can passing only pads of type Open to selected de-embedding sets. If you select Open-Short or User defined, you are able to assign pads of type Open, Short and Through to a set.

You can select the check box Perform Verification of deembedding using the through device if you have a Through device available on your test chip. Only after activating the verification, you can click Verify Set to perform the verification of a selected set.
Ideal de-embedding means:

The S-Parameters should behave like an ideal matched transmission line with \( Z_0 = 50\Omega \) and a time delay \( T_D \) representing the electrical length of the TROUGH device measured.

S11 and S22 should be concentrated at the center of the Smith chart, while S21 and S12 both start at \( (1 + j) \) and turn clockwise on the unity circle. If this is not true, the following items should be checked:

- Is the calibration OK?
- If the OPEN method is used: De-embedding quality can be enhanced by switching to the OPEN-SHORT method.
- For very high frequencies (approximately above 30 GHz) the assumptions for using the OPEN-SHORT method might not be given. You should probably change to an alternate calibration method.

The verification will be done and the plots will be displayed after clicking OK on the upcoming message window. The following plots show what is to be expected for correct deembedding.
An error message will show up if one of the sets is not configured correctly.

After the de-embedding is done, you can assign the appropriate pad sets on the DUTs folder to their respective devices.

**Deembedding of parasitic structures**

The section “Test Structures for S-parameter Measurements” on page 299 describes the effects of deembedding. It is intended to give you an insight into deembedding methods and describes the results of S-Parameter measurements with and without deembedding.

**DUTs**

The DUTs folder is used to define transistor geometries for the DUT to be measured. Following the column for entering the name of the DUT, there is a column showing the status of the DUT. This column shows “0” if no measurement and de-embedding has been performed. It changes to “M” if a measurement has been performed and to “M, D” if measurement and de-embedding has been done. The geometries to be entered into the following columns are **Length and Width** of the transistor, **Drain and Source Area** and **Perimeter Length** (AD, AS, PD, PS), **Number of transistor Fingers** (NF) as well as the model selectors **GEOMOD** and **RGEOMOD** (applicable to BSIM4 only), which are set to their default values (0). The following columns **NRS, NRD and MIN** are originally BSIM4 parameters, but are used also inside the extended BSIM3 model from AdMOS.

**NOTE**

W, AD, AS, PD, and PS are total values including all fingers of the device!
In BSIM4, the model selector GEOMOD is used to select a geometry-dependent parasitics model that specifies whether the end source/drain diffusions are connected or not. The default value is (0) — not connected. The parameter RGEOMOD is the source/drain diffusion resistance model selector. It specifies the type of end source/drain diffusion contact type: point, wide or merged contact. The default value is (0) — no source/drain diffusion resistance. See the BSIM4 manual from UC Berkeley [1] on page 11-5 and 11-6 for a definition of GEOMOD and RGEOMOD model selector values.

The parameters NRS, NRD and MIN are the layout dependent parameters Number of Source/Drain diffusion squares and Minimization of diffusion squares for even numbered devices. They are set to their default values (0), too.

The last column allows you to enter a comment for this DUT.
3 Using the BSIM Modeling Packages

The left side of the folder shows buttons to save the setup and to Add or Delete DUTs. There are also buttons associated with Measurement, Deembedding, and Diagrams.

The measurement buttons are used to Calibrate the network analyzer, to start a Measurement using the Start, Stop and Step definitions on the measurement setup folder, to Clear measured data, or to Synthesize data. Once a DUT has been measured completely, the Status column will change from “0” to “M” to show the state of measurement.

Figure 45 DUTs folder

The left side of the folder shows buttons to save the setup and to Add or Delete DUTs. There are also buttons associated with Measurement, Deembedding, and Diagrams.

The measurement buttons are used to Calibrate the network analyzer, to start a Measurement using the Start, Stop and Step definitions on the measurement setup folder, to Clear measured data, or to Synthesize data. Once a DUT has been measured completely, the Status column will change from “0” to “M” to show the state of measurement.
Synthesize data performs a simulation of S-parameters, using the frequency definitions on the DUTs folder and a set of parameters loaded into the program from any other extraction task, to see correlations or to extract parameters into BSIM4 from another model release.

A De-embedding task starts with configuration before de-embedding the measurement setup (De-embed All). Click Configure to assign a de-embedding set defined on the De-embedding/Pad Structures folder to a specific DUT. You will get a list of DUTs and de-embedding sets defined for assignment.

Click the DUT, then click the SET to be assigned to the selected DUT.

Click De-embed All to start de-embedding measured data for each DUT with a de-embedding set assigned.

The Diagrams section is intended to check the measurement results in the form of diagrams, using the settings made on the Options folder. You can Display and Close Plots using the appropriate button for this task.
3 Using the BSIM Modeling Packages

Check, whether you would like to see the plots of the raw data (*RF Transistor Main*, as measured), the de-embedded RF transistor data (*RF Transistor Deembedded*) and/or the bias points during measurement (*RF Transistor Bias Points*).

**RF Measurement Options**

Using this folder, you are able to set plot options like X and Y plot size and background color of the plot window. See “Options” on page 121 for details.
Extraction of DC/ CV Parameters

Extraction of the complete BSIM3- or BSIM4-parameters is done using two different modules. There is a module inside each Modeling Package for extraction of DC/CV parameters and a module for RF parameters.

The RF extraction module needs start values for some parameters of a given process. Usually, those start values are taken from the DC/ CV extraction process. Therefore, you should extract DC/ CV parameters first.

The following figure shows the GUI used for extraction purposes. You can see the folders for the tasks during the extraction process. Again, ordered from left to right are folders for Notes, for measurement Information, and to Initialize the extraction process. The next folders are used for Binning, for setting up the Plot Optimizer, to Extract parameters from measurement data, to Display measured and simulated data to visualize the results of parameter extraction, to create a report in HTML format for publishing the parameters extracted together with some graphics of simulations using the parameters extracted, and to set some Options and Boundaries for the parameters to be extracted.

![GUI for the Parameter Extraction Process](image)

**Figure 46**  GUI for the Parameter Extraction Process

The top row of the GUI window contains buttons to perform file operations like Open, Save Settings, Export Settings and Import Settings. In the middle of the top row you’ll find the
Using the BSIM Modeling Packages

project name on blue background. To the right of the project name there is a Help button to open this manual. The Info button provides some information about the BSIM Modeling Package like version, date, and it’s creators—AdMOS.

The Load Demo Data button gives you the possibility to explore the features of the modeling packages without the need to measure data. For your convenience, examples are provided. If you press Load Demo Data, you will be prompted to copy and load the example files using the Copy and Open Example button on that form and filling in a path to a location where you have write access. This step is necessary, since the IC-CAP example directories are usually write protected and you need write access to modify the example files.

Far to the right you’ll find the Exit button to leave the GUI.

If you would like to Open a project, you can select the project path and name in the Open Project dialog box. Using the Export Settings button opens the Export Extraction Settings dialog box which enables you to choose path and name of the saved extraction settings file. It is not possible to create a non-existing path on Windows. Instead, you must create the desired folders, if non-existent, using the Windows Explorer. The settings to be saved are the folders Notes, Initialize, Extract, and HTML.

NOTE

Opening a project takes some time. You are able to reduce this time by saving the complete ~.mdl file. Reloading the ~.mdl file is faster than opening a project. However, since the ~.mdl file contains a large amount of data which is already stored somewhere in the system, you need to have extra storage capacity on your hard disc.

You are able to Import Extraction Settings by selecting the path and name of the saved extraction settings file inside the Import Extraction Settings dialog box. This might be useful, for example, if you found a special extraction sequence that best fulfills the need of your parameter...
The tasks to be performed are ordered from the left to the right side of the IC-CAP/Main window. They should be performed in this manner. Some of the folders have default values for your convenience. If you are satisfied with the defaults, those folders could be left as they are. However, you are not required to follow this order.

**DC Notes**

There is a folder provided to take some Notes on the project. It has the same look as the one used in the Measurement modules—see Figure 3 on page 80, for example.

**NOTE**

This folder is intended for notes on extraction. It will not overwrite your notes entered and saved during the measurement session.

**DC Information**

The next folder to the right gives you Information about the devices measured (see Figure 47). You’ll find the type of MOSFET, measurement temperatures, DUT names together with their geometries and categories as well as the notes entered during the measurement. To the right of each DUT you can find a notice regarding the measurement status.

**NOTE**

It is not possible to change the measurement information during the extraction session. This folder is for information on measurements only!
3 Using the BSIM Modeling Packages

DC Initialize

The folder Initialize (Figure 48 for BSIM3 and Figure 49 for BSIM4) is intended to set initial conditions for parameter extraction. Since the initial conditions for BSIM3 and BSIM4 models differ, the following section shows both Initialize folders, one after the other.
Using the BSIM Modeling Packages

BSIM 3

Figure 48 Initialize folder to set initial conditions for the extraction of BSIM 3 parameters

The Initial Values section of the folder contains fields for Model Parameters and Model Flags. Into the field Model Parameters, enter process related parameters like oxide thickness (TOX) or doping concentrations (channel doping concentration NCH respective gate doping concentration NGATE), and so on. Entering values into the fields and selecting the button Save starts a routine to check the values entered. This routine will flag an error message and
change the color of the field whose parameter is given an unrealistic value. The specific field will be marked with red color and remains red until the value is corrected.

The Model Flags section is used to set BSIM3 model flags. There are fields for global model flags like BINUNIT or PARAMCHK as well as fields for DC/Capacitance and Noise model flags. The model flags are set to a default value as has been described in the BSIM3 manual from UC Berkeley [1]. See “Model Selection Flags” on page 290 for details or the above mentioned UCB manual [1].

If you would like to use the binning capability, check the Generate Binning Model button. With this button checked, the folder Binning is activated.

If you check Generate Binning Model, the folder Plot Optimizer will be deactivated. You cannot use the Plot Optimizer together with a binned model.

There is a field provided to enter PEL commands, which are executed at initialization of the extraction process.

To the left, there are buttons under User Defined Defaults to Save the settings or to Set to Circuit Defaults.

Under the Model Parameter List section you are able to Add or to Remove a Parameter to the list shown in the middle of the folder. You will get a list with BSIM3 parameters to select from. This might be helpful if you would like to extract some specific parameters at initialization.
BSIM 4

The User Defined Defaults section contains fields for Save and Set to Circuit Defaults. Inside the Initial Values, Model Parameters section, enter process related parameters like the relative dielectric constant of the gate oxide, EPSROX. Advanced CMOS process generations are more and more making use of high-$k$ gate dielectrics. Therefore, you can
specify the relative dielectric constant of your process by changing EPSROX from 3.9 (default value for SiO₂ gate dielectric). There are other process parameters to be specified on this folder, including electrical, process, or measured gate oxide thickness, TOXE, TOXP, TOXM; junction depth, doping concentrations, and sheet resistances. You will find a description of the model parameters and model flags for the BSIM4 model in “Main Model Parameters” on page 408. See also the manual from UC Berkeley Appendix A: “Complete Parameter List,” for more details on model parameters [2]. Entering values into the fields and selecting the Save button starts a routine to check the values entered. This routine will flag an error message and change the color of the field whose parameter is given an unrealistic value. For example, if you enter -3 into the EPSROX field, this field will be marked with red color and remains red until the value is corrected.

You are able to add BSIM4 parameters to the Initial Values by clicking Add Parameter inside the Model Parameter List field. You will be prompted with a list of BSIM4 parameters. Select the parameter(s) you would like to add and click OK. The parameter(s) are added and you are able to enter initial values as desired.

The Model Flags section is used to set BSIM4 model flags. The fields only enable settings as defined in the BSIM4 model and are predefined to standard settings.

There is a field defining the symmetry of the drain and source areas. Check the appropriate box(es) if drain and source are processed using the same dose of implantation as well as the same geometry, and therefore the parameters are equal for drain and source areas.
Since most MOS processes use symmetric source and drain processing parameters, there is no need to extract the parameters for the bulk-source or bulk-drain diodes separately. Instead, check that the symmetry fields and the respective parameters are set equally.

Only for unsymmetrical processes, which could be modeled in BSIM 4, the fields remain unchecked and a separate parameter set will be extracted for bulk-source and bulk-drain diodes.

**Binning**

You will find some theory on binning inside “Binning of Model Parameters” on page 318. The following figure shows the *Binning* folder, used in binning model parameters. This folder is active only if the flag *Generate Binning Model* is checked, otherwise you will find an n/a sign next to the folder name. This flag is located on the *Initialize* folder under *Generate Binning Model*. 
### Using the BSIM Modeling Packages

#### Show Devices

By pressing this button, you will see a diagram using logarithmic axes of gate width over length, ranging from 0.1 to 100 microns showing the defined bin boundaries. Inside this diagram you will find markers for existing (measured) devices for this project.

---

**Figure 50**  Binning Folder, the green shaded fields name the corner devices of the selected bin (see “Add Extension” on page 149)

---

<table>
<thead>
<tr>
<th>Devices in Bin 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V[um]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer_A</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer_B</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer_C</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer_D</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 51  Diagram of measured devices (red), defined bins (green), extensions (yellow) and one selected bin (cyan)
3 Using the BSIM Modeling Packages

Set Bin

Select bin boundaries by using the displayed diagram, marking two adjacent corners of a rectangle representing the bin and choose Set Bin. Be sure to include devices at every corner of your bin, otherwise you will get an error message stating that the selected bin is not rectangular. See the figures below for clarification.

Binning areas:

Left: Not correct, because not every corner of the marked rectangle has a measured device.

Right: Correctly defined binning area.

The selected binning areas are automatically entered into the form using a bin number and the geometries of the four corners for this bin.

Delete all Bins

Using this button, all bins are deleted from the graphic as well as the form.
Change Tolerance

The purpose of this button is to change a predefined tolerance for the binning areas. This tolerance is needed because of the definition of Binning Boundaries.

There are boundaries for each binning area: LMIN, LMAX, WMIN, WMAX. Those boundaries will be analyzed using Leff and Weff. If \( LMIN(bin1) \leq L < LMAX(bin1) \), a subcircuit will be used. This means, if a device with \( L = 10 \mu m \) is used and this is LMAX, then it is not possible to simulate this device using the binned model. This is due to the above mentioned region for the parameters: \( LMIN(bin1) \leq L < LMAX(bin1) \). So if \( L = LMAX \), the device does not fit into the binning boundaries (which require a value smaller than LMAX) and cannot be used for simulations.

Therefore, tolerances are implemented to correct for this error. You are able to change the predefined tolerance (0.01\( \mu m \)) to a value which suits your needs. The results within the measured and extracted areas will not be altered. But it is now possible to simulate devices having a gate length or width a little delta L or delta W outside the defined binning areas.

Add Extension

By choosing this button, you will get a form to enter Extension Delta Values like the one shown below.

![Figure 52 Extension values form](image)
If the extension is not activated, certain simulators would not be able to simulate devices with L=Lmax or W=Wmax of certain bins. The extension delta values define the extensions from the measured devices. This means, you must set extension delta values Lmin and Wmin within the range of the minimal measured device, otherwise you will get an error message. In other words, if your minimal measured device uses a gate length of 0.15µm, the extension in Lmin direction must be set between 0 and 0.149µm. There is no limit for the extension in the Lmax and Wmax direction.

If you select one of the defined bins, the fields under Devices in Bin<No> will become green shaded and will show the name of the corner devices of this bin and the corner geometries, see Figure 50. At the same time, the diagram will show the selected bin boundaries in light blue color.

**Delete Extension**

You can delete the entered extensions by choosing the *Delete Extension* button.

The field *Parameters to switch off scalable effects* is used to set which parameters use the scalable possibilities as defined inside the BSIM4 model and which parameters are prevented from scalable modeling in BSIM4. All deselected parameters are using the extracted values, whereas all selected parameters (marked with blue background) are using default values for binning purposes. The parameters DWG and DWB are always off, therefore they cannot be de-selected.

**DC Extract**

The next folder, *Extract*, defines the Extraction Flow for the devices. There is a standard extraction flow implemented, but you can change this flow if you find another one suiting your needs better than the default one.
The folder shows fields named Extraction Flow, Extraction Status, Function Flow, and Available Functions. The Extraction Flow field shows the name for the selected extraction step. Under Function Flow, the functions used for the selected extraction flow are listed. The Available
Using the BSIM Modeling Packages

*Functions* field shows a list of functions to be used for a selected extraction flow. Mark the desired function and click the arrow in between the *Function Flow* and *Available Functions* fields to add the function to the flow list. The letters in front of the function name explain the extraction method used for this function: E represents extraction, O stands for optimization, and T for tuning.

To the left, there are buttons to *Add* or *Delete* Extractions from the flow. You will be prompted with a list of available extractions. Select one of the extraction steps and press *Add* on that form. If you have already extracted parameters, the Extraction Status field shows intermediate steps. It will be shown, which results are being used for the selected extraction step. Now, if you *Add* or *Delete*, change the arrangement of the steps or reset to *Defaults*, the following extractions will become invalid because they are based on the results of the extraction immediately before them. Therefore, you will be warned before changes are made!

Arranging the flow is possible by using the *Move Up* or *Move Down* buttons to the left of the folder.

To extract parameters from one flow only: Select the desired flow under the Extraction Flow section in the left half of this folder and choose the *Single* button. Again, you will be warned before the selected extraction will be performed.
To go through the extraction process one step at a time, highlight the step and choose *Step by Step*. A dialog box may appear, prompting you for input.

- To automatically extract all parameters using the extraction flows listed under the Extraction Flow section, choose *Automatic*. The programmed Extraction Flow will be extracting all parameters defined in the active extraction flow list. The programmed extraction flow has to begin with the *Reset Parameters* step, otherwise you will get an error message.

- In case you would start an extraction of some parameters after you already have extracted some other parameters, you are not able to start from the beginning without resetting all parameters, including the ones already extracted. To re-extract or to optimize one parameter after some other parameters are already extracted, simply add the desired step in the extraction flow list on a place further down the list. In that case, the extraction process uses the parameters already extracted during an earlier step in the extraction process and you overcome the reset parameter step.

- All warnings and errors during the extraction process are written to the failure log, which is opened using the *Failure Log* button.

**NOTE**

The contents of the Failure Log window doesn’t contain all the warnings written to the IC-CAP status window. Only the warnings and errors regarding parameter extraction are re-directed to the Failure Log.

- The button *Simulate All* starts simulating the circuit as defined in IC-CAP.
3 Using the BSIM Modeling Packages

You can add several steps of the same extraction after each other. The extraction method selected in one step could be another one in a further extraction step. In other words, you are able to set the tuner option in one extraction step and the optimizer option in another step, probably when other parameters of influence have been extracted in between the steps.

- Change the function flow inside the Function Flow field using the Move Up or Move Down buttons below that section to move a selected extraction routine one step up or down.
- The Default button restores the order of parameter extractions inside the Function Flow list as it was in the beginning of a project.
- To delete an extraction from the Function Flow, choose Delete.

**NOTE**

You cannot delete the first (Reset Parameters) or the last (Save Parameters) extraction step inside an extraction flow.
• Below the Extraction Flow field, check boxes enable you to Follow Extraction Flow as programmed or to use the Test Mode without saving the extracted parameters. This mode is intended for you to test influences of some parameters on others without overwriting already extracted parameters from the selected step. You are able to use every *.mps file with every extraction step without saving and resetting parameters.

• To access extractions randomly, check Allow random access to extractions. With already extracted parameters, you will be prompted to delete the extracted parameters and start with new ones.

You will notice the changing of colors on the Extraction Folder. This is a visual warning that intermediate results are not stored in this mode!

NOTE

This feature makes it possible to test influences of any other *.mps file to compare extraction results.

Follow extraction flow means: An extraction step uses the results of the step above, as is stated under Usage of intermediate results in the middle of this folder!

Test mode starts with the last step taken in the flow. No results are overwritten or saved!

Allow random access to extractions: Existing .mps files are being deleted! The extracted parameters are continuously updated inside ICCAP, but not saved. You are able to perform extractions in any desired sequence. The Extraction Status field shows the sequence of extractions! In this mode, you are able to use the Test mode as well. On leaving the Test mode, the previous state of extractions will be reloaded.
3 Using the BSIM Modeling Packages

- Using the Direct Execution Mode button below the Available Functions field (possible only in Test Mode or in Random Access Mode) changes the color of the field and the header will now read: Executable Functions. If you click on one of the executable functions now, this function will be executed as it is defined. This means, if the function is an extraction step, the selected parameter for this function is extracted. If it is a tuning step, the IC-CAP tuner opens with the selected parameter sliders, and if it is an optimization step, the optimizer for this function will be executed.

- To export the extracted parameters during the defined extraction flow for the purpose of saving intermediate results, use Export under the Model Parameters section. You must specify the path and the name for the parameter file to be exported. Exported files will be packed into a .tar file using the project name as a file name and appending Export and a number to the extracted .tar file. (~project_name~Export_1, for example)

- Parameters can be saved by selecting Save Parameters from the extraction flow and Single from the menu buttons on the left, only if all extractions are done.

![Figure 55 Export Model Parameters](image)
A button is provided to Import parameters, for example, from an earlier project. You will receive a warning message stating that importing parameters will overwrite the actual model parameters in IC-CAP.

Select either a Project or, if existing, an exported .tar file for a specific project. In this case, you must select the project as well as the exported extractions. Then you will be able to select whether you would like to use all or specific parts of the saved extraction project components by de-activating the components not to be used (results, settings, boundaries and finetuning). If there are stored files, they will be shown under the Files section of this window.

Figure 56  Import Extractions
This feature makes it possible to import any other *.mps file to compare results. But be careful, importing other parameter files will overwrite the actual parameters. Don’t use this option during an extraction session with partly extracted parameters unless you’ve saved the work in progress!

**Plot Optimizer**

This folder is active only *without* the Generate Binning Model check box on the Initialize folder selected.

This folder enables you to set up multi-transistor targets for a global optimization of parameters. The BSIM3/4_DC_CV_Extract module allows the definition of different optimizer tasks. An optimizer task is composed of different devices and different possible setups per device. For example, an optimizer task to fine tune the drain saturation current versus gate length would need different short channel devices and the idvd and idvg_vdmax setup per device. This configuration can be done inside the BSIM3/4_DC_CV_Extract GUI, folder Plot Optimizer. The resulting BSIM3/4_DC_Finetune model will be saved within the actual project directory. A template model file is in $ICCAP_ROOT/examples/model_files/mosfet/BSIM3(4)/utilities, which is called BSIM3(4)_DC_CV_Finetune.mdl. This template will be loaded, if you click Open Model in the Load Finetuning Model section to the left of the Plot Optimizer folder.
Each setup in this DUT is a combination of a device and a certain simulation setup. The setup name will be <device>_<setup> (e.g., Transistor_A_idvg). The appropriate device dimensions for a certain device are referenced by the input “index” in each setup which sets a variable “INDEX” to act as a pointer to the model variables DUT_L, DUT_W, .... Those variables contain the gate lengths and widths of all devices in this actual project.
You can select from a set of predefined setups (idvg, idvg_vdmax, idvd, dvd_vbmax) or you can easily define your own setups. For details, see item “User defined setups” on page 163.

Setting up an optimizer task

To set up an optimizer task, please perform the following steps:

Load the Fine-tuning model by clicking Open.

Clicking Open Model opens a new model file inside the IC-CAP/Main window. This model file is called BSIM4_DC_CV_Fine-tune.

Configuration of fine-tuning tasks using the BSIM3/4_DC_Extract model

Under the Configuration section of the Plot Optimizer folder in BSIM3/4_DC_Extract, click Add Task. You will be prompted to enter a name. A FinetuneConfiguration window will open, which is shown in Figure 58. This figure shows the configuration process for a certain fine-tuning task. You have to select which Setup/Plot to use for which device. After configuring the fine-tuning model, click OK to close the form.
At the same time, the Plot Optimizer window opens, as is shown in the following figure.

Select the desired fine-tuning configuration by activating the desired Setup or Plot for a certain device. By clicking the arrow in the top row beneath the Setup/Plot name (idvg, for
example), you are able to select which of the predefined plots you would like to be included into the fine-tuning configuration. Close the form by clicking OK. Now, the selected plots are open-end and you have to select the regions used for optimizing. See “Using the Plot Optimizer” in the *IC-CAP User’s Guide* for help using the plot optimizer.

Once the plot optimizer tasks are set up and saved, you can perform an initial manual optimization by moving the actual parameter set from the *BSIM3/4_DC.CV_Extract* model to the *BSIM3/4_DC.Finetune* model or vice versa using the *Extract >> Finetune* or *Finetune >> Extract* buttons. The fine-tuning tasks can now be added like any other extraction step using *Extraction Flow > Add* on the *Extract* folder. The *Add Extraction* form now contains the configured fine-tuning task for selection. After selecting the task, the *Extract* folder in the *BSIM3/4_DC.CV_Extract* model contains the specified plot optimizer tasks. You can invoke them from this folder by clicking *Extraction > Single*, if you want to perform a separate optimizer task. On the other hand, you can invoke a plot optimizer task during the complete extraction process by clicking *Step by Step*. It will then be inserted into the programmed extraction sequences.

If one element, for example, *Finetune1* is activated in the extraction flow, all existing plot optimizer transforms in the setup */BSIM4_DC_Finetune/Finetune1.<name>/Config_Setup* will be invoked. See Figure 59 for an example of the *Extract* folder after configuration of a fine-tuning task.

### Customizing the plot optimizer

#### Adding error curves to the diagrams

Error curves as well as the values of maximum error and RMS error between measured and simulated curves can be added to standard plots. Turn on the DUT variable *SHOW_ERROR* to invoke this feature. The function *BSIM4_error()*, which calculates the error values can handle boundaries for error calculation. This may be useful to exclude, for example, measurement noise or to focus the
error calculation to a certain area of operation for a device. The boundaries for error calculation are defined inside the DUT variables of the appropriate DUT. An example for such a set of variables are:

- \( X_{LOW\_IDVG\_ID} \): minimum usable value of ID in all idvg setups for error calculation
- \( Y_{HIGH\_IDVG\_IG} \): maximum usable value of IG in all idvg setups for error calculation

Please see the example transforms for a detailed description of using this feature.

**User defined setups**

Besides the standard setups in the MASTER DUT, you can add additional setups taking into account the following items:

- The new setup must be placed inside the MASTER DUT, it can be used during configuration.
- The setup must be a subset of the measured data.
- Two setup variables must be set:
  - \( NameSetup \): Set this variable to the name of the actual setup. For an example, see `userdefined_example`.
  - \( DUT\_Type \): This variable tells IC-CAP which type of .mdm file should be used to add.

  The possible choices are “~dc_idvg~” or “~dc_idvd~”.

Using the BSIM Modeling Packages

Configuration of the Plot Optimizer Task

The next folder to the right, Display, is used to display diagrams of measured and simulated setups together to view the results of parameter extraction. It has sections for DC Transistor, Capacitance, and DC Diode behavior. Within those sections, there are fields representing diagrams and their relevant parameters. Click on one of the predefined lines to simulate the selected setup using the voltages defined in Measurement Conditions and to display in diagrams.

Figure 59  Extract folder after setting up a Plot Optimizer task
The environmental settings regarding size and background color are effective when displaying diagrams using the Display folder.

Figure 60  Display simulation results using the parameters extracted

**DC HTML**

The folder HTML is used to generate a report file in HTML format. You can define a headline and comments for the report, specify the path to save the report, as well as the
3 Using the BSIM Modeling Packages

command to start the browser. You can also define the size of plots and the diagram background as it appears in the HTML report.

NOTE
Generate HTML uses the project mps file (project_name=bsim*_dc_cv_extract.mps), not the loaded or imported one.

Figure 61 Folder to generate reports in HTML format
If you use a path where an HTML project report already exists, you will get a warning. If the path doesn’t exist, you will be prompted to accept creation of the specified directory.

The following figures show part of a generated HTML report. This report could be published over the intranet for use inside your company or over the web for customer use.
3 Using the BSIM Modeling Packages

### Measurement Conditions for RF Test Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>NMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>300K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S-Parameter</th>
<th>DC Transistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Output</td>
</tr>
<tr>
<td>Start</td>
<td>Stop</td>
</tr>
<tr>
<td>100 MHz</td>
<td>1 VD</td>
</tr>
<tr>
<td>200 kHz</td>
<td>0.5 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bias Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweep</td>
<td>Start</td>
</tr>
<tr>
<td>1 VD</td>
<td>0 V</td>
</tr>
<tr>
<td>2 VD</td>
<td>0 V</td>
</tr>
</tbody>
</table>

Transconductance is derived from output data.

The voltage settings are for n-type MOS devices.

This polarity will be automatically changed with the "TYPE" flag.
DC Options

The folder Options lets you define some environmental conditions used in extraction.

You can set the Simulator used by selecting the Change button on the left side of the window. You will see a window like the following one:
You can select which simulator to use from a pull-down list of ADS, SPICE3, Spectre, or HSPICE. You can also select the path to the appropriate circuit files respective the test circuit files. Usually, you will find those files in: ICCAP_ROOT/examples/model_files/mosfet/bsim3(or bsim4)/circuits/SIMULATOR/cir(tci).

If you would like to modify the standard circuit/test circuit files, be sure to copy the directory ICCAP_ROOT/examples/model_files/bsim3(or bsim4)/circuits/<SIMULATOR> and change the files inside the copied directory, not the original ones.

There are predefined values for the variables. You can change those variables or accept the values. Since some variables in BSIM4 are not used in BSIM3, the folders differ from each other. See the following two figures.

Using those variables you can define a minimum usable current for extraction. The purpose of these variables is to cut out noisy current measurements by defining the lower limit of currents used for extraction of different parameters.

You can specify a printer command as well as the size of plot windows and the background color of those windows.
### BSIM3 — Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used Simulator</td>
<td>SIMULATOR</td>
<td>(\text{spice3})</td>
</tr>
<tr>
<td>Location of Circuit Files</td>
<td>(\text{e:Agilent\textunderscore IVCAP\textunderscore 2002\textunderscore samples\textunderscore model\textunderscore \textunderscore Exmp\textunderscore model\textunderscore BSIM3})</td>
<td></td>
</tr>
<tr>
<td>Location of Test Circuit Files</td>
<td>(\text{e:Agilent\textunderscore IVCAP\textunderscore 2002\textunderscore examples\textunderscore model\textunderscore \textunderscore Exmp\textunderscore model\textunderscore BSIM3})</td>
<td></td>
</tr>
<tr>
<td>Display messages during extractions</td>
<td>MESSAGE</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Use XY Plot Size</td>
<td>FX_PLOT_SIZE</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>X - Size of Plot</td>
<td>GWINDX</td>
<td>12000</td>
</tr>
<tr>
<td>Y - Size of Plot</td>
<td>GWINDY</td>
<td>10000</td>
</tr>
<tr>
<td>White Background of Plot</td>
<td>GWIND_WHITE</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Y - Scale of Plot</td>
<td>SCALE</td>
<td>(\text{Log} \quad \text{Lin})</td>
</tr>
<tr>
<td>in DUT All Transistors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum usable drain current (\text{VTH}, \text{NFAC}) extraction</td>
<td>IDMIN_VOFF</td>
<td>(1e^{-11})</td>
</tr>
<tr>
<td>Minimum usable substrate current (\text{ALPHA}, \text{NODE}) extraction</td>
<td>IDMIN_SUB</td>
<td>(1e^{-11})</td>
</tr>
<tr>
<td>Minimum usable substrate current (\text{J}, \text{NODE}) extraction</td>
<td>IDMIN_J</td>
<td>(1e^{-11})</td>
</tr>
<tr>
<td>Minimum usable drain current (\text{DS}, \text{NODE}) extraction</td>
<td>IDMIN_DDS</td>
<td>(1e^{-11})</td>
</tr>
<tr>
<td>Normalized reference current for (\text{VTH} + \text{extraction})</td>
<td>ID_REF_VTH</td>
<td>(100e^{-9})</td>
</tr>
</tbody>
</table>

**Figure 62** Options used in parameter extraction for the BSIM 3 model
Using the BSIM Modeling Packages

BSIM 4 - Options

The folder **Boundaries** is intended to set optimizer boundaries for some parameters. Since the parameters differ between BSIM3 and BSIM4, there are little differences in the look of the boundaries folders.

**DC Boundaries**

The folder **Boundaries** is intended to set optimizer boundaries for some parameters. Since the parameters differ between BSIM3 and BSIM4, there are little differences in the look of the boundaries folders.
**BSIM 3 — Boundaries**

![BSIM3_Boundaries](Image)

**Figure 64**  Set Optimizer Boundaries for the BSIM 3 model
3 Using the BSIM Modeling Packages

BSIM 4 — Boundaries

On the left side, you can see the parameter to be optimized. The following columns display the minimum for the named parameter (the parameter’s reasonable physical minimum), an optimizer minimum and maximum column, followed by the parameter’s maximum, if a reasonable one exists. The white fields let you enter optimizer settings fitting your process needs. You can Save these settings for future extractions using the Export button inside the Setup field to the left. You can restore boundaries by clicking Default.

Figure 65 Set Optimizer Boundaries for the BSIM 4 model
Please browse the directory $ICCAP_ROOT/examples/model_files/mosfet/bsim4/examples/boundaries to find typical parameter boundaries for different CMOS process generations from gate lengths of 0.8µm down to 0.13µm.
Extraction of Parameters for the RF Models

Start extraction of RF parameters for the BSIM3 or BSIM4 models by clicking the appropriate extract model to open the graphic user interface (GUI) you are already familiar with. The tasks are separated on subfolders for easy handling. Some of the folders are using the same look as in the DC Extraction part of the BSIM3 and BSIM4 Modeling Tools.

The top row buttons are described in “DC and CV Measurement of MOSFET's for the BSIM3 and BSIM4 Models” on page 77.

As soon as you click Open, the PreSelection dialog box opens, prompting you for some basic definitions for parameter extraction.

Within this window, select some DC and frequency settings for the extraction process.

Transit frequency $f_T$ of a transistor is being calculated using the standard procedure of measuring the gain at a predefined frequency and extrapolating $f_T$ from the gain-bandwidth product of one. Enter the frequency to be
used for extraction into the PreSelection window. Only frequencies defined in the measurement section using the Measurement Conditions folder are allowed. Inside this folder you’ve entered Start and Stop Frequency as well as Number of Frequencies to be measured. Frequency sweep divided by number of frequency points results in specific frequencies to be measured. Those are the frequencies you are able to select as constant frequency for f_T calculation. Be aware of the network analyzer’s accuracy at lower frequencies when selecting the calculation frequency.

You can further specify the smallest gate and drain voltages to be used for S-parameter simulations. Choose the minimum gate voltage to be greater than the threshold voltage to ensure that the device is operating inside the active region. Otherwise, there will be a problem in extracting R_{out}. This resistance is very high if the transistor is turned off, resulting in large errors during extraction. Measurement is being carried out at gate and drain voltages from zero volts upward, but parameter extraction will lead to erroneous values.

**RF Extract Notes**

The Notes folder is described already. See “Project Notes” on page 80.

**RF Extract Information**

The second folder, Information, has the same look and function as the one in DC Extraction. See “DC Information” on page 139.

**RF Extract Initialize**

The folder Initialize is used to set initial values during extraction for process and geometric parameters as well as model flags. There are differences in initializing BSIM3 and BSIM4 models. The following figures show the initialization folders of each of the models.
3 Using the BSIM Modeling Packages

BSIM 3 — Initialize

Figure 66 Initialize folder for the BSIM 3 model
BSIM 4 — Initialize

The Initialize folders contain sections to enter PEL commands to be executed at initialization of the extraction process.

**Figure 67** Initialize folder for the BSIM 4 model

Model Parameter Sets

To the left of the folder, you can *Import DC/CV Start Set* to be used for RF extraction. You get a list of existing *.mps* files for selection. A selected *.mps* file will be copied into the RF project directory. This action will set parameter values extracted from DC/CV measurements as starting points for RF extraction. Since the devices measured for RF
Using the BSIM Modeling Packages

extraction are very compact multifinger transistors due to design requirements (and also to enhance accuracy through reducing measurement noise during network analyzer measurements), their parameters differ from the ones extracted from DC measurements. To get results consistent for the process—not only for the actual measured device—the extraction of RF relevant parameters must start with initial parameter start points to fit the S-parameters at low frequencies. Therefore, using parameters extracted during the DC extraction process are used to give start points of good accuracy for the RF extraction process.

The path and filename of the selected start set will be shown on blue background.

**NOTE**

You cannot change directly the path and filename of the start set in the field DC Parameter Set to use. Instead, use the Import DC/CV Start Set button to the left of the folder to enter the correct path or to browse for the location of your start set.

Set parameters to circuit default values: Choosing the *Set to Circuit Default Values* button on the left side of the folder inside the *User defined Defaults* section restores the defaults.

You can *Add* or *Remove Parameters* from the *Initial Values* list in the middle of the *Initialize* folder.

Select the type of model to be extracted. There are two selections possible: *Single* or *Scalable Transistor Model*. For a detailed explanation, see “Single Transistor Model” on page 385 or “Fully scalable device” on page 386.

You can set initial parameter values manually. To do so, enter the desired values into the parameter fields provided for several parameters.
The BSIM3 model only uses one flag for RF modeling—the NQSMOD flag (non-quasi-static model, see “Non-Quasi-Static Model Parameters” on page 290).

Set high frequency Model Flags for the extraction of BSIM4 parameters by using the arrows provided to change the flag value. The process is limited to allowed flag values of the respective RF model.

The flags can have values as listed in the following table.

**Table 11**  High Frequency Model Flags for BSIM 4

<table>
<thead>
<tr>
<th>Values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGATEMOD</td>
<td>Gate resistance model selector</td>
</tr>
<tr>
<td>0 (no gate resistance)</td>
<td>Gate resistance model selector</td>
</tr>
<tr>
<td>1 (constant gate resistance)</td>
<td>Gate resistance model selector</td>
</tr>
<tr>
<td>2 (variable gate resistance)</td>
<td>Gate resistance model selector</td>
</tr>
<tr>
<td>3 (two gate resistances, overlap capacitance current will not pass through intrinsic input resistance)</td>
<td>Gate resistance model selector</td>
</tr>
<tr>
<td>RBODYMOD</td>
<td>Substrate resistance network model selector</td>
</tr>
<tr>
<td>0 (no substrate resistance network)</td>
<td>Substrate resistance network model selector</td>
</tr>
<tr>
<td>1 (five substrate resistors are present)</td>
<td>Substrate resistance network model selector</td>
</tr>
<tr>
<td>TRNQSMOD</td>
<td>Transient Non-Quasi-Static (NQS) model selector</td>
</tr>
<tr>
<td>0 (charge deficit NQS model is off)</td>
<td>Transient Non-Quasi-Static (NQS) model selector</td>
</tr>
<tr>
<td>1 (charge deficit NQS model is on)</td>
<td>Transient Non-Quasi-Static (NQS) model selector</td>
</tr>
</tbody>
</table>
Table 11  High Frequency Model Flags for BSIM 4 (continued)

<table>
<thead>
<tr>
<th>Values</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| ACNQSMOD [Page 8-5]  
0 (small signal AC charge deficit NQS model is off)  
1 (small signal AC charge deficit NQS model is on) | AC small-signal Non-Quasi-Static model selector |

**Note** [Page 8-X] refers to the page numbers of the BSIM 4.3.0 Manual from UC Berkeley [1]

**RF Extract**

Within this folder, you define the extraction process for the parameters of the devices. There is a standard extraction flow implemented, but you can change this flow if you find another one suits your needs better than the default flow.
To extract parameters from one flow: Select the desired flow under the Extraction Flow section of this folder and choose the Single button. Only the selected extraction will be performed. The status of extraction is visible in the status field. This field shows a '-' if extraction of this parameters is not completed yet or 'done' if the parameters from this step are extracted.

To go through the extraction process one step at a time, highlight the step then choose Step by Step. A dialog box may appear, prompting you for input.
• To automatically extract all parameters using the extraction flows listed under the Extraction Flow section: Choose Automatic. The programmed extraction flow will be extracting all parameters defined in the active extraction flow.

• All warnings and errors during the extraction process are written to the failure log, which is opened using the Failure Log button.

If you would like to clear the status of extraction, use Clear Status.

**NOTE**

Already extracted parameters are reset to defaults!

• You can add steps to the extraction flow by clicking the Add button on the left side of the folder under the section Extraction Flow. You will be prompted for an extraction to add. Select the desired extraction and choose Add on the Add Extraction folder.

• Change the flow of extraction by using the Move Up or Move Down buttons to move a selected extraction routine one step up or down.

• The Default button restores the order of parameter extraction as it was in the beginning of a project.

• To delete a step: Choose the Delete button.

**NOTE**

You cannot delete the first (Reset Parameters) and the last (Save Parameters) step inside an extraction flow.

• To export the extracted parameters: The step Save Parameters inside the Extraction Flow informs you of the path and name for the saved .mps or .lib file.

On the right side of the Extract folder, you will find a field named Extraction.
This field shows the name of the extraction as well as name and path of the transform used in this extraction step. There is a field, *Function Flow*, which is used to set the flow of extraction steps. Select the desired function out of the list found under *Available Functions* by selecting the function and clicking the arrow in between the *Function Flow* and the *Available Functions* fields. Arranging the functions inside the function flow is done using the buttons provided below the *Function Flow* field.
Using the BSIM Modeling Packages

Under Available Functions you will find in the example above three functions for this function flow. The first function is an extraction step (E), the second one uses the tuner (T), the third one uses the optimizer (O).

RF Extract Display

Within this folder, you will find fields to select plots for display.

There are three fields to select models for display on this folder:

Select Device: Use Actual Model Parameter Set or choose one of the buttons to the left of the transistors name for plots to be displayed.

Open plots for the selected transistor by clicking the name of the plot inside the Plots Single Transistor field on the folder.
Open plots for scalable transistor models by clicking the name of the desired plots inside the *Plots Scalable Transistor* field on this folder.

**NOTE**

You can only choose a plot for the extracted model that was selected in the field *Type of Extracted Model* on the Initialize folder. Plots inside the other fields are not selectable.

Each plot is opened in a new window. Close all windows by using the *Close All* button on the right side of the Display folder or close single windows using the Close icon inside the appropriate window.

**RF Extract HTML**

This folder helps you to prepare a report file in HTML format to be displayed using an internet browser.

Since this folder is the same as in the DC Extraction section, see “DC HTML” on page 165 for details.

**RF Extract Options**

This folder is used to set variables for the extraction process and options for plots to be displayed.
3 Using the BSIM Modeling Packages

The Simulator variable field and the paths to circuit and test circuit files have a blue background. You cannot change those field entries directly. Instead, you have to choose the Simulator and Circuits Change button to set another target simulator as well as paths to circuit and test circuit files. If you use your own circuit files, it is recommended to copy the entire examples directory into a directory where you have write access and set the path according to your situation. You will find the path to the examples directory on the options folder! If you are satisfied with the default settings or to use as a starting point, just leave the path entries as provided.

There is a field to enter the printer command for printing the plots (see the notes on printing in the section “DC and CV Measurement of MOSFET’s for the BSIM3 and BSIM4 Models” on page 77).
If you want to change the plot window size, choose *Use X-Y Plot Size: Fixed_Plot_Size* and enter the desired X and Y size into the respective fields. You are able to change the background color of the plot window from black to white by activating the field: *White background of plots*.

**Circuit Files**

The circuit files are located in:

```
~ICCAP_ROOT/example/model_files/mosfet/bsim3(or bsim4)/circuits
```

You will find subdirectories below the circuits directory for each supported simulator (hpeesofsim, hspice, spectre, spice3). Each directory contains a circuit (cir) as well as a test circuit (tcir) directory, which contain the circuit files using the appropriate simulator syntax.

**RF Extract Boundaries**

The Boundaries folder is the same as the one in DC Extraction. For details, see “DC Boundaries” on page 172.
3 Using the BSIM Modeling Packages
4 BSIM 3v3 Characterization

The BSIM 3 Model 197
The Unified I-V Model of BSIM 3v3 200
Capacitance Model 238
High Frequency Behavior 255
Temperature Dependence 271
Noise Model 279
SPICE Model Parameters 282
Test structures for Deep Submicron CMOS Processes 293
Extraction of Model Parameters 311
Binning of Model Parameters 318
Importing older version BSIM 3v3 Files 328
References 332

This Chapter explains the theoretical background of the BSIM3 model. Using the Modeling Package is described in Chapter 3, “Using the BSIM Modeling Packages”.
What's new inside the BSIM3 Modeling Package:

This section lists the enhancements and changes made to the Modeling Package for each revision since IC-CAP 2002. They are listed in reverse order so that the new version is on top, followed by changes made in former versions.

New features in the BSIM3 Modeling Package, Rev. IC-CAP 2004, spring 2005

1.) BSIM3_DC.CV.Measure

The time to load a new project has been dramatically reduced (also in BSIM3_DC.CV.Extract, BSIM3_RF.Measure, BSIM3_RF.Extract).

List sweeps are now supported.

2.) BSIM3_DC.CV.Extract

The extraction flow has been enhanced to store and retrieve complete extraction scenarios including intermediate results and boundary settings.

The usability of the plot optimizer inside the BSIM3 Package has been enhanced and user configured plot optimizers can be easily integrated into the extraction flow.

3.) BSIM3_RF.Measure

New scheme to define de-embedding structures.

New features in the BSIM3 Modeling Package, Rev. IC-CAP 2004, January 2004

1.) General

The Graphic User Interface from BSIM4 has been adopted. One of the main advantages of this concept is that the measured data can be used by BSIM3 and BSIM4 Modeling Packages for parameter extraction!!!

The BSIM3 Modeling Package can now generate model cards and scalable RF models for the following simulators:
Spice3 (delivered with IC-CAP)
Advanced Design System
Hspice
Spectre

The documentation was totally reworked to account for the common user interface with the BSIM4 Modeling Package and similar upcoming modeling products.

In addition, a detailed description of all the files of the Modeling Package is given. All temperatures in the setup and documentation are now given in [K] instead of [degree C].

Currently, the supported model is BSIM3v3.2.4, released on Dec. 21st, 2001.

2.) BSIM3_DC.CV.Measure

The Keithley switching matrix models K707 and K708a are now supported.

The maximum compliance values can now be defined together with the other measurement settings.

Three new functions are implemented to drive the BSIM3_DC.CV.Measure module from a wafer prober control macro. An example for such a control macro can be found in ‘./examples/model_files/mosfet/BSIM3/examples/waferprober/prober_control.mdl’

3.) BSIM3_DC.CV.Extract

A complete new extraction flow is implemented. A certain extraction group (e.g., ‘Basic VTH, Mobility’) can be invoked several times with different configurations.

Moreover, the flow inside an extraction group can be specified in any desired order.

This gives the highest available flexibility for adopting any parameter extraction to a certain process.
Automatic generation of binned model files is now supported. A new folder *Binning* in the *BSIM3_DC.CV_Extract* module allows the specification of the binning areas as well as extended binning. Final circuits are generated for Hspice, Spectre, and ADS.

Generation of HTML files has been enhanced to include a navigation tree through all results. In addition, all measured data at each temperature for each device is compared with the simulated results.

The new IC-CAP feature *Plot Optimizer* is supported by a user friendly configuration of the devices and setups for a final fine tuning approach.

A new function is implemented to extract multiple projects in batch mode. This can be very useful for statistical modeling, where a large number of model parameter sets must be generated for the same type of devices but from different measured test chips. Please see the macro 'Example_Wafer_Extraction' in the *BSIM3_DC.CV_Extract.mdl* file.

Parameter extractions have been steadily enhanced due to user's feedback.

4.) BSIM3 RF Measure

No changes made.

5) BSIM3 RF Extract

A complete new extraction flow is implemented. Please see 3.) *BSIM3_DC.CV_Extract* for more details.

The automatic generation of HTML files has been enhanced to include a navigation tree through all results.

6) Documentation

The documentation was totally reworked to account for the common user interface with the BSIM4 Modeling Package and similar upcoming modeling products.
In addition, a detailed description of all files of the Modeling Packages is included.

**New features in the BSIM 3 Modeling Package, Rev. IC-CAP 2002, March 2003**

1.) **General**

This is an update to the already existing BSIM3v3 Modeling Package in IC-CAP.

The complete user interface and data structure was modified and reworked to have the same style as the existing BSIM4 Modeling Package.

One of the main advantages of this concept is the usage of measured data by the BSIM3 Modeling Package as well as the BSIM4 Modeling Package for parameter extraction.

Please note, for compatibility reasons the old BSIM3v3 files can still be accessed in the `$ICCAP_ROOT/examples/model_files/mosfet/bsim3v3` directory.

The new style files are located in the directory:

`$ICCAP_ROOT/examples/model_files/mosfet/bsim3`

Don't get confused by the missing version information of the "bsim3" term. The new style files don't use the version information any more.

2.) **BSIM 3 DC CV Measure**

A feature "Import BSIM3v3" was added to reuse data in the file format of the former BSIM3v3 Modeling Package.

The measured data of the new BSIM3 Modeling Package is now in a format that can be used for the generation of BSIM3 and BSIM4 models.

3.) **BSIM 3 DC CV Extract**

The existing extraction functions have been ported to the new style user interface.
A new, more user friendly HTML report can be generated, which allows a comparison of measured and simulated data for each device. In addition, the report can be easily included in a word processing program.

4) **BSIM3_RF_Measure**

This module measures all data which is necessary for the generation of RF models. The data is compatible with the BSIM4_RF_Measure module and can also be used for the generation of BSIM4 RF models.

5) **BSIM3_RF_Extract**

A new, fully scalable subcircuit model for the BSIM3 RF behavior was added. The user can now select whether he wants to create a single device model (one model for each test device) or a fully scalable model that covers all available test devices.

6) **BSIM3_Tutorial**

These are the well known files for learning more about the BSIM3 model itself.

7) **Documentation**

The *Help* buttons are still linked to the BSIM4 *Online Help*. This is OK, because the usage of the BSIM3 Modeling Package and the BSIM4 Modeling Package is identical.

For more information about the BSIM3 model itself, please refer to this chapter.

A reworked version of the documentation will be included in the IC-CAP 2004 release.
The BSIM 3 Model

The BSIM3 model (BSIM = Berkeley Short channel Insulated gate field effect transistor Model) was published by the University of California at Berkeley in July 1993. BSIM3 is a public model and is intended to simulate analog and digital circuits that consist of deep submicron MOS devices down to channel lengths of 0.18 micron.

BSIM3 is a physical model with built-in dependencies of important device dimensions and process parameters like the channel length and width, the gate oxide thickness, substrate doping concentration and LDD structures. Due to its physical nature and its built-in geometry dependence, the prediction of device behavior of advanced devices based on the parameters of the existing process is possible. As a further improvement, one set of model parameters covers the whole range of channel lengths and channel widths of a certain process that can be used in circuit designs. Due to the physical meaning of many model parameters, the BSIM3 model is the ideal basis for the statistical analysis of process fluctuations.

BSIM3 can model the following physical effects of modern submicron MOS transistors:

- Threshold Voltage
  - Vertical and lateral non-uniform doping
  - Short channel effects
  - Narrow channel effects
- Mobility
  - Mobility reduction due to vertical fields
- Carrier Velocity Saturation
- Drain Current
  - Bulk charge effect
  - Subthreshold conduction
**BSIM 3v3 Characterization**

- Source/drain parasitic resistance
- Bulk Current
- Output Resistance
  - Drain induced barrier lowering (DIBL)
  - Channel length modulation (CLM)
  - Substrate current induced body effect (SCBE)
- Short channel capacitance model
- Temperature dependence of the device behavior

For a detailed description of these features, refer to the BSIM3 manual from Berkeley University. You can order this manual from Berkeley or you can get it over the Internet. See “References” on page 332 for details.

The BSIM3v3 Modeling Package provides a complete extraction strategy for the model parameters of the BSIM3v3.2.4 model. The extraction routines are based on the BSIM3v3.2.4 device equations to ensure that the extracted model parameters represent as good as possible the original physical meaning. Therefore, no or only a minimum of optimization is needed to get a good fit between measured and simulated device behavior.

The routines of this release refer to version 3.2.4 of the BSIM3 model that was released by University of California at Berkeley in December 2001.

**Versions of the BSIM 3 Model**

University of California at Berkeley released four versions of its BSIM3 model. The first three versions have differences in some model parameters, and the model parameter sets are not compatible.

The following example of the parameter UC, which is a part of the mobility reduction, demonstrates the problem:

In BSIM3v2, the effective mobility $\mu_{\text{eff}}$ was calculated according to the following formula:
In BSIMv3v2.2, the formula changed to:

$$\mu_{eff} = \frac{\mu_o}{1 + U_a((V_{gs} + V_{th})/T_{ox}) + U_b((V_{gs} + V_{th})/T_{ox})^2 + U_c V_{bs}}$$

It can easily be recognized, that UC has quite different values in both equations.

That means, if BSIMv3v2 is implemented in the simulator and the parameter is extracted for BSIMv3v3.2.2, the simulation will give catastrophic results (in the case of UC).

Therefore, you must be sure that you use the same version of BSIM3 in both your simulator and your extraction tool.

The latest release, BSIMv3v3.2.4 is a minor change to BSIMv3v3.2.2 with only a few bug fixes. The model equations used are the same in those versions.
4 BSIM 3v3 Characterization

The Unified I-V Model of BSIM 3v3

For a complete summary of all equations of the BSIM3v3.2.4 model, please refer to the original documentation from University of California at Berkeley (see “References” on page 332 to order this paper). The main equations of the BSIM3v3.2.4 model are shown together with a graphical representation for a better understanding of the model.

Please use the models BSIM3_DC_Tutorial.mdl, BSIM3_CV_Tutorial.mdl, BSIM3_AC_Noise_Tutorial.mdl, or BSIM3_Temp_Tutorial.mdl provided with the BSIM3 Modeling Package to visualize most of the model parameters influences onto the device diagrams. Load the file into the IC-CAP GUI to see how certain parameters affect the behavior of a deep submicron MOS transistor.

Threshold Voltage

The threshold voltage is one of the most important parameters of deep submicron MOS transistors and is affected by many different effects when the devices are scaled down into the region of 0.1 microns. The complete equation of the threshold voltage in BSIM3v3.2.4 is given below.

\[ V_{th} = V_{ideal} + \Delta V_{th(1)} + \Delta V_{th(2)} - \Delta V_{th(3)} - \Delta V_{th(4)} + \Delta V_{th(5)} - \Delta V_{th(6)} \]  

(1)

The different parts of this complex equation are expressed by the following sub-equations in more detail:
Ideal Threshold Voltage

The basic equation of the threshold voltage is:

\[ V_{th} = V_{th0} - K_1 \sqrt{\Phi_s} \]

\[ + K_1 \frac{T_{ox}}{t_{oxm}} \left( \frac{\Phi_s - V_{bseff}}{V_{bseff}} \right) \]

\[ + K_1 \frac{T_{ox}}{t_{oxm}} \left( \frac{1 + N_{ch}}{N_{eff}} - 1 \right) \Phi_s \]

\[ - D_{VT0} e^{\left( -\frac{D_{VT1} L_{eff}}{2t_f} \right) + 2e \left( -\frac{D_{VT1} L_{eff}}{l_t} \right) \left( V_{bi} - \Phi_s \right)} \]

\[ - D_{VT0w} e^{\left( -\frac{D_{VT1w} W_{eff}}{2l_tw} \right) + 2e \left( -\frac{D_{VT1w} W_{eff}}{l_tw} \right) \left( V_{bi} - \Phi_s \right)} \]

\[ + (K_3 + K_3b V_{bseff}) \left( \frac{T_{ox}}{W_{eff} + W_0} \right) \Phi_s \]

\[ - e^{\left( -\frac{D_{sub} L_{eff}}{2t_0} \right) + 2e \left( -\frac{D_{sub} L_{eff}}{t_{l0}} \right) \left( E_{ta0} + E_{tab} V_{bseff} \right) V_{ds} \]

\[
\begin{align*}
V_{th} &= V_{th0} - K_1 \sqrt{\Phi_s} \\
&+ K_1 \frac{T_{ox}}{t_{oxm}} \left( \Phi_s - V_{bseff} - K_2 \frac{T_{ox}}{t_{oxm}} V_{bseff} \right) \\
&+ K_1 \frac{T_{ox}}{t_{oxm}} \left( \frac{1 + N_{ch}}{N_{eff}} - 1 \right) \Phi_s \\
&- D_{VT0} e^{\left( -\frac{D_{VT1} L_{eff}}{2t_f} \right) + 2e \left( -\frac{D_{VT1} L_{eff}}{l_t} \right) \left( V_{bi} - \Phi_s \right)} \\
&- D_{VT0w} e^{\left( -\frac{D_{VT1w} W_{eff}}{2l_tw} \right) + 2e \left( -\frac{D_{VT1w} W_{eff}}{l_tw} \right) \left( V_{bi} - \Phi_s \right)} \\
&+ (K_3 + K_3b V_{bseff}) \left( \frac{T_{ox}}{W_{eff} + W_0} \right) \Phi_s \\
&- e^{\left( -\frac{D_{sub} L_{eff}}{2t_0} \right) + 2e \left( -\frac{D_{sub} L_{eff}}{t_{l0}} \right) \left( E_{ta0} + E_{tab} V_{bseff} \right) V_{ds} \]
\end{align*}
\]

\[
\begin{align*}
V_{th} &= V_{th0} - K_1 \sqrt{\Phi_s} \\
&+ K_1 \frac{T_{ox}}{t_{oxm}} \left( \Phi_s - V_{bseff} - K_2 \frac{T_{ox}}{t_{oxm}} V_{bseff} \right) \\
&+ K_1 \frac{T_{ox}}{t_{oxm}} \left( \frac{1 + N_{ch}}{N_{eff}} - 1 \right) \Phi_s \\
&- D_{VT0} e^{\left( -\frac{D_{VT1} L_{eff}}{2t_f} \right) + 2e \left( -\frac{D_{VT1} L_{eff}}{l_t} \right) \left( V_{bi} - \Phi_s \right)} \\
&- D_{VT0w} e^{\left( -\frac{D_{VT1w} W_{eff}}{2l_tw} \right) + 2e \left( -\frac{D_{VT1w} W_{eff}}{l_tw} \right) \left( V_{bi} - \Phi_s \right)} \\
&+ (K_3 + K_3b V_{bseff}) \left( \frac{T_{ox}}{W_{eff} + W_0} \right) \Phi_s \\
&- e^{\left( -\frac{D_{sub} L_{eff}}{2t_0} \right) + 2e \left( -\frac{D_{sub} L_{eff}}{t_{l0}} \right) \left( E_{ta0} + E_{tab} V_{bseff} \right) V_{ds} \]
\end{align*}
\]

\[
\begin{align*}
V_{th} &= V_{th0} - K_1 \sqrt{\Phi_s} \\
&+ K_1 \frac{T_{ox}}{t_{oxm}} \left( \Phi_s - V_{bseff} - K_2 \frac{T_{ox}}{t_{oxm}} V_{bseff} \right) \\
&+ K_1 \frac{T_{ox}}{t_{oxm}} \left( \frac{1 + N_{ch}}{N_{eff}} - 1 \right) \Phi_s \\
&- D_{VT0} e^{\left( -\frac{D_{VT1} L_{eff}}{2t_f} \right) + 2e \left( -\frac{D_{VT1} L_{eff}}{l_t} \right) \left( V_{bi} - \Phi_s \right)} \\
&- D_{VT0w} e^{\left( -\frac{D_{VT1w} W_{eff}}{2l_tw} \right) + 2e \left( -\frac{D_{VT1w} W_{eff}}{l_tw} \right) \left( V_{bi} - \Phi_s \right)} \\
&+ (K_3 + K_3b V_{bseff}) \left( \frac{T_{ox}}{W_{eff} + W_0} \right) \Phi_s \\
&- e^{\left( -\frac{D_{sub} L_{eff}}{2t_0} \right) + 2e \left( -\frac{D_{sub} L_{eff}}{t_{l0}} \right) \left( E_{ta0} + E_{tab} V_{bseff} \right) V_{ds} \]
\end{align*}
\]

Ideal Threshold Voltage

The basic equation of the threshold voltage is:

\[ V_{T_{ideal}} = V_{th0} = V_{FB} + \Phi_s + K_1 \sqrt{\Phi_s} \]

\[ \Phi_s = 2V_{tm0} \ln \left( \frac{N_{ch}}{n_{i0}} \right) \text{ at } T = T_{nom} \]

\[ V_{tm0} = \frac{k_B T_{nom}}{q} \]

where:
This equation had been implemented into the first MOS simulation models assuming long and wide channels and uniform substrate doping. The following sections describe the effects that overlay this basic equation.

**Non-Uniform Vertical Channel Doping**

The substrate doping concentration N is not constant in the vertical direction of the channel, as shown in Figure 72.

![Vertical Doping Profile in the Channel](image)

**Figure 72**  Vertical Doping Profile in the Channel

It is usually higher near the silicon to silicon dioxide interface than deeper in the substrate. This higher doping concentration is used to adjust the threshold voltage of the device. The distribution of impurity atoms inside the substrate is approximately a half Gaussian distribution, which can be approximated by a step function with NCH for the peak concentration in the channel near the Si-SiO$_2$ interface and Nsub in the deep bulk. XT is the depth where the approximation of the implant profile switches from NCH to NSUB. The non-uniform vertical channel doping affects the threshold voltage when a bulk source voltage is applied to the device and is represented here as the part $\Delta V_{th(1)}$ of the overall threshold voltage.
\[
\Delta V_{th(1)} = K_1 \frac{T_{oxm}}{T_{ox}} \Phi_s - V_{bseff} - K_2 \frac{T_{oxm}}{T_{ox}} V_{bseff} \\
K_1 = \gamma_2 - 2K_2 \sqrt{\Phi_s - V_{bm}} \\
K_2 = \frac{(\gamma_1 - \gamma_2)(\sqrt{\Phi_s - V_{bx} - \Phi_s} - \Phi_s)}{2 \sqrt{\Phi_s} (\sqrt{\Phi_s - V_{bx} - \Phi_s} + V_{bx})} \\
\gamma_1 = \frac{\sqrt{2q\varepsilon_{si}N_{ch}}}{C_{ox}} \\
\gamma_2 = \frac{\sqrt{2q\varepsilon_{si}N_{sub}}}{C_{ox}}
\]

where:

- \( V_{bx} \) = substrate bias voltage when the depletion width equals
  \[ X_t = \Phi_s - \frac{qN_{ch}V_t^2}{2\varepsilon_{si}} \]
- \( V_{bm} \) = maximum substrate bias voltage
- \( T_{oxm} \) = gate oxide thickness at which parameters are extracted
- \( T_{ox} \) = default value of \( T_{oxm} \)
- \( V_{bseff} \) = \[ V_{bc} + 0.5 \left[ V_{bs} - V_{bc} - \delta_1 + \frac{V_{bs} - V_{bc} - \delta_1}{\Phi_s - V_{bc} - \delta_1} \right] \]
- \( \delta_1 \) = 0.001V
- \( V_{bc} \) = \[ 0.9 \left( \Phi_s - \frac{K_1^2}{4K_2^2} \right) \]
In BSIM3, either the model parameters K1 and K2 or NCH, NSUB, VBM or XT can be used to model this effect. Figure 73 shows the threshold voltage \( V_{\text{th}} \) as a function of the applied bulk voltage for a transistor with a large channel length and a wide channel width (LARGE).

![Diagram](image)

**Figure 73** Threshold Voltage \( V_{\text{th}} \) as a Function of \( V_{\text{bs}} \)

**Non-Uniform Lateral Channel Doping**

The doping concentration \( N_{\text{ds}} \) near the drain and the source is higher than the concentration \( N_a \) in the middle of the channel. This is referred to as lateral non-uniform doping concentration and is shown in Figure 74.
As the channel length becomes shorter, the lateral non-uniform doping will cause the threshold voltage to increase strongly because the average doping concentration in the channel becomes higher. This part of the threshold voltage is modeled with the parameter \( N_{lx} \) and is represented by \( \Delta V_{th(2)} \) as a part of the overall threshold voltage.

\[
\Delta V_{th(2)} = K_1 \frac{T_{ox}}{T_{oxm}} \left( \sqrt{1 + \frac{N_{lx}}{L_{eff}}} - 1 \right) \sqrt{\Phi_s}
\]  

\( (11) \)

where:

\( N_{lx} = 2L_x(N_{ds} - N_a)/N_a \)

**Figure 75** shows the influence of the non-uniform lateral doping on the threshold voltage as a function of gate length.
You can distinguish between the theoretical trace following Equation 11 and the real world ones with the short channel effect described in the next section.

**Short Channel Effect**

The threshold voltage of a long channel device is independent of the channel length and the drain voltage as it is shown in the equation of the ideal threshold voltage. The decreasing of device dimensions causes the so-called short-channel effects: threshold voltage roll-off and degradation of the subthreshold slope, that in turn increases the off-current level and power dissipation. The threshold voltage then depends on geometrical parameters like the effective channel length and the shape of the source-bulk and drain-bulk junctions. These device dimensions have a strong influence on the surface potential along the channel. A shallow junction with a weak lateral spread is desirable for the control of short-channel effects while the source and drain resistance must be kept as low as possible. However, a trade-off between the search for very shallow junctions and
the degradation of the maximum achievable current through the parasitic resistance of low doped drain regions must be found.

Those effects can be shown in device simulators, where drift, diffusion, and additionally the hot electron behavior can be simulated. The following equations are responsible for the modeling of the short channel effect part $\Delta V_{th(3)}$ in the BSIM3 model:

$$
\Delta V_{th(3)} = D_{VT0} \left[ e^{-\frac{\Delta V_{Th}^{DVT0}}{2l_t}} + 2e^{-\frac{\Delta V_{Th}^{DVT0}}{l_t}} \right](V_{bi} - \Phi_s) \tag{12}
$$

$$
l_r = \sqrt{\frac{\varepsilon_{si} T_{ox} X_{dep}}{\varepsilon_{sio}^2}} (1 + D_{VT2}V_{bseff}) \tag{13}
$$

$$
X_{dep} = \sqrt{\frac{2e_{si}(\Phi_s - V_{bseff})^2}{qN_{ch}}} \tag{14}
$$

where:

$V_{bi}$ built-in voltage of the PN junction between the source/drain and the substrate

$$
V_{bi} = \frac{K_B T}{q} \ln \left( \frac{N_{ch} N_d}{n_i^2} \right)
$$

$N_d$ source/drain doping concentration (or in the LDD regions) if they exist

$DVT0, DVT1, DVT2$ are parameters used to make the model fit different technologies
For short channel lengths together with small channel widths, the following additional expression $\Delta V_{th(4)}$ is needed to formulate the threshold voltage:

$$
\Delta V_{th(4)} = D_{VT0u} \left[ e \left(-D_{VT1w} \frac{W_{eff}^2}{2l_w} \right) + 2e \left(-D_{VT1w} \frac{W_{eff}^2}{l_w} \right) \right] (V_b - \Phi_s) \tag{15}
$$

where:

$$
l_w = \sqrt{\frac{\varepsilon_{SIO} X_{dep}}{\varepsilon_{SIO2}} \left(1 + D_{VT2} W_b^{2eff} \right)}
$$

**Narrow Channel Effect**

All the effects on the threshold voltage are based on the non-uniformity along the channel length. Regarding the channel width, the depletion region is always larger due to the existence of fringing fields at the side of the channel. This effect becomes very substantial as the channel width decreases.
decreases and the depletion region underneath the fringing field becomes comparable to the depletion layer formed from the vertical field. This additional depletion region results in an increase of the threshold voltage with smaller channel widths, which is expressed by $\Delta V_{th(5)}$.

$$\Delta V_{th(5)} = (K_3 + K_3 b V_{bseff})^{\frac{T_{ox}}{(W_{eff} + W_0)}} \Phi_s$$  \hspace{0.5cm} (16)

**Threshold Voltage Reduction Through DIBL**

The effect of the drain induced barrier lowering (DIBL) will be explained later. BSIM3 uses the following equation to model the DIBL effect in the threshold voltage:

*Figure 77  Influence of Narrow Channel Effects on the Threshold Voltage*
Carrier Mobility Reduction

BSIM 3v3 provides 3 different equations for the modeling of the mobility reduction. They can be selected by the flag MOBMOD.

**MOBMOD=1:**

\[
\mu_{eff} = \frac{\mu_0}{1 + \left( U_a + U_c V_{bseff} \right) \left( V_{gsteff} + \frac{2 V_{th}}{T_{ox}} \right) + U_b \left( V_{gsteff} + \frac{2 V_{th}}{T_{ox}} \right)^2}
\]

**MOBMOD=2:**

\[
\mu_{eff} = \frac{\mu_0}{1 + \left( U_a + U_c V_{bseff} \right) \left( V_{gsteff}^{T_{ox}} \right) + U_b \left( V_{gsteff}^{T_{ox}} \right)^2}
\]

**MOBMOD=3:**

\[
\mu_{eff} = \frac{\mu_0}{1 + \left[ U_a \left( V_{gsteff}^{T_{ox}} \right) + U_b \left( V_{gsteff}^{T_{ox}} \right)^2 \right] \left( 1 + U_c V_{bseff} \right)}
\]

The influence of the mobility reduction parameters is demonstrated in Figure 78 where the simulated drain current with and without mobility reduction is shown.
Figure 78  Influence of Mobility Reduction

Figure 79 shows the effective mobility as a function of gate voltage and bulk-source voltage.
Effective Channel Length and Width

Effective Channel Length

The effective channel length is defined in BSIM3 as follows:

\[ L_{\text{eff}} = L_{\text{Designed}} - 2dL \]  

(22)

The channel length reduction on one side of the channel consists of several empirical terms as shown below:

\[ dL = L_{\text{int}} + \frac{L_I}{L_{\text{ln}}} + \frac{L_W}{W_{\text{wn}}} + \frac{L_{\text{wl}}}{W_{\text{ln}}W_{\text{wn}}} \]  

(23)

The use of the model parameters LL, LLN, LWN, LW and LWL is very critical because they are only used for fitting purposes. On the other hand, they may be needed to achieve a good fit over a large area of channel lengths especially for processes with a minimum designed gate length of less than 0.25\(\mu\)m. Figure 80 shows the influence of the geometrical

Figure 80  Influence of Channel Length Reduction on the Drain Current

The effective channel length is defined in BSIM3 as follows:

\[ L_{\text{eff}} = L_{\text{Designed}} - 2dL \]  

(22)

The channel length reduction on one side of the channel consists of several empirical terms as shown below:

\[ dL = L_{\text{int}} + \frac{L_I}{L_{\text{ln}}} + \frac{L_W}{W_{\text{wn}}} + \frac{L_{\text{wl}}}{W_{\text{ln}}W_{\text{wn}}} \]  

(23)

The use of the model parameters LL, LLN, LWN, LW and LWL is very critical because they are only used for fitting purposes. On the other hand, they may be needed to achieve a good fit over a large area of channel lengths especially for processes with a minimum designed gate length of less than 0.25\(\mu\)m. Figure 80 shows the influence of the geometrical
channel length reduction LINT on the drain current of a short channel transistor while Figure 81 represents the channel length reduction according to Equation 23.

![Figure 81: Channel Length Reduction dL as a Function of Channel Length L](image)

**Effective Channel Width**

The effective channel width is defined in BSIM3 as follows:

\[ W_{eff} = W_{Designed} - 2dW \]  

Equation 24

The channel width reduction on one side of the channel consists of several empirical terms as shown below:

\[ dW = \frac{W_{int}}{L} + \frac{W_l}{W_{Ln}} + \frac{W_w}{W_{wn}} + \frac{W_{wl}}{W_{ln}W_{wn}} \]  

Equation 25

The use of the model parameters WL, WLN, WWN, WW, and WWL is very critical because they are only used for fitting purposes. On the other hand, they may be needed to achieve a good fit over a large area of channel widths especially for
processes with a minimum designed gate width of less than 0.25µm. Figure 82 shows the influence of the geometrical channel width reduction $W_{INT}$ on the drain current of a narrow channel transistor while Figure 83 represents the channel width reduction according to Equation 25.
Drain Current

Single Equation for Drain Current

In contrast to former implementations of the BSIM3 model, the drain current is represented through a single equation in all three areas of operation (subthreshold region, linear region, and saturation region). Due to this single formula, all first order derivatives of the drain current are continuous, which is an important prerequisite for analog simulations.

In the case that no parasitic drain/source resistance is given, the equation for the drain current is given below:

\[
I_{ds0} = \mu_{eff} C_{ox} L \left( \frac{V_{gsteff} \left( 1 - A_{bulk2} \frac{V_{dseff}}{V_{gsteff} + 2V_{tm}} \right) V_{dseff}}{1 + \frac{V_{dseff}}{E_{sat} L}} \right)
\]

(26)
This equation is valid for all three regions of operation of the MOS transistor because the voltages at drain, gate and bulk are replaced by effective drain voltage \( V_{dseff} \), the effective gate voltage \( V_{gsteff} \) and the effective bulk voltage \( V_{bseff} \), which are all defined by the continuous equations below:

Equation 27 shows the effective \( (V_{gs} - V_{th}) \) voltage, where the factor \( n \) is defined in Equation 31.

\[
V_{gsteff} = \frac{2nV_t \ln\left(1 + \exp\left(\frac{V_{gs} - V_{th}}{2nV_t}\right)\right)}{1 + 2nC \frac{2\Phi_s}{q\varepsilon_{si}N_{ch}} \exp\left(\frac{V_{gs} - V_{th} - 2V_{off}}{2nV_t}\right)}
\]

\( \text{Figure 84} \quad \text{Effective Voltage } V_{gs} - V_{th} \)

\( \text{Figure 84} \) shows \( V_{gsteff} \) in logarithmic scale. \( V_{gsteff} \) fits a linear function for values of \( V_{gs} \) greater than \( V_{th} \) while the subthreshold area is covered by the fit of an exponential
function. Through this equation the first derivative is continuous between both operational regions (subthreshold and linear) of the MOS transistor.

Equation 28 shows the effective drain source voltage, $V_{d_{\text{seff}}}$:

$$V_{d_{\text{seff}}} = V_{dsat} - \frac{1}{2} \left( V_{dsat} - V_{ds} - \delta \right) + \frac{\sqrt{(V_{dsat} - V_{ds} - \delta)^2 + 4\delta V_{dsat}}}{2}$$

Figure 85 shows $V_{d_{\text{seff}}}$ in both the linear and the saturation region of operation of the MOS transistor. $V_{d_{\text{seff}}}$ models the transition between linear and saturation region without discontinuity in the first derivative of the drain current.

**Figure 85**  Effective Voltage $V_{d_{\text{seff}}}$

**Drain Saturation Voltage $V_{dsat}$**

The equation for the drain saturation voltage is divided into two cases, the intrinsic case with $R_{ds} = 0$ and the extrinsic case with $R_{ds} > 0$: 
The influence of the maximum carrier velocity $V_{SAT}$ on the drain current $I_{ds}$ and the conductance $g_{ds}$ is demonstrated in Figure 86.

\[
V_{dsat} = \begin{cases} 
\frac{E_{sat} L_{eff} (V_{gsteff} + 2V_{tm})}{A_{bulk} E_{sat} L_{eff} + (V_{gsteff} + 2V_{tm})} R_{ds} = 0 \\
\frac{-b-\sqrt{b^2-4ac}}{2a}, R_{ds} \neq 0
\end{cases}
\] (29)

where

\[
a = A_{bulk}^2 R_{ds} C_{ox} W_{sat} + \left( \frac{1}{\lambda} - 1 \right) A_{bulk}
\]

\[
b = -(V_{gsteff} + 2V_{tm}) \left( \frac{2}{\lambda} - 1 \right)
\]

\[
+ A_{bulk} E_{sat} L_{eff} + 3A_{bulk} R_{ds} C_{ox} W_{sat} (V_{gsteff} + 2V_{tm})
\]

\[
c = E_{sat} L_{eff} (V_{gsteff} + 2V_{tm}) + 2R_{ds} C_{ox} W_{sat} (V_{gsteff} + 2V_{tm})^2
\]

The influence of the maximum carrier velocity $V_{SAT}$ on the drain current $I_{ds}$ and the conductance $g_{ds}$ is demonstrated in Figure 86.
Bulk Charge Effect

When the drain voltage is high, combined with a long channel length, the depletion depth of the channel is not uniform along the channel length. This will cause the threshold voltage to vary along the channel length and is called bulk charge effect. Figure 87 shows the depletion depth as a function of channel length. For long channels, this effect causes a reduction of the drain current.

![Depletion Width along the Channel Length](image)

**Figure 87** Depletion Width along the Channel Length

The bulk charge effect $A_{bulk}$ is modeled in BSIM3 with the parameters $A_0$, $AGS$, $B_0$, $B_1$, and $KETA$ as shown in Equation 30.

$A_{bulk} = \left(1 + \frac{K_{eta} V_{bs}}{1 + K_{eta} V_{bs}} \right) \left[1 + \left\{ \frac{B_0}{W_{eff} + B_1} + \frac{A_0 L_{eff}}{L_{eff} + 2 \left[ \frac{K_{eta} X_{dep}}{4} \right]} \right\} \right] \left[1 - AGS V_{gs eff} \left( \frac{L_{eff}}{L_{eff} + 2 \left[ \frac{K_{eta} X_{dep}}{4} \right]} \right)^2 \right]^2$

(30)

The influence on the drain current is shown in Figure 88.
Drain Current in the Subthreshold Region

The drain current in the subthreshold region is modeled in BSIM3v3 by the effective voltage $V_{gsteff}$. The model parameters $VOFF$ and $NFACTOR$ describe the subthreshold current for a large transistor, while the parameters $CDSC$, $CDSCD$, and $CDSCB$ are responsible for modeling the subthreshold behavior as a function of channel length. All these parameters contribute to the factor $n$ in the formula for $V_{gsteff}$ (see Equation 27).

\[ n = 1 + N_{factor} \frac{C_d}{C_{ox}} + \left( \frac{C_{dsc} + C_{dscd}}{C_{ox}} \frac{V_{ds}}{C_{ox}} \frac{V_{ds} + C_{dscb} V_{bseff}}{C_{ox}} \right) \theta_{th} + \frac{C_{it}}{C_{ox}} \]

\[ \theta_{th} = e^{- \frac{-D_{VT1} L_{eff}}{2l_t}} + 2e^{- \frac{-D_{VT1} L_{eff}}{l_t}} \]

The influence of $VOFF$ and $NFACTOR$ on the drain current in the subthreshold region is shown in Figure 89.
Parasitic Resistance

As MOS devices are scaled into the deep submicron region, both the conductance $g_m$ and the current of the device increase. Therefore the voltage drop across the source and drain series resistance becomes a non-negligible fraction of the applied drain source voltage. The resistance components associated with a MOSFET structure are shown in Figure 90. These include the contact resistance ($R_{contact}$) between metallization and source/drain area, the diffusion sheet resistance ($R_{sheet}$) of the drain/source area, the spreading resistance ($R_{spread}$) that arises from the current spreading from the channel, and the accumulation layer resistance ($R_{accum}$).
These components are put together to form the following equation in the BSIM3v3:

\[
R_{ds} = \frac{R_{dsW}[1 + P_{rwg} V_{gsteff} + P_{rwb}(\Phi_s - V_{bseff} - \Phi_s)]}{W_{eff}} \left(10^6 W_{eff}\right)
\]  

The diagram in Figure 91 visualizes the equation of \(R_{ds}\). It should be noted that BSIM3 assumes that the drain resistance is equal to the source resistance. This symmetrical approach may cause difficulties if a device with a nonsymmetrical drain source resistance, for example a DMOS power transistor, should be modeled. In this case, a scalable SPICE macro model should add the required behavior to BSIM3.
With this enhancement, Equation 26 for the drain current can be rewritten:

$$I_{ds} = \frac{I_{ds0}}{1 + R_{ds} I_{ds0} / V_{dseff}}$$

(34)

The influence of the parasitic resistance on the drain current is demonstrated for a SHORT and a SMALL transistor in Figure 92.
Output Resistance

a) Early Voltage

The drain current in the saturation region of submicron MOSFETs is influenced by the effects of channel length modulation (CLM), drain induced barrier lowering (DIBL), and substrate current induced body effect (SCBE). These effects can be seen clearly looking at the output resistance $R_{out}$ of the device, which is defined as:

$$R_{out} = \frac{\delta V_{ds}}{\delta I_{ds}}$$  (35)
In Figure 93, the measured drain current and the output resistance of an n-type MOS transistor with a channel length of 0.5 µm are shown.

The left most region in Figure 93 is the linear region, in which carrier velocity is not saturated. The output resistance is small because the drain current has a strong dependence on the drain voltage. The other three regions belong to the saturation region. The three physical effects CLM, DIBL, and SCBE can be seen in the saturation region and are discussed in the following sections.

With the output resistance, the equation for the drain current (Equation 34) is enhanced by two additional terms and can be rewritten as:

\[
I_{ds} = \frac{I_{ds0}}{1 + R_{ds0}^{-1/V_{ds}^{-1/V_{dseff}}} \left( 1 + \frac{V_{ds} - V_{dseff}}{V_A} \right) \left( 1 + \frac{V_{ds} - V_{dseff}}{V_{ASCBE}} \right)}
\]
The behavior of the output resistance is modeled in BSIM3 in the same way as the Early voltage of a bipolar transistor is modeled in the Gummel-Poon model. The Early voltage is divided in two parts, $V_A$ due to DIBL and CLM and $V_{ASCBE}$ due to SCBE. $V_A$ is given by:

$$V_A = V_{Asat} + \left(1 + \frac{P_{vag} V_{gsteff}}{E_{sat} L_{eff}} \right) \left( \frac{1}{V_{ACLM}} + \frac{1}{V_{ADIBLC}} \right)^{-1}$$  \hspace{1cm} (37)

where $V_{Asat}$ is the Early voltage at $V_{dsat}$:

$$V_{Asat} = \frac{E_{sat} L_{eff} + V_{dsat} + 2 R_{ds sat} C_{ox} W_{eff} V_{gsteff} \left(1 - \frac{A_{bulk} V_{dsat}}{2(V_{gsteff} + 2 V_{tm})} \right)}{2(\lambda - 1) + A_{bulk} R_{ds sat} C_{ox} W_{eff}}$$  \hspace{1cm} (38)

b) Channel length modulation (CLM)

When the drain bias approaches the drain saturation voltage, a region of high electric field forms near the drain and the electron velocity in this region saturates. In saturation, the length $\Delta L$ of the high-field region increases by an expansion in the direction of the source with increasing drain-source voltage $V_{ds}$ and the MOSFET behaves as if the effective channel length has been reduced by $\Delta L$. This phenomena is termed channel length modulation (CLM). CLM is not a special short-channel phenomenon, since the effect is present if a MOSFET is short or long. However, its relative importance increases and the effect on the saturated output conductance becomes distinctly more pronounced at shorter gate lengths.

The part of the Early voltage due to CLM is given by:

$$V_{ACLM} = \frac{1}{P_{CLM}} \frac{A_{bulk} E_{sat} L + V_{gsteff} (V_{ds} - V_{dseff})}{A_{bulk} E_{sat} L}$$  \hspace{1cm} (39)
c) Drain Induced Barrier Lowering (DIBL)

The depletion charges near source and drain are under the shared control of these contacts and the gate. In a short-channel device, this shared charge will constitute a relatively large fraction of the total gate depletion charge and can be shown to give rise to an increasingly large shift in the threshold voltage $V_{th}$ with decreasing channel length $L$. Also, the shared depletion charge near drain expands with increasing drain-source bias, resulting in an additional $V_{ds}$ dependent shift in $V_{th}$. This effect is related to a drain voltage induced lowering of the injection barrier between the source and the channel and is termed the drain induced barrier lowering (DIBL). Figure 95 shows the band diagram at the semiconductor-insulator interface of an 0.1 µm n-channel MOSFET simulated by a device simulator. The symmetrical profiles correspond to $V_{ds} = 0$ and the asymmetrical profiles to $V_{ds} > 0$. In the figure, the simulated
potential barrier near the source is observed to decrease with increasing drain bias, which indicates the origin of the DIBL effect.

The DIBL effect is modeled in BSIM3v3 with the following equations:

\[
V_{ADIBLC} = \frac{(V_{gsteff} + 2V_{tm})}{\Theta_{rout}^{1 + PDIBLC} V_{bsteff}} \left[ 1 - \left( \frac{A_{bulk} V_{dsat}}{A_{bulk} V_{dsat} + V_{gsteff} + 2V_{tm}} \right) \right]
\]

with

\[
\Theta_{rout}(L) = P_{DIBLC1} \left[ \exp \left( \frac{D_{rout} L_{eff}}{2I_{0}} \right) + 2 \exp \left( \frac{D_{rout} L_{eff}}{I_{0}} \right) \right] + P_{DIBLC2}
\]

**Figure 95**  Band Diagram at Si-SiO₂ Interface of a 0.1 µm MOSFET

**Figure 96** shows the influence of the DIBL effect on the output resistance of a short channel transistor.
d) Substrate Current Induced Body Effect (SCBE)

Substrate current is induced through hot electrons at high drain voltages, as described in “Substrate Current” on page 230. It is suggested that the substrate current increases exponentially with the applied drain voltage. The total drain current will change, because it is the sum of the channel current from the source as well as the substrate current. It can be expressed as:

\[ I_{ds} = I_{source} + I_{bulk} \]  \hspace{1cm} (42)

The increase of the total drain current through hot electrons will be described by the part \( V_{ASCBE} \) of the Early voltage which results in a lowering of the output resistance for high drain voltage (Figure 97).

\[ V_{ASCBE} = \left[ \frac{P_{SCBE2}}{L} \exp\left( \frac{P_{SCBE1}^l}{V_{ds} - V_{dsat}} \right) \right]^{-1} \]  \hspace{1cm} (43)

**Figure 96** Influence of Drain Induced Barrier Lowering (DIBL) effect on output resistance
Substrate Current

In a n-channel MOSFET, electrons in the channel experience a very large field near the drain. In this high field, some electrons coming from the source will be energetic enough to cause impact ionization, and additional electrons and holes are generated by avalanche multiplication. The high energy electrons are referred as hot electrons. The generated electrons are attracted to the drain, adding to the channel current, while holes are collected by the substrate contact, resulting in a substrate current, which is shown in Figure 98.
The substrate current is described in BSIM3 by the following equation:

\[
I_{sub} = \alpha_0 + \alpha_1 \frac{L_{eff}}{L_{eff}} (V_{ds} - V_{dseff}) \exp \left( \frac{\beta_0}{V_{ds} - V_{dseff}} \right) I_{ds} \left( 1 + \frac{V_{ds} - V_{dseff}}{V_A} \right)
\]  

(44)
Drain/ Bulk and Source/ Bulk Diodes

Figure 100 shows a pn-junction diode between the bulk and the drain of an n-type MOS Transistor.

![pn-junction diode](image)

The drain/bulk and the source/bulk pn-junctions can be used as diodes in CMOS designs. BSIM3v3 offers a simple DC model for the current $I_{bs}$ or $I_{Bd}$ flowing through these diodes.

$$
I_{bs} = \begin{cases}
I_{sbs} \left( e^{\frac{V_{bs}}{NVTm}} - 1 \right) + G_{MIN} V_{bs} \\
IJTH + \frac{IJTH + I_{sbs}}{NV_{tm}} (V_{bs} - V_{jsm}) + G_{MIN} V_{bs}
\end{cases}
$$

(45)

where $NJ$ is the emission coefficient of the source junction and the saturation current $I_{sbs}$ is calculated as:

$$
I_{sbs} = A_S J_S + P_S
$$

(46)
where $J_S$ is the saturation current density of the source/bulk diode, $A_S$ is the area of the source junction, $J_{SSW}$ is the sidewall saturation current density of the source/bulk diode, and $P_S$ is the perimeter of the source junction. $J_S$ and $J_{SSW}$ are functions of the temperature and can be described as:

\[
J_S = J_{SO} e^{\left( \frac{E_g 0}{V_{tm 0}} - \frac{E_g}{V_{tm}} + X_{TI} \ln\left( \frac{T}{T_{nom}} \right) \right) / N J}
\]

\[
J_{SSW} = J_{S0SW} e^{\left( \frac{E_g 0}{V_{tm 0}} - \frac{E_g}{V_{tm}} + X_{TI} \ln\left( \frac{T}{T_{nom}} \right) \right) / N J}
\]

where:

\[
E_{g 0} = 1.16 - \frac{7.02 \times 10^{-4} T_{nom}^2}{T_{nom} + 1108}
\]

\[
E_g = 1.16 - \frac{7.02 \times 10^{-4} T^2}{T + 1108}
\]

$J_{SO}$ is the saturation current density (default is $10^{-4}$ A/m$^2$)

$J_{S0SW}$ is the sidewall saturation current density (default is 0)

$N V_{tm} = N J \cdot (K_B T / q)$

$V_{jsm} = N V_{tm} \ln \left( (jth / I_{abs} + 1) \right)$

The current $I_{bs}$ through the diode is shown in the following figure:
Consistency Check of DC measurement data for multiple measured devices

You can perform a quick consistency check of the measured data versus gate length, gate width, and temperature. If there are measurement errors, they can be easily identified using this additional check of DC measurement data.

**Drain Saturation Current \( I_{DSAT} \)**

Displaying the absolute values of \( I_{DSAT} \) versus the gate length of all measured devices does not easily show measurement errors because the absolute currents spread all over the diagram, as shown in the left part of Figure 102.

In this diagram, absolute values of \( I_{DSAT} \) versus \( L \) and \( W \) are displayed. \( I_{DSAT} \) is determined at max. \( V_g \), max. \( V_d \), and \( V_b=0 \) for one temperature. Each number represents one transistor and each color a different value of the transistors gate width \( W \). For example, transistors marked 4 have a gate width of 5 microns and 9 different \( L \) values, as shown by the number of 4’s in the following figure.
But if the same values (measured at the same temperature) are displayed in a normalized representation $I_{DSATnorm} = \frac{I_{DSAT}}{L/W}$ (see right part of Figure 102), the values appear in a sorted way. They are shown from the transistors having the highest gate width values on top of the lower gate width transistors. The transistors having the smallest gate width values are shown at the lowest display position in the diagram.

If the temperature measurements of the transistors are normalized as well, the measured data is again sorted. The following diagram shows $I_{DSAT}$ and $I_{DSATnorm}$ for devices with temperature measurements. Each color represents one temperature and each value of the x-axis represents one device. To allow a correlation to the device name, the plot annotation feature has been used to display a corresponding list of device names.
BSIM 3v3 Characterization

Threshold voltage

Similar normalized data representations are available for the threshold voltage $V_{th}$ of measured devices, see Figure 103. $V_{th}$ is determined for each device at $V_b=0$ and low $V_d$. The following diagram shows $V_{th}$ as a function of $L$, $W$ (left part), and temperature (right part) for those devices. $V_{th}$ is determined using the reference current method:

$$V_{th} = V_G(I_{D0})$$

with: $I_{D0} = I_{Dref} \frac{W}{L}$, using $I_{Dref} = 100\,nA$
Figure 103  Left part: $V_{th} = f(L, W)$; Right part: $V_{th} = f(temp, device)$
Capacitance Model

Please use the model `bsim3_tutor_cv.mdl` provided with the BSIM3v3 Modeling Package to visualize the capacitance model parameters. Load the file into IC-CAP and run the different macros to see how certain parameters affect the device behavior of a deep submicron MOS transistor.

The capacitance in a MOS transistor can be divided into three different parts:

- Junction capacitance $C_{\text{junc}}$ between source/drain and the bulk region
- Capacitance of the extrinsic MOS transistor which consists of:
  - The outer fringing capacitance $C_F$ between polysilicon gate and the source/drain
  - The overlap capacitance $C_{GDO}$ between the gate and the heavily doped source/drain regions
  - The overlap capacitance $C_{GDOL}$ between the gate and the lightly doped source/drain regions
- Capacitance of the intrinsic MOS transistor in the region between the metallurgical source and drain junction when the gate is at flat band voltage.

These different parts of the capacitance of a MOS transistors are shown in Figure 104. The following three sections explain each type of capacitance and its implementation in the BSIM3v3 model.
Junction Capacitance

The source/drain-bulk junction capacitance can be divided into three components as shown in Figure 105. The calculation is shown for the drain-bulk junction capacitance. The source-bulk capacitance is calculated in the same way with the same model parameters.

The overall junction capacitance $C_{jdb}$ is given by:

$$C_{jdb} = \begin{cases} C_{AREA} + C_{SW} + C_{SWG} & \text{if } PS > W_{eff} \\ C_{AREA} + C_{SW} & \text{if } PS < W_{eff} \end{cases}$$

(49)

where:

$C_{AREA}$ is the bottom area capacitance

$C_{SW}$ is the sidewall or peripheral capacitance along the three sides of the junction’s field oxide

$C_{SWG}$ is the sidewall or peripheral capacitance along the gate oxide side of the junction
Bottom area capacitance $C_{\text{AREA}}$

$$C_{\text{AREA}} = A \cdot D \cdot C_{\text{jbd}}$$  \hspace{1cm} (50)

where:

- $A \cdot D$ area of bottom side of pn junction, given as SPICE model parameter
- $C_{\text{jbd}}$ capacitance per unit area of the drain-bulk junction

$C_{\text{jbd}}$ is calculated according to the following equation and is shown in Figure 106.

For $V_{bs} < 0$:

$$C_{jbs} = C_j \left(1 - \frac{V_{bs}}{P_b}\right)^{-M_j}$$  \hspace{1cm} (51)

For $V_{bs} \geq 0$:

$$C_{jbs} = C_j \left(1 + M_j \frac{V_{bs}}{P_b}\right)$$
Peripheral sidewall capacitance $C_{SW}$ along the field oxide

$$C_{SW} = (PD - W_{eff})C_{jbdsw}$$  \hspace{1cm} (52)

where:

- $PD$ is the total perimeter of the junction, given as a SPICE model parameter.
- $W_{eff}$ is the effective gate width of the transistor, calculated in SPICE.
- $C_{jbdsw}$ is the capacitance per unit length.

$C_{jbdsw}$ is calculated according to the following equation and is shown in Figure 107:

For $V_{bs} < 0$:

$$C_{jbdsw} = C_{jsw}\left(1 - \frac{V_{bs}}{P_{bsw}}\right)^{-M_{jsw}}$$  \hspace{1cm} (53)

For $V_{bs} \geq 0$:
Peripheral sidewall capacitance $C_{SWG}$ along the gate oxide

$$C_{SWG} = W_{eff} C_{jbdswg}$$

where:

- $W_{eff}$: effective gate width of transistor, calculated in SPICE
- $C_{jbdswg}$: capacitance per unit length

$C_{jbdswg}$ is calculated according to the following equation and is shown in Figure 108.

For $V_{bs} < 0$:

$$C_{jbdsw} = C_{jsw} \left(1 + M_{jsw} \frac{V_{bs}}{P_{bsw}}\right)$$

Figure 107  Sidewall Capacitance $C_{jbdsw}$ as a Function of $V_g$
For $V_{bs} \geq 0$:

$$
C_{jbs} = C_{jswg} \left( 1 - \frac{V_{bs}}{P_{bswg}} \right)^{-M_{jswg}}
$$

Figure 108  Sidewall Capacitance $C_{jbs}$ Along the Gate Oxide as a Function of $V_g$
Extrinsic Capacitance

As mentioned in the introduction to this chapter, the extrinsic capacitance of a MOS transistor consists of the following three components:

- the outer fringing capacitance $C_F$ between polysilicon gate and the source/drain
- the overlap capacitance $C_{GDO}$ between the gate and the heavily doped source/drain regions
- the overlap capacitance $C_{GDOL}$ between the gate and the lightly doped source/drain regions

The contribution of these different components to the overall extrinsic capacitance is demonstrated in Figure 109 and Figure 110.

Figure 109 Different Components of the Extrinsic Capacitance
a) Fringing Capacitance

The fringing capacitance of a MOS transistor consists of a bias independent outer fringing capacitance and a bias dependent inner fringing capacitance. In the present release of the BSIM3v3 model, only the bias independent outer fringing capacitance is implemented. Experimentally, it is virtually impossible to separate this capacitance with the overlap capacitance. Nonetheless if the model parameter $CF$ is not given, the outer fringing capacitance can be calculated with the following equation:

$$CF = \frac{2\varepsilon SiO_2}{\pi} \ln \left(1 + \frac{4 \times 10^7}{T_{ox}}\right)$$

(b) Overlap Capacitance

In BSIM3v3 an accurate model for the overlap capacitance is implemented. In old capacitance models this capacitance is assumed to be bias independent. However, experimental data show that the overlap capacitance changes with gate to
source and gate to drain biases. In a single drain structure or the heavily doped S/D to gate overlap region in a LDD structure, the bias dependence is the result of depleting the surface of the source and drain regions. Since the modulation is expected to be very small, this region can be modeled with a constant capacitance. However in LDD MOSFETs a substantial portion of the LDD region can be depleted, both in the vertical and lateral directions. This can lead to a large reduction of overlap capacitance. This LDD region can be in accumulation or depletion.

In BSIM3v3, a single equation is implemented for both regions by using such smoothing parameters as \( V_{gsov\_overlap} \) and \( V_{gd\_overlap} \) for the source and drain side, respectively. Unlike the case with the intrinsic capacitance, the overlap capacitances are reciprocal. In other words, \( C_{gsov\_overlap} = C_{sgov\_overlap} \) and \( C_{gd\_overlap} = C_{dgo\_overlap} \).

The model equations for the overlap capacitance are shown for the drain overlap capacitance and are identical for the source overlap capacitance:

Overlap charge per gate width:

\[
\frac{Q_{\text{overlap}}}{W_{\text{eff}}} = C_{GDOV} + C_{GDL} \left( V_{gd} - V_{gd\_overlap} \right) \left( \frac{C_{KAPPA}}{2} \right) \left( -1 + \left( \frac{4V_{gd\_overlap}}{C_{KAPPA}} \right) \right)
\]

where:

\[
C_{KAPPA} = \frac{2\varepsilon_s q N_{LDO}}{C_{ox}}
\]

with the smoothing parameter:

\[
V_{gd\_overlap} = \frac{1}{2} \left( (V_{gd} + \delta_2) - \sqrt{(V_{gd} + \delta_2)^2 + 4\delta_2} \right)
\]

\[
\delta_2 = 2/100
\]
for the measurement and simulation conditions given in Figure 109, this results in the overlap capacitance:

\[ C_{gd, overlap} = \frac{\partial Q_{overlap}}{\partial V_{gs}} \]  

(59)

The model parameter CGDO in Equation 57 can be calculated by the following equation:

\[ CGDO = (DLC \cdot C_{Ox}) - CGDL \]  

(60)

where DLC represents the channel length reduction in the BSIM3v3 capacitance model. Please see the next section for more details about DLC:

**Intrinsic Capacitance**

**a) Geometry for Capacitance Model**

The BSIM3v3 model uses different expressions for the effective channel length \( L_{\text{eff}} \) and the effective channel width \( W_{\text{eff}} \) for the I-V and the C-V parts of the model.

The geometry dependence for the intrinsic capacitance part is given as the following:

\[ \Delta W = DWC + \frac{WL}{L_{WN}} + \frac{WW}{W_{WN}} + \frac{WWL}{W_{WN} W_L} \]  

(61)

\[ \Delta L = DLC + \frac{LL}{L_{WN} W} + \frac{LW}{L_{WN} W_N} + \frac{LWL}{L_{WN} L_{WN} W} \]  

(62)

\( L_{\text{active}} \) and \( W_{\text{active}} \) are the effective length and width of the intrinsic device for capacitance calculations. The parameter \( \Delta L \) is equal to the source/drain to gate overlap length plus the difference between drawn and actual poly gate length due to processing (gate printing, etching, and oxidation) on
one side. The $L_{\text{active}}$ parameter extracted from the capacitance method is a close representation of the metallurgical junction length (physical length).

\[ W_{\text{active}} = W_{\text{Drawn}} - 2\Delta W \]  \hspace{1cm} (63)

\[ L_{\text{active}} = L_{\text{Drawn}} - 2\Delta L \]  \hspace{1cm} (64)

While the authors of the BSIM3v3 model suggest to use a parameter LINT for the I-V model, which is different from DLC, other literature sources [3] propose that LINT should have the same value as DLC. This approach is also implemented in the BSIM3v3 Modeling Package to ensure that the extracted values of the channel length reduction are very close to the real device physics. Therefore, the channel length reduction LINT for the I-V model will be set to DLC from the C-V model extracted from capacitance measurements.

b) Intrinsic Capacitance Model

The intrinsic capacitance model that is implemented in the BSIM3 model is based on the principle of conservation of charge. There are a few major considerations in modeling the intrinsic capacitance of a deep submicron MOS transistor:
• The difficulty in capacitance measurement, especially in the deep submicron regime. At very short channel lengths, the MOSFET intrinsic capacitance is very small while the conductance is large.

• Charge can only be measured at high impedance nodes (i.e., the gate and substrate nodes), only 8 of the 16 capacitance components in an intrinsic MOSFET can be directly measured. An alternative solution is to use a 2-D device simulator.

• The access to the internal charges in a simulator.

Therefore, this section presents no details about the intrinsic charge formulations. Please refer to the BSIM3v3 manual [1] for more information. Only the basic principles are described here.

To ensure charge conservation, terminal charges instead of the terminal voltages are used as state variables. The terminal charges $Q_g$, $Q_b$, $Q_s$, and $Q_d$ are the charges associated with the gate, bulk, source, and drain. The gate charge is comprised of mirror charges from 3 components:

• The channel minority (inversion) charge ($Q_{inv}$)
• The channel majority (accumulation) charge ($Q_{acc}$)
• The substrate fixed charge ($Q_{sub}$)

The accumulation charge and the substrate charge are associated with the substrate node while the channel charge comes from the source and drain nodes:

$$
Q_g = -(Q_{sub} + Q_{inv} + Q_{acc})
$$

$$
Q_b = Q_{sub} + Q_{acc}
$$

$$
Q_{inv} = Q_s + Q_d
$$

(65)

The inversion charges are supplied from the source and drain electrodes. The ratio of $Q_d$ and $Q_s$ is the charge partitioning ratio. Existing charge partitioning schemes are 0/100, 50/50 and 40/60 (given by the model parameter XPART = 0, 0.5, and 1) which are the ratios of $Q_d$ to $Q_s$ in the saturation region.
From these four terminal charges, 9 transcapacitances \( C_{(\text{terminal}, \text{voltage})} \) are calculated inside the BSIM3 model as partial derivatives with respect to the voltages \( V_{gb}, V_{db}, \) and \( V_{sb} \). The abbreviation can be interpreted as:

\[ C_{ggb} \quad \text{partial derivative of } Q_g \text{ with respect to } V_{gb} \]

Partial derivatives of \( Q_g \):

\[
\begin{align*}
C_{ggb} &= \frac{\partial Q_g}{\partial V_{gb}} \\
C_{gdb} &= \frac{\partial Q_g}{\partial V_{db}} \\
C_{gsb} &= \frac{\partial Q_g}{\partial V_{sb}}
\end{align*}
\]

(66)

Partial derivatives of \( Q_d \):

\[
\begin{align*}
C_{dgb} &= \frac{\partial Q_d}{\partial V_{gb}} \\
C_{ddb} &= \frac{\partial Q_d}{\partial V_{db}} \\
C_{dsb} &= \frac{\partial Q_d}{\partial V_{sb}}
\end{align*}
\]

(67)

Partial derivatives of \( Q_b \):

\[
\begin{align*}
C_{bgb} &= \frac{\partial Q_b}{\partial V_{gb}} \\
C_{bdb} &= \frac{\partial Q_b}{\partial V_{db}} \\
C_{bsb} &= \frac{\partial Q_b}{\partial V_{sb}}
\end{align*}
\]

(68)
The 9 transcapacitances previously introduced are shown in the following three plots for a simulation setup as shown in the following figure:

**Figure 112** Simulation and Measurement Setup for Overlap Capacitances

**Figure 113** Terminal charges $Q_g, Q_b$ and $Q_d$
The Overall Capacitance in BSIM 3

In previous sections, the three components of the BSIM3 capacitance model were introduced. Now when an AC simulation is performed the capacitance, which can be measured at the terminals, is composed of different parts of junction capacitances, extrinsic capacitances, and intrinsic capacitances.
The following figure shows, as an example, the capacitance components for the overlap capacitance between gate and bulk/source/drain as simulated according to the following circuit description:

\[ C_{jbs} = \frac{C_j}{1 + M \frac{V_{bs}}{P_b}} \quad (69) \]

where:

- \( C_{ggb} \) intrinsic capacitance
- \( C_{gd,\text{overlap}} \) overlap capacitance between gate and drain
- \( C_{gs,\text{overlap}} \) overlap capacitance between gate and source
- \( C_{gb,\text{overlap}} \) overlap capacitance between gate and bulk
Other capacitances can be calculated in the same way. Please refer to the BSIM3 manual for more details.
High Frequency Behavior

Macro Model for High Frequency Application

Using the BSIM3v3 model for the simulation of high frequency applications requires a major change in the model structure. A new concept of a SPICE simulation model for deep submicron devices based on the standard BSIM3v3.2.4 model was found, which is able to satisfy a correct DC simulation and the representation of the RF behavior of the MOS devices. Figure 116 shows the subcircuit used for RF simulation using the BSIM3 model together with an explanation of the physical structure responsible for each element of the subcircuit.

Figure 116  Equivalent Circuit for the SPICE Macro Model
The model itself is implemented as the macro model shown above—no changes are done in the BSIM3v3.2.4 model code itself. This is the ultimate precondition for its use in a commercial circuit simulator that includes the BSIM3v3.2.4 model and makes it available to circuit design engineers. The BSIM3v3.2.4 model already consists of a non-quasi-static model and an accurate capacitance model, which makes it the ideal base for RF simulations. However, the description of the resistance behavior of a transistor is very poor. In the BSIM3v3.2.4 model itself, no gate resistance is included. Due to the nature of the MOS transistor, such a resistance cannot be seen in the DC operation region. However, looking at the real existing poly silicon gates of modern MOS devices, there is a resistance which cannot be neglected in AC simulations. This resistance, \( R_{\text{gate}} \), has a major influence on the reflection coefficient \( S_{11} \) of an input signal to the MOS transistor as demonstrated in Figure 117.

It should be noted that the parameter \( R_{\text{gate}} \) in this high frequency model is used to fit the input reflection of the MOS transistor. Therefore, it is very likely that \( R_{\text{gate}} \) has a different value as the measured sheet resistance of the poly-Si gate during process characterization on PCMs using for instance a van-der-Pauw test structure.

The second enhancement in the RF BSIM3v3.2.4 macro model is a resistance network for the substrate resistance, which is described by four resistors \( R_{\text{RPD}} \), \( R_{\text{RPS}} \), \( R_{\text{RDB}} \), and \( R_{\text{RBS}} \) [7, 8]. The substrate resistance can be seen in the reverse-reflection coefficient \( S_{22} \) at the output of the transistor. Together with the resistance network, the internal drain-bulk and source-bulk junction diodes of the BSIM3v3.2.4 model are replaced by the external elements \( \text{Djd}_\text{b}\_\text{area} \), \( \text{Djd}_\text{b}\_\text{perim} \), \( \text{Djs}_\text{b}\_\text{area} \), and \( \text{Djs}_\text{b}\_\text{perim} \). The decoupling diodes account for the same voltage dependant values of the bottom and the sidewall capacity as the internal junction capacitances. This replacement is the prerequisite for a correct modeling of the substrate resistance.

With this approach, the model is valid for both the DC and the RF behavior of the transistor.
Single Subcircuit Model for BSIM3v3 RF Transistors

The macro model approach results in a subcircuit for single RF MOS transistors, which the following circuit file shows (according to Figure 116).
Following is part of the SPICE netlist used for single transistors in BSIM3v3 RF modeling.

**Figure 118** Subcircuit for RF modeling of single transistors using the BSIM 3-model
**BSIM3v3 Characterization**

**IC-CAP Nonlinear Device Models Volume 1**

**LINK CIRC Circuit**

```plaintext
{ 
  data 
  
  circuitdeck 
  
  .OPTIONS GMIN=1.0E-14 
* Single subcircuit model for BSIM3v3.2.4 RF n-type devices 
* Simulator: UCB Spice3e2 
* Model: BSIM3 Modeling Package 
* Date: 25.04.2003 
* Origin: ICCAP_ROOT/.../bsim3/code/circuits/spice3/cir/rf_nmos_single.cir 
* 
* .subckt bsim3_rf_extract 1 2 3 4 
* 
* --- BSIM3 model card 
#echo .MODEL BSIM3_HF NMOS 
#echo + LEVEL=$mpar(LEVEL=8) VERSION=3.2.4 BINUNIT=$mpar(BINUNIT=2) 
#echo + MOBMOD=$mpar(MOBMOD=1 CAPMOD=$mpar(CAPMOD=3) NOIMOD=$mpar(NOIMOD=1) 
#echo + PARAMCHK=$mpar(PARAMCHK=1) 
#echo + DELTA=$mpar(DELTA=0.01) TNOM=$mpar(TNOM=27) TOX=$mpar(TOX=7.5E-9) 
#echo + TOXM=$mpar(TOXM=7.5E-9) 
#echo + NCH =$mpar(NCH=1.7E17) XJ=$mpar(XJ=1.5E-7) NGATE=$mpar(NGATE=0) RSH =$mpar(RSH=0) 
#echo + VTH0 =$mpar(VTH0=0.7) K1=$mpar(K1=0.53) K2=$mpar(K2=0.013) K3=$mpar(K3=0) 
#echo + W3 =$mpar(K3=0) W0=$mpar(W0=2.5E-6) NLX =$mpar(NLX=0.174u) DVT0 =$mpar(DVT0=2.2) 
#echo + DVT1 =$mpar(DVT1=0.53) DVT2 =$mpar(DVT2=0.032) DVT0 =$mpar(DVT0=0) 
#echo + DVIW =$mpar(DVIW=5.3E6) 
#echo + DVT2W =$mpar(DVT2W=0.032) ETA0 =$mpar(ETA0=0) ETAB =$mpar(ETAB=0) 
#echo + DSVB =$mpar(DSVB=0.56) 
#echo + UX =$mpar(UX=0.670) UB =$mpar(UB=5.87E-19) UC =$mpar(UC=4.65E-11) 
#echo + VX =$mpar(VX=0) VSW =$mpar(VSW=0) VB =$mpar(VB=0) 
#echo + BI =$mpar(BI=0) KETA =$mpar(KETA=0.047) A1 =$mpar(A1=0) A2 =$mpar(A2=1) 
#echo + RDSW =$mpar(RDSW=0) PRBW =$mpar(PRBW=0) PRWG =$mpar(PRWG=0) WR =$mpar(WR=1) 
#echo + WINT =$mpar(WINT=0) WL =$mpar(WL=0) WLN =$mpar(WLN=1) WW =$mpar(WW=0) 
#echo + WWN =$mpar(WWN=0) WNW =$mpar(WNW=0) DWG =$mpar(DWG=0) DWB =$mpar(DWB=0) 
#echo + LLN =$mpar(LLN=1) LL =$mpar(LL=0) LLN =$mpar(LLN=1) LW =$mpar(LW=0) 
#echo + LNW =$mpar(LNW=1) LW =$mpar(LW=0) 
#echo + VOFF =$mpar(VOFF=0.08) NFACTOR =$mpar(NFACTOR=1) CIT =$mpar(CIT=0) 
#echo + CDSC =$mpar(CDSC=2.4E-4) 
#echo + CDSCB =$mpar(CDSCB=0) CDSCD =$mpar(CDSCD=0) PCLM =$mpar(PCLM=1.3) 
#echo + PDBLBC1 =$mpar(PDBLBC1=0.39) 
#echo + PDIBLC2 =$mpar(PDIBLC2=0.0086) PDIBLCB =$mpar(PDIBLCB=0) DROUT =$mpar(DROUT=0.56) 
#echo + PSCB1 =$mpar(PSCB1=4.24E8) 
#echo + PSCBE2 =$mpar(PSCBE2=1.0E-5) PVAG =$mpar(PVAG=0) VBM =$mpar(VBM=3) 
#echo + ALPHA =$mpar(ALPHA=0) ALPHAL =$mpar(ALPHAL=0) BETA =$mpar(BETA=30) 
#echo + JS =$mpar(JS=1e-20 JDW =$1.0E-20 NJ =1 IJTH =$mpar(IJTH=0.1) 
#echo + Cj =$mpar(Cj=0.5 Ps=$1) CSW =$0 
#echo + MSW =$0.33 PBSW =$mpar(PBSW=0) MG =$mpar(MG=0) MJ =$mpar(MJ=0) 
#echo + CGDO =$mpar(CGDO=0) CGS =$mpar(CGS=0) CGBO =$mpar(CGBO=0) 
```
4  BSIM 3v3 Characterization

```bash
# echo +CGBO=$mpar(CGBO=0) CGSL=$mpar(CGSL=0) CGDL=$mpar(CGDL=0)
# echo + CKAPPA=$mpar(CKAPPA=0.6) CF=$mpar(CF=0)
# echo + NOFF=$mpar(NOFF=1) VOFFCV=$mpar(VOFFCV=0) ACDE=$mpar(ACDE=1)
# echo + MOIN=$mpar(MOIN=15) DLC=$mpar(DLC=0) DWC=$mpar(DWC=0)
# echo + LWC=$mpar(LWC=0) LWDC=$mpar(LWDC=0) LWDC=$mpar(LWDC=0)
# echo + WLC=$mpar(WLC=0) WWC=$mpar(WWC=0) WWLC=$mpar(WWLC=0)
# echo + CLC=$mpar(CLC=0.1E-6) CLE=$mpar(CLE=0.6) ELM=$mpar(ELM=2)
# echo + XPART=$mpar(XPART=0.5) KT1=$mpar(KT1=0.11) KT1L=$mpar(KT1L=0)
# echo + KT2=$mpar(KT2=0.022) UTE=$mpar(UTE=-1.5) UA1=$mpar(UA1=4.31E-9)
# echo + UB1=$mpar(UB1=7.6E-18) UC1=$mpar(UC1=-5.6E-11) AT=$mpar(AT=3.3E4)
# echo + PRG=$mpar(PRT=0) XII=$mpar(XII=3.0) TPB=$mpar(TPB=0)
# echo + TPBSW=$mpar(TPBSW=0) TPBSW=$mpar(TPBSW=0)
# echo + TCJ=$mpar(TCJ=0) TJSW=$mpar(TJSW=0) TCJSW=$mpar(TCJSW=0)
# echo + NOIA=$mpar(NOIA=2e29) NOIB=$mpar(NOIB=5e4) NOIC=$mpar(NOIC=-1.4e-12)
* --- Parasitic diode model cards --------------------------------------------
# echo .MODEL bsim_diode_area D
# echo + CJO=$mpar(CJ=5E-4) VJ=$mpar(PB=1) M=$mpar(MJ=0.5)
# echo + IS=$mpar(JS=1.0E-4) N=$mpar(NJ=1)
# echo .MODEL bsim_diode_perim D CJO=$mpar(CJSW=5E-10) VJ=$mpar(PBSW=1)
# echo + M=$mpar(MJSW=0.33) IS=$mpar(JSW=1.0E-12) N=$dpar(CALC.NJSW=1)
* --------- Gate network ------------------------------------------------------
CGDEXT 20 10 0.1f
CGSEX 2 20 0.1f
RGATE 20 21 100
LGATE 2 20 1p
* --------- Drain network -----------------------------------------------------
CDSEXT 10 30 0.1f
LDRAIN 1 10 1p
* --------- Source network -----------------------------------------------------
LSOURCE 3 30 1p
* --------- Substrate network ---------------------------------------------------
* Diodes are for n-type MOS transistors
# echo Djdb_area 12 10 bsim_diode_area AREA=$dpar(x_rf_transistor.AD=10e-12)
# echo Djdb_perim 12 10 bsim_diode_perim AREA=$dpar(x_rf_transistor.PD=22e-6)
# echo Djsb_area 32 30 bsim_diode_area AREA=$dpar(x_rf_transistor.AS=10e-12)
# echo Djsb_perim 32 30 bsim_diode_perim AREA=$dpar(x_rf_transistor.PS=22e-6)
RDBD 12 40 100
RBSB 32 40 100
RBPD 12 41 100
RBPS 32 41 100
LBULK 4 40 1p
* --- call single MOSFET -------------------------------------------------------
# echo MAIN 10 21 30 41 BSIM3_HF
# echo + L=$dpar(x_rf_transistor.L=1u) W=$dpar(x_rf_transistor.W=10e-6)
# echo + AD=$dpar(x_rf_transistor.AD=10e-12) AS=$dpar(x_rf_transistor.AS=10e-12)
# echo + PD=$dpar(x_rf_transistor.PD=22e-6) PS=$dpar(x_rf_transistor.PS=22e-6)
# echo + NRS=$dpar(x_rf_transistor.NRS=0) NRD=$dpar(x_rf_transistor.NRD=0)
# echo + NQSMOD=$dpar(NQSMOD=0)
.ends
```
The single BSIM3 RF model represents exactly one measured test device, the substrate resistance network uses fixed values for the resistors \( R_{\text{BPS}} \), \( R_{\text{BPD}} \), \( R_{\text{BDB}} \), and \( R_{\text{BSB}} \). Also, the external parasitics (L, C, ...) are fixed and valid only for one measured device. Using this approach, the parameters extracted are valid only for a specific transistor geometry, which means you must have RF parameters for each of your possible device geometries. This requires measurement and library creation for every transistor geometry in your design.

Design engineers often need to have scalable transistors for easy design processes. Therefore, extensions are made to use a scalable BSIM3 model. Those are described in the following section.

**Fully Scalable Subcircuit Model for BSIM 3v3 RF Transistors**

Figure 119 shows a cross section of a multifinger RF MOSFET with the distances marked from the bulk connection point to the physical transistor connections.

![Figure 119](image)

**Figure 119** Distances between the bulk connection and the terminals of a multifinger RF transistor

The distances are:
- \( D_{\text{DCB}} \): distance between bulk connection point and drain
• \( D_{DCS} \): distance between bulk connection point and source
• \( D_{GG} \): distance between gate stripes

Additionally, the sheet resistance of the bulk connection, \( R_{SHB} \), is needed.

Implementations according to “MOS Transistor Modeling for RF IC Design” [8] and our own findings to model a scalable substrate resistance behavior are leading to the following equations, which are implemented into the SPICE subcircuit for the fully scalable BSIM3 RF model.

Using the distances according to Figure 119, the resistors are calculated from:

\[
RBPS = RBPD = \frac{R_{SHB} \cdot (L + D_{gg})}{2 \cdot W}
\]

\[
RBSB = \frac{(\text{factor} - \text{even} - \text{odd}) \cdot NF \cdot D_{SCB} \cdot R_{SHB}}{W}
\]

\[
RBDB = \frac{(\text{factor} - \text{even} - \text{odd}) \cdot NF \cdot D_{DCB} \cdot R_{SHB}}{W}
\]

\( \text{factor-even-odd} = 0.5 \) for even number of fingers (NF)
\( \text{factor-even-odd} = 1 \) for odd number of fingers (NF)

The values of the elements of the SPICE equivalent circuit are calculated from device dimensions of the actual device \((W, L, NF,..)\) and additional model parameters like the gate sheet resistance \( R_{SHG} \).

Following is a SPICE netlist for the fully scalable BSIM3 model.
LINK CIRC Circuit
{
data
circuitdeck
{

* Fully scalable subcircuit model for BSIM3v3 RF n-type devices
* Simulator: UCB Spice3e2
* Model: BSIM3 Modelling Package
* Date: 08.11.2003
* Origin: ICCAP_ROOT/.../bsim3/circuits/spice3/cir/RF_NMOS_SCALE.cir
*------------------------------------------------------------------------------------
* .subckt bsim3_rf_extract 1 2 3 4
*--------------------------------------------------------------------
*--- Information for model implementation -------------------------------------
*--- BSIM3 model card --------------------------------------------------------
#echo .MODEL BSIM3_HF NMOS
#echo + LEVEL=$mpar(LEVEL=8) VERSION=3.2.4 BINUNIT=$mpar(BINUNIT=2)
#echo + MOBMOD=$mpar(MOBMOD=1) CAPMOD=$mpar(CAPMOD=3) NOIMOD=$mpar(NOIMOD=1)
#echo + PARAMCHK=$mpar(PARAMCHK=1) DELTA=$mpar(DELTA=0.01) TNOM=$mpar(TNOM=27)
#echo + TOX=$mpar(TOX=7.5E-9) TOXM=$mpar(TOXM=7.5E-9)
#echo + NCH=$mpar(NCH=1.7e17) XJ=$mpar(XJ=1.5E-7) NGATE=$mpar(NGATE=0) RSH=$mpar(RSH=0)
#echo + VTH0=$mpar(VTH0=0.7) K1=$mpar(K1=0.53) K2=$mpar(K2=-0.013) K3=$mpar(K3=0)
#echo + K3B=$mpar(K3B=0) W0=$mpar(W0=2.5E-6) NLX=$mpar(NLX=0.174u) DVT0=$mpar(DVT0=2.2)
#echo + DVT1=$mpar(DVT1=0.53) DVT2=$mpar(DVT2=-0.032) DVTOW=$mpar(DVTOW=0)
#echo + DVT1W=$mpar(DVT1W=5.326) DVT2W=$mpar(DVT2W=0.032)
#echo + ETA0=$mpar(ETA0=0) ETAB=$mpar(ETAB=0) DSUB=$mpar(DSUB=0.56)
#echo + U0=$mpar(U0=670) UA=$mpar(UA=2.25E-9) UB=$mpar(UB=5.87E-19) UC=$mpar(UC=4.65E-11)
#echo + VSAT=$mpar(VSAT=8e4) A0=$mpar(A0=1) AGS=$mpar(AGS=0) B0=$mpar(B0=0)
#echo + B1=$mpar(B1=0) KETA=$mpar(KETA=-0.047) A1=$mpar(A1=0) A2=$mpar(A2=1)
#echo + RD=$mpar(RD=0) PRWB=$mpar(PRWB=0) PRWG=$mpar(PRWG=0) WR=$mpar(WR=1)
#echo + WW=$mpar(WW=0) WWN=$mpar(WWN=1) WWL=$mpar(WWL=0) DWG=$mpar(DWG=0) DWB=$mpar(DWB=0)
#echo + LL=$mpar(LL=1) LLN=$mpar(LLN=0) LWN=$mpar(LWN=1) LW=$mpar(LW=0)
#echo + VOFF=$mpar(VOFF=-0.08) NFACTOR=$mpar(NFACTOR=1) CIT=$mpar(CIT=0)
#echo + CDSC=$mpar(CDSC=2.4E-4)
#echo + CDSCB=$mpar(CDSCB=0) CDSCD=$mpar(CDSCD=0) PCLM=$mpar(PCLM=1.3)
#echo + PDIBLCl=$mpar(PDIBLCl=0.39)
BSIM 3v3 Characterization

#echo + PDIBLC2=$mpar(PDIBLC2=0.0086) PDIBLCB=$mpar(PDIBLCB=0.0) DROUT=$mpar(DROUT=0.56)
#echo + PSCEB1=$mpar(PSCEB1=4.24E8)
#echo + PSCEB2=$mpar(PSCEB2=1.0E-5) PVAG=$mpar(PVAG=0) VBM=$mpar(VBM=-3)
#echo + ALPHA0=$mpar(ALPHA0=0) ALPHA1=$mpar(ALPHA1=0) BETA0=$mpar(BETA0=30)
#echo +
#echo + JS=1e-20 JSW=1.0E-20 NJ=1 IJTH=$mpar(IJTH=0.1)
#echo +
#echo + CJ=0.5 PB=1 CJSW=0
#echo + MJSW=0.33 PBSW=1 CJSWG=$mpar(CJSWG=5E-10) MJSWG=$mpar(MJSWG=0.33)
#echo + PBSW=$mpar(PBSW=1) CGDO=$mpar(CGDO=0) CGSO=$mpar(CGSO=0) CGBO=$mpar(CGBO=0)
#echo + CGDL=$mpar(CGDL=0) CGDL=$mpar(CGDL=0) CKAPPA=$mpar(CKAPPA=0.6) CF=$mpar(CF=0)
#echo + NOFF=$mpar(NOFF=1) VOFFCV=$mpar(VOFFCV=0) ACDE=$mpar(ACDE=1) MOIN=$mpar(MOIN=15)
#echo + DLEC=$mpar(DLEC=0) WDC=$mpar(WDC=0) LLC=$mpar(LLC=0) WLC=$mpar(WLC=0)
#echo + WLC=$mpar(WLC=0) WLC=$mpar(WLC=0) WWC=$mpar(WWC=0) WWLC=$mpar(WWLC=0)
#echo + CLC=$mpar(CLC=0.1E-6) CLE=$mpar(CLE=0.6)
#echo + ELM=$mpar(ELM=2) XPART=$mpar(XPART=0.5)
#echo +
#echo + KT1=$mpar(KT1=-0.11) KT1L=$mpar(KT1L=0) KT2=$mpar(KT2=0.022) UTE=$mpar(UTE=-1.5)
#echo + UA1=$mpar(UA1=4.31E-9) UBI=$mpar(UBI=-7.6E-18) UC1=$mpar(UC1=5.6E-11)
#echo + AT=$mpar(AT=3.3E4)
#echo + PRT=$mpar(PRT=0) XTI=$mpar(XTI=3.0) TPB=$mpar(TPB=0) TPBSW=$mpar(TPBSW=0)
#echo + TPBSW=$mpar(TPBSW=0) TCJ=$mpar(TCJ=0) TCJSW=$mpar(TCJSW=0) TCJSWG=$mpar(TCJSWG=0)
#echo +
#echo + AF=$mpar(AF=1.5) EF=$mpar(EF=1.5)KF=$mpar(KF=1e-17) EM=$mpar(EM=4.1E7)
#echo + NOIA=$mpar(NOIA=2e29) NOIB=$mpar(NOIB=5e4) NOIC=$mpar(NOIC=-1.4e-12)
* *
*--- Parasitic diode model cards -------------------------------------------------
#echo .MODEL bsim_diode_area D
#echo CJO=$mpar(CJO=5E-4) VJ=$mpar(VJ=1) M=$mpar(M=0.5)
#echo IS=$mpar(IS=1E-4) N=$mpar(N=1)
*# echo .MODEL bsim_diode_perim D
#echo CJO=$mpar(CJSW=5E-10) VJ=$mpar(VJSW=1) M=$mpar(MJSW=0.33)
#echo IS=$mpar(IS=1E-4) N=$mpar(NJSW=1)
* *
*--- Additional model parameters necessary for scalability------------------------
* - scalable external capacitors and inductors to account for cross coupling in the metal
* - a scalable substrate network
* - a scalable channel length reduction
*# echo CGDEXT0=$mpar(CGDEXT0=1e-9) ext. cap. gate-drain per gate width and finger [F/m]
# echo CGSEXT0=$mpar(CGSEXT0=1e-9) ext. cap. gate-source per gate width and finger [F/m]
# echo CDSEXT0=$mpar(CDSEXT0=1e-9) ext. cap. drain-source per gate width and finger [F/m]
# echo RSHG=$mpar(RSHG=25) gate sheet resistance [Ohm sq]
# echo LDRAIN0=$mpar(LDRAIN0=1e-6) drain inductance per gate width and gate finger [H/m]
# echo LGATE0=$mpar(LGATE0=1e-6) gate inductance per gate width and gate finger [H/m]
# Echo * LSOURCE0=$mpar(LSOURCE0=1e-6) source inductance per gate width and finger [H/m]
# Echo * LBULK0=$mpar(LBULK0=1e-6) bulk inductance per gate width and finger [H/m]
# Echo * RSHB=$mpar(RSHB=25) bulk sheet resistance [Ohm sq]
# Echo * DSBC=$mpar(DSBC=2e-6) distance source implant to bulk contact [m]
# Echo * DDBC=$mpar(DDBC=2e-6) distance drain implant to bulk contact [m]
# Echo * DGG=$mpar(DGG=2e-6) distance gate to gate [m]
# Echo * DL0=$mpar(DL0=0) basic channel length reduction correction [m]
# Echo * DL1=$mpar(DL1=0) channel length reduction correction l. and 2. outer fingers [m]
# Echo * DL2=$mpar(DL2=0) channel length reduction correction outer fingers [m]

* --------- Gate network ---------------------------------------------------------------
# Echo LGATE 2 20 $dpar(CALC.LGATE=0.1p)
# Echo RGATE 21 20 $dpar(CALC.RGATE=10)
# Echo CGDEXT 20 10 $dpar(CALC.CGDEXT=0.1f)
# Echo CGSEXT 20 30 $dpar(CALC.CGSEXT=0.1f)

* --------- Drain network --------------------------------------------------------------
# Echo LDRAIN 1 10 $dpar(CALC.LDRAIN=0.1p)
# Echo CDSEXT 10 30 $dpar(CALC.CDSEXT=0.1f)

* --------- Source network -------------------------------------------------------------
# Echo LSOURCE 3 30 $dpar(CALC.LSOURCE=0.1p)

* --------- Substrate network ----------------------------------------------------------
* Diodes are for n-type MOS transistors
* # Echo Djdb_area 12 10 bsim_diode_area AREA=$dpar(x_rf_transistor.AD=10e-12)
# Echo Djdb_perim 12 12 bsim_diode_perim AREA=$dpar(x_rf_transistor.PD=22e-6)
* # Echo Djsb_area 32 30 bsim_diode_area AREA=$dpar(x_rf_transistor.AS=10e-12)
# Echo Djsb_perim 32 30 bsim_diode_perim AREA=$dpar(x_rf_transistor.PS=22e-6)
* # Echo RBDB 12 40 $dpar(CALC.RBDB=100)
# Echo RBSS 12 40 $dpar(CALC.RBSS=100)
# Echo RBPD 12 41 $dpar(CALC.RBPD=100)
# Echo RBPS 32 41 $dpar(CALC.RBPS=100)
* # Echo LBULK 4 40 $dpar(CALC.LBULK=0.1p)

*--- call single MOSFET ------------------------------------------------------------------
# Echo MAIN 10 21 30 41 BSIM3_HF
# Echo + L=$dpar(x_rf_transistor.L=1u) W=$dpar(x_rf_transistor.W=10e-6)
# Echo + AD=$dpar(x_rf_transistor.AD=10e-12) AS=$dpar(x_rf_transistor.AS=10e-12)
# Echo + PD=$dpar(x_rf_transistor.PD=22e-6) PS=$dpar(x_rf_transistor.PS=22e-6)
# Echo + NRS=$dpar(x_rf_transistor.NRS=0) NRD=$dpar(x_rf_transistor.NRD=0)
# Echo + NQSMOD=$mpar(NQSMOD=0)
* .ends
Modeling Strategy

Modeling the AC behavior of a MOS device with the BSIM3v3 model heavily depends on the accurate modeling of the DC curves and the capacitances at low frequencies, for example, 10kHz to 1MHz. However, more and more applications, especially in the telecommunication industry, require the modeling of MOS transistors for the use in a frequency range of 1 to 10 GHz. Therefore, S-parameter measurements have to be done (see also “Test Structures for S-parameter Measurements” on page 299) to cover this frequency range by a proper device model.

As is pointed out, using the BSIM3v3 model for high frequency applications requires some special attention to the modeling strategy. We found the following procedure to give the most accurate results:

- Measurement of DC and CV curves.
- Extraction of the BSIM3v3 model parameters from DC and CV measurements with a special emphasis on a physically based extraction strategy. Here, model parameters should not be used for fitting purposes, they should have a correct physical meaning.
- The modeling of the output characteristic \( I_d=f(V_{ds}) \) and the output resistance \( R_{out}=f(V_{ds}) \) is very important for further S-parameter measurements (see Figure 123 and Figure 122).
- Performing S-parameter measurements and proper de-embedding of parasitics.
- The starting points of the S-parameter curves at the lowest frequency can be modeled by fitting the curves with DC and capacitance parameters. The following diagrams describe this influence on the high frequency behavior.
Figure 120  Incorrectly Modeled Drain Current

Figure 121  Incorrectly Modeled Output Characteristic
• Extraction of the gate resistance from the input reflection S11 (see Figure 123)
• Verification of the gate-drain overlap capacitance for higher frequencies
• Extraction of the substrate resistance network parameters from S22 (see Figure 123)
• If a good fitting could not be found, additional peripheral elements like inductances at drain, gate, or source should be added in a further sub-circuit

**Figure 122**  Influence of Incorrectly Modeled Output Characteristic on S21
Figure 123  Input Reflection Parameter S11

Figure 124  Output Reflection Parameter S22
4 BSIM 3v3 Characterization

Figure 125 Forward Transmission Parameter S21

Figure 126 Reverse Transmission Parameter S12
Temperature Dependence

Please use the model `bsim3_tutor_temp.mdl` provided with the BSIM3v3 Modeling Package to visualize the temperature model parameters. Load the file into IC-CAP and run the different macros to see how certain parameters affect the device behavior of a deep submicron MOS transistor.

**Built-in Temperature Dependencies**

The BSIM3v3 model uses some physically based built-in temperature dependencies as listed below:

Temperature voltage:

\[ V_{tm} = \frac{kBT}{q} \]  
(70)

Intrinsic carrier concentration:

\[ N_i = 2.63 \times 10^{16} \frac{1}{T^{3/2}} e^{-\frac{6885}{T}} \]  
(71)

Unfortunately, the surface potential \( \Phi_s \), which is a very important model parameter from a physical point of view is not temperature dependent in BSIM3.

\[ \Phi_s = 2V_{tm}(T_{nom}) \ln \left( \frac{N_{ch}}{N_i(T_{nom})} \right) \]  
(72)

**Temperature Effects**

In addition to the built-in temperature dependencies, the following temperature related effects are modeled in BSIM3. They are related to threshold voltage, mobility, saturation of carrier velocity, drain-source resistance, and the saturation current of the drain/source bulk diodes.

a) Threshold Voltage
The behavior of the threshold voltage for a large and a short device is shown in Figure 127.

\[
V_{th}(T) = V_{th}(T_{nom}) + \left( K T_1 + \frac{K T_J L}{L_{eff}} + K T_2 V_{bseff} \right) \left( \frac{T}{T_{nom}} - 1 \right) 
\]
b) Carrier Mobility

All four model parameters of the carrier mobility are implemented in BSIM3 with a temperature dependence:

\[ \mu_0(T) = U_0 \cdot \left( \frac{T}{T_{\text{nom}}} \right)^{U_{TE}} \]  \hspace{1cm} (74)

\[ U_A(T) = U + U_A \left( \frac{T}{T_{\text{nom}}} \right) - 1 \]  \hspace{1cm} (75)

\[ U_B(T) = U + U_B \left( \frac{T}{T_{\text{nom}}} \right) - 1 \]  \hspace{1cm} (76)

\[ U_C(T) = U + U_C \left( \frac{T}{T_{\text{nom}}} \right) - 1 \]  \hspace{1cm} (77)
The following two diagrams show the effect of temperature dependent mobility on the transconductance of a large transistor.

**Figure 129** Temperature Dependence of Carrier Mobility $\mu_0$: Influence on Drain Current
c) Saturation of Carrier Velocity

The carrier velocity $V_{SAT}$ is reduced with increasing temperature as shown in the following equation and Figure 132:

$$V_{SAT}(T) = V_{SAT} - AT \left( \frac{T}{T_{nom}} - 1 \right)$$  \hspace{1cm} (78)
Figure 131  Output Characteristic $I_d=f(V_d,T)$

Figure 132  Output Characteristic $V_{sat}=f(T)$
d) **Drain source resistance**

The temperature dependence of the drain source resistance is given by the following equation (see Figure 133):

\[
R_{DSW}(T) = R_{DSW} - PRT \left( \frac{T}{T_{nom}} - 1 \right)
\]  

(79)

![Figure 133](image)

**Figure 133**  Drain source resistance \(R_{DSW} = f(T)\)

---

e) **Saturation Current of Drain/ Source Bulk Diodes**

The temperature dependence of the drain/source bulk diodes is given by the following equation for the saturation current density \(J_S\):

\[
J_S(T) = J_S \cdot e^{\left( \frac{E_g \theta}{V_{tm}} - \frac{E_g}{V_{tm}} + XT \ln \left( \frac{T}{T_{nom}} \right) \right) / N_J}
\]

(80)
The influence of XTI on diode current and saturation current density $J_S$ is shown below.

\[ \text{Figure 134} \quad \text{Saturation Current as Function of Temperature} \]
Noise Model

There are two noise models implemented in BSIM3—a conventional noise model named Spice2 model and a newly formulated noise model, which is referred to as BSIM3v3 noise model. The following equations and diagrams should give insight into these two noise formulations.

Please use the model `bsim3_tutor_ac_noise.mdl` provided with the BSIM3v3 Modeling Package to visualize the model parameters. Load the file into IC-CAP and run the different macros to see how certain parameters affect the device behavior of a deep submicron MOS transistor.

Conventional Noise Model for MOS Devices

Flicker noise:

\[
V_{\text{noise,eff}} = \frac{K F_1 A F}{ds} \frac{C_{\text{ox}} \times L_{\text{eff}}}{2 E F^{1/2}}
\]  

Channel thermal noise:

\[
V_{\text{noise,eff}} = \frac{8 k T}{3} (g_m + g_{ds} + g_{mb})
\]
Figure 135  Influence of AF on Effective Noise Voltage

Figure 136  Influence of EF on Effective Noise Voltage
BSIM 3v3 Noise Model

The BSIM3v3 noise model uses the following equation to describe the flicker noise:

\[
V_{\text{noise, eff}} = \frac{V_{\text{tm}} q^2 L_{\text{ds eff}}}{10^8 C_{\text{ox eff}}^2 \mu_{\text{eff}}^2} \left[ \frac{N_{\text{OA}} \log \left( \frac{N_o + 2 \times 10^{14}}{N_l + 2 \times 10^{14}} \right) + \ldots}{N_{\text{OA}}} \right]
\]

where:

\( N_o \) is the charge density at the source given by:

\[
N_o = \frac{C_{\text{ox}} (V_{\text{gs}} - V_{\text{th}})}{q}
\]

\( N_l \) is the charge density at the drain given by:

\[
N_l = \frac{C_{\text{ox}} (V_{\text{gs}} - V_{\text{th}} - V_{\text{ds}'})}{q}
\]

The channel thermal noise is given by:

\[
V_{\text{noise, eff}} = \frac{4kT}{L_{\text{eff}}} \left[ \frac{Q_{\text{inv}}}{q} \right]
\]

with:

\[
Q_{\text{inv}} = -W_{\text{eff}} L_{\text{eff}} C_{\text{ox}} V_{\text{gsteff}} \left\{ 1 - \frac{A_{\text{bulk}}}{2 \left( \frac{V_{\text{gsteff}}}{V_{\text{tms}}} + \frac{V_{\text{ds eff}}}{V_{\text{tms}}} \right)} \right\}
\]
The model parameters of the BSIM3v3 model can be divided into several groups. The main model parameters are used to model the key physical effects in the DC and CV behavior of submicron MOS devices at room temperature. Here they are grouped into subsections related to the physical effects of the MOS transistor. The second group are the process related parameters. They should only be changed if a detailed knowledge of a certain MOS production process is given. The third group of parameters are the temperature modeling parameters. The following two groups are used to model the AC and noise behavior of the MOS transistor. Finally the last group contains flags to select certain modes of operations and user definable model parameters. For more details about these operation modes refer to the BSIM3v3 manual [1].

**Main Model Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTHO</td>
<td>Ideal threshold voltage</td>
<td>0.7/ -0.7 V</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>First-order body effect coefficient</td>
<td>0.5</td>
<td>V$^{0.5}$</td>
</tr>
<tr>
<td>K2</td>
<td>Second-order body effect coefficient</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>Narrow width coefficient</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>K3B</td>
<td>Body effect coefficient of K3</td>
<td>0.0</td>
<td>1/V</td>
</tr>
<tr>
<td>W0</td>
<td>Narrow width parameter</td>
<td>2.5E-6</td>
<td>m</td>
</tr>
<tr>
<td>NLX</td>
<td>Lateral non-uniform doping coefficient</td>
<td>1.74E-7</td>
<td>m</td>
</tr>
<tr>
<td>VBM</td>
<td>Maximum applied body bias in VTH calculation</td>
<td>-5.0</td>
<td>V</td>
</tr>
<tr>
<td>DVT0</td>
<td>First coefficient of short-channel effect on VTH</td>
<td>2.2</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 12  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT1</td>
<td>Second coefficient of short-channel effect on VTH</td>
<td>0.53</td>
<td>-</td>
</tr>
<tr>
<td>DVT2</td>
<td>Body-bias coefficient of short-channel effect on VTH</td>
<td>-0.032</td>
<td>1/V</td>
</tr>
<tr>
<td>DVT0W</td>
<td>First coefficient of narrow-channel effect on VTH</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>DVT1W</td>
<td>Second coefficient of narrow-channel effect on VTH</td>
<td>5.3E6</td>
<td>-</td>
</tr>
<tr>
<td>DVT2W</td>
<td>Body-bias coefficient of narrow-channel effect on VTH</td>
<td>-0.032</td>
<td>1/V</td>
</tr>
<tr>
<td>ETA0</td>
<td>DIBL coefficient in the subthreshold region</td>
<td>0.08</td>
<td>-</td>
</tr>
<tr>
<td>ETA1</td>
<td>Body-bias for the subthreshold DIBL effect</td>
<td>-0.07</td>
<td>1/V</td>
</tr>
<tr>
<td>DSUB</td>
<td>DIBL coefficient in subthreshold region</td>
<td>DROUT</td>
<td>-</td>
</tr>
<tr>
<td>Mobility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U0</td>
<td>Mobility</td>
<td>670 / 250</td>
<td>cm$^2$/Vs</td>
</tr>
<tr>
<td>UA</td>
<td>First-order mobility degradation coefficient</td>
<td>2.25E-9</td>
<td>m/V</td>
</tr>
<tr>
<td>UB</td>
<td>Second-order mobility degradation coefficient</td>
<td>5.87E-19</td>
<td>(m/V)$^2$</td>
</tr>
<tr>
<td>UC</td>
<td>Body-effect of mobility degradation</td>
<td>-4.65E-11</td>
<td>(m/V)$^2$</td>
</tr>
<tr>
<td>Drain current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAT</td>
<td>Saturation velocity</td>
<td>8.0E6</td>
<td>cm/s</td>
</tr>
<tr>
<td>A0</td>
<td>Bulk charge effect coefficient</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>First non saturation factor</td>
<td>0/ 0.23</td>
<td>1/V</td>
</tr>
<tr>
<td>A2</td>
<td>Second non saturation factor</td>
<td>1.0/ 0.08</td>
<td>-</td>
</tr>
<tr>
<td>AGS</td>
<td>Gate-bias coefficient of Abulk</td>
<td>0.0</td>
<td>1/V</td>
</tr>
<tr>
<td>B0</td>
<td>Bulk charge effect coeff. for channel width</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>B1</td>
<td>Bulk charge effect width offset</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>KETA</td>
<td>Body-bias coefficient of the bulk charge effect.</td>
<td>-0.047</td>
<td>1/V</td>
</tr>
<tr>
<td>Subthreshold region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOFF</td>
<td>Offset voltage in the subthreshold region</td>
<td>-0.11</td>
<td>V</td>
</tr>
<tr>
<td>NFACTOR</td>
<td>Subthreshold swing factor</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 12  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVT1</td>
<td>Second coefficient of short-channel effect on VTH</td>
<td>0.53</td>
<td>-</td>
</tr>
<tr>
<td>DVT2</td>
<td>Body-bias coefficient of short-channel effect on VTH</td>
<td>-0.032</td>
<td>1/V</td>
</tr>
<tr>
<td>DVT0W</td>
<td>First coefficient of narrow-channel effect on VTH</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>DVT1W</td>
<td>Second coefficient of narrow-channel effect on VTH</td>
<td>5.3E6</td>
<td>-</td>
</tr>
<tr>
<td>DVT2W</td>
<td>Body-bias coefficient of narrow-channel effect on VTH</td>
<td>-0.032</td>
<td>1/V</td>
</tr>
<tr>
<td>ETA0</td>
<td>DIBL coefficient in the subthreshold region</td>
<td>0.08</td>
<td>-</td>
</tr>
<tr>
<td>ETA1</td>
<td>Body-bias for the subthreshold DIBL effect</td>
<td>-0.07</td>
<td>1/V</td>
</tr>
<tr>
<td>DSUB</td>
<td>DIBL coefficient in subthreshold region</td>
<td>DROUT</td>
<td>-</td>
</tr>
</tbody>
</table>

**Mobility**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>Mobility</td>
<td>670 / 250</td>
<td>cm²/(Vs)</td>
</tr>
<tr>
<td>UA</td>
<td>First-order mobility degradation coefficient</td>
<td>2.25E-9</td>
<td>m/V</td>
</tr>
<tr>
<td>UB</td>
<td>Second-order mobility degradation coefficient</td>
<td>5.87E-19</td>
<td>(m/V)²</td>
</tr>
<tr>
<td>UC</td>
<td>Body-effect of mobility degradation</td>
<td>-4.65E-11</td>
<td>(m/V)²</td>
</tr>
</tbody>
</table>

**Drain current**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSAT</td>
<td>Saturation velocity</td>
<td>8.0E6</td>
<td>cm/s</td>
</tr>
<tr>
<td>A0</td>
<td>Bulk charge effect coefficient</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>First non saturation factor</td>
<td>0/ 0.23</td>
<td>1/V</td>
</tr>
<tr>
<td>A2</td>
<td>Second non saturation factor</td>
<td>1.0/ 0.08</td>
<td>-</td>
</tr>
<tr>
<td>AGS</td>
<td>Gate-bias coefficient of Abulk</td>
<td>0.0</td>
<td>1/V</td>
</tr>
<tr>
<td>B0</td>
<td>Bulk charge effect coeff. for channel width</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>B1</td>
<td>Bulk charge effect width offset</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>KETA</td>
<td>Body-bias coefficient of the bulk charge effect.</td>
<td>-0.047</td>
<td>1/V</td>
</tr>
</tbody>
</table>

**Subthreshold region**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOFF</td>
<td>Offset voltage in the subthreshold region</td>
<td>-0.11</td>
<td>V</td>
</tr>
<tr>
<td>NFACTOR</td>
<td>Subthreshold swing factor</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>
### Table 12  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIT</td>
<td>Interface trap density</td>
<td>0</td>
<td>F/ m²</td>
</tr>
<tr>
<td>CDSC</td>
<td>Drain-Source to channel coupling capacitance</td>
<td>2.4E-4</td>
<td>F/ m²</td>
</tr>
<tr>
<td>CDSCB</td>
<td>Body-bias coefficient of CDSC</td>
<td>0</td>
<td>F/ Vm²</td>
</tr>
<tr>
<td>CDSCD</td>
<td>Drain-bias coefficient of CDSC</td>
<td>0</td>
<td>F/ Vm²</td>
</tr>
<tr>
<td>RDSW</td>
<td>Parasitic resistance per unit width</td>
<td>0</td>
<td>Ω/μm m</td>
</tr>
<tr>
<td>WR</td>
<td>Width offset from Weff for RDS calculation</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>PRWB</td>
<td>Body effect coefficient of RDSW</td>
<td>0</td>
<td>V⁻⁰.⁵</td>
</tr>
<tr>
<td>PRWG</td>
<td>Gate bias effect coefficient of RDSW</td>
<td>0</td>
<td>1/V</td>
</tr>
<tr>
<td>WINT</td>
<td>Channel width reduction on one side</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>WL</td>
<td>Coeff. of length dependence for width offset</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>WLN</td>
<td>Power of length dependence for width offset</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>WW</td>
<td>Coeff. of width dependence for width offset</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>WWN</td>
<td>Power of width dependence for width offset</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>WWL</td>
<td>Coeff. of length and width cross term for width offset</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>LINT</td>
<td>Channel length reduction on one side</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>LL</td>
<td>Coeff. of length dependence for length offset</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>LLN</td>
<td>Power of length dependence for length offset</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>LW</td>
<td>Coeff. of width dependence for length offset</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>LWN</td>
<td>Power of width dependence for length offset</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>LWL</td>
<td>Coeff. of length and width cross term for length offset</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>DWG</td>
<td>Coefficient of Weff's gate dependence</td>
<td>0</td>
<td>m/V</td>
</tr>
<tr>
<td>DWB</td>
<td>Coefficient of Weff's substrate dependence</td>
<td>0</td>
<td>m/V⁰.⁵</td>
</tr>
</tbody>
</table>

**Output resistance**
## BSIM 3v3 Characterization

### Table 12  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCLM</td>
<td>Channel length modulation coefficient</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>PDIBLC1</td>
<td>First output resistance DIBL effect</td>
<td>0.39</td>
<td>-</td>
</tr>
<tr>
<td>PDIBLC2</td>
<td>Second output resistance DIBL effect</td>
<td>0.0086</td>
<td>-</td>
</tr>
<tr>
<td>PDIBLCB</td>
<td>Body effect coefficient of output resistance DIBL effect</td>
<td>0</td>
<td>1/ V</td>
</tr>
<tr>
<td>DROUT</td>
<td>L dependent coefficient of the DIBL effect in output resistance</td>
<td>0.56</td>
<td>-</td>
</tr>
<tr>
<td>PSCBE1</td>
<td>First substrate current body-effect coefficient</td>
<td>4.24E8</td>
<td>V/ m</td>
</tr>
<tr>
<td>PSCBE2</td>
<td>Second substrate current body-effect coefficient</td>
<td>1.0E-5</td>
<td>m/ V</td>
</tr>
<tr>
<td>PVAG</td>
<td>Gate dependence of Early voltage</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>ALPHA0</td>
<td>The first parameter of impact ionization</td>
<td>0</td>
<td>m/ V</td>
</tr>
<tr>
<td>ALPHA1</td>
<td>Length dependent substrate current parameter</td>
<td>0</td>
<td>1/ V</td>
</tr>
<tr>
<td>BETA0</td>
<td>The second parameter of impact ionization</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

#### Diode characteristic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>J S</td>
<td>Source drain junction saturation density</td>
<td>1E-4</td>
<td>A/ m²</td>
</tr>
<tr>
<td>J SSW</td>
<td>Side wall saturation current density</td>
<td>0</td>
<td>A/ m</td>
</tr>
<tr>
<td>NJ</td>
<td>Emission coefficient of junction</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>IJ TH</td>
<td>Diode limiting current</td>
<td>0.1</td>
<td>A</td>
</tr>
</tbody>
</table>

#### Capacitance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJ</td>
<td>Source/ drain bottom junction capacitance per unit area</td>
<td>5.0E-4</td>
<td>F/ m²</td>
</tr>
<tr>
<td>CJ SW</td>
<td>Source/ drain side junction capacitance per unit length</td>
<td>5.0E-10</td>
<td>F/ m</td>
</tr>
<tr>
<td>CJ SWG</td>
<td>Source/ drain gate side junction capacitance per unit length</td>
<td>CJ SW</td>
<td>F/ m</td>
</tr>
<tr>
<td>MJ</td>
<td>Bottom junction capacitance grading coefficient</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>MJ SW</td>
<td>Source/ drain side junction capacitance grading coefficient</td>
<td>0.33</td>
<td>-</td>
</tr>
<tr>
<td>MJ SWG</td>
<td>Source/ drain gate side junction cap. grading coefficient</td>
<td>MJ SW</td>
<td>-</td>
</tr>
<tr>
<td>PB</td>
<td>Bottom junction built-in potential</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>PBSW</td>
<td>Source/ drain side junction built-in potential</td>
<td>1.0</td>
<td>V</td>
</tr>
</tbody>
</table>
Table 12  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/ PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBSWG</td>
<td>Source/ drain gate side junction built-in potential</td>
<td>PBSW</td>
<td>V</td>
</tr>
<tr>
<td>CGSO</td>
<td>Gate-source overlap capacitance per unit W</td>
<td>XJ *COX/ 2</td>
<td>F/ m</td>
</tr>
<tr>
<td>CGDO</td>
<td>Gate-drain overlap capacitance per unit W</td>
<td>XJ *COX/ 2</td>
<td>F/ m</td>
</tr>
<tr>
<td>GGBO</td>
<td>Gate-bulk overlap capacitance per unit W</td>
<td>0.0</td>
<td>F/ m</td>
</tr>
<tr>
<td>CGSL</td>
<td>Light doped source-gate region overlap capacitance</td>
<td>0.0</td>
<td>F/ m</td>
</tr>
<tr>
<td>CGDL</td>
<td>Light doped drain-gate region overlap capacitance</td>
<td>0.0</td>
<td>F/ m</td>
</tr>
<tr>
<td>CKAPPA</td>
<td>Coefficient for lightly doped region overlap</td>
<td>0.6</td>
<td>F/ m</td>
</tr>
<tr>
<td>CF</td>
<td>Fringing field capacitance</td>
<td>-</td>
<td>F/ m</td>
</tr>
<tr>
<td>CLC</td>
<td>Constant term for the short channel model</td>
<td>0.1E-6</td>
<td>m</td>
</tr>
<tr>
<td>CLE</td>
<td>Exponential term for the short channel model</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>DLC</td>
<td>Length offset fitting parameter from C-V</td>
<td>LINT</td>
<td>m</td>
</tr>
<tr>
<td>DWC</td>
<td>Width offset fitting parameter from C-V</td>
<td>W INT</td>
<td>m</td>
</tr>
<tr>
<td>NOFF</td>
<td>Subthreshold swing factor for CV model</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>VOFFCV</td>
<td>Offset voltage for CV model</td>
<td>0</td>
<td>V</td>
</tr>
</tbody>
</table>
## Process Related Parameters

### Table 13  Process Related Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXM</td>
<td>Gate oxide thickness at which parameters are extracted</td>
<td>15e-9</td>
<td>m</td>
</tr>
<tr>
<td>TOX</td>
<td>Gate oxide thickness</td>
<td>15E-9</td>
<td>m</td>
</tr>
<tr>
<td>Xj</td>
<td>Junction depth</td>
<td>150E-9</td>
<td>m</td>
</tr>
<tr>
<td>NCH</td>
<td>Doping concentration near interface</td>
<td>1.7E17</td>
<td>1/cm³</td>
</tr>
<tr>
<td>NSUB</td>
<td>Doping concentration away from interface</td>
<td>6E16</td>
<td>1/cm³</td>
</tr>
<tr>
<td>NGATE</td>
<td>Poly gate doping concentration</td>
<td>0</td>
<td>1/cm³</td>
</tr>
<tr>
<td>VFB</td>
<td>Flat-band voltage</td>
<td>-1.0</td>
<td>V</td>
</tr>
<tr>
<td>gamma1</td>
<td>Body-effect near interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gamma2</td>
<td>Body-effect far from interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XT</td>
<td>Doping depth</td>
<td>1.55E-7</td>
<td>V</td>
</tr>
<tr>
<td>RSH</td>
<td>Source/Drain Sheet resistance</td>
<td>0</td>
<td>Ω/square</td>
</tr>
</tbody>
</table>

\[
\gamma_1 = \sqrt{\frac{2 q e_{Si} N_{Ch}}{\epsilon_{Si}}} V^{1/2}
\]
## Temperature Modeling Parameters

**Table 14** Temperature Modeling Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTE</td>
<td>Mobility temperature coefficient</td>
<td>-1.5</td>
<td>-</td>
</tr>
<tr>
<td>KT1</td>
<td>Threshold voltage temperature coefficient</td>
<td>-0.11</td>
<td>V</td>
</tr>
<tr>
<td>KT1L</td>
<td>Channel length dependence of KT1</td>
<td>0.0</td>
<td>Vm</td>
</tr>
<tr>
<td>KT2</td>
<td>Threshold voltage temperature coefficient</td>
<td>0.022</td>
<td>-</td>
</tr>
<tr>
<td>UA1</td>
<td>Temperature coefficient for UA</td>
<td>4.31E-19</td>
<td>m/V</td>
</tr>
<tr>
<td>UB1</td>
<td>Temperature coefficient for UB</td>
<td>-7.61E-18</td>
<td>(m/V)^2</td>
</tr>
<tr>
<td>UC1</td>
<td>Temperature coefficient for UC</td>
<td>-0.056</td>
<td>m/V^2</td>
</tr>
<tr>
<td>PRT</td>
<td>Temperature coefficient for RDSW</td>
<td>0.0</td>
<td>Ωm</td>
</tr>
<tr>
<td>AT</td>
<td>Saturation velocity temperature coefficient</td>
<td>3.3E4</td>
<td>m/s</td>
</tr>
<tr>
<td>XTI</td>
<td>Junction current temperature exponent coefficient</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>TPB</td>
<td>Temperature coefficient for PB</td>
<td>0</td>
<td>V/K</td>
</tr>
<tr>
<td>TPBSW</td>
<td>Temperature coefficient for PBSW</td>
<td>0</td>
<td>V/K</td>
</tr>
<tr>
<td>TPBSWG</td>
<td>Temperature coefficient for PBSWG</td>
<td>0</td>
<td>V/K</td>
</tr>
<tr>
<td>TCJ</td>
<td>Temperature coefficient for CJ</td>
<td>0</td>
<td>1/K</td>
</tr>
<tr>
<td>TCJ SW</td>
<td>Temperature coefficient for CJ SW</td>
<td>0</td>
<td>1/K</td>
</tr>
<tr>
<td>TCJ SWG</td>
<td>Temperature coefficient for CJ SWG</td>
<td>0</td>
<td>1/K</td>
</tr>
</tbody>
</table>

## Flicker Noise Model Parameters

**Table 15** Flicker Noise Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOIA</td>
<td>Noise parameter A</td>
<td>1E20 / 9.9E18</td>
<td>-</td>
</tr>
<tr>
<td>NOIB</td>
<td>Noise parameter B</td>
<td>5E4 / 2.4E3</td>
<td>-</td>
</tr>
</tbody>
</table>
4  BSIM 3v3 Characterization

Table 15  Flicker Noise Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value (NMOS/PMOS)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOIC</td>
<td>Noise parameter C</td>
<td>-1.4E-12 / 1.4E12</td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>Saturation field</td>
<td>4.1E7</td>
<td>V/m</td>
</tr>
<tr>
<td>AF</td>
<td>Frequency exponent</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>Flicker exponent</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KF</td>
<td>Flicker noise parameter</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Non-Quasi-Static Model Parameters

Table 16  Non-Quasi-Static Model Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELM</td>
<td>Elmore constant of the channel</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Model Selection Flags

Table 17  Model Selection Flags

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Type of Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>8</td>
<td>BSIM 3v3 model selector (in UCB SPICE)</td>
</tr>
<tr>
<td>MOBMOD</td>
<td>1</td>
<td>Mobility model</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CAPM OD</td>
<td>0</td>
<td>Capacitance model</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NQSM OD</td>
<td>0</td>
<td>Non quasi static model</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Table 17  Model Selection Flags (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Type of Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOIM OD</td>
<td>1</td>
<td>Noise model</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User Definable Parameters

Table 18  User Definable Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPART</td>
<td>Charge partitioning coefficient</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>DELTA</td>
<td>Parameter for smoothness of effective $V_{ds}$ calculation</td>
<td>0.01</td>
<td>-</td>
</tr>
</tbody>
</table>

Additional Parameters needed for accurate RF modeling

Table 19  RF Parameters for the RF subcircuit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSHB</td>
<td>bulk sheet resistance</td>
<td>25</td>
<td>Ω</td>
</tr>
<tr>
<td>DGG</td>
<td>distance between gate stripes</td>
<td>2E-6</td>
<td>m</td>
</tr>
<tr>
<td>DSCB</td>
<td>distance source to bulk contact</td>
<td>2E-6</td>
<td>m</td>
</tr>
<tr>
<td>DDCB</td>
<td>distance drain to bulk contact</td>
<td>2E-6</td>
<td>m</td>
</tr>
<tr>
<td>RBDB</td>
<td>resistance between bulk connection point and drain</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>RBSB</td>
<td>resistance between bulk connection point and source</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>RBPD</td>
<td>resistance between the region below the channel and the drain region</td>
<td>100</td>
<td>Ω</td>
</tr>
</tbody>
</table>


## BSIM3v3 Characterization

**Table 19**  RF Parameters for the RF subcircuit (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBPS</td>
<td>resistance between the region below the channel and the source region</td>
<td>100</td>
<td>Ω</td>
</tr>
</tbody>
</table>
Test structures for Deep Submicron CMOS Processes

A very important prerequisite for a proper model parameter extraction is the selection of appropriate test structures. The following sections describe the necessary test structures for the determination of CV and DC model parameters. A very detailed description of ideal test structures can be found in the JESSI AC-41 reports [2].

Transistors for DC measurements

The minimum set of devices for a proper extraction of DC model parameters is marked with ■ in Figure 137. This means one transistor with large and wide channel (and therefore showing no short/narrow effects), one transistor with a narrow channel, one transistor with a short channel, and one device with both short and narrow channel. Please note that with this minimum set of devices some parameters cannot be determined correctly (see the chapter “Extraction of parameters”) and they are set to default values during the extraction. For an extraction of all model parameters and a better fit of the simulated devices over the whole range of designed gate length and gate width, use more devices with different gate lengths and gate widths as shown in Figure 137 with ○ signs. You can use additional devices, for example, for evaluating the extraction results for certain channel lengths and widths used in your process. They are marked ▲.
a) Requirements for Devices

**Large**  For a proper extraction of the basic model parameters, the short and narrow channel effects should not affect the large device extraction. Also the drain-source-resistance parameters should not have an influence on the simulated behavior of the large device. For a typical 0.5 micron CMOS process with a gate oxide thickness of 11 nm, a large device with channel length of 10 microns and channel width of 10 microns was found to meet these requirements.

You can check this prerequisite if you only extract the parameters in the idvg/Large setup and then perform a simulation of the setup idvg/Large_m. After that simulation, perform the other geometry extractions and re-simulate the idvg/Large setup again. Now, the curve ID = f(Vgs) should not change more than roughly 5%
compared to the first simulation. If the difference is bigger, a larger device should be used to enable a good extraction of the basic model parameters.

**Narrow**  For the DUT Narrow\(_m\) you should use a device with the smallest designed gate width of your process. Using more narrow devices will increase the number of parameters that can be extracted and will lead to a better fit of the curves over the range of different channel widths.

**Short**  For the DUT Short\(_m\) you should use a device with the shortest designed gate length of your process. Using more short devices will increase the number of parameters that can be extracted and will lead to a better fit of the curves over the range of different channel lengths.

**Small**  For the DUT Small\(_m\) you should use a device with the shortest designed gate length and the smallest designed gate width of your process. This small device will incorporate all short and narrow channel effects and will be an indicator of how good your parameter extractions are.

**In general**  It is recommended to use the designed gate lengths and widths. Effects due to under diffusion or decrease of poly-Si gate length are sufficiently covered by the extraction routines and the model itself.
**Drain/ Source - Bulk Diodes for DC Measurements**

Table 20  Test Structures for Drain/ Source - Bulk Diodes

<table>
<thead>
<tr>
<th>DUT</th>
<th>Shape</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode_Perim_m</td>
<td><img src="image1.png" alt="Diagram" /></td>
<td>Finger diode with a large perimeter and a small area (shown here for an n-type device)</td>
</tr>
<tr>
<td>Diode_Area_m</td>
<td><img src="image2.png" alt="Diagram" /></td>
<td>Area diode with a large area and a small perimeter (shown here for an n-type device)</td>
</tr>
</tbody>
</table>

**Test Structures for CV Measurements**

Table 21  Test Structures for CV Measurements

<table>
<thead>
<tr>
<th>DUT</th>
<th>Shape</th>
<th>Applied bias (n-type)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_Area_m (pn-junction)</td>
<td><img src="image3.png" alt="Diagram" /></td>
<td>DrainsOURCE (n⁺) Bulk (p⁻)</td>
<td>Area diode with a large area, a small perimeter and the doping concentration n⁺ of the drain/source region (shown here for an n-type device).</td>
</tr>
</tbody>
</table>
### Table 21  Test Structures for CV Measurements

<table>
<thead>
<tr>
<th>DUT</th>
<th>Shape</th>
<th>Applied bias (n-type)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_Perim_m (pn-junction)</td>
<td><img src="C_Perim_m_diagram.png" alt="Image" /></td>
<td><img src="C_Perim_m_diagram.png" alt="Diagram" /></td>
<td>Finger diode with a large perimeter, a small area and the doping concentration ( n^+ ) of the drain/source region (shown here for an n-type device).</td>
</tr>
<tr>
<td>C_Perim_GATE_m (pn-junction)</td>
<td><img src="C_Perim_GATE_m_diagram.png" alt="Image" /></td>
<td><img src="C_Perim_GATE_m_diagram.png" alt="Diagram" /></td>
<td>Finger diode with a large perimeter, a small area and the doping concentration ( n^- ) of the LDD region (shown here for an n-type device).</td>
</tr>
<tr>
<td>C_Oxide_m (Gate oxide)</td>
<td><img src="C_Oxide_m_diagram.png" alt="Image" /></td>
<td><img src="C_Oxide_m_diagram.png" alt="Diagram" /></td>
<td>Large area MOS capacitor</td>
</tr>
<tr>
<td>C_GATE_SD_m (Overlap gate - drain/source)</td>
<td><img src="C_GATE_SD_m_diagram.png" alt="Image" /></td>
<td><img src="C_GATE_SD_m_diagram.png" alt="Diagram" /></td>
<td>A large number of parallel switched LDD MOS transistors (e.g., 200 transistors with ( L=0.25\mu m ), ( W=10.0\mu m )) or multifinger transistors (see shape)</td>
</tr>
</tbody>
</table>
Table 21  Test Structures for CV Measurements

<table>
<thead>
<tr>
<th>DUT</th>
<th>Shape</th>
<th>Applied bias (n-type)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_Gate_SDB_m</td>
<td>(Overlap gate - bulk/drain/source)</td>
<td></td>
<td>A large number of parallel switched LDD MOS transistors (e.g., 200 transistors with L=0.25µm, W=10.0µm) or multifinger transistors (see shape)</td>
</tr>
</tbody>
</table>

Table 22  Test Structures for Intrinsic Capacitance Measurements

<table>
<thead>
<tr>
<th>DUT</th>
<th>Shape</th>
<th>Applied bias (n-type)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_Gate_D_m</td>
<td>(Overlap gate - drain with applied DC bias)</td>
<td></td>
<td>A short channel transistor, with such a channel width or different fingers that the measurement instrument (CV-meter or Network Analyzer) is not overloaded by DC currents and a reasonable capacitance value can be measured.</td>
</tr>
<tr>
<td>OPEN</td>
<td></td>
<td></td>
<td>For very small capacitance values, an additional OPEN calibration structure on chip is necessary to compensate the capacitance of pads and lines to the transistor.</td>
</tr>
</tbody>
</table>
Testchips

You will find an example for a test chip design, which meets most of the requirements of the extraction of BSIM3v3 model parameter, in the JESSI Report AC 41 94-3 “Description of parametrized European Mini Test Chip.” Please check also the test chip design of the Fabless Semiconductor Association in the U.S. (http://www.fsa.org).

Test Structures for S-parameter Measurements

a) Test Structures

Performing S-parameter measurements with MOS devices on a wafer requires properly designed test structures that meet certain requirements:

- The test devices must drive enough current for correct measurement results
- They should fulfill the specifications for high frequency probes
- Additional structures should be available for the measurement of parasitic elements to de-embed them from the measurements on the test device

A principle layout of such a test structure is shown in Figure 138 [9].
The MOS transistor is designed as a finger structure with four common gates, three source areas and two drain areas. In summary, this compact layout results in a very wide gate width, which can drive a high current $I_{ds}$.

The probes are connected in a Ground-Signal-Ground scheme according to the recommendations in [4]. As it is shown above, the calibration plane of the network analyzer is at the end of the probe head. This means, the transmission lines that connect the DUT with the probe head must be modeled and their effect must be de-embedded from the measured data of the DUT. This can be done by measuring an OPEN and a SHORT test device without a DUT and using these measurements to de-embed the parasitic influence of the pads. The following two figures show the design of these OPEN and SHORT test structures. Both of these test structures will be used for a simple and effective

Figure 138  Layout of a Test Structure for a MOS Transistor
de-embedding procedure (OPEN_SHORT) as will be shown later. Additional test devices, like a THROUGH device can be used to verify the de-embedding strategy. In general, the complexity of the de-embedding procedure depends on the frequency range of the measurements and the design of the test structures. However, a proper de-embedding is the absolute pre-requisite for an accurate AC modeling of the MOS transistor.

Figure 139 OPEN, SHORT and THROUGH structure without MOS transistor

Table 23 Test Structures for S-parameter Measurements

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>Top View</th>
<th>Input in <code>...Define DUT</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>One single transistor</td>
<td><img src="image" alt="Top View" /></td>
<td>No of gates: 1&lt;br&gt;No of drains: 1&lt;br&gt;No of sources: 1&lt;br&gt;L: L&lt;br&gt;W: W&lt;br&gt;Area drain: AD&lt;br&gt;Area source: AS&lt;br&gt;Per. drain: PD&lt;br&gt;Per. source: PS</td>
</tr>
</tbody>
</table>
## BSIM 3v3 Characterization

### Table 23  Test Structures for S-parameter Measurements

<table>
<thead>
<tr>
<th>Test Structure</th>
<th>Top View</th>
<th>Input in <code>__Define DUT</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>n parallel transistors</td>
<td><img src="image1" alt="Diagram" /></td>
<td></td>
</tr>
<tr>
<td>No of gates:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>No of drains:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>No of sources:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>L:</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>W:</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Area drain:</td>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>Area source:</td>
<td>AS</td>
<td></td>
</tr>
<tr>
<td>Per. drain:</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>Per. source:</td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>multifinger transistors</td>
<td><img src="image2" alt="Diagram" /></td>
<td></td>
</tr>
<tr>
<td>No of gates:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>No of drains:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>No of sources:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>L:</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>W:</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Area drain:</td>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>Area source:</td>
<td>AS</td>
<td></td>
</tr>
<tr>
<td>Per. drain:</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>Per. source:</td>
<td>PS</td>
<td></td>
</tr>
</tbody>
</table>
b) De-embedding procedures

The DUT Deembedding > Calculation contains five different setups, two for general purposes and three with different de-embedding methods, to be selected depending on the availability of test structures and the frequency range of measurements. They are:

- no_deembedding
- resetDeembedding

and

- deembed_open
- deembed_open_short
- deembed_user_defined

1. OPEN:

This the simplest way of de-embedding and is often used for frequency ranges up to 10 GHz. It is assumed that the parasitics can be modeled using the following equivalent circuit:
4 BSIM 3v3 Characterization

The OPEN device is measured and the S-parameters of the DUT are calculated as shown next:

**Figure 140** Equivalent circuit for the parasitic elements (including MOS-Transistor)
\[ S_{\text{total}} \rightarrow Y_{\text{total}}, \quad S_{\text{open}} \rightarrow Y_{\text{open}} \]

\[ Y_{\text{DUT}} = Y_{\text{Total}} - Y_{\text{OPEN}} \]

\[ Y_{\text{dut}} \rightarrow S_{\text{dut}} \]

where:

- \( S_{\text{total}} \rightarrow \) measured \( S \)-parameters of the DUT including parasitics
- \( S_{\text{open}} \rightarrow \) measured \( S \)-parameters of the OPEN test structure
- \( S_{\text{dut}} \rightarrow \) \( S \)-parameters of the DUT without influence of the parasitics
- \( Y_{\text{dut}} \rightarrow \) transformed \( Y \)-parameters with:

  \[ Y_{\text{total}} = \text{TwoPort}(S_{\text{total}}, \text{"S","Y")} \]

The typical behavior of this test structure is shown in Figure 141 and Figure 142.
Figure 141 $S_{11,22}$ of the OPEN structure

Figure 142 $S_{12,21}$ of the OPEN structure
2. OPEN_SHORT:

This is a very fast and effective way of de-embedding from measurements of an OPEN and a SHORT device. It is useful for frequencies above roughly 3.5 GHz if the accuracy of the OPEN method is not satisfying.

This method is described in detail in the IC-CAP demo_features. (See the file: `$ICCAP_ROOT/examples/demo_features/4extraction/deemb_short_open.mdl`)

It is assumed that the parasitics can be modeled using the following equivalent circuit:

![Diagram of MOS-Transistor equivalent circuit](image)

**Figure 143** Detailed equivalent circuit of MOS-Transistor

The transistor is located between nodes: Gate = 222, Drain = 111, Source, Bulk = 333
Regarding the two test structures OPEN and SHORT and their equivalent circuits, it is assumed that there are ONLY parallel parasitics followed by serial parasitics. If this prerequisite is valid, the measured data of the SHORT device and the measured data from the DUT have to be de-embedded from the outer parallel parasitic elements first (after a conversion of S to Y parameters):

\[
Z_{\text{dut\_without\_open}} = Z(Y_{\text{total}} - Y_{\text{open}})
\]

\[
Z_{\text{short\_without\_open}} = Z(Y_{\text{short}} - Y_{\text{open}})
\]

The subsequent step is to de-embed the measured data of the DUT from the serial parasitic elements and convert them back to S-parameters:

\[
S_{\text{dut}} = S(Z_{\text{dut\_without\_open}} - Z_{\text{short\_without\_open}})
\]

The typical behavior of the OPEN_SHORT structure is shown in the two figures below:

![Figure 144](image)

Figure 144 $S_{11,22}$ of the OPEN_SHORT structure
3. USER_DEFINED:

This setup can be used to implement user-specific de-embedding procedures with other test structures than OPEN and SHORT or to achieve a higher quality in de-embedding.

Please see the transform deembed_all to locate the entry point for your specific de-embedding procedure.

The ultimate tool for de-embedding with IC-CAP is the De-embedding Tool-kit where a large number of ready-to-go solutions together with the theoretical background can be found. Please contact Dr. Franz Sischka from Agilent EEsof (franz_sischka@agilent.com) for more details.

c) Verification procedures

The BSIM3v3 Modeling Package provides a method to verify the de-embedding. It uses a THROUGH dummy test device. After a correct de-embedding of the parasitic components, the S-parameters of the THROUGH should show the behavior of

![Figure 145](image.png)
of an ideal, matched transmission line with $Z_0=50$ Ohm and
a TD that represents the electrical length of the through line
in the THROUGH dummy device.

The $S_{11}$ and $S_{22}$ curve should be concentrated in the center
of the Smith chart, while $S_{21}$ and $S_{12}$ should both begin at
$(1+j^0)$ and turn clockwise on the unity circle.

If these pre assumptions are not given, the following items
should be checked:

• Is the calibration OK?

• If the OPEN method is used, consider to enhance the
de-embedding quality by using the OPEN_SHORT
method, which removes the inductive parasitics in the
measured data.

• If the OPEN_SHORT method is used and the frequency
is very high (>30 GHz), it should be checked whether
the assumptions for using OPEN_SHORT are still given.
The easiest way to do this is to model the OPEN and
the SHORT device using the equivalent circuits given in
Test_open and Test_short.
Extraction of Model Parameters

This section describes the parameter extraction sequence and the extraction strategy.

Parameter Extraction Sequence

The default setting of the extraction flow is programmed according to a procedure found to give best extraction results. Using this macro, everything is done automatically.

The extraction functions are equipped with error and plausibility checks. If an error occurs or some parameters have strange or unrealistic values, you will get an error warning at the end of the macro.

In some cases, it can be useful not to extract all the parameters. For instance, if a 3.0 micron CMOS process has to be modeled with BSIM3, the typical short channel effects of the threshold voltage are not given and the extraction of the parameters DVT0, DVT1, and so on can result in very unrealistic values. In this case, those parameters should be removed from the extraction flow.

In general, if the macro produces errors, you should add the visual tuning feature to those parameters that caused the error. In a further run, the correspondent curves are simulated and displayed, and the user can try to find the source of the error.

The sequence of the model parameter extraction is shown in the following figure. You can modify this extraction flow by editing the flow if you find another sequence that better fits your special process.
This section describes two aspects of the extraction strategy: a group extraction and a physically oriented model parameter extraction.

**Group Extraction Strategy**

A major enhancement of the BSIM3v3 model compared to older simulation models is that one set of model parameters covers the whole range of channel lengths and channel widths of a certain process that can be used in circuit designs. Many effects in the BSIM3 model depend very strongly on device dimensions such as the channel length and width. This is considered in the determination of model parameters in the BSIM3v3 Modeling Package through the use of a group extraction strategy.

**Figure 146** shows the principle procedure of model parameter extraction as it was used in older models like the MOS Level 3 model. The model parameter $P_x$ is determined from the measured electrical behavior of one single test transistor. The measured data is transformed in such a way that $P_x$ can be determined with regression methods.
In contrast, the group extraction strategy, which is shown in Figure 147, uses the measured electrical behavior of several test transistors with different gate lengths and gate widths.

In a first step, intermediate values like the threshold voltage $V_{th}$ are determined and stored in a new data array as a function of gate length. In the next step, this new data array is transformed in such a way that the model parameters $P_x$ can be determined with regression methods. Parameters extracted with this method describes the behavior very well of the devices in a wide range of channel lengths and channel widths.
Physically Oriented Model Parameter Extraction

For the determination of device model parameters from measured I-V or C-V curves, usually two general principles are applied—the optimization of the simulated device behavior or the parameter extraction based on the device equation.

The basis of the optimization process is the simulation of a device with exactly the same inputs (voltages, currents) that are used to measure the device. The error between simulated and measured data is the cost function for the optimization algorithms, which changes certain model parameters of the device, re-simulates it, and checks whether the error has increased or decreased. The advantage of this procedure is that the fitting between the measured curves and the simulated ones can be very good because the optimizer always tries to minimize this difference. However, in order to achieve this very good fitting, the optimization algorithm can give the model parameter physically unreasonable values. Another disadvantage is that many optimization algorithms are not able to find the global minimum of the failure function, which is the difference between measurement and simulation, and the success of the optimization depends on the start values of the model parameters. The last difficulty that can arise by using pure optimization algorithms for the model parameter determination is that the boundaries for the optimization process must be set very carefully. This means that the user of the optimization algorithm must have good knowledge about the device model and where the different model parameters have their influence on the device behavior in order to restrict the optimization process to a certain range of data.

In contrast to the optimization strategy, the extraction strategy is strictly based upon the device equations. If these device equations are physically oriented, as in the case of the BSIM3v3 model for MOS transistors, the extraction of the model parameters must give an accurate and realistic representation of the device physics. The basic idea of this extraction strategy is to transform measured data into such a form that model parameters of a certain part of the device
equations can be derived by mathematical regression methods. The extraction routines must therefore incorporate much more knowledge about the model and its behavior. Generally, model parameters extracted in this way are more realistic and physically oriented. However, the fitting between the measured and simulated curves can be less accurate than in the case of an optimization, because the extraction method gives a realistic physical representation of the device while the optimization only targets a minimum error between measurement and simulations.

Figure 149 shows the principle data flow of such an extraction routine for the short channel model parameters DVT0 and DVT1. In this example, the threshold voltage $V_{th}$ of several test transistors with different gate lengths is determined and stored in an intermediate data array. The short channel effect $\Delta V_{th}$ is isolated in the next step from $V_{th}$ as a function of gate length and bulk voltage $V_{bs}$. Figure 148 shows $\Delta V_{th}$ as a function of those two variables. Only a subset of this data array is used for the determination of DVT0 and DVT1, and the boundaries for defining this subset are set by the extraction routine. As shown in the flowchart in Figure 149, different results from this action are possible. In the first case, no data point is available for the extraction and the user is informed with a warning message. This may occur for instance after measurement errors or with old CMOS processes that do not show a short channel effect. As a further possible result, only one usable data point is returned. From this data point, one model parameter can be determined while the second one has to be set to its default value.
In the normal case, a group of usable data points can be identified and transformed in such a way that DVT0 and DVT1 can be extracted through linear regression methods.
Figure 149  Extraction of Short Channel Effect Parameters DVT0, DVT1
Binning of Model Parameters

Usage of binned models in a simulator

The binning idea

The idea of binning is to provide different model parameter sets for a scalable model (e.g., a MOS device) according to the device dimensions. In the case of MOSFETs, the validity of such a parameter set is determined by LMIN, LMAX, WMIN, WMAX for each bin.

Major commercial simulators like HSPICE, Spectre, and ADS support the binning feature for semiconductor models. However, it is not included in standard UC Berkeley SPICE3f5!

Figure 150  Binned model according to the measured devices

Let’s take the example shown in the diagram above: we have 4 different bins with 4 different parameter sets. If we look only at the bins with the smallest width (see the arrow above), we still have 2 different parameter sets: set #1 and set #2.
The simulator would take the bins according to the following table:

**Table 24  Bin Conditions**

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L &lt; L_{MIN}(bin1)$</td>
<td>Error: not specified!</td>
</tr>
<tr>
<td>$L_{MIN}(bin1) \leq L &lt; L_{MAX}(bin1)$</td>
<td>BIN1 interpolated</td>
</tr>
<tr>
<td>$L_{MIN}(bin2) \leq L &lt; L_{MAX}(bin2)$</td>
<td>BIN2 interpolated</td>
</tr>
<tr>
<td>$L \geq L_{MAX}(bin2)$</td>
<td>Error: not specified!</td>
</tr>
</tbody>
</table>

Please note: $L_{MAX}(bin1) = L_{MIN}(bin2)$

The simulator now calculates an effective model parameter $P(L)$ from the different binned parameter sets and the actual gate length of the device to simulate.

In addition, inside a certain bin, the parameter itself is interpolated so that we end up with the following diagram:

**Figure 151** Calculation of binned model parameters
Advanced binning approaches

As the diagram in Figure 151 clearly shows, the model is defined only inside the gate length of the characterized devices. This is a critical condition, because the following two scenarios are very common for MOS devices:

• It is very usual to use a transistor with, for example, L = 10 µm as the largest measured device and to extrapolate the parameter set to devices with larger gate lengths. This is not a problem because the 10 µm transistor already behaves like an ideal MOS transistor without short and narrow channel effects.

• For statistical simulations, the gate length and widths are overlaid by a statistical variation to reflect variations in lithography. If gate length or gate width are already at the boundary of the available model bins, this would not work.

Both described effects would cause no problem using the normal BSIM3 or BSIM4 model without binning. However, having the restrictions of the binning implementation in the simulators, the following two alternatives would help to overcome this bottleneck.

Extension of binning to include virtual devices

The first idea is to add additional model sets for areas in the L-W-space, which are not fully covered by measured devices. The following diagram shows such a scenario:
The binned model parameter sets for region 1 through 4 have been determined from measured devices. Now, for the generation of the parameter set of region 9, it is assumed that the parameters for device \( d \) are equal to the parameters of device \( c \) and parameters from \( h \) are equal the parameters from \( g \). The gate length of \( d \) and \( h \) are selected so large, that they cover all useful applications. The diagram in Figure 153 shows the principal calculation of the parameter \( P \) over an available range of gate lengths \( L \).
Extraction of binned model parameters

General algorithm

- For each device $D_i$ at the boundary of the bins, the original parameter $P_{0i} = P_i$ is determined using a circuit/model parameter set without the binning feature!
- For each bin, the parameter is interpolated for the actual length and width according to the following equation:

$$P(L, W)_i = P_i + PL_i/L_{eff} + PW_i/W_{eff} + PP_i/(W_{eff} L_{eff})$$

- The binning parameters $P_i, PL_i, PW_i, PP_i$ for one bin must be determined from the original parameters $P_{0i}$ and $P_{0i+1}$. This is also very important to make sure that the parameter $P$ is continuous at the boundary between two bins. That’s the reason why the devices at the edges of a bin are used to determine the parameters!

$P_{0i}$ original model parameter, for example, $VTH0$ extracted separately for each device

Figure 153 Calculation of binned model parameters with extensions
For BSIM3:

\[ L_{\text{eff}} = L_{\text{des}} - 2 \left( L_{\text{INT}} + \frac{L L}{L_{\text{des}}} + \frac{L W}{W_{\text{des}}} + \frac{L W L}{L_{\text{des}} W_{\text{des}}} \right) \]

\[ W_{\text{eff}} = W_{\text{des}} - 2 \left( W_{\text{INT}} + \frac{W L}{W_{\text{des}}} + \frac{W W}{W_{\text{des}}} + \frac{W W L}{W_{\text{des}} W_{\text{des}}} \right) \]

For BSIM4:

\[ L_{\text{eff}} = L_{\text{des}} + XL - 2 \left( L_{\text{INT}} + \frac{L L}{L_{\text{des}}} + \frac{L W}{W_{\text{des}}} \left( \frac{L W N}{L_{\text{des}}} \right)^{\frac{1}{N}} + \frac{L W L}{L_{\text{des}} W_{\text{des}}} \left( \frac{L W N}{L_{\text{des}}} \right)^{\frac{1}{N}} \right) \]

\[ W_{\text{eff}} = \frac{W_{\text{des}}}{N F} + XW - 2 \left( W_{\text{INT}} + \frac{W L}{W_{\text{des}}} \left( \frac{W W N}{W_{\text{des}}} \right)^{\frac{1}{N}} + \frac{W W L}{W_{\text{des}} W_{\text{des}}} \left( \frac{W W N}{W_{\text{des}}} \right)^{\frac{1}{N}} \right) \]

- \( L_{\text{INT}} \): length dependant model parameter
- \( P(L)_i \): finally used interpolated model parameter
- \( P_i \): constant model parameter
- \( P(L)_i \): constant model parameter
- \( L_{\text{eff}} \): effective gate length
- \( W_{\text{eff}} \): effective gate width
Implementation into the BSIM 3/4 Modeling Packages

Output for the selected simulator

The output of the BSIM3/BSIM4 Modeling Packages is ready for use with a simulator. One of the major problems is that the basic SPICE3F5 simulator of UC Berkeley does not include the binning features of ADS, HSPICE, or Spectre. Therefore, binning will be limited to those commercial simulators!

The following listing shows a typical binned library for ADS:

```plaintext
; example ADS BinModel
; Min[ , ] (inclusive)
; Max[ , ] (exclusive, inclusive if Max=Min)

model my_nmos BinModel \
  Model[1]="my_nmos1" \
  Model[2]="my_nmos2" \
  Model[3]="my_nmos3" \
  Model[4]="my_nmos4" \
  Model[5]="my_nmos5" \
  Model[6]="my_nmos6" \
  Model[7]="my_nmos7" \
  Model[8]="my_nmos8" \
  Model[9]="my_nmos9" \
Param[1]="Length" \
Param[2]="Width" \

; model my_nmos1 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos2 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos3 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos4 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos5 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos6 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos7 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos8 MOSFET NMOS=1 PMOS=0 etc ...
model my_nmos9 MOSFET NMOS=1 PMOS=0 etc ...
```
Definition of binning areas

One of the major disadvantages of the binning approach is, that the scalability feature of a model is not fully taken into account. With the binning approach, all binned parameters are interpolated using the same functions 1/L and 1/W.

Typically a scalable model behavior, for example, the threshold voltage, is replaced by the binning approach. The following example will make this more clear:

\[
V_{th} = VTH0 + \left( K_{in} \cdot \left( \frac{\Phi_s}{V_{b_{eff}}} - K1 \cdot \sqrt{\Phi_s} \right) \right) \left[ 1 + \frac{LPEB}{L_{eff}} \right] - K2 \cdot \frac{V_{b_{eff}}}{W_{eff}} - \frac{K}{W_{eff}} + 1/W0 \cdot \Phi_s
\]

\[
+ K_{in} \cdot \left[ \frac{LPE0}{L_{eff}} - 1 \right] \sqrt{\Phi_s} \cdot \left( K3 + K3B \cdot V_{b_{eff}} \right) \cdot \frac{TOXE}{W_{eff}} - V_{b_{eff}} \cdot \Phi_s
\]

\[
- 0.5 \cdot \frac{DVT0W}{\cosh(DVT1W - \frac{L_{eff}}{L_{0}}) - 1} - 0.5 \cdot \frac{DVT0}{\cosh(DVT1 - \frac{L_{eff}}{L_{0}}) - 1} \cdot (V_{b_{eff}} - \Phi_s)
\]

\[
- \frac{0.5}{\cosh(DSUBB - \frac{L_{eff}}{L_{0}}) - 1} \cdot \left( ETA0 + ETAB \cdot V_{b_{eff}} \right) \cdot V_{ds}
\]

\[
- n_v \cdot \ln \left( \frac{L_{eff}}{L_{eff} + DVTP0 \cdot \left( 1 + e^{-DVTPo} \right) \cdot V_{ds}} \right)
\]

The threshold voltage of BSIM4 is given above. It is a complex equation that describes length and width related effects. In a binned model, parameters describing those effects (DVT0, DVT1, LPE0, e.t.c.) are normally not used. Instead the basic threshold voltage parameters VTH0, K1, and K2 together with the binning extensions PVTH0, LVTH0, WVTH0, ..., WK2 are describing these effects.

If we have a Vth-function like in the following figure, it is clear that a proper selection of binning areas is necessary to cover this behavior!
Figure 154  Typical $V_{th}$ behavior of a 0.18um CMOS process (n-type)

Figure 155  Two different binning scenarios
The previous diagram clearly shows the difficulty in defining proper boundaries for the different binning areas. While the binning scenario 1 covers the typical behavior of Vth, the second scenario would miss the point of maximum Vth.

To verify the correct behavior, additional devices between the binning boundaries are necessary, especially in the critical areas with minimum gate lengths and widths as outlined below:

**Figure 156** Devices for verification
4 BSIM 3v3 Characterization

Importing older version BSIM 3v3 Files

This section is intended for users wishing to import model files created with former versions of the BSIM3 Modeling Package (the non-graphic version) into the new BSIM3 Modeling Package using the GUI.

If you have a model file created with a former, non-graphic version of the BSIM3 Modeling Package, please proceed as described in the following example.

Open 
../examples/model_files/mosfet/BSIM3/BSIM3_DC.CV.Measure as well as the BSIM3v3-Model-File.mdl you wish to import.

For example, if the BSIM3v3.mdl file is located in 
.../examples/model_files/mosfet/bsim3v3/examples/dc_modeling/MASTER_MEAS_nmos.mdl, open that one.

The next step is to choose ImportBSIM3v3 in the header of the new GUI BSIM3_DC.CV.Measure.mdl. You will get a prompt as shown in the following figure:
Enter the name and location of the new BSIM3 project to be created and choose Import.

After the data is imported, you will get a message stating that the BSIM3v3-data has been successfully imported and you should go to the DC Transistor DUTs-folder, which looks like Figure 157.

![Figure 157](image)

The DUT names already contain the functionality! This may be confusing, but you can change the names after the import procedure.

When starting the Size Category Set action, the following GUI appears:

![GUI](image)
4 BSIM 3v3 Characterization

Perform *Auto Set* and select *Large_m* as the Large Transistor inside the *Set Category* window.

Now the size categories are defined automatically and the resulting DC Transistor DUTs folder is shown in Figure 158.
You can now save the project and proceed as you would with measured project data.

**Hints**

If you do not have such clearly defined test structures at hand, you may have to select the size category manually. The following example demonstrates this.

In the following figure, the *Large* transistor does not fit the max. L of the *Length scaled* and the max. W of the *Width scaled* devices because its size is 5 µm * 5 µm. Therefore, the automatic assignment of the size categories does not lead to satisfying results.

To set the size manually, click at a certain device and change the category by selecting the appropriate category from a pull-down menu in the middle of the bottom row of buttons in the *Select Categories* window.
4 BSIM3v3 Characterization

References

1 "BSIM3 Manual," University of California at Berkeley, December 2001

2 "Characterization System for Submicron CMOS Technologies," JESSI Reports AC41 94-1 through 94-6


4 "Layout Rules for GHz Probing", Application Note Cascade Microtech

5 F. Sischka, "Deembedding Toolkit," Agilent, GmbH, Böblingen, Germany

6 File: "deemb_short_open.mdl" in IC-CAP examples, Agilent EEsof


8 C. Enz, “MOS Transistor Modeling for RF IC Design”, Silicon RF IC: Modeling and Simulation Workshop, Lausanne, Switzerland, 2000


How to get the BSIM3v3 manual from University of Berkeley/California:

University of Berkeley/California provides an easy way to get a free copy of the BSIM3v3 manual and the BSIM3v3 source code from their world-wide web home page:

http://www-device.EECS.Berkeley.EDU/~bsim3/

Other useful internet addresses:
Advanced Modeling Solutions:
http://www.admos.de
Agilent EEsof homepage
http://www.agilent.com/find/eesof/

Copyright
BSIM3 has been developed by the Device Research Group of the Department of Electrical Engineering and Computer Science, University of California, Berkeley and copyrighted by the University of California.
4 BSIM 3v3 Characterization
This chapter provides a theoretical background for the BSIM4 model. It is based on the model revision BSIM4.3.0, released by the University of California at Berkeley on May 9, 2003. Using the Modeling Packages is described in Chapter 3, “Using the BSIM Modeling Packages.”

BSIM4.3.0 is developed to address several new issues in modeling sub-0.13 micron CMOS technology and RF high-speed CMOS circuit simulation.

In addition to several bug fixes, BSIM4.3.0 has the following major improvements and additions over BSIM4.2.1:

• Shallow trench isolation has been adopted by a new scalable stress effect model for process induced stress effects. Performance thus becomes a function of the active area geometry and the location of the device inside the active area.
• Velocity saturation, velocity overshoot and source end velocity limit effects are taken into account through a unified current-saturation model.

• The use of a new temperature model allows simulation of temperature effects on saturation velocity, mobility, and S/D resistances.

• The holistic thermal noise model has been enhanced.

• The forward body bias model has been improved.

• The gate direct tunneling model has been extended to multiple-layer gate dielectrics.

The complete list of bugs and fixes and the users who reported them, the BSIM4.3.0 source code, BSIM4.3.0 user manual, BSIM4.3.0 new enhancement document and testing examples can be downloaded at [1]:

http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html
What’s new inside the BSIM 4 Modeling Package:

This section lists the enhancements and changes made to the Modeling Package for each revision since IC-CAP 2002. They are listed in reverse order so that the new version is on top, followed by former versions.

New features in the BSIM 4 Modeling Package, Rev. IC-CAP 2004, spring 2005

The supported model is now BSIM 4.3.0, released by UCB in May 2003.

1.) General

The new effects modeled in BSIM4.3.0 are included as well as some improvements in handling the Modeling Package.

- Shallow Trench Isolation (STI) effects
- New temperature model
- Enhancements in the Holistic noise modeling
- Multilayer Gate tunneling current
- Tolerances in Binning
- Scalable Model has been enhanced for specific layouts using so called “Horseshoe contacts”
- Consistency check of DC measurement data included
- The time to loading a new project has been dramatically reduced
- Extractions for BSIM4.3.0 specific parameters have been included
- New scheme to define de-embedding structures
5 BSIM4 Characterization

New features in the BSIM4 Modeling Package, Rev. IC-CAP 2004, January 2004

1.) General

The BSIM4 Modeling Package can now generate model cards and scalable RF models for the following simulators:

- Spice3 (delivered with IC-CAP)
- Advanced Design System
- Hspice
- Spectre

All temperatures in setups and documentation are now given in [K] instead of [degree C]. Many suggestions from beta and first time users have been included into the Modeling Package.

2.) BSIM4_DC_CV_Measure

The Keithley switching matrix models K707 and K708a are supported.

The maximum compliance values can be defined together with the other measurement settings.

Three new functions are implemented to drive the BSIM4_DC_CV_Measure module from a wafer prober control macro. An example for such a control macro can be found in '.../examples/model_files/mosfet/bsim4/examples/waferprober/prober_control.mdl'

3.) BSIM4_DC_CV_Extract

A complete new extraction flow is implemented. A certain extraction group (e.g., 'Basic VTH, Mobility') can be invoked several times with different configurations.

4) BSIM4_RF_Extract

A complete new extraction flow is implemented. Please see the above noted BSIM4_DC_CV_Extract for more details.
The automatic generation of HTML files has been enhanced to include a navigation tree through all results.

5) BSIM4_DC_CV_Tutorial

The model file BSIM4_DC_CV_Tutorial allows the user to evaluate all physical effects of the BSIM4 model. It provides links to the documentation to invoke the appropriate description of a certain effect while visualizing it using the tuner feature.

The model file can be found under

../mosfet/bsim4/tutorial/BSIM4_DC_CV_Tutorial.mdl

New features in the BSIM 4 Modeling Package, Rev. IC-CAP 2002, March 2003

The major enhancement in this update is the possibility to use the same set of measured data to extract parameters for the BSIM3 Model as well as for the BSIM4 Model.

This means, data generated by the BSIM3_DC.CV_MEASURE module can be imported into the BSIM4_DC.CV_EXTRACT module and vice versa.

This feature allows the user to extract model parameters for use with the BSIM3 model as well as the BSIM4 model according to his needs, using only one set of measured data.

Moreover, the flow inside an extraction group can be specified in any desired order to get highest flexibility in adopting a specific parameter extraction to a certain process.

The automatic generation of binned model files is now supported. A new folder 'Binning' in the 'BSIM4_DC.CV_Extract' module allows the specification of binning areas as well as extended binning. Final circuits are generated for simulators supporting binned model parameters: Hspice, Spectre and ADS.
The automatic generation of HTML files has been enhanced to include a navigation tree through all results. In addition, all measured data at each temperature for each device is compared with the simulated results.

The new IC-CAP feature "Plot Optimizer" is supported through the use of an additional folder Plot Optimizer which allows the entering of devices and setups for a final fine tuning approach.

A new function is implemented to extract multiple projects in a batch mode. This can be very useful for statistical modeling, where a large number of model parameter sets have to be generated for the same type of devices but from different measured test chips. Please see the macro 'Example_Wafer_Extraction' in the BSIM4_DC.CV_Extract.mdl file.

Parameter extractions have been steadily enhanced due to user's feedback.
Basic Effects Modeled in BSIM 4

- Short and narrow channel effects on threshold voltage
- Non-uniform doping effects
- Mobility reduction due to vertical field
- Bulk charge effect
- Carrier velocity saturation
- Drain induced barrier lowering (DIBL)
- Channel length modulation (CLM)
- Substrate current induced body effect (SCBE)
- Parasitic resistance effects
- Quantum mechanic charge thickness model

Enhanced drain current model

- VTH model for pocket/retrograde technologies
- New predictive mobility model
- Gate induced drain leakage (GIDL)
- Internal/external bias-dependent drain source resistance

RF and high-speed model

- Intrinsic input resistance (Rgate) model
- Non-Quasi-Static (NQS) model
- Holistic and noise-partition thermal noise model
- Substrate resistance network
- Calculation of layout-dependent parasitic elements
- Asymmetrical source/drain junction diode model
- I-V and breakdown model
- Gate dielectric tunneling current model
Key Features of the BSIM4 Modeling Package

- The new graphical user interface in Agilent’s IC-CAP enables the quick setup of tests and measurements followed by automatic parameter extraction routines.
- A new data management concept allows a powerful and flexible handling of measurement data using an open and easy data base concept.
- The powerful extraction procedures can be easily adapted to different CMOS processes. They support all possible configurations of the BSIM4 model.
- Quality assurance procedures are checking every step in the modeling flow from measurements to the final export of the SPICE model parameter set.
- The fully automatic generation of HTML reports is included to enable web publishing of a modeling project.
- The modeling package supports SPICE3e2 and major commercial simulator formats such as HSPICE, Spectre, or Agilent’s ADS.

The Modeling Package Supports Measurements on

- Single finger (normal) transistors
- Parasitic diodes
- Capacitances:
  - Oxide and Overlap
  - Bulk-Drain and Source-Drain junction
  - Intrinsic
- RF multifinger transistors

The Modeling Package Supports Extractions for

- Basic transistor behavior
- Parasitic diodes
- Capacitances
- RF behavior (S-parameters)
DC Behavioral Modeling

This section provides a theoretical background of the BSIM4 DC model. You will find some basic device equations together with some explanations on model selectors used inside the BSIM4 model and the BSIM4 Modeling Package.

At the end of this section you'll find a table listing all of the model parameters added in BSIM4.3.0 together with their default values as well as a table containing the parameter set used in version BSIM4.2.1.

Since this theoretical section can only be of introdutional character, we strongly recommend that you consult the manual from the University of California, Berkeley for a detailed description of device equations and relevant parameters [1] as well as further literature (see “References” on page 425).

Threshold Voltage Model

The complete threshold voltage model equation implemented in the BSIM4 model for SPICE is:

\[
V_{th} = V_{TH0} + K1 \cdot [Part1] - K2 \cdot [Part2] + (K3 + K3B \cdot V_{bseff}) \cdot \frac{TOXE}{W_{eff} + W0} \cdot \Phi_S
\]

\[
-\left(\frac{1}{2} \cdot Part3 \cdot (V_{bi} - \Phi_S)\right) - \left(\frac{1}{2} \cdot Part4\right)
\]

The equation above contains some shortcuts for better readability (\{Part1, Part2, Part3andPart4\}). Expanded they read:

\[
Part1 = K1 \cdot \sqrt{1 + \frac{LPEB}{L_{eff}}} \cdot \frac{TOXE}{TOXM} \cdot \sqrt{\phi_S - V_{bseff} - \phi_S}
\]

\[
+ \left(\frac{TOXE}{TOXM} \cdot \sqrt{\phi_S} \cdot \left(\sqrt{1 + \frac{LPE0}{L_{eff}}} - 1\right)\right)
\]
To set an upper boundary for body bias during simulations, the effective body bias has been introduced:

\[ V_{b\text{eff}} = V_{bc} + \frac{1}{2}(V_{bs} - V_{bc} - \delta_1) \]

\[ + \frac{1}{2} \cdot \left( \sqrt{(V_{bs} - V_{bc} - \delta_1)^2 - 4\delta_1 V_{bc}} \right) \]

where \( \delta_1 = 10^{-3} \text{V} \) and \( V_{bc} \) is the maximum allowable \( V_{bs} \) and is calculated from \( (dV_{th})/(dV_{bs}) = 0 \) to be

\[ V_{bc} = \frac{9}{10} \cdot \left( \Phi_s - \frac{K1^2}{4 \cdot K2^2} \right) \]

Furthermore, there are some shortcuts used to make Equation 88 more readable.

\[ V_{bi} = \frac{k_B \cdot T}{q} \cdot \ln \left( \frac{NDEP \cdot NSD}{n_i^2} \right) \]

characteristic length \( l_t \):
effective channel length and width, \( L_{\text{eff}} \) and \( W_{\text{eff}} \):

\[
L_{\text{eff}} = L_{\text{drawn}} - 2dL \\
W_{\text{eff}} = \frac{W_{\text{drawn}}}{NF} - 2dW
\]

### Table 25  Variables and parameters used in modeling threshold voltage

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTH0</td>
<td>VTH0</td>
<td>long channel threshold voltage at ( V_{bs} = 0 )</td>
<td>NMOS: 0.7 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PMOS: -0.7 V</td>
</tr>
<tr>
<td>K1</td>
<td>K1</td>
<td>first-order body effect coefficient</td>
<td>0.5 ( \sqrt{V} )</td>
</tr>
<tr>
<td>K2</td>
<td>K2</td>
<td>second-order body effect coefficient</td>
<td>0</td>
</tr>
<tr>
<td>K3</td>
<td>K3</td>
<td>narrow width coefficient</td>
<td>80.0</td>
</tr>
<tr>
<td>K3B</td>
<td>K3B</td>
<td>Body effect coefficient of K3</td>
<td>0.0 1/ ( V)</td>
</tr>
<tr>
<td>W0</td>
<td>W0</td>
<td>narrow width parameter</td>
<td>2.5E-6 m</td>
</tr>
<tr>
<td>LPE0</td>
<td>LPE0</td>
<td>lateral non-uniform doping parameter at ( V_{bs} = 0 )</td>
<td>1.74E-7</td>
</tr>
<tr>
<td>LPEB</td>
<td>LPEB</td>
<td>lateral non-uniform doping effect on K1</td>
<td>0 V</td>
</tr>
</tbody>
</table>
BSIM 4 Characterization

Table 25  Variables and parameters used in modeling threshold voltage (continued)

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM 4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>( k_B )</td>
<td>Boltzmann’s constant (( k_B = 1, 3807 \times 10^{-23} \frac{J}{K} ))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( T )</td>
<td>absolute temperature in Kelvin</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>( q )</td>
<td>charge of an Electron (( q = 1.602 \times 10^{-19} C ))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>( L_{\text{drawn}} )</td>
<td>channel length as drawn on mask</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>( W_{\text{drawn}} )</td>
<td>channel width as drawn on mask</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>( NF )</td>
<td>number of gate fingers</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>( TOXE )</td>
<td>electrical gate equivalent oxide thickness</td>
<td>3E-9m</td>
<td></td>
</tr>
<tr>
<td>( TOXM )</td>
<td>Gate oxide thickness at which parameters are extracted</td>
<td>( TOXE )</td>
<td></td>
</tr>
<tr>
<td>( DVT0 )</td>
<td>first coefficient of short-channel effect on ( V_{TH} )</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>( DVT0W )</td>
<td>first coefficient of narrow-width effect on ( V_{TH} ) for small channel length</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>( DVT1 )</td>
<td>second coefficient of short-channel effect on ( V_{TH} )</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>( DVT1W )</td>
<td>second coefficient of narrow-width effect on ( V_{TH} ) for small channel length</td>
<td>5.3E6m</td>
<td></td>
</tr>
<tr>
<td>( DVT2 )</td>
<td>body-bias coefficient of short-channel effect on ( V_{TH} )</td>
<td>-0.032 ( \frac{1}{V} )</td>
<td></td>
</tr>
<tr>
<td>( DVT2W )</td>
<td>body-bias coefficient of narrow-width effect on ( V_{TH} ) for small channel length</td>
<td>-0.032 ( \frac{1}{V} )</td>
<td></td>
</tr>
<tr>
<td>( DSUB )</td>
<td>DIBL coefficient exponent in subthreshold region</td>
<td>( \text{DROUT} )</td>
<td></td>
</tr>
<tr>
<td>( ETA0 )</td>
<td>DIBL coefficient in the subthreshold region</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>( ETAB )</td>
<td>body-bias for the subthreshold DIBL effect</td>
<td>-0.07 ( \frac{1}{V} )</td>
<td></td>
</tr>
<tr>
<td>( NDEP )</td>
<td>channel doping concentration at ( X_{\text{dep}0} ), the depletion edge at ( V_{BS} = 0 )</td>
<td>( 1E17 \text{ cm}^{-3} )</td>
<td></td>
</tr>
<tr>
<td>( NSD )</td>
<td>doping concentration of the S/D diffusions</td>
<td>( 1e20 \text{ cm}^{-3} )</td>
<td></td>
</tr>
<tr>
<td>( \epsilon_{si} )</td>
<td>relative dielectric constant of silicon</td>
<td>11.8</td>
<td></td>
</tr>
</tbody>
</table>
The following sections provide equations for effects modeled in the complete equation above, Equation 88. Starting from the basic equation for long and wide channels, the effects of shrinking dimensions and substrate doping variations are modeled step by step.

### Basic Threshold voltage equation

For long and wide channels the following equation is valid:

\[
V_{th} = V_{FB} + \Phi_S + \gamma \sqrt{\Phi_S - V_{bs}} = \\
V_{TH0} + \frac{\sqrt{2q\varepsilon_{Si}N_{substrate}}}{C_{oxe}} \left( \sqrt{\Phi_S - V_{bs}} - \sqrt{\Phi_S} \right)
\]

**Equation 90** is valid under the following assumptions:

- constant substrate (channel) doping
- long and wide channel

Model parameters used for the equation above are listed in the table below:

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSROX</td>
<td>EPSROX</td>
<td>gate isolators relative dielectric constant (silicon dioxide)</td>
<td>3.9</td>
</tr>
<tr>
<td>$\Phi_S$</td>
<td></td>
<td>surface potential</td>
<td>-</td>
</tr>
<tr>
<td>$V_{bs}$</td>
<td></td>
<td>Bulk-Source voltage</td>
<td>-</td>
</tr>
<tr>
<td>$V_{ds}$</td>
<td></td>
<td>Drain-Source voltage</td>
<td>-</td>
</tr>
</tbody>
</table>
If the substrate doping is not constant or if the channel is short and/or narrow, the basic equation should be modified. The following sections show modifications to the basic equation for non-uniform doping concentration and for short or narrow channel effects.

**Non-Uniform Substrate Doping**

If the substrate doping concentration is not uniform in vertical direction, the body bias coefficient $\gamma$ is a function of the substrate bias and the depth from the interface. The threshold voltage in case of non-uniform vertical doping is:

$$V_{th} = VTH0 + K1(\sqrt[\gamma]{\phi_S-V_{bs}}-\sqrt[\gamma]{\phi_S})-K2 \cdot V_{bs} \quad (91)$$

where $\phi_S = \frac{4}{10} \cdot \frac{kT}{q} \cdot \ln\left(\frac{NDEP}{n_i}\right) + PHIN$

The doping profile is assumed to be a steep retrograde and is approximated in BSIM4. For details on how it is modeled, see the manual from UC Berkeley [1] starting on page 2-2. The model parameters K1 and K2 can be calculated from NSUB, XT, VBX, VBM, and so on. This is done the same way as in BSIM3v3. Details can be found on page 2-4 of the BSIM4 manual.
The doping concentration in this case varies from the middle of the channel towards the source/drain junctions. Shorter channel lengths will result in a roll-up of $V_{th}$ from the rise of the effective channel doping concentration and the changes of the body bias effect. Those effects are considered using the following formulation:

$$V_{th} = VTH0 + K1 \cdot \left( \sqrt{S_s - V_{bs}} - \sqrt{S_s} \right) \cdot \left( 1 + \frac{LPEB}{L_{eff}} \right)$$

$$- K2 \cdot V_{bs} + K1 \cdot \left( \sqrt{1 + \frac{LPEB}{L_{eff}}} - 1 \right) \cdot \sqrt{S_s}$$

Additionally, drain-induced threshold shift (DITS) has to be considered in long-channel devices using pocket implant. For $V_{ds}$ in a range of interest, a simplified threshold voltage shift caused by DITS was implemented:

$$\Delta V_{th}(DITS) = -nV_t \cdot \ln \left( \frac{L_{eff}}{L_{eff} + DVTP0 \cdot \left( 1 + e^{-DVTP1 \cdot V_{ds}} \right)} \right)$$

**Short-Channel and Drain-Induced-Barrier-Lowering (DIBL) Effects**

For shorter channels, the threshold voltage is more sensitive to drain bias (DIBL effect) and less sensitive to body bias because of reduced control of the depletion region.

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_i$</td>
<td>intrinsic carrier concentration in the channel region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIN</td>
<td>PHIN</td>
<td>Non-uniform vertical doping effect on surface potential</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 27: Non-uniform substrate doping model parameters
The short channel effect coefficient is given by

$$\theta_{th}(L_{eff}) = \frac{1}{2\cosh\left(L_{eff}/l_t\right) - 1}$$

In BSIM3v3 this equation is approximated, which results in a phantom second roll-up when $L_{eff}$ becomes very small. To avoid this effect, the exact formulation is used in BSIM4. Model flexibility is increased for different technologies with additional parameters introduced and the short-channel and drain-induced-barrier-lowering effects are modeled separately.

This leads to a short-channel effect coefficient of the form:

$$\theta_{th}(SCE) = \frac{DV T_0}{2\cosh\left(DVT_1 \cdot L_{eff}/l_t\right) - 1}$$

and a variation of $V_{th}$ due to the short-channel effect of:

$$\Delta V_{th}(SCE) = \left(\frac{DV T_0}{2\cosh\left(DVT_1 \cdot L_{eff}/l_t\right) - 1}\right)(V_{bi} - \Phi_s) \quad (94)$$

Drain-induced barrier lowering is modeled the same way, the threshold voltage shift due to DIBL is calculated as:

$$\Delta V_{th}(DIBL) = -\left(\frac{ETA_0 + ETAB \cdot V_{bs}}{2\cosh\left(DSUB \cdot L_{eff}/l_0\right) - 1}\right)V_{ds} \quad (95)$$

DVT1 is basically equal to $1/(\eta)^{1/2}$, ETAB and DVT2 represent the influence of substrate bias effects on SCE and DIBL.
Narrow-Width Effect

The existence of fringing fields leads to a depletion region in the channel that is always larger as is calculated using one-dimensional analysis. This effect gains more influence with decreasing channel widths since the depletion region underneath the fringing field becomes comparable to the depletion field formed in vertical direction. The result is an increase of $V_{th}$.

The formulation for the narrow-width effect is:

$$\Delta V_{th} = (K3 + K3B \cdot V_{bs}) \cdot \frac{TOXE}{W_{eff} + W0} \cdot \Phi_s$$

$$W_{eff} = W_{drawn} \cdot \frac{1}{NF}$$

Subthreshold Swing

In the subthreshold region, the drain current flow is modeled by:

$$I_d = \mu \cdot \frac{W}{L} \cdot \sqrt{q \cdot \varepsilon_S \cdot NDEP \cdot \Phi_S} \cdot v_t \cdot 2 \cdot \left[ 1 - \exp\left( \frac{V_{ds}}{v_t} \right) \right] \cdot \exp\left( \frac{V_{gs} - V_{th} - V_{OFF} - (V_{OFFL} / L_{eff})}{n \cdot v_t} \right)$$
where \( v_t = \frac{k_B \cdot T}{q} \) is the thermal voltage.

The expression \( V_{OFF} + \frac{V_{OFFL}}{L_{eff}} \) represents the offset voltage and

gives the channel current at \( V_{gs} = 0 \).

The subthreshold swing parameter \( n \) is determined by
channel length and interface state density and is calculated using

\[
 n = 1 + \text{NFACTOR} \cdot \frac{C_{dep}}{C_{oxe}} \tag{98}
\]

\[
\left[ \frac{1}{2}\left( C_{DSC} + C_{DSCD} \cdot V_{ds} + C_{DSCB} \cdot V_{bseff} \right) \right] + \frac{C_{IT}}{C_{oxe}} \cdot \left( \frac{L_{eff}}{L_{lt}} - 1 \right)
\]

The parameter NFACTOR is used to compensate for errors in calculating the depletion width capacitance.

### Table 28  Subthreshold swing parameters

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>W</td>
<td>channel width</td>
<td>0.25E-6</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>channel length</td>
<td>5E-6</td>
</tr>
<tr>
<td>( \mu )</td>
<td>carrier mobility</td>
<td></td>
<td>([\text{electrons \ } 670 \text{ cm}^2/\text{Vsec}, \text{holes } 270 \text{ cm}^2/\text{Vsec}])</td>
</tr>
<tr>
<td>VOFF</td>
<td>VOFF</td>
<td>Offset voltage in subthreshold region for large W and L</td>
<td>-0.08 mV</td>
</tr>
<tr>
<td>VOFFL</td>
<td>VOFFL</td>
<td>Channel length dependence of VOFF</td>
<td>0 V</td>
</tr>
<tr>
<td>NFACTOR</td>
<td>NFACTOR</td>
<td>Subthreshold swing factor</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Gate Direct Tunneling Current Model

Gate oxide thickness is decreasing, therefore tunneling currents from the gate contact are playing an important role in the modeling of sub micrometer MOSFET’s. In BSIM4, the gate current consists of one part tunneling from gate to bulk ($I_{gb}$) and one part tunneling from gate to channel ($I_{gc}$). The latter one again is partitioned to flow to the source contact ($I_{gcs}$) and to the drain contact ($I_{gcd}$), as well as from the gate to the source and drain diffusion regions ($I_{gs}$, $I_{gd}$), as is shown in the following figure.

![Cross section of a MOSFET with gate tunneling current components](image-url)
Two model selectors are used to turn on or off tunneling current components, IGBMOD and IGCMOD. Setting IGBMOD = 1 turns on \( I_{gb} \), IGCMOD = 1 turns on \( I_{gc} \), \( I_{gs} \) and \( I_{gd} \). Setting IGBMOD = IBGCMOD = 0 turns off modeling of gate tunneling currents.

The BSIM4.3.0 Version of the model allows the modeling of Gate Current Tunneling through Multiple-Layer Stacks by use of a tunneling attenuation coefficient.

**Gate-to-Bulk Current**

This current consists of two parts, tunneling of *electrons* from the *conduction* band and from the *valence* band. The first part is significant in the accumulation region, the second one during device inversion. The accumulation region tunneling current is dominated by electron tunneling from the conduction band and is given by:

\[
I_{gbacc} = W_{eff} \cdot L_{eff} \cdot A \cdot \left( \frac{\text{TOXREF}}{\text{TOXE}} \right)^{N_{TOX}} \cdot \frac{1}{\text{TOXE}^2} \cdot V_{gb} \cdot V_{aux1} \cdot \exp\left[-B \cdot \text{TOXE}(A_{IGBACC} - B_{IGBACC} \cdot V_{oxacc})\right] (1 + C_{IGBACC} \cdot V_{oxacc})
\]  

Inside this equation, the auxiliary voltage is:

\[
V_{aux1} = N_{IGBACC} \cdot (\nu)
\]

\[
\cdot \log\left(1 + \exp\left(-\frac{V_{gb} - V_{fbz}}{N_{IGBACC} \cdot \nu}\right)\right)
\]

The constants in this equation are:

\[
A = 4.97232 \times 10^{-7} \text{ A/V}^2
\]

\[
B = 7.45669 \times 10^{11} \text{ (g/F-s^3)^0.5}
\]
The tunneling current dominating the inversion region is caused by electron tunneling from the valence band. It is calculated by:

\[
I_{gbinv} = W_{eff} \cdot L_{eff} \cdot C \cdot \left( \frac{\text{TOXREF}}{\text{TOXE}} \right)^{N_{TOX}} \cdot \frac{1}{\text{TOXE}^2} \cdot V_{gb} \tag{101}
\]

\[
\cdot V_{aux2} \cdot \exp[-D \cdot \text{TOXE} (AIGBINV - BIGBINV \cdot V_{oxdepinv})]
\]

\[
\cdot (1 + CIGB(ACCINV) \cdot V_{oxdepinv})
\]

Inside this equation, the auxiliary voltage is:

\[
V_{aux2} = NIGBINV \cdot V_t \cdot \log \left( 1 + \exp \left( \frac{V_{oxdepinv} - EIGBINV}{EIGBINV \cdot V_t} \right) \right)
\]

The constants in the above equation are:

- \(C = 3.75956 \times 10^{-7} \text{ A/V}^2\)
- \(D = 9.82222 \times 10^{11} \text{ (g/F-s)}^{0.5}\)

The voltage across the gate oxide \(V_{ox}\) consists of the oxide voltage in accumulation and the one in inversion, as used in Equation 100 and Equation 101.

\[
V_{ox} = V_{oxacc} + V_{oxdepinv} \tag{102}
\]

The parts of \(V_{ox}\) are calculated by:

\[
V_{oxacc} = \frac{1}{2} \cdot \left( V_{fbzb} - V_{gb} - \frac{2}{100} \right)
\]

\[
+ \sqrt{\left( V_{fbzb} - V_{gb} - \frac{2}{100} \right)^2 + \frac{8}{100} \cdot V_{fbzb}}
\]

\[
V_{oxdepinv} = K_{1ox} \cdot \sqrt{\Phi} + V_{gsteff}
\]

The flatband voltage, calculated from zero-bias \(V_{th}\) is:
Gate-to-Channel Current $I_{gc}$

The gate-to-channel current is determined by electrons tunneling from the conduction band in NMOS transistors respective holes tunneling from the valence band in PMOS transistors.
The physical constants $E$ and $F$ are listed in Table 30.

**Gate-to-Source and Gate-to-Drain tunneling currents**

These currents tunnel from the gate contact to the source or drain diffusion regions. They are caused by electron tunneling from the conduction band in NMOS transistors and by hole tunneling from the valence band in PMOS transistors.

\[ I_{gs} = W_{\text{eff}} \cdot L_{\text{eff}} \cdot E \cdot \left( \frac{\text{TOXREF}}{\text{TOXE}} \right)^{N_{\text{TOX}}} \cdot \frac{1}{\text{TOXE}^2} \cdot V_{\text{gs}} \]  
\[ \cdot N_{\text{IGC}} \cdot v_t \cdot \log \left( 1 + \exp \left( \frac{V_{\text{gs}} - V_{\text{TH0}}}{N_{\text{IGC}} \cdot v_t} \right) \right) \]  
\[ \cdot \exp[-F \cdot \text{TOXE} \cdot (A_{\text{IGC}} - B_{\text{IGC}} \cdot V_{\text{oxdepinv}}) \cdot (1 + C_{\text{IGC}} \cdot V_{\text{oxdepinv}})] \]

For the computing of $I_{gd}$, the values of $V_{gs}$ in Equation 104 has to be replaced by $V_{gd}$.

The flat-band voltage between and the source or drain diffusion areas is dependent from $\text{NGATE}$:

If $\text{NGATE} > 0.0$:

\[ V_{\text{fbsd}} = \frac{k_B T}{q} \cdot \log \left( \frac{\text{NGATE}}{\text{NSD}} \right) \]
Else:

\[ V_{fbsd} = 0 \]

To take drain bias effects into account, the tunneling current from the gate contact splits into two components and it is \( I_{gc} = I_{gcs} + I_{gcd} \). The components are calculated as:

\[ I_{gcs} = I_{gc} \cdot \frac{P_{IGCD} \cdot V_{ds} + \exp(-P_{IGCD} \cdot V_{ds}) - 1 + (1 - 4)}{P_{IGCD}^2 \cdot V_{ds}^2 + (2 - 4)} \]

\[ I_{gcd} = I_{gc} \cdot \frac{1 - (P_{IGCD} \cdot V_{ds} + 1) \exp(-P_{IGCD} \cdot V_{ds}) + (1 - 4)}{P_{IGCD}^2 \cdot V_{ds}^2 + (2 - 4)} \]

If the model parameter \( P_{IGCD} \) is not specified, it is calculated by:

\[ P_{IGCD} = \frac{B \cdot T_{OXE}}{V_{gsteff}^2} \cdot \left( 1 - \frac{V_{dseff}}{2 \cdot V_{gsteff}} \right) \quad (105) \]

The constants used in Equation 104 and Equation 105 have different values for NMOS and PMOS transistors:

**Table 30** Values of constants for gate-channel and gate S/ D tunneling

<table>
<thead>
<tr>
<th>NMOS</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>4.97232 A/V²</td>
</tr>
<tr>
<td>F</td>
<td>7.45669E11 ( N_g / (F - S) ^2 )</td>
</tr>
</tbody>
</table>

**Table 31** Gate Tunneling Parameters

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM 4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCIG</td>
<td>DLCIG</td>
<td>Source/Drain overlap length for ( I_{gs} ) and ( I_{gd} )</td>
<td>LINT</td>
</tr>
<tr>
<td>POXEDGE</td>
<td>POXEDGE</td>
<td>Factor for gate oxide thickness in source/drain overlap regions</td>
<td>1.0</td>
</tr>
</tbody>
</table>
If a drain-source voltage other than zero volts is applied, the depletion width along the channel will not be uniform. Therefore, the threshold voltage $V_{TH}$ will vary along the channel. This phenomenon is known as the Bulk Charge Effect. Inside BSIM4, the bulk charge effect is formulated as follows:
\[ A_{\text{bulk}} = \frac{1}{1 + KETA \cdot V_{bseff}}. \]  

\[
\begin{align*}
1 + \left( \frac{1 + \frac{L_{\text{PEB}}}{L_{\text{eff}}} \cdot K_{1\text{OX}}}{2 \cdot \sqrt{\Phi_s - V_{bseff}}} \right) \\
- \left( K_{3B} \cdot \frac{\Phi_{2\text{OX}}}{W_{\text{eff}} + W_0} \cdot \Phi_s \right)
\end{align*}
\]

\[
\begin{align*}
\left[ \frac{A_0 \cdot L_{\text{eff}}}{L_{\text{eff}} + 2 \sqrt{XJ \cdot X_{\text{dep}}}} \right] \\
\left[ 1 - AGS \cdot V_{\text{gsteff}} \left( \frac{L_{\text{eff}}}{L_{\text{eff}} + 2 \sqrt{XJ \cdot X_{\text{dep}}}} \right)^2 + \frac{B_0}{W_{\text{eff}} + B_1} \right]
\end{align*}
\]

**NOTE**  
\( A_{\text{bulk}} \) is about 1 for small channel lengths and increases with increasing channel length.
Unified Mobility Model

Mobility of carriers depends on many process parameters and bias conditions. Modeling mobility accurately is critical to precise modeling of MOS transistors. BSIM4 provides three different mobility models, selectable through the MOBMOD flag. The MOBMOD = 0 and 1 models are the same as being used in BSIM3v3. There is a new and accurate universal mobility model, selectable through MOBMOD = 2, which is also suitable for predictive modeling \[1\].

MOBMOD = 0:

\[
\mu_{eff} = \frac{U_0}{1 + (U + UC \cdot V_{bseff}) \cdot \left(\frac{V_{gs\,eff} + 2V_{th}}{TOXE}\right) + UB \cdot \left(\frac{V_{gs\,eff} + 2V_{th}}{TOXE}\right)^2}
\]
MOBMOD = 1:

\[ \mu_{\text{eff}} = \frac{U_0}{1 + \left( U_A \cdot \left( \frac{V_{\text{gsteff}} + 2V_{\text{th}}}{TOXE} \right) + U_B \cdot \left( \frac{V_{\text{gsteff}} + 2V_{\text{th}}}{TOXE} \right)^2 \right) \cdot \left( 1 + U_C \cdot V_{bseff} \right)} \]

MOBMOD = 2

\[ \mu_{\text{eff}} = \frac{U_0}{1 + \left( U_A + U_C \cdot V_{bseff} \right) \left( \frac{V_{\text{gsteff}} + C_0 \cdot \left( V_{\text{TH0}} - V_{\text{FB}} - \Phi_s \right)}{TOXE} \right)^{EU}} \]

The constant \( C_0 \) has different values for different MOS processes. For NMOS processes \( C_0 = 2 \) is used and for PMOS processes \( C_0 = 2.5 \) is used.

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM 4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>U0</td>
<td>Low-field mobility</td>
<td>NMOS: 670 [cm²/(Vs)]; PMOS: 250 [cm²/(Vs)]</td>
</tr>
<tr>
<td>UA</td>
<td>UA</td>
<td>First-order mobility degradation coefficient due to vertical field</td>
<td>MOBMOD = 0, 1: 1E-9; MOBMOD = 2: 1e-15 [m/V]</td>
</tr>
<tr>
<td>UB</td>
<td>UB</td>
<td>Second-order mobility degradation coefficient</td>
<td>1E-19 (m/V)²</td>
</tr>
<tr>
<td>UC</td>
<td>UC</td>
<td>Coefficient of the body-bias effect of mobility degradation</td>
<td>MOBMOD = 1: -0.0465 1/V; MOBMOD = 0, 2: 0.0465E-9 m/V²</td>
</tr>
<tr>
<td>EU</td>
<td>EU</td>
<td>Exponent for mobility degradation of MOBMOD = 2</td>
<td>NMOS: 1.67; PMOS: 1.0</td>
</tr>
</tbody>
</table>
Drain/ Source Resistance Model

The resistances of the drain/source regions are modeled using two components: The sheet resistance, which is bias-independent, and a bias-dependent LDD resistance.

In contrast to the BSIM3 models, the drain and source LDD resistances are not necessarily the same, they could be asymmetric. This is a prerequisite for accurate RF simulations.

A further enhancement of the BSIM4 model over BSIM3 is the external or internal RDS option, invoked by the model selector RDSMOD = 0 (internal RDS) or RDSMOD = 1 (external RDS). The external RDS option looks at a resistance connected between the internal and external source and drain nodes. See the following figure.

\[
R_{ds}(V) = \frac{1}{(1e6 \cdot W_{effc})^{WR}} \left(RDSWMIN + RDSW\right)
\]

\[
\left\{ PRWB \cdot \left(\frac{\Phi_s - V_{bseff} - \Phi_s}{\sqrt{\Phi_s}}\right) + \frac{1}{1 + PRWG \cdot V_{gsteff}} \right\}
\]

\[\text{RDSMOD = 0 (internal } R_s(V)\text{)}\]
The flatband voltage $V_{fbsd}$ is calculated as follows:

If $NGATE > 0$:

$$V_{fbsd} = \frac{k_B \cdot T}{q} \cdot \log \left( \frac{NGATE}{NSD} \right)$$

Else:

$$V_{fbsd} = 0$$

### Table 34  Drain Source Resistance Parameters

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM 4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGATE</td>
<td>NGATE</td>
<td>Poly Si-gate doping concentration</td>
<td>0.0 cm$^3$</td>
</tr>
<tr>
<td>PRWB</td>
<td>PRWB</td>
<td>Body bias coefficient of LDD resistance</td>
<td>0.0 V$^{-0.5}$</td>
</tr>
</tbody>
</table>
Saturation Region Output Conductance Model

The following figure shows a typical MOSFET $I_{ds}$ vs. $V_{ds}$ diagram. The calculated output resistance is inserted into the diagram as well. This output resistance curve can be divided into four distinct regions, each region is affected by different physical effects. The first region at low $V_{ds}$ is characterized by a very small output resistance. It is called the linear region, where carrier velocity is not yet saturated.

Increasing $V_{ds}$ leads to a region that is dominated by carrier velocity saturation—this is the so-called saturation region. In this region, three different physical mechanisms are controlling device behavior. Those mechanisms are Channel Length Modulation (CLM), Drain-Induced Barrier Lowering (DIBL), and Substrate-Current Induced Body Effect (SCBE). Each of those mechanisms dominate the output resistance in a specific region.

### Table 34 Drain Source Resistance Parameters

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM 4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRWG</td>
<td>PRWG</td>
<td>Gate bias dependence of LDD resistance</td>
<td>1.0 1/ V</td>
</tr>
<tr>
<td>RDSW</td>
<td>RDSW</td>
<td>Zero bias LDD resistance per unit width for RDSM OD = 0</td>
<td>200 $\Omega$ ($\mu$m)$^{WR}$</td>
</tr>
<tr>
<td>RDSWMIN</td>
<td>RDSWMIN</td>
<td>LDD resistance per unit width at high $V_{gs}$ and zero $V_{ds}$ for RDSM OD = 0</td>
<td>0.0 $\Omega$ ($\mu$m)$^{WR}$</td>
</tr>
<tr>
<td>WR</td>
<td>WR</td>
<td>Channel width dependence parameter of LDD resistance</td>
<td>1.0</td>
</tr>
</tbody>
</table>
The continuous channel current equation for the linear and saturation region as implemented in BSIM4 is:

**Figure 160** Output Resistance vs. Drain-Source Voltage [1]

The continuous channel current equation for the linear and saturation region as implemented in BSIM4 is:
The Early voltage $V_{Asat}$ at $V_{ds} = V_{dsat}$ is used to get continuous expressions for drain current and output resistance between linear and saturation region.

$$V_{Asat} = \left[ 1 - \frac{A_{bulk} \cdot V_{dsat}}{2 \cdot \left( V_{gsteff} + \frac{k_B \cdot T}{q} \right)} \right]$$

In this equation, the channel current dependencies are modeled using specific Early voltages $V_{A}$, as will be described in the following sections.

**Channel Length Modulation - CLM**

Through integration based on a quasi two-dimensional analysis, we obtain
Drain-Induced Barrier Lowering - DIBL

The gate voltage modulates the DIBL effect. To correctly model DIBL, the parameter PDIBLC2 is introduced. This parameter becomes significant only for long channel devices.

\[
V_{ADIBL} = \frac{V_{gsteff} + 2\nu_t}{\theta_{rout} \cdot (1 + PDIBLCB \cdot V_{bsteff})} \cdot \left(1 - \frac{A_{bulk} \cdot V_{dsat}}{A_{bulk} \cdot V_{dsat} + V_{gsteff} + 2 \cdot \frac{k_B \cdot T}{q}}\right) \cdot \left(1 + PVAG \cdot \frac{V_{gsteff}}{E_{sat} \cdot L_{eff}}\right)
\]

The parameter \(\theta_{rout}\) is channel length dependent in the same manner as the DIBL effect in \(V_{TH}\), but different parameters are used here.
Substrate-Current Induced Body Effect - SCBE

Due to increasing $V_{ds}$, some electrons flowing from the source of an NMOS device will gain high energies and are able to cause impact ionization. Electron-hole pairs will be generated and the substrate current created by impact ionization will increase exponentially with the drain voltage. The early voltage due to SCBE is calculated by

$$
\theta_{rout} = \frac{PDIBLC1}{2 \cdot \cosh\left(\frac{DROUT \cdot L_{eff}}{lt0}\right)} + PDIBLC2
$$

$$
= V_{ASCBE} = \frac{L_{eff}}{PSCBE2 \cdot \exp\left(\frac{PSCBE1}{V_{ds} - V_{dsat}}\right)}
$$

If the device is produced using pocket implantation, a potential barrier at the drain end of the channel will be introduced. The potential barrier can be reduced by the drain voltage even in long channel devices. This effect is called Drain-Induced Threshold Shift (DITS) and the early voltage due to DITS is

$$
V_{ADITS} = \frac{1}{PDITS} \cdot \frac{1}{\sqrt{L_{eff}}} \cdot \frac{1 + FPROUT \cdot \sqrt{L_{eff}}}{V_{gsteff} + 2 \cdot \frac{k_B \cdot T}{q}} \cdot \{1 + [(1 + PDITSL \cdot L_{eff}) \cdot \exp(PDITSD \cdot V_{ds})]\}
$$
## BSIM 4 Characterization

### Table 35  Saturation Region Output Conductance Parameters

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM 4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROUT</td>
<td>DROUT</td>
<td>Channel-length dependence coefficient of the DIBL effect on output resistance</td>
<td>0.56</td>
</tr>
<tr>
<td>PSCBE1</td>
<td>PSCBE1</td>
<td>First substrate current induced body-effect parameter</td>
<td>4.24E8 V/m</td>
</tr>
<tr>
<td>PSCBE2</td>
<td>PSCBE2</td>
<td>Second substrate current induced body-effect coefficient</td>
<td>1.0E-5 m/V</td>
</tr>
<tr>
<td>PVAG</td>
<td>PVAG</td>
<td>Gate-bias dependence of Early voltage</td>
<td>0.0</td>
</tr>
<tr>
<td>FPROUT</td>
<td>FPROUT</td>
<td>Effect of pocket implant on $R_{out}$ degradation</td>
<td>0.0 V/ m$^{0.5}$</td>
</tr>
<tr>
<td>PDITS</td>
<td>PDITS</td>
<td>Impact of drain-induced $V_{th}$ shift on $R_{out}$</td>
<td>0.0 V$^{-1}$</td>
</tr>
<tr>
<td>PDITSL</td>
<td>PDITSL</td>
<td>Channel-length dependence of drain-induced $V_{th}$ shift on $R_{out}$</td>
<td>0.0</td>
</tr>
<tr>
<td>PDITSD</td>
<td>PDITSD</td>
<td>$V_{ds}$ dependence of drain-induced $V_{th}$ shift on $R_{out}$</td>
<td>0.0 V$^{-1}$</td>
</tr>
<tr>
<td>PCLM</td>
<td>PCLM</td>
<td>Channel length modulation parameter</td>
<td>1.3</td>
</tr>
<tr>
<td>PDIBLC1</td>
<td>PDIBLC1</td>
<td>First output resistance DIBL effect parameter</td>
<td>0.39</td>
</tr>
<tr>
<td>PDIBLC2</td>
<td>PDIBLC2</td>
<td>Second output resistance DIBL effect parameter</td>
<td>8.6m</td>
</tr>
<tr>
<td>PDIBLCB</td>
<td>PDIBLCB</td>
<td>Body bias coefficient of output resistance DIBL effect</td>
<td>0.0 1/V</td>
</tr>
</tbody>
</table>
Body Current Model

The substrate current of a MOSFET consists of diode junction currents, gate-to-body tunneling current, impact-ionization \( (I_{ii}) \) and gate-induced drain leakage currents \( (I_{GIDL}) \).

Impact Ionization Model

BSIM4 uses the same impact ionization model as was introduced in BSIM3v3.2. The impact ionization current is calculated by

\[
I_{ii} = \frac{\alpha_0 + \alpha_1 \cdot L_{eff}}{L_{eff}} \cdot (V_{ds} - V_{dseff})
\]

\[
\cdot \exp\left(\frac{\beta_0}{V_{ds} - V_{dseff}}\right) \cdot \frac{I_{dso} \cdot NF}{R_{ds} \cdot I_{dso}} \cdot \frac{V_{A}}{\ln\left(\frac{V_A}{V_{Asat}}\right)}
\]

\[
\cdot \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ADIBL}}\right) \cdot \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ADITS}}\right)
\]
5 BSIM4 Characterization

Gate-Induced Drain Leakage

The GIDL effect is modeled by

\[
I_{GIDL} = A_{GIDL} \cdot W_{eff} \cdot NF \cdot \frac{V_{ds} - V_{gse} - E_{GIDL}}{3 \cdot TOXE} \cdot \exp\left(\frac{3 \cdot TOXE \cdot B_{GIDL}}{V_{ds} - V_{gse} - E_{GIDL}}\right) \cdot \frac{V_{db}^3}{C_{GIDL} + V_{db}^3}
\]

Table 36 Body Current Model Parameters

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>Parameter Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA0</td>
<td>ALPHA0</td>
<td>First impact ionization parameter</td>
<td>0.0 A/m/V</td>
</tr>
<tr>
<td>ALPHA1</td>
<td>ALPHA1</td>
<td>Length dependent substrate current parameter</td>
<td>0.0 A/V</td>
</tr>
<tr>
<td>BETA0</td>
<td>BETA0</td>
<td>Second impact ionization parameter</td>
<td>30 V</td>
</tr>
<tr>
<td>AGIDL</td>
<td>AGIDL</td>
<td>Pre-exponential coefficient for GIDL</td>
<td>0.0 mho (1/Ohm)</td>
</tr>
<tr>
<td>BGIDL</td>
<td>BGIDL</td>
<td>Exponential coefficient for GIDL</td>
<td>2.3e9 V/m</td>
</tr>
<tr>
<td>CGIDL</td>
<td>CGIDL</td>
<td>Parameter for body-bias effect on GIDL</td>
<td>0.5 V³</td>
</tr>
<tr>
<td>EGIDL</td>
<td>EGIDL</td>
<td>Fitting parameter for band bending for GIDL</td>
<td>0.8 V</td>
</tr>
</tbody>
</table>

Stress Effect Modeling

The scaling of CMOS feature sizes makes shallow trench isolation (STI) a popular technology. To enhance device performance, strain channel materials have been used. The mechanical stress introduced by using these processes causes MOSFET performance to become a function of the active device area and the location of the device in the isolated region. Influence of stress on mobility and saturation velocity has been known since the 0.13 um technology [1].

For the named reasons, BSIM4 considers the influence of stress on:

- mobility
• velocity saturation
• threshold voltage
• body effect
• DIBL effect.

Mobility related dependence of device performance is induced through band structure modification. Doping profile variation results in Vth dependence of the stress effect. Both effects follow the same 1/LOD trend but have different L and W scaling influence. By modifying some parameters in the BSIM model, a phenomenological model has been implemented. The model assumes mobility relative change to be proportional to stress distribution.

![Figure 161](image)

**Figure 161** MOSFET device geometry using a shallow trench isolation scheme

The figure above shows a typical MOSFET layout surrounded by shallow trench isolation. SA, SB are the distances between trench isolation edge to Gate-PolySi from one and from the other side, respectively. SD is the distance between neighboring fingers of the device. The Length of Oxide Definition (LOD) is expressed through the following equation:
2D simulation shows that stress distribution can be expressed by a simple function of SA and SB.

To cover doping profile changes in devices with different LOD; Vth0, K2, and ETA0 are modified.

The total LOD effect for multiple finger devices is the average of the LOD effect on every finger.

Since MOSFETs often use an irregular shape of their active area, additional instance parameters have to be introduced to fully describe the shape of the active area. This will result in many new parameters in the netlists and an increase in simulation time. To avoid this drawbacks, BSIM4.3.0 uses effective SA and SB values.

![Diagram](image)

**Figure 162** A “third” dimension is added to standard geometry parameters of MOSFET devices by introducing new parameters SA and SB to model stress effect influence on device performance.

The left part of the figure above shows the geometry parameters used in MOSFET models so far. To the right, the SAREF-plane represents the standard L, W plane which is varied by SA and SB.

Until BSIM4.2.1, gate length (L) and gate width (W) have been the major device geometry parameters required.
For more details regarding the modeled stress effect influences on device performance, see Chapter 13 of the BSIM4.3.0 manual[1].
CV Modeling

Capacitance Model

To accurately model MOSFET behavior, a good capacitance model considering intrinsic and extrinsic (overlap/fringing) capacitances is important.

BSIM4 provides three options to select different capacitance models. These are the models from BSIM3v3.2, which are taken without changes. There is only one exception: Different parameters for source and drain sides are introduced, which are used to precisely model different doping concentrations and so on.

The model flag CAPMOD allows three values. CAPMOD = 0 uses piece-wise and simple equations, whereas with CAPMOD = 1 and 2 uses smooth and single equation models.

For CAPMOD = 0, VTH is taken from a long-channel device; for CAPMOD = 1 and 2, VTH is consistent with the BSIM4 DC model.

The overlap capacitance model uses a bias-independent part to model the effective overlap capacitance between gate and heavily doped source/drain regions and a gate-bias dependent part between the gate and the lightly doped source/drain regions.

Intrinsic Capacitance Modeling

All capacitances in Intrinsic Capacitance Model formulations are derived from terminal charges instead of terminal voltages to ensure charge conservation.

Long channel device models assume the mobility to be constant and no channel length modulation occurs. However, with shrinking device dimensions, velocity saturation and channel length modulation are to be considered to accurately model device behavior.
For capacitance modeling in BSIM4, a drain bias is defined, at which the channel charge becomes constant.

\[
V_{dsat, CV} = \frac{NOFF \cdot n \cdot \frac{k_B \cdot T}{q}}{A_{bulk, CV} \cdot \left[ 1 + \left( \frac{CLC}{L_{active}} \right)^{CLE} \right]} \\
\cdot \ln \left[ 1 + \exp \left( \frac{V_{gse} - V_{th} - VOFFCV}{NOFF \cdot n \cdot \frac{k_B \cdot T}{q}} \right) \right]
\]

For capacitance modeling, \( A_{bulk} \) is defined different from DC:

\[
A_{bulk, CV} = \left\{ 1 + \left[ \frac{A0 \cdot L_{eff}}{L_{eff} + 2 \sqrt{XJ \cdot X_{dep}}} + \frac{B0}{W_{eff} + B1} \right] \right\} \\
\left\{ \sqrt{\frac{1 + LPEB/L_{eff} \cdot K1OX}{2 \cdot \sqrt{\Phi_s - V_{bseff}}} + K2OX - K3B \cdot \frac{TOXE}{W_{eff} + W0} \cdot \Phi_s} \right\} \\
\cdot \frac{1}{1 + KETA \cdot V_{bseff}}
\]

Numerical simulation has shown that the charged layer under the gate of a MOSFET has a significant thickness in all regions of operation. Therefore, a Charge-Thickness Model has been introduced in BSIM4. This model uses a capacity in series with the oxide capacitance Cox and an effective oxide capacitance is used:
5 BSIM4 Characterization

$$C_{oxeff} = \frac{C_{oxe} \cdot \frac{\varepsilon_{si}}{X_{DC}}}{C_{oxe} + \frac{\varepsilon_{si}}{X_{DC}}}$$

DC charge layer thickness in accumulation and depletion is calculated by:

$$X_{DC} = \frac{1}{3} \cdot L_{debye} \cdot \exp \left[ ACDE \cdot \left( \frac{NDEP}{2 \cdot 10^{16}} \right)^{-1/4} \right]$$

whereas in inversion

$$X_{DC} = \frac{\frac{19 \cdot 10^{-10}}{1 + \left( \frac{V_{gsteff} + 4(\text{VTH0} - VFB - \Phi_s)}{2 \cdot TOXP} \right)^{7/10}}}$$

$$V_{FBeff} = V_{fbzb} - \frac{1}{2} \left[ \left( V_{fbzb} - V_{gb} - \frac{2}{100} \right)^2 + \frac{8}{100} \cdot V_{fbzb} \right]$$

$$V_{fbzb} = V_{th,0} - \Phi_S - K1 \cdot \sqrt{\Phi_S}$$

$$V_{th,0} = \left. V_{th} \right|_{V_{At} \text{ and } V_{di} = 0}$$

By introducing the VFB term in Equation 123, the calculation is valid for N+ or P+ poly-silicon gates and future gate materials too.
Intrinsic Capacitance Model Equations

There are three intrinsic capacitance models to choose from using the model flag CAPMOD. Additionally, there are three charge partitioning schemes: 40/60, 50/50, and 0/100. Those schemes describe distribution of the intrinsic capacitance charges between drain and source side.

The exact formulations for the different operation regimes and charge partitioning schemes are in the UC Berkeley manual [1] on pages 7-13 to 7-19.

Fringing Capacitance Models

The fringing capacitance consists of a bias-independent outer fringing capacitance and an inner fringing capacitance, bias-dependent. The outer fringing capacitance is modeled in BSIM4 (if not given) through:

\[
CF = \frac{2 \cdot EPSROX \cdot \varepsilon_0}{\pi} \cdot \log \left( 1 + \frac{4 \cdot 10^{-7}}{TOXE} \right)
\]  

(124)

The inner capacitance is not modeled.

Overlap Capacitance Model

For accurate simulation results, especially the drain side overlap capacitance has to be modeled exactly because the influence of this capacitance is amplified by the gain of the transistor (Miller effect). Formerly used capacitance models assume a bias-independent overlap capacitance. However, experimental data show a gate-bias dependent overlap capacitance, which is invoked using CAPMOD = 1 or 2. Using CAPMOD = 0, a simple bias-independent model is invoked.

For CAPMOD = 0, the overlap charges are expressed by:

Gate-to-source overlap charge:

\[
Q_{overlap,s} = W_{active} \cdot CGSO \cdot V_{gs}
\]

Gate-to-drain overlap charge:
Gate-to-bulk overlap charge:

\[ Q_{\text{overlap}, b} = L_{\text{active}} \cdot CGBO \cdot V_{gb} \]

The parameters CGSO and CGDO are calculated (if not given) by:

**Table 37** CGSO and CGDO Parameters

<table>
<thead>
<tr>
<th></th>
<th>CGSO</th>
<th>CGDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>If</td>
<td>DLC is given and &gt; 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>( CGSO = DLC \cdot C_{oxe} - CGSL )</td>
<td>( CGDO = DLC \cdot C_{oxe} - CGDL )</td>
</tr>
<tr>
<td></td>
<td>if CGSO &lt; 0: CGSO = 0</td>
<td>if CGDO &lt; 0: CGDO = 0</td>
</tr>
<tr>
<td>Else</td>
<td>( CGSO = \frac{6}{10} \cdot XJ \cdot C_{oxe} )</td>
<td>( CGDO = \frac{6}{10} \cdot XJ \cdot C_{oxe} )</td>
</tr>
</tbody>
</table>

If CGBO is not given, it is calculated by:

\[ CGBO = 2 \cdot DWC \cdot C_{oxe} \]

For \( \text{CAPMOD} = 1 \) or \( 2 \), the bias-dependent overlap charge is modeled at the source side by:
\[ \frac{Q_{\text{overlap},s}}{W_{\text{active}}} = (CGSO \cdot V_{gs}) \]

\[ + CGSL \left( V_{gs} - \frac{1}{2} \left( V_{gs} + \frac{2}{100} \right) - \sqrt{\left( V_{gs} + \frac{2}{100} \right)^2 + \frac{8}{100}} \right) \]

\[ - \frac{CKAPPAS}{2} \left( -1 + \sqrt{1 - \frac{2 \cdot \left( V_{gs} + \frac{2}{100} \right) - \sqrt{\left( V_{gs} + \frac{2}{100} \right)^2 + \frac{8}{100}}}{CKAPPAS} \right) \]

at the drain side by:

\[ \frac{Q_{\text{overlap},d}}{W_{\text{active}}} = (CGDO \cdot V_{gd}) \]

\[ + CGDL \left( V_{gd} - \frac{1}{2} \left( V_{gd} + \frac{2}{100} \right) - \sqrt{\left( V_{gd} + \frac{2}{100} \right)^2 + \frac{8}{100}} \right) \]

\[ - \frac{CKAPPAD}{2} \left( -1 + \sqrt{1 - \frac{2 \cdot \left( V_{gd} + \frac{2}{100} \right) - \sqrt{\left( V_{gd} + \frac{2}{100} \right)^2 + \frac{8}{100}}}{CKAPPAD} \right) \]

and the gate overlap charge by:
$$Q_{overlap, g} = -(Q_{overlap, d} + Q_{overlap, s}) - (CGBO \cdot L_{active}) \cdot V_{gb}$$  \hspace{1cm} (127)$$

**Table 38**  Intrinsic Capacitance Model Parameters

<table>
<thead>
<tr>
<th>Equation Variable</th>
<th>BSIM 4 Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOFF</td>
<td>NOFF</td>
<td>CV parameter in $V_{gsteff, CV}$ for weak to strong inversion</td>
<td>1.0</td>
</tr>
<tr>
<td>VOFFCV</td>
<td>VOFFCV</td>
<td>CV parameter in $V_{gsteff, CV}$ for weak to strong inversion</td>
<td>0.0 V</td>
</tr>
<tr>
<td>ACDE</td>
<td>ACDE</td>
<td>Exponential coefficient for charge thickness in accumulation and depletion regions in CAPMOD=2</td>
<td>1.0 m/ V</td>
</tr>
<tr>
<td>CKAPPAS</td>
<td>CKAPPAS</td>
<td>Coefficient of bias-dependent overlap capacitance on source side</td>
<td>0.6 V</td>
</tr>
<tr>
<td>CKAPPAD</td>
<td>CKAPPAD</td>
<td>Coefficient of bias-dependent overlap capacitance on drain side</td>
<td>CKAPPAS</td>
</tr>
<tr>
<td>CLC</td>
<td>CLC</td>
<td>Constant term for the short channel model</td>
<td>0.1E-7 m</td>
</tr>
<tr>
<td>CLE</td>
<td>CLE</td>
<td>Exponential term for the short channel model</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Structure of the BSIM 4 RF Simulation Model

The BSIM4 model consists of some major features that make it ideal for use in real high frequency simulations. It contains:

- scalable gate resistance
- dedicated thermal noise model formulation
- different device layouts (multifinger devices) are taken into account
- substrate resistance network with correct connection to the main transistor through parasitic diodes
- New in BSIM4.3.0: Horse-Shoe substrate contacts

While the first three effects are fully scalable, which means the influence of the device dimensions like gate length or width is already included in the model formulation, the substrate resistance effect included into BSIM4 has not included any of this information up to version 4.3.0. To specify the substrate resistance effect, only fixed values for up to 5 different resistors could have been set. However, in reality, the substrate resistance effect depends on sheet resistance of the body, number of gate fingers and width of the devices.

Due to this shortcoming, it is not possible to generate one fully scalable model card for a family of typical RF multifinger transistors. This is the reason why the BSIM4 Modeling Package includes two different approaches for generating BSIM4 RF models:

- Single transistor models describe the very classic approach, where one simulation model is generated for each available test device. A design library based on such models does not enable the circuit designer to modify major device dimensions. Only available devices can be used to design circuits. A major benefit of this approach is that the accuracy of such a model may be very high because only one certain device behavior has to be fitted by the model parameters.
5 BSIM4 Characterization

- Scalable transistor models cover a certain range of major device dimensions. In the case of a RF MOS transistor, these are the gate length and gate width of a single transistor finger and the number of gate fingers. These models have a structure, such that a design engineer can change the parameters to get an optimum transistor behavior for a certain application.

In BSIM4.3.0, there is a newly introduced enhancement to modeling the substrate resistance. To take care of different geometric layouts, a so-called "horseshoe" contact geometry was added (see "Substrate contact resistance scaling" on page 389).

The following two sections describe the structure of the single and the scalable model approaches. At first, the general structure of the BSIM4 RF model is shown.
Figure 163  Schematic for the Single Transistor Model
For the single transistor model, all substrate resistance parameters RBPB, RBPD, RBPS, RBDB, and RBSB are set to fixed values for one certain device. This is the default approach, which is supported by the BSIM4 model. The description of the model in a simulator is very easy because only the call of a model card is necessary. The following netlist in spice3e2 syntax shows an example for this model description:

```
.OPTIONS GMIN=1.0E-14 *

* Model card for BSIM4.3.0 n-type devices | * | * Simulator: SPICE3e2 | *
* Model: BSIM4 Modeling Package | * Date: 16.07.2004 | * Origin: *
ICCAP_ROOT/..../bsim4/circuits/spice3/nmos.cir | *

M1 1=D 2=G 3=S 4=B MOSMOD L=0.25u W=5u NF=1 AD=5p AS=5p PD=12u FS=12u
SA=0 SB=0 SD=0 NRD=0 NRS=0 .MODEL MOSMOD NMOS
LEVEL = 14 VERSION = 4.3.0 BINUNIT = 2 PARAMCHK = 1 + MOBMOD = 1
RDSMOD = 0 IGCMOD = 0 IGBMOD = 0 CAPMOD = 2 + RGATEMOD = 0 RBODYMOD = 0
TRNQSMOD = 0 ACNQSMOD = 0 FNOIMOD = 1 + TNOIMOD = 0 DIOMOD = 1
PERMOD = 1 GEOMOD = 0
```

**Fully scalable device**

The fully scalable model has the same structure in principal as the single transistor model, but uses additional, scalable, external inductors and capacitors. It uses equations to determine the values for the substrate resistance parameters. These equations are derived from simple assumptions according to “MOS Transistor Modeling for RF IC Design” [3]. Please see the following schematic and cross section as well as the model equations for more details.
Figure 164 Scalable BSIM 4 RF model
The substrate resistance network parameters $R_{BPB}$, $R_{BPD}$, $R_{BPS}$, $R_{BDP}$, and $R_{BSB}$ are derived using 4 new model parameters:

- $R_{SHB}$: sheet resistance of the substrate
- $D_{SCB}$: distance between the source contact and the outer source area
- $D_{DCB}$: distance between the drain contact and the outer drain area
- $D_{GG}$: distance between two gate stripes

**Relevant Model Equations for Substrate Resistance Parameters**

\[
\text{factor - even - odd} = \frac{1}{2} \cdot \left( 1 + \left( NF - 2 \cdot \text{int}\left( \frac{NF}{2} \right) \right) \right)
\]

\[
R_{BPB} = 1 \times 10^9
\]
Substrate contact resistance scaling

Due to different layouts of RF multifinger MOS transistors, BSIM4.3.0 has been enhanced with a new flag to model the substrate resistance according to the substrate contacts used. The flag, RSUB_EQ, can have two values:

• RSUB_EQ = 0 : symmetric substrate contacts
• RSUB_EQ = 1 : horseshoe substrate contact

For the horseshoe contact, a new dimension has been defined, as can be seen in Figure 169:

• DHSDBC: distance between Drain or Source edge and substrate contact of the horseshoe

Inside the Modeling Package, temporary parameters are used to calculate the values for the five resistances used inside BSIM4. Figure 166 as well as Figure 168 are showing the use of those temporary parameters, tmp_rdb1, tmp_rdb2, tmp_rsb1 and tmp_rsb2.

The following Figure 166 shows a RF multifinger MOS transistor with symmetric substrate contacts (use RSUB_EQ = 0), whereas Figure 167 shows a 3-dimensional view of such a contact.
Figure 166  Symmetric substrate contacts, top view
The following equations are used to calculate substrate resistance temporary values inside the fully scalable model:

\[
\text{tmp...rdb1} = \frac{(\text{factor} - \text{even} - \text{odd}) \cdot NF \cdot DD\text{BC} \cdot RSHB}{W}
\]

\[
\text{tmp...rdb2} = \frac{DHSDB\text{C} \cdot RSHB}{NF \cdot (DGG + L)}
\]

\[
\text{tmp...rsb1} = \frac{(\text{factor} - \text{even} - \text{odd}) \cdot NF \cdot DS\text{CB} \cdot RSHB}{W}
\]

\[
\text{tmp...rsb2} = \frac{DHSDB\text{C} \cdot RSHB}{NF \cdot (DGG + L)}
\]

The following figures show the horseshoe substrate contact as well as a 3-dimensional view of such a contact (use RSUB_EQ=1).
The temporary values calculated above are combined to give BSIM4 model parameters as follows:

**RSUB_EQ = 0:**

\[ RBDB = RDB \cdot \text{tmp...rdb1} \]
\[ RBSB = RSB \cdot \text{tmp...rsb1} \]
RSUB_EQ = 1:

\[
RBDB = RDB \cdot \frac{(tmp...rdb1) \cdot (tmp...rdb2)}{(tmp...rdb1) + (tmp...rdb2)}
\]

\[
RBSB = RSB \cdot \frac{(tmp...rsb1) \cdot (tmp...rsb2)}{(tmp...rsb1) + (tmp...rsb2)}
\]

In addition, the channel length variation inside a multifinger device is not constant [4]. This behavior is taken into account using a variable channel length variation as a function of the number of gate fingers. Using the parameters DL0, DL1, and DL2 this channel length variation can be set.
The implementation of these enhancements requires the fully scalable model defined in a subcircuit. The following example shows the netlist implemented into the ADS simulator.

**Figure 170**  DL0, DL1, DL2 Channel Length Reduction Difference inside a Multifinger Device
LINK CIRC "Circuit" { data { circuitdeck {
  * ---- Fully scalable subcircuit model for BSIM4.3.0 RF n-type devices * * Simulator: HSPICE
  * Model: BSIM4 Modeling Package * Date: 14.09.2004
  * Origin: ICCAP_ROOT/..../bsim4/circuits/hspice/cir/rf_nmos_scale.cir
  *-----------------------------------------------------------------------------------*
  *--- Information for model implementation -------------------------------------------
  * In hspice, call the sub circuit model as follows with the actual values of L, W, etc. *
  * xrfmos 1 2 3 4 bsim4_rf_extract tmp_l = 0.25u tmp_w = 80u ..... *
  * Please note, that according to the BSIM4 model definition, the parameters tmp_w, tmp_ad, *
  * tmp_as, tmp_pd, tmp_ps, tmp_nrd always define the TOTAL width (drain area, ....,
  * number of drain squares) of the multi finger device.
  * The width (drain area, ..) of a single finger of the multifinger MOSFET will be calculated *
  * inside the BSIM4 model using the instance parameter 'NF' and the selected 'GEOMOD'
  * parameter.
  * .subckt bsim4_rf_extract 1 2 3 4
  #echo + tmp_l=0.25e-6 tmp_w=10e-6 tmp_nf==1 tmp_ad=10e-12 tmp_as=10e-12 tmp_pd=22e-6
  #echo + tmp_ps=22e-6 tmp_sa=0 tmp_sb=0 tmp_rd=0 tmp_nrs=0 tmp_geomod=0
  #echo + tmp_rgeomod=0 tmp_min=0 *
  *--- BSIM4 model card ---------------------------------------------------------------------
  #echo .MODEL BSIM4_HF NMOS #echo + LEVEL = $mpar(LEVEL = 54) VERSION = 4.30
  #echo + BINUNIT = $mpar(BINUNIT=2) PARAMCNK = $mpar(PARAMCNK=1)
  #echo + MOBMOD = $mpar(MOBMOD=1) RDSMOD = $mpar(RDSMOD=0) IGCMOD = $mpar(IGCMOD=0)
  #echo + IGMOD = $mpar(IGMOD=0) CAPMOD = $mpar(CAPMOD=2) RGATEMOD = $mpar(RGATEMOD=2)
  #echo + RBODYMOD = $mpar(RBODYMOD=1) TRNQSMOD = $mpar(TRNQSMOD=0)
  #echo + ACQMOD = $mpar(ACQMOD=0) FNOIMOD = $mpar(FNOIMOD=1) TNOIMOD = $mpar(TNOIMOD=0)
  #echo + DIOIMOD = $mpar(DIOIMOD=1) PERMOD = $mpar(PERMOD=1) EPSROX = $mpar(EPSROX=3.9)
  #echo + TOX = $mpar(TOX=3e-9) TOXH = $mpar(TOXH=3e-9) TOXM = $mpar(TOXM=3e-9)
  #echo + DTX = $mpar(DTX=0)
  #echo + XJ = $mpar(XJ=1.5E-7) NDEP = $mpar(NDEP=1.7E17) NGATE = $mpar(NGATE=0)
  #echo + NSD = $mpar(NSD=1e20) XT = $mpar(XT=1.55E-7) RSH = $mpar(RSH=0)
  #echo + SHG = $mpar(SHG=0.1)
  #echo + VTH0 = $mpar(VTH0=0.7) PHIN = $mpar(PHIN=0) K1 = $mpar(K1=0.33)
  #echo + K2 = $mpar(K2=0.018) K3 = $mpar(K3=2) K3B = $mpar(K3B=0) W0 = $mpar(W0=2.5E-6)
  #echo + LPE = $mpar(LPE=1.74e-7) LPEB = $mpar(LPEB=0) VSM = $mpar(VSM=-3)
  #echo + DTM = $mpar(DTM=2.2) DTV1 = $mpar(DTV1=0.53) DTV2 = $mpar(DTV2=0.032)
  #echo + DTVP = $mpar(DTVP=0.001) DTV1P = $mpar(DTV1P=0.001) DTV0 = $mpar(DTV0=0)
  #echo + DTW = $mpar(DTW=5.36E) DTW = $mpar(DTW=0.032) ETA0 = $mpar(ETA0=0.08)
  #echo + ETAB = $mpar(ETAB=0.07)
  #echo + DUB = $mpar(DUB=0.56) U0 = $mpar(U0=0.067) UA = $mpar(UA=1E-9)
  #echo + UB = $mpar(UB=1E-19) UC = $mpar(UC=-0.0465)
  #echo + EU = $mpar(EU=1.67) VSAT = $mpar(VSAT=8E4) A0 = $mpar(A0=1) AGS = $mpar(AGS=0)
  #echo + B0 = $mpar(B0=0) B1 = $mpar(B1=0) KETA = $mpar(KETA=-0.047) A1 = $mpar(A1=0)
  #echo + A2 = $mpar(A2=1) VOFF = $mpar(VOFF=-0.08) VOFFL = $mpar(VOFFL=0)
  #echo + MINV = $mpar(MINV=0) NFACTOR = $mpar(NFACTOR=1) CIT = $mpar(CIT=0)
  #echo + CDSC = $mpar(CDSC=2.4E-4) CDSCB = $mpar(CDSCB=0) CDSCC = $mpar(CDSCC=0)
  #echo + PCLM = $mpar(PCLM=1.3) PDIBLC1 = $mpar(PDIBLC1=0.39) PDIBLC2 = $mpar(PDIBLC2=0.0086)
  #echo + PDIBLC = $mpar(PDIBLC=0.0) DROUT = $mpar(DROUT=0.56) PSCB1 = $mpar(PSCB1=4.2E8)
  #echo + PSCB2 = $mpar(PSCB2=1E-5) PVAG = $mpar(PVAG=0)
  #echo + DEHTA = $mpar(DEHTA=0.01) FPROUTE = $mpar(FPROUTE=0) PDITS = $mpar(PDITS=1M)
  #echo + PDITS = $mpar(PDITS=0) PDITS1 = $mpar(PDITS1=0) RDW = $mpar(RDW=100)
  #echo + RDSW = $mpar(RDSW=100) RDSWMIN = $mpar(RDSWMIN=0) RDW = $mpar(RDW=100)
  #echo + RDWIN = $mpar(RDWIN=0) RSW = $mpar(RSW=100)

IC-CAP Nonlinear Device Models Volume 1
5 BSIM4 Characterization

#echo + RSWMIN = $mpar(RSWMIN=0) PRWG = $mpar(PRWG=1) PRWB = $mpar(PRWB=0) WR = $mpar(WR=1)
#echo + LINT = $mpar(LINT=0) WINT = $mpar(WINT=0) DWG = $mpar(DWG=0) DWB = $mpar(DWB=0)
#echo + WWL = $mpar(WWL=0) LL = $mpar(LL=0) LLN = $mpar(LLN=1) LW = $mpar(LW=0)
#echo + LWL = $mpar(LWL=0) LWW = $mpar(LWW=0) LWC = $mpar(LWC=0)
#echo + ALPHA0 = $mpar(ALPHA0=1E-5) ALPHA1 = $mpar(ALPHA1=0) BETA0 = $mpar(BETA0=15)
#echo + XJTHESREV = $mpar(XJTHESREV=0.1) XJTHESWD = $mpar(XJTHESWD=0.1) XJBVS = $mpar(XJBVS=1)
#echo + BVD = $mpar(BVD=10) JSD = $mpar(JSD=1E-4) JSWD = $mpar(JSWD=0)
#echo + MPSWS = $mpar(MPSWS=1) MJSWS = $mpar(MJSWS=0.33) PBS = $mpar(PBS=1)
#echo + CBSWS = $mpar(CBSWS=1) CBSWS = $mpar(CBSWS=1) PBSWS = $mpar(PBSWS=1)
#echo + MPUSWS = $mpar(MPUSWS=1) MPUSWS = $mpar(MPUSWS=1) PBSWS = $mpar(PBSWS=1)
#echo + MPSWS = $mpar(MPSWS=1) MJSWS = $mpar(MJSWS=0.33) PBS = $mpar(PBS=1)
#echo + CBSWS = $mpar(CBSWS=1) CBSWS = $mpar(CBSWS=1) PBSWS = $mpar(PBSWS=1)
#echo + MPUSWS = $mpar(MPUSWS=1) MPUSWS = $mpar(MPUSWS=1) PBSWS = $mpar(PBSWS=1)
#echo + MPSWS = $mpar(MPSWS=1) MJSWS = $mpar(MJSWS=0.33) PBS = $mpar(PBS=1)
#echo + CBSWS = $mpar(CBSWS=1) CBSWS = $mpar(CBSWS=1) PBSWS = $mpar(PBSWS=1)
#echo + MPUSWS = $mpar(MPUSWS=1) MPUSWS = $mpar(MPUSWS=1) PBSWS = $mpar(PBSWS=1)
BSIM4 Characterization

# echo + TEMPMOD = $mpar(TEMPMOD=0)
# echo + TNOM = $mpar(TNOM=27) UTE = $mpar(UTE=-1.5) KT1 = $mpar(KT1=-0.11)
# echo + KT1L = $mpar(KT1L=0) KT2 = $mpar(KT2=-0.022)
# echo + UAI = $mpar(UAI=1E-9) UB1 = $mpar(UB1=-1E-18) UC1 = $mpar(UC1=0.067)
# echo + AT = $mpar(AT=3.3E4) PRT = $mpar(PRT=0) NJS = $mpar(NJS=1) NJD = $mpar(NJD=1)
# echo + XTIS = $mpar(XTIS=3) XTI = $mpar(XTI=3) TPB = $mpar(TPB=0)
# echo + TPBSW = $mpar(TPBSW=0) TPBSWG = $mpar(TPBSWG=0) TCJ = $mpar(TCJ=0)
# echo + TCSJ = $mpar(TCSJ=0) TCSJWG = $mpar(TCSJWG=0)
# echo + *
# --- Extension to BSIM to enable:
#   * - scalable external capacitors and inductors to account for cross coupling in
#     the metal stripes and additional delay due to large sizes
#   * - a scalable substrate network using different configurations (symmetric / horseshoe)
#   * - scalable Delta L reduction *
# Parameters:
#   * CGDEXT0 external capacitance gate - drain per gate width and gate finger [F/m]
#   * CGSEXT0 external capacitance gate - source per gate width and gate finger [F/m]
#   * CDSEXT0 external capacitance drain - source per gate width and gate finger [F/m]
#   * LDRAIN0 drain inductance per gate width and gate finger [H/m]
#   * LGATE0 gate inductance per gate width and gate finger [H/m]
#   * LSOURCE0 source inductance per gate width and gate finger [H/m]
#   * LBULK0 bulk inductance per gate width and gate finger [H/m]
#     * RSHB bulk sheet resistance [Ohm sq]
#   * DSBC distance source implant to bulk contact [m]
#   * DDDBC distance drain implant to bulk contact [m]
#   * DHSDBC distance drain/source edge to horseshoe substrate contact [m]
#   * DGG distance gate to gate [m]
#   * DL0 basic channel length reduction correction [m]
#     * DL1 channel length reduction correction 1. and 2. outer fingers [m]
#   * DL2 :
#       * RSUBEQ selection flag for different substrate resistance configurations [-]
#       * RSUBEQ=0: symmetric substrate resistance contacts
#       * RSUBEQ=1: horseshoe substrate resistance contacts *
#       * echo .PARAM CGDEXT0 = $mpar(CGDEXT0=1E-9) .param CGS = $mpar(CGSEXT0=1E-9)
#         .echo .param CGS = $mpar(CGSEXT0=1E-9) .param CDSEXT0 = $mpar(CDSEXT0=1E-9) .param LDRAIN0 = $mpar(LDRAIN0=1E-6)
#         .echo .param LDRAIN0 = $mpar(LDRAIN0=1E-6) .param LGATE0 = $mpar(LGATE0=1E-6) .param LSOURCE0 = $mpar(LSOURCE0=1E-6)
#         .echo .param LSOURCE0 = $mpar(LSOURCE0=1E-6) .param LBULK0 = $mpar(LBULK0=1E-6) .param RSHEB = $mpar(RSHEB=25)
#         .echo .param RSHEB = $mpar(RSHEB=25) .param DSBC = $mpar(DSBC=2E-6) .param DDDBC = $mpar(DDDBC=2E-6)
#         .echo .param DDDBC = $mpar(DDDBC=2E-6) .param DGG = $mpar(DGG=2E-6)
#         .echo .param DGG = $mpar(DGG=2E-6) .param DL0 = $mpar(DL0=0) .param DL1 = $mpar(DL1=0) .param DL2 = $mpar(DL2=0)
#         .echo .param DL2 = $mpar(DL2=0) * *
#       * --- temporary constants ---------------------
#         * echo .param factor_even_odd = '0.5*(1+(tmp_nf-2*int(0.5*tmp_nf)))'
#         * echo .param tmp_dl1 = `(tmp_nf-4.5)/(2*abs(tmp_nf-4.5)) * 8/ tmp_nf'
#         * echo .param tmp_d = `(tmp_nf-2.5)/(2*abs(tmp_nf-2.5)) * 4/ tmp_nf'
#         * --- calculation of substrate resistance for different configurations
#         * echo .param tmp_rdb1 = `factor_even_odd*tmp_nf*DSBC*RSHB / tmp_w`
#         * echo .param tmp_rdb2 = `DHSDBC*RSHB / (tmp_nf*(DGG+tmp_l))`
#         * echo .param tmp_rdb2 = `tmp_rdb2`
#       * RSUBEQ=0 symmetric substrate contacts
#       * echo .param tmp_rdb_rsubeq0 = `tmp_rdb1`
#       * echo .param tmp_rdb_rsubeq0 = `tmp_rdb1`
5 BSIM4 Characterization

* RSUBEQ=1 horseshoe substrate contacts
#echo .param tmp_rdb_rsubeq1 = '(tmp_rdb1*tmp_rdb2)/(tmp_rdb1+tmp_rdb2)'
#echo .param tmp_rsb_rsubeq1 = '(tmp_rsb1*tmp_rsb2)/(tmp_rsb1+tmp_rsb2)'
* flag to select substrate equations
#echo .param tmp_flag_rsubeq0 = '1/(1+abs(RSUBEQ)*1e9)'
#echo .param tmp_flag_rsubeq1 = '1/(1+abs(RSUBEQ-1)*1e9)'
#echo .param tmp_rdb_rsubeq1 = 'tmp_flag_rsubeq0*tmp_rdb_rsubeq0 tmp_flag_rsubeq1*tmp_rdb_rsubeq1'
#echo .param tmp_rsb_rsubeq1 = 'tmp_flag_rsubeq0*tmp_rsb_rsubeq0 tmp_flag_rsubeq1*tmp_rsb_rsubeq1'
* --------- Gate network ------------------------------
#echo CGDEXT 20 10 'CGDEXT0*tmp_w'
#echo CGSEXT 20 30 'CGSEXT0*tmp_w'
#echo LGATE 2 20 'LGATE0*tmp_w' *
* --------- Drain network -----------------------------
#echo LDRAIN 1 10 'LDRAIN0*tmp_w'
#echo CDSEXT 10 30 'CDSEXT0*tmp_w' *
* --------- Source network -----------------------------
#echo LSOURCE 3 30 'LSOURCE0*tmp_w' *
* --------- Substrate network -------------------------
#echo LBULK 4 40 'LBULK0*tmp_w' *
*--- call fully scalable MOSFET ------------------------
#echo M1 10 20 30 40 BSIM4_HF
#echo + L='tmp_l - 2*(DL0+tmp_dl1*DL1+tmp_dl2*DL2)' W=tmp_w NF=tmp_nf
#echo + AD=tmp_ad AS=tmp_as PD=tmp_pd PS=tmp_ps SA=tmp_sa SB=tmp_sb SD=tmp_sd
#echo + NR=tmp_nrd NRS=tmp_nrs
#echo + GEOMOD=tmp_geomod RGEOMOD=tmp_rgeomod MIN=tmp_min RBPB=1e9
#echo + RBPS='0.5*RSHB*(tmp_l+DGG) / tmp_w'
#echo + RBPD='0.5*RSHB*(tmp_l+DGG) / tmp_w'
#echo + RBSB='tmp_rbsb'
#echo + RBDB='tmp_rbdb' * .ends } }
Test Structures for Deep Submicron CMOS Processes

A very important prerequisite for a proper model parameter extraction is the selection of appropriate test structures.

Chapter 4, “BSIM3v3 Characterization” contains detailed descriptions of appropriate test structures for deep submicron MOS transistors. See Table 20 on page 296 for an example.

A very detailed description of ideal test structures are in the JESSI AC-41 reports [2].
Tutorials for the BSIM 4 Modeling Package

This section provides some background information on what’s behind the extraction routines used inside the BSIM 4 Modeling Package. It will give you the ability to see what happens during an extraction step. Selecting one of the predefined extraction routines opens diagrams of relevant device behavior curves. The diagrams consist of measured data shown together with simulated curves using default parameter values provided. Windows open that show sliders for the parameters to be extracted during this extraction step. Now you are able to change the default parameters using the sliders. Once you have changed a parameter, a simulation starts using the newly entered or changed parameter. This gives you the opportunity to study parameter influence on device behavior. You can see which part of the diagrams are sensitive to the changed parameter.

Opening the Tutorial

Information

On opening the tutorial model file, you get a screen similar to the following one:
The intention of this tutorial model is to demonstrate the physical effects which are implemented in the BSIM4.2.0 model for deep submicron devices.

The different model parameters are grouped as follows:

**Model parameters**

1. Threshold voltage
2. Drain current
3. Substrate current
4. Gate current
5. Diode current
6. Capacitance
7. Temperature

In the folder 'Initialize', BSIM4 model flags can be set. They affect the usage of different sets of equations inside the BSIM4 model in the simulator (spice3e2) e.g. for calculating the mobility degradation. After changing such a model flag, the button 'Initialize' starts a generation of new start data.

In the folder 'Tutorial' the effect of model parameters can be visualized. To show how a certain parameter affects the behavior of a MOS transistor, please invoke the appropriate parameter group and modify the values of the parameters with the IC-CAP tutor.

---

**Figure 171** Information screen of the BSIM 4 tutorial model

Inside the Information folder, you get the information necessary to start with the tutorial.

**Initialize**

The next folder to the right, Initialize, is used to set initial values of BSIM4 flags used for simulation.
Tutorial

On entering the Tutorial folder, you will see the parameters extracted from different device curves, grouped for their influence on the device behavior. The following figure shows the Tutorial folder.
Selecting a line of parameters inside one of the different groups opens simulated device diagrams together with the IC-CAP tuner (see Figure 173).
In the example above, the line reading $VTH0, K1, K2$ inside the Threshold Voltage group of parameters has been selected. The diagrams show simulated (yellow color) together with a set of measured (red color) parameters. If
you change the setting of one of the sliders inside the tuner window, the new value is taken for a simulation of the device behavior in that specific diagram and you can easily see the influence of the named parameter.

**Options**

Inside the Options folder, you can define the size and background of the plots to be displayed.

**Boundaries**

The Boundaries folder is described already in detail in “BSIM4 — Boundaries” on page 174.
SPICE Model Parameters

There are a number of new model parameters introduced with BSIM4.3.0, mainly associated with the newly introduced stress effect. Since the user of the former model revision, BSIM4.2.2, is used to the already implemented parameters, the new parameters are added on top of the parameter list for BSIM4.

The model parameters of the BSIM4 model can be divided into several groups. The main model parameters are used to model the key physical effects in the DC and CV behavior of submicron MOS devices at room temperature. Here they are grouped into subsections related to the physical effects of the MOS transistor. The second group of parameters are the process related parameters. They should only be changed if a detailed knowledge of a certain MOS production process is given. The third group of parameters are the temperature modeling parameters. The following two groups are used to model the AC and noise behavior of the MOS transistor. Finally the last group contains flags to select certain modes of operations and user definable model parameters. For more details about these operation modes, refer to the BSIM4 manual [1].

New Model Parameters for BSIM 4.3.0

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stress Effect related Parameters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Instance parameter: Distance between OD edge to poly Si from one side, see Figure 161. If not given or $\leq 0$, stress effect will be turned off!</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>SB</td>
<td>Instance parameter: Distance between OD edge to poly Si from the other side, see Figure 161. If not given or $\leq 0$, stress effect will be turned off!</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Default Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>SD</td>
<td>Instance parameter: Distance between neighboring fingers, see Figure 161 For NF &gt; 1: if not given or ( \leq 0 ), stress effect will be turned off!</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>SAREF</td>
<td>Reference distance between OD edge to poly Si from one side</td>
<td>1E-6</td>
<td>m</td>
</tr>
<tr>
<td>SBREF</td>
<td>Reference distance between OD edge to poly Si from the other side</td>
<td>1E-6</td>
<td>m</td>
</tr>
<tr>
<td>WLOD</td>
<td>Width parameter for stress effect</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>KU0</td>
<td>Stress effect mobility degradation/enhancement coefficient</td>
<td>0.0</td>
<td>1/ m</td>
</tr>
<tr>
<td>KVSAT</td>
<td>Stress effect saturation velocity degradation/enhancement parameter (-1 \leq KVSAT \leq 1)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>TKU0</td>
<td>KU0 temperature coefficient</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>LKU0</td>
<td>KU0 length dependence</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>WKU0</td>
<td>KU0 width dependence</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PKU0</td>
<td>KU0 cross-term dependence</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>LLODKU0</td>
<td>Length parameter for U0 stress effect (&gt;0)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>WLODKU0</td>
<td>Width parameter for U0 stress effect (&gt;0)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>KVTH0</td>
<td>Stress effect threshold shift parameter</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>LKVTH0</td>
<td>KVTH0 length dependence</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>WKVTH0</td>
<td>KVTH0 width dependence</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>PKVTH0</td>
<td>KVTH0 cross-term dependence</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>LLODVTH</td>
<td>VTH stress effect length parameter (&gt;0)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>WLODVTH</td>
<td>VTH stress effect width parameter (&gt;0)</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>STK2</td>
<td>Shift factor for K2 with changing VTH0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>LODK2</td>
<td>K2 shift modification factor for stress effect (&gt;0)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>STETA0</td>
<td>Shift factor for ETA0, related to change of VTH0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>LODETA0</td>
<td>ETA0 shift modification factor for stress effect (&gt;0)</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
BSIM 4 Characterization

Table 39  New Parameters introduced with BSIM 4.3.0 (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMBDA</td>
<td>Velocity overshoot coefficient</td>
<td>2.0E-5</td>
<td>m/s</td>
</tr>
<tr>
<td>VTL</td>
<td>Thermal velocity</td>
<td>2.0E-5</td>
<td>m/s</td>
</tr>
<tr>
<td>LC</td>
<td>Velocity back scattering coefficient (~5E-9 m at room temperature)</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>XN</td>
<td>Second velocity back scattering coefficient</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Temperature Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPMOD</td>
<td>Temperature mode selector</td>
<td>0</td>
</tr>
</tbody>
</table>

Holistic Thermal Noise

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNOIA</td>
<td>Thermal noise coefficient</td>
<td>0.577</td>
</tr>
<tr>
<td>RNOIB</td>
<td>Thermal noise coefficient</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Main Model Parameters

Table 40  Main Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSROX</td>
<td>relative gate dielectric constant</td>
<td>3.9 (SiO₂)</td>
<td>-</td>
</tr>
<tr>
<td>TOXE</td>
<td>Electrical gate equivalent oxide thickness</td>
<td>3E-9</td>
<td>m</td>
</tr>
<tr>
<td>TOXP</td>
<td>Physical gate equivalent oxide thickness</td>
<td>TOXE</td>
<td>-</td>
</tr>
<tr>
<td>TOXM</td>
<td>Gate oxide thickness at which parameters are extracted</td>
<td>TOXE</td>
<td>-</td>
</tr>
</tbody>
</table>
### Table 40  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTOX</td>
<td>defined as TOXE-TOXP</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>Xj</td>
<td>Source / Drain junction depth</td>
<td>150E-9</td>
<td>m</td>
</tr>
<tr>
<td>GAMMA1</td>
<td>Body-effect coefficient near the surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMMA2</td>
<td>Body-effect coefficient in the substrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGATE</td>
<td>Poly Si-gate doping concentration</td>
<td>0.0</td>
<td>cm³</td>
</tr>
<tr>
<td>NDEP</td>
<td>Channel doping concentration at depletion edge for zero body bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If NDEP is not given but GAMMA1 is given:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ NDEP = \left( \frac{\gamma_1 \cdot C_{oxe}}{2 \cdot q \cdot \varepsilon_{si}} \right)^2 ]</td>
<td></td>
<td>cm³</td>
</tr>
<tr>
<td></td>
<td>If both are not given: NDEP=1E17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSUB</td>
<td>Substrate doping concentration</td>
<td>6E16</td>
<td>cm³</td>
</tr>
<tr>
<td>NSD</td>
<td>Source / Drain doping concentration</td>
<td>1e20</td>
<td>cm³</td>
</tr>
<tr>
<td>XT</td>
<td>Doping depth</td>
<td>1.55E-7</td>
<td>V</td>
</tr>
<tr>
<td>VBX</td>
<td>( V_{bs} ) at which depletion region equals XT</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>[ VBX = \Phi_S ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ \frac{q \cdot NDEP \cdot XT^2}{2 \cdot \varepsilon_{si}} ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSH</td>
<td>Sheet resistance</td>
<td>0.0</td>
<td>Ω/(sq)</td>
</tr>
<tr>
<td>RSHG</td>
<td>Gate electrode sheet resistance</td>
<td>0.1</td>
<td>Ω/(sq)</td>
</tr>
</tbody>
</table>
### BSIM4 Characterization

#### Table 40  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Threshold Voltage</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFB</td>
<td>Flatband voltage</td>
<td>-1.0</td>
<td>V</td>
</tr>
<tr>
<td>VTH0</td>
<td>Long channel threshold voltage at ( V_{bs} = 0 )</td>
<td>NMOS: 0.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMOS: -0.7</td>
<td></td>
</tr>
<tr>
<td>PHIN</td>
<td>Non-uniform vertical doping effect on surface potential</td>
<td>0.0</td>
<td>V</td>
</tr>
<tr>
<td>K1</td>
<td>First-order body effect coefficient</td>
<td>0.5</td>
<td>( V^{0.5} )</td>
</tr>
<tr>
<td>K2</td>
<td>Second-order body effect coefficient</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>K3</td>
<td>Narrow width coefficient</td>
<td>80.0</td>
<td>-</td>
</tr>
<tr>
<td>K3B</td>
<td>Body effect coefficient of K3</td>
<td>0.0</td>
<td>( 1/V )</td>
</tr>
<tr>
<td>W0</td>
<td>Narrow width parameter</td>
<td>2.5E-6</td>
<td>m</td>
</tr>
<tr>
<td>LPE0</td>
<td>Lateral non-uniform doping parameter at ( V_{bs} = 0 )</td>
<td>1.74e-7</td>
<td>m</td>
</tr>
<tr>
<td>LPEB</td>
<td>Lateral non-uniform doping effect on K1</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>VBM</td>
<td>Maximum applied body bias in VTH0 calculation.</td>
<td>-3.0</td>
<td>V</td>
</tr>
<tr>
<td>DVT0</td>
<td>First coefficient of short-channel effect on VTH</td>
<td>2.2</td>
<td>-</td>
</tr>
<tr>
<td>DVT1</td>
<td>Second coefficient of short-channel effect on VTH</td>
<td>0.53</td>
<td>-</td>
</tr>
<tr>
<td>DVT2</td>
<td>Body-bias coefficient of short-channel effect on VTH</td>
<td>-0.032</td>
<td>( 1/V )</td>
</tr>
<tr>
<td>DVTP0</td>
<td>First coefficient of drain-induced ( V_{th} ) shift for long-channel pocket devices</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>DVTP1</td>
<td>Second coefficient of drain-induced ( V_{th} ) shift for long-channel pocket devices</td>
<td>0.0</td>
<td>V</td>
</tr>
<tr>
<td>DVT0W</td>
<td>First coefficient of narrow-width effect on VTH for small channel length</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>DVT1W</td>
<td>Second coefficient of narrow-width effect on VTH for small channel length</td>
<td>5.3E6</td>
<td>( 1/m )</td>
</tr>
<tr>
<td>DVT2W</td>
<td>Body-bias coefficient of narrow-width effect on VTH for small channel length</td>
<td>-0.032</td>
<td>( 1/V )</td>
</tr>
<tr>
<td>ETA0</td>
<td>DIBL coefficient in the subthreshold region</td>
<td>0.08</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Default Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>ETAB</td>
<td>Body-bias for the subthreshold DIBL effect</td>
<td>-0.07</td>
<td>1/V</td>
</tr>
<tr>
<td>DSUB</td>
<td>DIBL coefficient exponent in subthreshold region</td>
<td>DROUT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td><strong>Mobility</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U0</td>
<td>Low-field mobility</td>
<td>N M OS: 670</td>
<td>cm²/(Vs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM OS: 250</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>First-order mobility degradation coefficient due to vertical field</td>
<td>1E-9</td>
<td>m/ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M OBM OD=0 and 1: 1e-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M OBM OD=2: 1e-15</td>
<td></td>
</tr>
<tr>
<td>UB</td>
<td>Second-order mobility degradation coefficient</td>
<td>1E-19</td>
<td>(m/ V)²</td>
</tr>
<tr>
<td>UC</td>
<td>Coefficient of the body-bias effect of mobility degradation</td>
<td>M OBM OD=1: -0.0465</td>
<td>1/ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M OBM OD=0 and 2: 0.0465E-9</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>Exponent for mobility degradation of M OBM OD = 2</td>
<td>N M OS: 1.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM OS: 1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Drain current</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSAT</td>
<td>Saturation velocity</td>
<td>8.0E4</td>
<td>m/ s</td>
</tr>
<tr>
<td>A0</td>
<td>Bulk charge effect coefficient</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>First non-saturation effect factor</td>
<td>0.0</td>
<td>1/ V</td>
</tr>
<tr>
<td>A2</td>
<td>Second non-saturation effect factor</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>AGS</td>
<td>Coefficient of Vgs dependence of bulk charge effect</td>
<td>0.0</td>
<td>1/ V</td>
</tr>
<tr>
<td>B0</td>
<td>Bulk charge effect coeff. for channel width</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>B1</td>
<td>Bulk charge effect width offset</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>KETA</td>
<td>Body-bias coefficient of the bulk charge effect</td>
<td>-0.047</td>
<td>1/ V</td>
</tr>
</tbody>
</table>
### Table 40  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Subthreshold region</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOFF</td>
<td>Offset voltage in subthreshold region for large W and L</td>
<td>-0.08</td>
<td>V</td>
</tr>
<tr>
<td>VOFFL</td>
<td>Channel length dependence of VOFF</td>
<td>0.0</td>
<td>mV</td>
</tr>
<tr>
<td>MINV</td>
<td>$V_{gsteff}$ fitting parameter for moderate inversion condition</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>NFACTOR</td>
<td>Subthreshold swing factor</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>CIT</td>
<td>Interface trap capacitance</td>
<td>0.0</td>
<td>F/ m²</td>
</tr>
<tr>
<td>CDSC</td>
<td>Drain-Source to channel coupling capacitance</td>
<td>2.4E-4</td>
<td>F/ m²</td>
</tr>
<tr>
<td>CDSCB</td>
<td>Body-bias coefficient of CDSC</td>
<td>0.0</td>
<td>F/ Vm²</td>
</tr>
<tr>
<td>CDSCD</td>
<td>Drain-bias coefficient of CDSC</td>
<td>0.0</td>
<td>F/ Vm²</td>
</tr>
<tr>
<td><strong>Drain-Source resistance</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDSW</td>
<td>Zero bias LDD resistance per unit width for RDSM OD = 0</td>
<td>200</td>
<td>Ω (µm)²WR</td>
</tr>
<tr>
<td>RDSWM IN</td>
<td>LDD resistance per unit width at high $V_{gs}$ and zero $V_{bs}$ for RDSM OD = 0</td>
<td>0.0</td>
<td>Ω (µm)²WR</td>
</tr>
<tr>
<td>RDW</td>
<td>Zero bias LDD drain resistance per unit width for RDSM OD = 1</td>
<td>100</td>
<td>Ω (µm)²WR</td>
</tr>
<tr>
<td>RDWM IN</td>
<td>Zero bias LDD drain resistance per unit width at high $V_{gs}$ and zero $V_{bs}$ for RDSM OD = 1</td>
<td>0.0</td>
<td>Ω (µm)²WR</td>
</tr>
<tr>
<td>RSW</td>
<td>Zero bias LDD source resistance per unit width for RDSM OD = 1</td>
<td>100</td>
<td>Ω (µm)²WR</td>
</tr>
<tr>
<td>RSWM IN</td>
<td>Zero bias LDD resistance per unit width at high $V_{gs}$ and zero $V_{bs}$ for RDSM OD = 1</td>
<td>0.0</td>
<td>Ω (µm)²WR</td>
</tr>
<tr>
<td>WR</td>
<td>Channel width dependence parameter of LDD resistance</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>PRWB</td>
<td>Body bias coefficient of LDD resistance</td>
<td>0.0</td>
<td>V²⁻⁰.⁵</td>
</tr>
<tr>
<td>PRWG</td>
<td>Gate bias dependence of LDD resistance</td>
<td>1.0</td>
<td>1/ V</td>
</tr>
<tr>
<td>NRS</td>
<td>Number of source diffusion squares</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>NRD</td>
<td>Number of drain diffusion squares</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 40  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINT</td>
<td>Channel width offset parameter</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>WL</td>
<td>Coeff. of length dependence for width offset</td>
<td>0.0</td>
<td>m&lt;sup&gt;WLN&lt;/sup&gt;</td>
</tr>
<tr>
<td>WLN</td>
<td>Power of length dependence for width offset</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>WW</td>
<td>Coeff. of length dependence for width offset</td>
<td>0.0</td>
<td>m&lt;sup&gt;WWN&lt;/sup&gt;</td>
</tr>
<tr>
<td>WWN</td>
<td>Power of width dependence for width offset</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>WWL</td>
<td>Coeff. of length and width cross term for width offset</td>
<td>0.0</td>
<td>m&lt;sup&gt;WLN+WWN&lt;/sup&gt;</td>
</tr>
<tr>
<td>LINT</td>
<td>Channel length offset parameter</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>LL</td>
<td>Coeff. of length dependence for length offset</td>
<td>0.0</td>
<td>m&lt;sup&gt;LLN&lt;/sup&gt;</td>
</tr>
<tr>
<td>LLN</td>
<td>Power of length dependence for length offset</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>LW</td>
<td>Coeff. of width dependence for length offset</td>
<td>0.0</td>
<td>m&lt;sup&gt;LWN&lt;/sup&gt;</td>
</tr>
<tr>
<td>LWN</td>
<td>Power of width dependence for length offset</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>LWL</td>
<td>Coeff. of length and width cross term for length offset</td>
<td>0.0</td>
<td>m&lt;sup&gt;LWN+LLN&lt;/sup&gt;</td>
</tr>
<tr>
<td>LLC</td>
<td>Coefficient of length dependence for CV channel length offset</td>
<td>LL</td>
<td>-</td>
</tr>
<tr>
<td>LWC</td>
<td>Coefficient of width dependence for CV channel length offset</td>
<td>LW</td>
<td>-</td>
</tr>
<tr>
<td>LWLC</td>
<td>Coefficient of length and width cross term dependence for CV</td>
<td>LWL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>channel length offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLC</td>
<td>Coefficient of length dependence for CV channel width offset</td>
<td>WL</td>
<td>-</td>
</tr>
<tr>
<td>WWC</td>
<td>Coefficient of width dependence for CV channel width offset</td>
<td>WW</td>
<td>-</td>
</tr>
<tr>
<td>WWLC</td>
<td>Coefficient of length and width cross term dependence for CV</td>
<td>WWL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>channel width offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMIN</td>
<td>Minimum channel length</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>LMAX</td>
<td>Maximum channel length</td>
<td>1.0</td>
<td>m</td>
</tr>
<tr>
<td>WMIN</td>
<td>Minimum channel width</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>WMAX</td>
<td>Maximum channel width</td>
<td>1.0</td>
<td>m</td>
</tr>
<tr>
<td>DWG</td>
<td>Coefficient of gate bias dependence of W&lt;sub&gt;eff&lt;/sub&gt;</td>
<td>0.0</td>
<td>m/V</td>
</tr>
</tbody>
</table>
Table 40  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWB</td>
<td>Coefficient of substrate bias dependence of $W_{eff}$</td>
<td>0.0</td>
<td>m$^{-1/2}$</td>
</tr>
<tr>
<td>PCLM</td>
<td>Channel length modulation parameter</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>PDIBL1</td>
<td>First output resistance DIBL effect parameter</td>
<td>0.39</td>
<td>-</td>
</tr>
<tr>
<td>PDIBL2</td>
<td>Second output resistance DIBL effect parameter</td>
<td>8.6$m^{-1}$</td>
<td>-</td>
</tr>
<tr>
<td>PDIBLB</td>
<td>Body bias coefficient of output resistance DIBL effect</td>
<td>0.0</td>
<td>1/V</td>
</tr>
<tr>
<td>DROUT</td>
<td>Channel-length dependence coefficient of the DIBL effect on output resistance</td>
<td>0.56</td>
<td>-</td>
</tr>
<tr>
<td>PSCBE1</td>
<td>First substrate current induced body-effect parameter</td>
<td>4.24E8</td>
<td>V$^{-1}$</td>
</tr>
<tr>
<td>PSCBE2</td>
<td>Second substrate current induced body-effect coefficient</td>
<td>1.0E-5</td>
<td>m$^{-1}$</td>
</tr>
<tr>
<td>PVAG</td>
<td>Gate-bias dependence of Early voltage</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>FPROUT</td>
<td>Effect of pocket implant on $R_{out}$ degradation</td>
<td>0.0</td>
<td>V$^{-1/2}$</td>
</tr>
<tr>
<td>PDITS</td>
<td>Impact of drain-induced $V_{th}$ shift on $R_{out}$</td>
<td>0.0</td>
<td>V$^{-1}$</td>
</tr>
<tr>
<td>PDITSL</td>
<td>Channel-length dependence of drain-induced $V_{th}$ shift on $R_{out}$</td>
<td>0.0</td>
<td>m$^{-1}$</td>
</tr>
<tr>
<td>PDITSD</td>
<td>$V_{ds}$ dependence of drain-induced $V_{th}$ shift on $R_{out}$</td>
<td>0.0</td>
<td>V$^{-1}$</td>
</tr>
<tr>
<td>ALPHA0</td>
<td>First impact ionization parameter</td>
<td>0.0</td>
<td>A$^{-1}$</td>
</tr>
<tr>
<td>ALPHA1</td>
<td>Length dependent substrate current parameter</td>
<td>0.0</td>
<td>A$^{-1}$</td>
</tr>
<tr>
<td>BETA0</td>
<td>Second impact ionization parameter</td>
<td>30</td>
<td>V</td>
</tr>
</tbody>
</table>

**Gate-Induced Drain Leakage model**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIDL</td>
<td>Pre-exponential coefficient for GIDL</td>
<td>0.0</td>
<td>mho (1/Ohm)</td>
</tr>
<tr>
<td>BGIDL</td>
<td>Exponential coefficient for GIDL</td>
<td>2.3E9</td>
<td>V$^{-1}$</td>
</tr>
<tr>
<td>CGIDL</td>
<td>Parameter for body-bias effect on GIDL</td>
<td>0.5</td>
<td>V$^{-1}$</td>
</tr>
<tr>
<td>EGIDL</td>
<td>Fitting parameter for band bending for GIDL</td>
<td>0.8</td>
<td>V</td>
</tr>
</tbody>
</table>
Gate Dielectric Tunneling Current

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIGBACC</td>
<td>Parameter for $I_{gb}$ in accumulation</td>
<td>0.43</td>
<td>$\sqrt{\frac{(F_s^2)}{g}}$</td>
</tr>
<tr>
<td>BIGBACC</td>
<td>Parameter for $I_{gb}$ in accumulation</td>
<td>0.054</td>
<td>$\sqrt{\frac{(F_s^2)}{g}}$</td>
</tr>
<tr>
<td>CIGBACC</td>
<td>Parameter for $I_{gb}$ in accumulation</td>
<td>0.075</td>
<td>1/V</td>
</tr>
<tr>
<td>NIGBACC</td>
<td>Parameter for $I_{gb}$ in accumulation</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>AIGBINV</td>
<td>Parameter for $I_{gb}$ in inversion</td>
<td>0.35</td>
<td>$\sqrt{\frac{(F_s^2)}{g}}$</td>
</tr>
<tr>
<td>BIGBINV</td>
<td>Parameter for $I_{gb}$ in inversion</td>
<td>0.03</td>
<td>$\sqrt{\frac{(F_s^2)}{g}}$</td>
</tr>
<tr>
<td>CIGBINV</td>
<td>Parameter for $I_{gb}$ in inversion</td>
<td>0.006</td>
<td>1/V</td>
</tr>
<tr>
<td>EIGBINV</td>
<td>Parameter for $I_{gb}$ in inversion</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>NIGBINV</td>
<td>Parameter for $I_{gb}$ in inversion</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>AIGC</td>
<td>Parameter for $I_{gcs}$ and $I_{gcd}$</td>
<td>NMOS: 0.054</td>
<td>$\sqrt{\frac{(F_s^2)}{g}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM OS: 0.31</td>
<td></td>
</tr>
<tr>
<td>BIGC</td>
<td>Parameter for $I_{gcs}$ and $I_{gcd}$</td>
<td>NMOS: 0.054</td>
<td>$\sqrt{\frac{(F_s^2)}{g}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM OS: 0.024</td>
<td></td>
</tr>
<tr>
<td>CIGC</td>
<td>Parameter for $I_{gcs}$ and $I_{gcd}$</td>
<td>NMOS: 0.075</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM OS: 0.03</td>
<td></td>
</tr>
</tbody>
</table>
5 BSIM4 Characterization

Table 40 Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIGSD</td>
<td>Parameter for $I_{gs}$ and $I_{gd}$</td>
<td>NMOS: 0.43</td>
<td>$\sqrt{\frac{(F_s)^2}{g}}$ m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMOS: 0.31</td>
<td></td>
</tr>
<tr>
<td>BIGSD</td>
<td>Parameter for $I_{gs}$ and $I_{gd}$</td>
<td>NMOS: 0.054</td>
<td>$\sqrt{\frac{(F_s)^2}{g}}$ m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMOS: 0.024</td>
<td></td>
</tr>
<tr>
<td>CIGSD</td>
<td>Parameter for $I_{gs}$ and $I_{gd}$</td>
<td>NMOS: 0.075</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMOS: 0.03</td>
<td></td>
</tr>
<tr>
<td>DLCIG</td>
<td>Source/Drain overlap length for $I_{gs}$ and $I_{gd}$</td>
<td>LINT</td>
<td>-</td>
</tr>
<tr>
<td>NIGC</td>
<td>Parameter for $I_{gcs}$, $I_{gcd}$, $I_{gs}$ and $I_{gd}$</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>POXEDGE</td>
<td>Factor for gate oxide thickness in source/drain overlap regions</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>PIGCD</td>
<td>Vgs dependence of $I_{gcs}$ and $I_{gcd}$</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>NTOX</td>
<td>Exponent for the gate oxide ratio</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>TOXREF</td>
<td>Nominal gate oxide thickness for gate direct tunneling model</td>
<td>3E-9</td>
<td>m</td>
</tr>
</tbody>
</table>

Diode Characteristics

| IJ THSREV | (Source) Limiting current in reverse bias region (Drain) | IJ THSREV =0.1 | A     |
| IJ THDREV | (Drain)                                                  | IJ THDREV =IJ THSREV |
| IJ THSFWD | (Source) Limiting current in forward bias region (Drain) | IJ THSFWD =0.1 | A     |
| IJ THDFWD | (Drain)                                                  | IJ THDFWD =IJ THSFWD |
| XJ BVS   | (Source) Fitting parameter for diode breakdown (Drain)   | XJ BVS=1.0     | -     |
| XJ BVD   | (Drain)                                                  | XJ BVD =XJ BVS |
| BVS      | (Source) Breakdown voltage (Drain)                       | BVS=10.0       | V     |
| BVD      | (Drain)                                                  | BVD=BVS        |
Table 40  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>J SS</td>
<td>(Source) Bottom junction reverse saturation current density</td>
<td>J SS=1.0e-4</td>
<td>A/m²</td>
</tr>
<tr>
<td>J SD</td>
<td>(Drain)</td>
<td>J SD=J SS</td>
<td></td>
</tr>
<tr>
<td>J SW S</td>
<td>Isolation-edge sidewall reverse saturation current density</td>
<td>J SW S=0.0</td>
<td>A/m</td>
</tr>
<tr>
<td>J SW D</td>
<td></td>
<td>J SW D = J SW S</td>
<td></td>
</tr>
<tr>
<td>J SW GS</td>
<td>Gate-edge sidewall reverse saturation current density</td>
<td>J SW GS=0.0</td>
<td>A/m</td>
</tr>
<tr>
<td>J SW GD</td>
<td></td>
<td>J SW GD=J SW GS</td>
<td></td>
</tr>
<tr>
<td>Cj S</td>
<td>Bottom junction capacitance per unit area at zero bias</td>
<td>Cj S=5.0e-4</td>
<td>F/m²</td>
</tr>
<tr>
<td>Cj D</td>
<td></td>
<td>Cj D=Cj S</td>
<td></td>
</tr>
<tr>
<td>Mj S</td>
<td>Bottom junction capacitance grating coefficient</td>
<td>Mj S=0.5</td>
<td>-</td>
</tr>
<tr>
<td>Mj D</td>
<td></td>
<td>Mj D=Mj S</td>
<td></td>
</tr>
<tr>
<td>Mj SW S</td>
<td>Isolation-edge sidewall junction capacitance grading coefficient</td>
<td>Mj SW S=0.33</td>
<td>-</td>
</tr>
<tr>
<td>Mj SW D</td>
<td></td>
<td>Mj SW D=Mj SW S</td>
<td></td>
</tr>
<tr>
<td>Cj SW S</td>
<td>Isolation-edge sidewall junction capacitance per unit area</td>
<td>Cj SW S=5.0e-10</td>
<td>F/m</td>
</tr>
<tr>
<td>Cj SW D</td>
<td></td>
<td>Cj SW D=Cj SW S</td>
<td></td>
</tr>
<tr>
<td>Cj SW GS</td>
<td>Gate-edge sidewall junction capacitance per unit length</td>
<td>Cj SW GS=Cj SW S</td>
<td>-</td>
</tr>
<tr>
<td>Cj SW GD</td>
<td></td>
<td>Cj SW GD=Cj SW S</td>
<td></td>
</tr>
<tr>
<td>Mj SW GS</td>
<td>Gate-edge sidewall junction capacitance grading coefficient</td>
<td>Mj SW GS=Mj SW S</td>
<td>-</td>
</tr>
<tr>
<td>Mj SW GD</td>
<td></td>
<td>Mj SW GD=Mj SW S</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Source bottom junction built-in potential</td>
<td>PBS=1.0</td>
<td>V</td>
</tr>
<tr>
<td>PBD</td>
<td>Drain bottom junction built-in potential</td>
<td>PBD=PBS</td>
<td>V</td>
</tr>
<tr>
<td>PBSWS</td>
<td>Isolation-edge sidewall junction built-in potential of source junction</td>
<td>PBSWS=1.0</td>
<td>V</td>
</tr>
<tr>
<td>PBS WD</td>
<td>Isolation-edge sidewall junction built-in potential of drain junction</td>
<td>PBS WD=PBS WS</td>
<td>V</td>
</tr>
</tbody>
</table>
5 BSIM 4 Characterization

Table 40 Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBSWGS</td>
<td>Gate-edge sidewall junction built-in potential of source junction</td>
<td>PBSWGS = PBSWS</td>
<td>V</td>
</tr>
<tr>
<td>PBSWGD</td>
<td>Gate-edge sidewall junction built-in potential of drain junction</td>
<td>PBSWGD = PBSWS</td>
<td>V</td>
</tr>
<tr>
<td>X PART</td>
<td>Charge partitioning parameter</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>CGSO</td>
<td>Non LDD region gate-source overlap capacitance per unit W</td>
<td>calculated, see Overlap Capacitance Model</td>
<td>F/m</td>
</tr>
<tr>
<td>CGDO</td>
<td>Non LDD region gate-drain overlap capacitance per unit W</td>
<td>calculated, see Overlap Capacitance Model</td>
<td>F/m</td>
</tr>
<tr>
<td>CGBO</td>
<td>Gate-bulk overlap capacitance per unit L</td>
<td>0.0</td>
<td>F/m</td>
</tr>
<tr>
<td>CGSL</td>
<td>Light doped gate-source region overlap capacitance</td>
<td>0.0</td>
<td>F/m</td>
</tr>
<tr>
<td>CGDL</td>
<td>Light doped gate-drain region overlap capacitance</td>
<td>0.0</td>
<td>F/m</td>
</tr>
<tr>
<td>CKAPPAS</td>
<td>Coefficient of bias-dependent overlap capacitance on source side</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>CKAPPAD</td>
<td>Coefficient of bias-dependent overlap capacitance on drain side</td>
<td>CKAPPAS</td>
<td>V</td>
</tr>
<tr>
<td>CF</td>
<td>Fringing field capacitance</td>
<td>$\frac{2 \cdot \varepsilon_0 \cdot \pi}{\log \left( 1 + \frac{4 \varepsilon - 7}{TOXE} \right)}$</td>
<td>F/m</td>
</tr>
<tr>
<td>CLC</td>
<td>Constant term for the short channel model</td>
<td>0.1E-7</td>
<td>m</td>
</tr>
<tr>
<td>CLE</td>
<td>Exponential term for the short channel model</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>DLC</td>
<td>Length offset fitting parameter for CV model</td>
<td>LINT</td>
<td>m</td>
</tr>
<tr>
<td>DWC</td>
<td>Width offset fitting parameter for CV model</td>
<td>WINT</td>
<td>m</td>
</tr>
<tr>
<td>VFBCV</td>
<td>Flatband voltage parameter for CAPM OD = 0</td>
<td>-1.0</td>
<td>V</td>
</tr>
<tr>
<td>NOFF</td>
<td>CV parameter in $V_{gsteff, CV}$ for weak to strong inversion</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>VOFFCV</td>
<td>CV parameter in $V_{gsteff, CV}$ for weak to strong inversion</td>
<td>0.0</td>
<td>V</td>
</tr>
<tr>
<td>ACDE</td>
<td>Exponential coefficient for charge thickness in accumulation and depletion regions in CAPM OD=2</td>
<td>1.0</td>
<td>m/ V</td>
</tr>
</tbody>
</table>
### Table 40  Main Model Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOIN</td>
<td>Coefficient for the gate-bias dependent surface potential</td>
<td>15.0</td>
<td>-</td>
</tr>
</tbody>
</table>

### Table 41  Temperature Modeling Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T NORM</td>
<td>Parameter extraction temperature</td>
<td>27</td>
<td>°C</td>
</tr>
<tr>
<td>UTE</td>
<td>Mobility temperature coefficient</td>
<td>-1.5</td>
<td>-</td>
</tr>
<tr>
<td>KT1</td>
<td>Threshold voltage temperature coefficient</td>
<td>-0.11</td>
<td>V</td>
</tr>
<tr>
<td>KT1L</td>
<td>Channel length dependence of KT1</td>
<td>0.0</td>
<td>Vm</td>
</tr>
<tr>
<td>KT2</td>
<td>Threshold voltage temperature coefficient</td>
<td>0.022</td>
<td>-</td>
</tr>
<tr>
<td>UA1</td>
<td>Temperature coefficient for UA</td>
<td>1E-9</td>
<td>m/V</td>
</tr>
<tr>
<td>UB1</td>
<td>Temperature coefficient for UB</td>
<td>-1E-18</td>
<td>(m/V)^2</td>
</tr>
<tr>
<td>UC1</td>
<td>Temperature coefficient for UC</td>
<td>M OB M O D=1: 0.056 M OB M O D=0 and 2: 0.056E-9</td>
<td>1/V m/V^2</td>
</tr>
<tr>
<td>PRT</td>
<td>Temperature coefficient for RDSW</td>
<td>0.0</td>
<td>Ω m</td>
</tr>
<tr>
<td>AT</td>
<td>Saturation velocity temperature coefficient</td>
<td>3.3E4</td>
<td>m/s</td>
</tr>
<tr>
<td>NJ S</td>
<td>Emission coefficient for Source junction</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>NJ D</td>
<td>Emission coefficient for Drain junction</td>
<td>NJ S</td>
<td>-</td>
</tr>
<tr>
<td>XTIS</td>
<td>Junction current temperature exponent coefficient of source body junction</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>XTID</td>
<td>Junction current temperature exponent coefficient of drain body junction</td>
<td>XTIS</td>
<td>-</td>
</tr>
<tr>
<td>TPB</td>
<td>Temperature coefficient for PB</td>
<td>0.0</td>
<td>V/K</td>
</tr>
<tr>
<td>TPBSW</td>
<td>Temperature coefficient for PBSW</td>
<td>0.0</td>
<td>V/K</td>
</tr>
<tr>
<td>TPBSWG</td>
<td>Temperature coefficient for PBSWG</td>
<td>0.0</td>
<td>V/K</td>
</tr>
</tbody>
</table>
### BSIM4 Characterization

#### Table 41  Temperature Modeling Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCJ</td>
<td>Temperature coefficient for CJ</td>
<td>0.0</td>
<td>1/K</td>
</tr>
<tr>
<td>TCJ SW</td>
<td>Temperature coefficient for CJ SW</td>
<td>0.0</td>
<td>1/K</td>
</tr>
<tr>
<td>TCJ SWG</td>
<td>Temperature coefficient for CJ SWG</td>
<td>0.0</td>
<td>1/K</td>
</tr>
</tbody>
</table>

#### Flicker Noise Model Parameters

#### Table 42  Flicker Noise Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOI A</td>
<td>Flicker noise parameter A</td>
<td>NMOS: 6.25e41, PMOS: 6.188e40</td>
<td>(eV)^{-1}s^{-1}EF_{m}^{-3}</td>
</tr>
<tr>
<td>NOI B</td>
<td>Flicker noise parameter B</td>
<td>NMOS: 3.125e26, PMOS: 1.5e25</td>
<td>(eV)^{-1}s^{-1}EF_{m}^{-1}</td>
</tr>
<tr>
<td>NOI C</td>
<td>Flicker noise parameter C</td>
<td>8.75</td>
<td>(eV)^{-1}s^{-1}EF_{m}</td>
</tr>
<tr>
<td>EM</td>
<td>Saturation field</td>
<td>4.1e7</td>
<td>V/m</td>
</tr>
<tr>
<td>AF</td>
<td>Flicker noise exponent</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>EF</td>
<td>Flicker noise frequency exponent</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>KF</td>
<td>Flicker noise coefficient</td>
<td>0.0</td>
<td>A^{-2}EF^{-1}EF_{m}</td>
</tr>
<tr>
<td>NTNOI</td>
<td>Noise factor for short-channel devices for TNOIM OD=0 only</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>TNOIA</td>
<td>Coefficient of channel-length dependence of total channel thermal noise</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>TNOIB</td>
<td>Channel-length dependence parameter for channel thermal noise partitioning</td>
<td>3.5</td>
<td>-</td>
</tr>
</tbody>
</table>
### High-Speed / RF Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRCRG1</td>
<td>Parameter for distributed channel resistance effect for both intrinsic input resistance and charge-deficit NQS models</td>
<td>12.0</td>
<td>-</td>
</tr>
<tr>
<td>XRCRG2</td>
<td>Parameter to account for the excess channel diffusion resistance for both intrinsic input resistance and charge-deficit NQS models</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>RBPB</td>
<td>Resistance connected between bNodePrime and bNode</td>
<td>50.0</td>
<td>Ohm</td>
</tr>
<tr>
<td>RBDP</td>
<td>Resistance connected between bNodePrime and dbNode</td>
<td>50.0</td>
<td>Ohm</td>
</tr>
<tr>
<td>RBPS</td>
<td>Resistance connected between bNodePrime and sbNode</td>
<td>50.0</td>
<td>Ohm</td>
</tr>
<tr>
<td>RBDB</td>
<td>Resistance connected between dbNode and bNode</td>
<td>50.0</td>
<td>Ohm</td>
</tr>
<tr>
<td>RBSB</td>
<td>Resistance connected between sbNode and bNode</td>
<td>50.0</td>
<td>Ohm</td>
</tr>
<tr>
<td>GBMIN</td>
<td>Conductance in parallel with each of the five substrate resistances to avoid potential numerical instability due to unreasonably too large a substrate resistance</td>
<td>1.0e-12</td>
<td>mho</td>
</tr>
</tbody>
</table>
## BSIM4 Characterization

### Layout-Dependent Parasitics Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM CG</td>
<td>Distance from S/ D contact center to the gate edge</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>DM CI</td>
<td>Distance from S/ D contact center to the isolation edge in the channel length direction</td>
<td>DM CG</td>
<td>-</td>
</tr>
<tr>
<td>DM DG</td>
<td>Same as DM CG but for merged device only</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>DM CGT</td>
<td>DM CG of test structures</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>NF</td>
<td>Number of device fingers</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>DWJ</td>
<td>Offset of the S/ D junction width (in CV model)</td>
<td>DWC</td>
<td>-</td>
</tr>
<tr>
<td>MIN</td>
<td>Whether to minimize the number of drain or source diffusions for even number fingered devices</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>XGW</td>
<td>Distance from the gate contact to the channel edge</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>XGL</td>
<td>Offset of the gate length due to variations in patterning</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>XL</td>
<td>Channel length offset due to mask/ etch effect</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>XW</td>
<td>Channel width offset due to mask/ etch effect</td>
<td>0.0</td>
<td>m</td>
</tr>
<tr>
<td>NGCON</td>
<td>Number of gate contacts</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>
## Model Selection Flags

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Type of Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL</td>
<td>14</td>
<td>BSIM 4 model selector (in UCB SPICE3)</td>
</tr>
<tr>
<td>VERSION</td>
<td>4.3.0</td>
<td>Model version number</td>
</tr>
<tr>
<td>BINUNIT</td>
<td>0, 1</td>
<td>Binning unit selector</td>
</tr>
<tr>
<td>PARAM CHK</td>
<td>0, 1</td>
<td>Switch for Parameter value check (Parameters checked)</td>
</tr>
<tr>
<td>MOBMOD</td>
<td>0, 1, 2</td>
<td>Mobility model (same as in BSIM 3v3.2)</td>
</tr>
<tr>
<td>RDSMOD</td>
<td>0, 1</td>
<td>Bias-dependent source/drain resistance model selector (internal Rds(V))</td>
</tr>
<tr>
<td>IGCMOD</td>
<td>0, 1</td>
<td>Gate-to-channel tunneling current model selector ($I_{gc}, I_{gs}, I_{gd}$ are off)</td>
</tr>
<tr>
<td>IGBM OD</td>
<td>0, 1</td>
<td>Gate-to-substrate tunneling current model selector ($I_{gb}$ is off)</td>
</tr>
<tr>
<td>CAPMOD</td>
<td>0, 1, 2</td>
<td>Capacitance model selector (single-equation and charge-thickness model)</td>
</tr>
<tr>
<td>RGATEM OD</td>
<td>0, 1, 2, 3</td>
<td>Gate resistance model selector (no gate resistance)</td>
</tr>
<tr>
<td>RBODYM OD</td>
<td>0, 1</td>
<td>Substrate resistance network model selector (network off)</td>
</tr>
<tr>
<td>TRNQSM OD</td>
<td>0, 1</td>
<td>Charge-deficit transient non quasi static model selector (charge-deficit model off)</td>
</tr>
<tr>
<td>ACNQSM OD</td>
<td>0, 1</td>
<td>Charge-deficit AC small signal non quasi static model selector (charge-deficit model off)</td>
</tr>
<tr>
<td>FNOIM OD</td>
<td>0, 1</td>
<td>Flicker noise model selector (unified physical flicker noise model is used)</td>
</tr>
<tr>
<td>TNOIM OD</td>
<td>0, 1</td>
<td>Thermal noise model selector (charge-based thermal noise model)</td>
</tr>
<tr>
<td>DIOM OD</td>
<td>0, 1, 2</td>
<td>Asymmetric source/drain junction diode IV model selector ($I_{junction}$ diodes are modeled breakdown-free)</td>
</tr>
<tr>
<td>PERM OD</td>
<td>0, 1</td>
<td>PS / PD parameters include gate-edge perimeter (including the gate-edge perimeter)</td>
</tr>
<tr>
<td>GEOMOD</td>
<td>0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10</td>
<td>Geometry-dependent parasitics model selector - specify how the end S/D-diffusions are connected (isolated)</td>
</tr>
</tbody>
</table>
5 BSIM 4 Characterization

Table 45 Model Selection Flags

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>Type of Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGEOM OD</td>
<td>0, 1, 2, 3, 4, 5, 6, 7, 8</td>
<td>S/D diffusion resistance and contact model selector: specifying the end S/D contact type (point, wide or merged) and how S/D parasitic resistance is computed (no S/D diffusion resistance)</td>
</tr>
</tbody>
</table>

**NOTE**

Underlined values in bold italics are defaults, underlined comments in italics (in brackets) are valid for default model selector values.
References

1 BSIM4.3.0 Manual, University of California at Berkeley, Copyright © 2003 The Regents of the University of California. See the web site of the device research group at UCB. You can download the manual from the Internet, using the following Web address: http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html

2 “Characterization System for Submicron CMOS Technologies,” JESSI Reports AC41 94-1 through 94-6


Acknowledgements

The BSIM4 model was developed by the UC Berkeley BSIM Device Research Group of the Department of Electrical Engineering and Computer Science, University of California, Berkeley and copyrighted by the University of California.
5 BSIM 4 Characterization
This chapter describes the UCB GaAs MESFET transistor model supported by SPICE. Descriptions of model setup, instrument connections, and model parameters are included as well as test instrument information. Procedures are included for extracting AC and DC model parameters from GaAs MESFET transistors using the UCB GaAs MESFET Model. These model parameters describe the operating characteristics of the device under test (DUT) and can be derived from either simulated or direct measurements of the DUT.

The IC-CAP UCB GaAs MESFET modeling module provides setups that can be used for general measurement and model extraction for GaAs technology. The IC-CAP system offers the flexibility to modify any measurement or simulation specification.

The model extractions provided are also intended for general GaAs IC processes. If you have another method of extracting specific model parameters, you can do so with the Program function or by writing a function in C and linking it to the
Function List. Details on the Program transform and writing user-defined C language routines are explained in Chapter 9, “Using Transforms and Functions,” in the IC-CAP User’s Guide.

The model presented here has been enhanced with the inclusion of the series inductors and the gate resistor. Both of these are implemented as circuit elements of the overall subcircuit. This is an example of one method you might use to customize your own model.
**UCB GaAs MESFET Model**

The UCB GaAs MESFET model is contained in an IC-CAP example file `UCBGaas.mdl`. The file consists of a single level model that is based on a model developed at Raytheon and implemented in UCB’s SPICE3 simulator [1][2]. In this model, drain current is proportional to the square of the gate-to-source voltage multiplied by the expansion series of the hyperbolic tangent of the drain-to-source voltage.

The model defines total gate junction capacitance and takes into account the FET symmetry and carrier velocity saturation. Unlike the SPICE3 version, the IC-CAP model includes gate, source, and drain inductances, and gate resistance. These components are extracted in IC-CAP as external resistance and inductances to improve the accuracy of the model.
Simulators

This model is supported by SPICE3. HPSPICE provides only DC analysis capability for this model.

NOTE

Simulators are provided as a courtesy to IC-CAP users; they are not supported by Agilent Technologies.

The SPICE3 default nominal temperature is 27°C. Set the \text{TNOM} variable under the \text{Utilities} menu to force another temperature.

SPICE3 Simulators

The general form for the SPICE3 statement that calls the UCB GaAs MESFET model is

\text{ZXXXXXXX ND NG NS MNAME}

where

\text{ZXXXXXXX} \quad \text{indicates MESFET device name (any name that begins with Z)}

\text{ND} \quad \text{indicates drain node number}

\text{NG} \quad \text{indicates gate node number}

\text{NS} \quad \text{indicates source node number}

\text{MNAME} \quad \text{indicates model name}

An example of this call is

\text{Z1 7 2 3 ZM1 OFF}

The SPICE3 syntax of the \text{.MODEL} definition is

\text{.MODEL MNAME TYPE PNAME1=PVAL1 PNAME2=PVAL2 ...}

where

\text{MNAME} \quad \text{indicates model name}
The general form for the HPSPICE statement that calls the UCB GaAs MESFET model is

\[ JXXXXXXX \ ND \ NG \ NS \ MNAME \]

where

- \( JXXXXXXX \) indicates MESFET device name (any name that begins with \( J \))
- \( ND \) indicates drain node number
- \( NG \) indicates gate node number
- \( NS \) indicates source node number
- \( MNAME \) indicates model name

An example of this statement is

\[ J1 \ 5 \ 1 \ 2 \ MODJ \]

The HPSPICE syntax for the .MODEL definition is

\[ .MODEL \ MNAME \ RCAY \ TYPE \ PNAME1=PVAL1 \ PNAME2=PVAL2 \ldots \]

where

- \( MNAME \) indicates model name
- \( RCAY \) key word specifying a GaAs MESFET model
- \( TYPE \) indicates NJF (N-channel MESFET) or PJF (P-channel MESFET)
- \( PNAME# \) indicates UCB GaAs MESFET parameter name
- \( PVAL# \) indicates parameter value of \( PNAME# \)
The parameter \textit{MODEL} in the .MODEL description must be set. \textit{MODEL = 3} indicates UCB GaAs MESFET model.

IC-CAP allows you to assign node names to node numbers, simplifying references to nodes (by a meaningful name). For more information, refer to “Assigning Node Names” in the Reference.
Model Parameters

UCB GaAs MESFET model parameters are described in the following table. Setup attributes are listed in Table 47.

**Table 46** UCB GaAs MESFET Model Parameter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inductance and Resistance Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Drain inductance. Specifies external drain inductance.</td>
<td>0 Henry</td>
</tr>
<tr>
<td>LG</td>
<td>Gate inductance. Specifies external gate inductance.</td>
<td>0 Henry</td>
</tr>
<tr>
<td>LS</td>
<td>Source inductance. Specifies external source inductance.</td>
<td>0 Henry</td>
</tr>
<tr>
<td>RD</td>
<td>Drain resistance. Specifies external drain resistance.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td><strong>Diode Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>Diode reverse saturation current. Models gate-drain and gate-source current.</td>
<td>$1 \times 10^{-14}$ Amp</td>
</tr>
<tr>
<td>PB</td>
<td>Gate junction potential. Models built-in potentials of gate-source and gate-drain regions.</td>
<td>1V</td>
</tr>
<tr>
<td>XN</td>
<td>Diode emission coefficient. Models emission coefficient of an ideal diode.</td>
<td>1</td>
</tr>
<tr>
<td><strong>DC Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td>Saturation voltage parameter. Specifies voltage at which drain current reaches saturation. The $V_{ds}$ coefficient in the tanh function.</td>
<td>$2.0V^{-1}$</td>
</tr>
<tr>
<td>B</td>
<td>Doping profile parameter. Models intrusion of doping profile into the insulating substrate.</td>
<td>$0.3V^{-1}$</td>
</tr>
<tr>
<td>BETA</td>
<td>Transconductance parameter. Defines transconductance in the saturation or linear operating regions.</td>
<td>$1 \times 10^{-4}$ A V$^{-2}$</td>
</tr>
</tbody>
</table>
Table 46  UCB GaAs MESFET Model Parameter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMBDA</td>
<td>Channel length modulation parameter. Models finite output conductance of a MESFET in the saturation region.</td>
<td>0V⁻¹</td>
</tr>
<tr>
<td>VTO</td>
<td>Zero bias threshold voltage. Models gate turn-on voltage.</td>
<td>0V</td>
</tr>
</tbody>
</table>

Capacitance Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGD</td>
<td>Zero bias gate-drain capacitance</td>
<td>0 Farad</td>
</tr>
<tr>
<td>CGS</td>
<td>Zero bias gate-source capacitance</td>
<td>0 Farad</td>
</tr>
</tbody>
</table>

Table 47  UCB GaAs Model Setup Attributes

<table>
<thead>
<tr>
<th>DUT/Setup</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Transform</th>
<th>Function</th>
<th>Extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac/s_at_f</td>
<td>vg, vd, vs, freq</td>
<td>s</td>
<td>extract_L_and_R</td>
<td>GAASAC_l_and_r</td>
<td>LD, LG, LS, RD, RG, RS</td>
</tr>
<tr>
<td>ac/s vs_f</td>
<td>vg, vd, vs, freq</td>
<td>s</td>
<td>extract_CV</td>
<td>GAASCV_cgs_cgd</td>
<td>CGD, CGS</td>
</tr>
<tr>
<td>dc/igvg_0v</td>
<td>vg, v, ig</td>
<td>none</td>
<td>optim1</td>
<td>GAASDC_lev1</td>
<td>PB, IS, XN</td>
</tr>
<tr>
<td>dc/idvd_vg</td>
<td>vg, v, vs</td>
<td>ig</td>
<td>optim1</td>
<td>GAASDC_lev2</td>
<td>VTO, BETA, ALPHA, LAMBDA, B</td>
</tr>
</tbody>
</table>

IC-CAP Nonlinear Device Models Volume 1
Test Instruments

The HP 4141, Agilent 4142, HP 4145, Agilent 4155, or Agilent 4156 can be used to derive DC model parameters from measured DC voltage and current characteristics.

The Agilent 8510, Agilent 8753, or HP 8702 (with an HP 41xx instrument) can be used to derive capacitance and inductance model parameters from S-parameter measurements.

Instrument-to-Device Connections

When the device is installed in a test fixture, verify the correct connection of device nodes by checking the specifications in the setup tables. Table 48 is a cross-reference of the connections between the terminals of a typical MESFET device and various measurement units. These connections and measurement units are defined in the UCBGaas.mdl example file.

Input and output tables in the various setups use abbreviations D (drain), G (gate), and S (source) for the MESFET device nodes. These nodes are defined in the Circuit folder.

Measurement units (abbreviated as follows) are defined in Hardware Setup.

- **SMU#** for DC measurement units
- **NWA** for network analyzer units

<table>
<thead>
<tr>
<th>DUT</th>
<th>Source</th>
<th>Gate</th>
<th>Drain</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc</td>
<td>SM U3</td>
<td>SM U2</td>
<td>SM U1</td>
<td></td>
</tr>
<tr>
<td>ac</td>
<td>Ground</td>
<td>SM U2</td>
<td>SM U1</td>
<td>Calibrate for reference plane</td>
</tr>
<tr>
<td></td>
<td>NWA (port 1)</td>
<td>NWA (port 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. DUT is the name of the DUT as specified in DUT-Setup.
2. Example: DUT dc has the DC measurement unit SMU1 connected to its drain, SMU2 connected to its gate, and SMU3 connected to its source.
Measuring and Extracting

This section provides general information as well as procedures for performing measurements and extractions of MESFET devices.

Measurement and Extraction Guidelines

The following guidelines are provided to help you achieve more successful model measurements and extractions.

Setting Instrument Options

Before starting a measurement, you can quickly verify instrument option settings. Save the current instrument option settings by saving the example file to `<file_name>.mdl` from the model window. Some of the Instrument Options specify instrument calibration. For the most accurate results, calibrate the instruments before taking IC-CAP measurements.

- DC measurements are generally taken with `Integration Time = Medium`.
- CV measurements in the femtofarad region usually require `High Resolution = Yes` and `Measurement Freq (kHz) = 1000`.
- When taking AC measurements with a network analyzer, several instrument settings are critical. In addition, the calibration must be performed on structures that have similar impedances as the stray parasitics of the DUT.
- Input power to the device is typically –10 to –30dBm (after port attenuation).
- Setting the averaging factor to the 2-to-4 range reduces measurement noise.
- Because IC-CAP requires the instrument to perform error correction, set `Use Internal Calibration` to Yes.

Experiment with the other network analyzer options to obtain the best results with specific devices.
Measuring Instruments

Ensure that the measuring instruments (specified by unit names in the input and output tables) are correctly connected to the DUT. Refer to Table 48 for a list of nodes and corresponding measurement units. The quality of the measuring equipment (instruments, cables, test fixture, transistor sockets, and probes) can influence the noise level in the measurements.

Ensure that all characteristics of the measurement stimulus and corresponding measured response are specified in the respective input and output tables.

Calibration

For some measurements the instruments or test hardware must be calibrated to remove non-device parasitics from the DUT. For MESFET devices, stray capacitance due to probe systems, bond pads, and so on should be calibrated out prior to each measurement.

For high-frequency 2-port measurements with a network analyzer, the reference plane of the instrument must be calibrated out to the DUT. IC-CAP relies on the internal calibration of the instruments for full error-corrected data. It is critical that calibration using OPEN, SHORT, THRU, and 50 ohm loads be properly done.

Extracting Model Parameters

For a given setup, you can find the extraction transforms in the Extract/Optimize folder. IC-CAP's extraction algorithms exist as functions; choose Browse to list the functions available for a setup.

When the extract command is selected from the setup, all extractions in the setup are performed in the order listed in the setup. This order is usually critical to proper extraction performance. Extractions are typically completed instantly and the newly extracted model parameter values are placed in Model Parameters.
IC-CAP provides setups for two extraction methods. In general, you only need to perform one of the methods in order to extract parameters.

**Simulating Device Response**

Simulation uses model parameter values currently in the Parameters table. A SPICE deck is created and the simulation performed. The output of the SPICE simulation is then read into IC-CAP as simulated data.

SPICE3 is the only simulator fully compatible with the IC-CAP UCBGaas.mdl configuration file is. You can also use the HPSPICE simulator if you modify the parameter names to match it. DC simulations generally run much faster than cv and AC simulations.

If simulated results are not as expected, use the simulation debugger (in the Tools menu) to examine the input and output simulation files. The output of manual simulations is not available for further processing by IC-CAP functions such as transforms and plots.

**Displaying Plots**

The Display Plot function displays all graphical plots defined in a setup. The currently active graphs are listed under the Plots folder in each setup. View the plots for agreement between measured and simulated data. Measured data is displayed as a solid line; simulated data is displayed as a dashed or dotted line.

**Optimizing Model Parameters**

Optimization of model parameters improves the agreement between measured and simulated data. An optimize transform whose Extract Flag is set to Yes is automatically called after any extraction that precedes it in the transform list.

Optimizing AC parameters can be very time consuming because of the number of SPICE simulations required.
Extraction Procedure Overview

This section describes the general procedure for extracting model parameter data from the UCB GaAs MESFET. The general procedure applies to all types of parameters. Differences between extracting one type and another are primarily in the types of instruments, test setups, and transforms used.

Parameters are extracted from measured or simulated data. Measured data is data taken directly from instruments connected to the DUT inputs and outputs. Simulated data are results from the simulator. Once measured and simulated data have been obtained, each data set can be plotted and compared in the Plot window.

The general extraction procedure is summarized next, starting with the measurement process.

1. Install the device to test in a test fixture and connect the test instruments.
2. Ensure the test fixture, signal source and measuring instruments, and workstation are physically and logically configured for the IC-CAP system.
3. Choose File > Open > Examples. Select UCBGaas.mdl and choose OK. Select Open to load the file and open the model window. Choose OK.

When the UCBGaas model window opens you are ready to begin measurement and extraction operations.

4. Enter the variable name EXTR_PAR at the Model level and enter NMF1 as its value. This allows the extractions to find the model parameters for the model name NMF1 within the subcircuit of the model file. This concept is covered in more detail in Chapter 9, “Circuit Modeling.”
5. Select the DUT and setup.
6. Issue the Measure command.
7. Issue the Extract command.
8. Issue the Simulate command.
9. Display the results.
Parameter Measurement and Extraction

The recommended method for extracting UCB GaAs model parameters is presented next. In this extraction, external resistances are extracted from AC data.

If AC data is not available, an alternative method (described in “Alternate Extraction Method” on page 442) uses the Fukui technique [3] for extracting the resistances from DC data. Use the alternative method only if AC data is not available; the recommended method produces parameters that are more precise.

Parameter extractions are dependent on each other; to ensure accuracy extractions must be done in this order:

Inductances and resistances (AC)  External inductance and resistance parameters are extracted from an S-parameter measurement at a single bias setting. The gate of the device is strongly forward-biased to make the device look like a short circuit. The setup $s_{at_f}$ is used to take the measurements and extract the parameters LD, LG, LS, RD, RG, and RS.

Diode parameters (DC)  Diode parameters PB, IS, and XN are extracted from data produced by the measurement of Ig versus Vg measured at zero drain voltage, with the source floating. The setup $igvg_0vs$ or $igvg_0vd$ is used to make the measurements and extractions, depending on whether the gate-source or gate-drain junction is preferred.
**Other DC parameters (DC)** The remaining DC parameters are extracted using two setups: $idvd_{vg}$ and $idvg_{hi_vd}$. Use $idvd_{vg}$ to measure $Id$ versus $Vg$ at different gate voltages, then use $idvg_{hi_vd}$ to measure $Id$ versus $Vg$ at a constant drain voltage. Parameters $VTO$, $BETA$, $ALPHA$, $LAMBDAB$, and $B$ are then extracted from the resulting data.

**AC (capacitance parameters)** The capacitance parameters $CGD$ and $CGS$ are extracted from an S-parameter measurement using the setup $s_{vs_f}$. The measured data is first corrected using the inductances and resistances extracted in the initial step, then the capacitances are extracted from the corrected data.

Use a network analyzer to make the next set of measurements. S-parameter measurements are highly sensitive—the instrument must be properly calibrated.

1 Place the device to be measured in the test fixture.

2 Select the $ac/s_at_f$ DUT/setup and choose **Measure**.

3 In the $ac/s_at_f$ DUT/setup choose **Extract** to extract inductance and resistance parameters.

4 Select the $ac/s_vs_f$ DUT/setup and choose **Measure**. Do not extract the parameters for this setup yet.

5 Disconnect the device from the network analyzer and directly connect it to the appropriate units for DC measurements.

6 Select the $dc/igvg_0vs$ or $igvg_0vd$ DUT/setup and choose **Measure**.

7 Repeat Step 6, but choose **Extract** to extract diode parameters.

8 Repeat Step 6, but choose **Optimize**.

9 Select the $dc/idvg_hi_vd$ DUT/setup and choose **Measure** to measure $Id$ versus $Vg$ at a constant $Vd$.

**NOTE** For the $ac/s_at_f$ and $s_vs_f$ measurements, the SMUs connected to the network analyzer’s port bias connections must correspond to the SMUs in Table 48.
10 Select the dc/idv_d_vg DUT/setup and perform the measure and extract steps to measure and extract the other DC parameters.

11 Repeat Step 10, but choose Optimize.

12 Select the ac/s_vs_f DUT/setup and choose Extract to extract the capacitances from the data that was measured in step 4.

All model parameters are extracted and their values added to the Parameters table; they can be viewed in the Model Parameters folder.

Alternate Extraction Method

If AC data is not available, IC-CAP supports an alternate method for extracting UCB MESFET model parameters. This procedure uses the Fukui technique [3]; external resistances are extracted along with the diode parameters from DC data—this differs from the recommended method. Use this method only if the AC data is not available—this alternate method produces parameters that are less precise than those of the recommended method.

Parameter extractions are dependent on each other; to ensure accuracy extractions must be done in the following order.

Resistance and diode parameters (DC) Using DC measurements only, this procedure uses the Fukui algorithm to extract the resistance parameters RD, RG, and RS from DC data (refer to Table 46). Diode parameters PB, IS, and XN are also extracted. The extraction requires the setups listed in the following table.

<table>
<thead>
<tr>
<th>Table 49</th>
<th>Resistance and Diode Measurement and Extraction Setups for the Alternative Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>idv_d</td>
<td>Id versus Vg</td>
</tr>
<tr>
<td>igv_d</td>
<td>Ig versus Vg</td>
</tr>
<tr>
<td>igv_d</td>
<td>Ig versus Vg</td>
</tr>
</tbody>
</table>
The extraction is performed from the setup `igvg_0vd`. To use the Fukui algorithm, the following inputs must be added to the function `GAASDC_lev1` (extract transform).

- VG (low Vds) idvg_low_vd/vg
- VD (low Vds) idvg_low_vd/vd
- ID (low Vds) idvg_low_vd/id.m
- VG (D Flt) igvg_0vs/vg
- IG (D Flt) igvg_0vd/ig.m

**Other DC parameters (DC)** Use the recommended method described previously.

**Inductance parameters (AC)** Use the recommended method described previously. Parameters LD, LG, and LS are extracted from the S-parameter measurement. The same transform also extracts the resistance parameters, overwriting the existing ones as it does so.

**Capacitance parameters (AC)** Use the recommended method described previously.

The alternate extraction procedure follows.

1. Connect the NWA to extract inductances and capacitances.
2. Place the device to be measured in the test fixture.

3. Select the `ac/s_at_f` DUT/setup and choose **Measure**.
4. In the `ac/s_at_f` DUT/setup, choose **Extract** to extract inductance and resistance parameters.
5. Select the `ac/s_vs_f` DUT/setup and choose **Measure**.
6. In the `ac/s_vs_f` DUT/setup, choose **Extract** to extract the capacitances from the data that was measured in step 3.
7. Select `dc/igvg_0vs` DUT/setup and choose **Measure**.
8. Repeat Step 7 for `dc/idvg_low_vd` and `dc/igvg_0vd`.

**NOTE**
For the `ac/s_at_f` and `s_vs_f` measurements, the SMUs connected to the network analyzer's port bias connections must correspond to the same SMUs in Table 48.
9 In the dc/igv_0vd DUT/setup, choose Extract to extract the resistance and diode parameters from the measured data for the three DC setups.

10 Repeat Step 9 but choose Optimize.

11 Select the dc/idv_hi_vd DUT/setup and choose Measure to measure Id versus Vg at a constant Vd.

12 In the dc/idvd_vg DUT/setup, repeat the Measure and Extract steps to measure and extract the other DC parameters.

13 Repeat step 13 but choose Optimize.

Simulating

To simulate any individual setup, choose Simulate with that setup active. Simulations can be performed in any order once all of the model parameters have been extracted.

For more information on simulation, refer to Chapter 6, “Simulating,” in the IC-CAP User's Guide.

Displaying Plots

To display plots issue the Display Plot command from a DUT to display the plots for all setups in that DUT. The Plots use the most recent set of measured and simulated data. Viewing plots is an ideal way to compare measured and simulated data to determine if further optimization would be useful. For more information on Plots, refer to Chapter 10, “Printing and Plotting,” in the IC-CAP User’s Guide.

Optimizing

The optimization operation uses a numerical approach to minimize errors between measured and simulated data. As with the other IC-CAP commands, optimization can be performed at either the DUT or setup level. Optimization is more commonly performed from setups—optimization for all setups under a DUT is rarely required.
Optimization is typically interactive in nature, with the best results obtained when you specify the characteristics of the desired results.

For more information on optimization, refer to Chapter 7, "Optimizing," in the IC-CAP User’s Guide.
Extraction Algorithms

This section describes the extraction algorithms used for inductance, capacitance, DC, and series resistance parameters of the UCB GaAs MESFET.

Inductance and Resistance Extraction

Inductors and resistors that are in series with each terminal of the MESFET are measured with a network analyzer at a high frequency and with the gate strongly forward-biased. Under these conditions the AC model for each terminal is reduced to a series R-L circuit. Inductors LD, LG, and LS and resistors RD, RG, and RS are extracted simultaneously from the measured impedance at the gate and drain ports.

DC Parameter Extractions

DC extractions are separated between the diode and forward active controlling parameters. Diode parameters PB, IS, and XN are extracted using a method similar to the method used for a silicon diode. The diode is swept over a forward bias and linear least-squares curve fits will produce the built-in potential and forward conduction properties.

The forward active region is extracted from measurements of the MESFET in both the linear and saturated modes of operation. The difference between the equations defining these two regions is a tanh(ALPHA \cdot Vds) multiplier in the linear mode. The threshold can be obtained from a least-squares fit to the linear region. These equations are solved to produce ALPHA, B, BETA, LAMDA, and VTO.

Capacitance Parameter Extractions

The capacitance of the gate-to-drain (CGD) and gate-to-source (CGS) is measured with S-parameters over typical operating frequencies. Because the inductances and series resistance are already known, these capacitances can be extracted from the corrected impedances measured at the gate and drain ports.
References


UCB GaAs MESFET Characterization
This chapter describes the Curtice GaAs MESFET transistor supported by HPSPICE. Descriptions of model setup, instrument connections, and model parameters are included as well as test instrument information. Procedures for extracting AC and DC model parameters from GaAs MESFET transistors using the Curtice GaAs MESFET model are also included. These model parameters describe the operating characteristics of the device under test (DUT), and can be derived from either simulated or direct measurements of the DUT.

The IC-CAP Curtice GaAs modeling module provides setups that can be used for general measurement and model extraction for GaAs technology. Two example files are provided for the Curtice GaAs MESFET transistor:

- CGaas1.mdl extracts parameters for the quadratic model
- CGaas2.mdl extracts parameters for the cubic model

The IC-CAP system offers the flexibility to modify any measurement or simulation specification.
The model extractions provided are also intended for general GaAs IC processes. If you have another method of extracting specific model parameters, you can do so with the Program function or by writing a function in C and linking it to the function list. Details on the Program transform and writing user-defined C language routines are explained in Chapter 9, “Using Transforms and Functions,” in the IC-CAP User’s Guide.
Curtice GaAs MESFET Characterization

The Curtice GaAs MESFET model is contained in the IC-CAP example files CGaas1.mdl and CGaas2.mdl. These files consist of two levels of models that are based on a model developed at RCA and implemented in many SPICE versions. In level 1 (quadratic) model (CGaas1.mdl), drain current is proportional to the square of the gate to source voltage multiplied by the hyperbolic tangent of the drain to source voltage [1]. Level 2 (Cubic) model (CGaas2.mdl), relates the drain current to the third-order polynomial of the gate and drain voltages times the hyperbolic tangent of the drain voltage [2].

The IC-CAP implementation of the model also includes voltage-dependent capacitances, gate-to-source and gate-to-drain junction diodes, and the series resistances and inductances at the gate, source, and drain.
Simulators

This model is supported only by the HPSPICE simulator in IC-CAP.

The default nominal temperature for SPICE3 is 25°C. To force another nominal temperature, set the \textit{TNOM} variable to the desired value.

The HPSPICE syntax for the Curtice GaAs MESFET element statement is:

\textit{JXXXXXX ND NG NS MNAME}

where:

- \textit{JXXXXXX} indicates Curtice MESFET device name (any name that begins with J)
- \textit{ND} indicates drain node number
- \textit{NG} indicates gate node number
- \textit{NS} indicates source node number
- \textit{MNAME} indicates model name

An example of the Curtice GaAs MESFET device model call is:
\textit{J2 1 2 3 CMES}

The HPSPICE syntax for the \textit{.MODEL} definition is

\textit{.MODEL MNAME RCAY TYPE PNAME1=PVAL1 PNAME2=PVAL2 ...}

where:

- \textit{MNAME} indicates model name

\textbf{NOTE}

Simulators are provided as a courtesy to IC-CAP users; they are not supported by Agilent Technologies.
The parameter \textit{MODEL} in the .MODEL description must be set:

- \textit{MODEL = 1} indicates Curtice level 1 \textit{quadratic} model
- \textit{MODEL = 2} indicates Curtice level 2 \textit{cubic} model
7 Curtice GaAs MESFET Characterization

Model Parameters

Curtice GaAs MESFET model parameters are summarized in the following table. Table 51 lists the parameters with descriptions and default values. Setup attributes are listed in Table 52.

Table 50 Summary of Curtice GaAs MESFET Model Parameters

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>Controlling Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance and Resistance</td>
<td>LD, LG, LS, RD, RG, RS</td>
</tr>
<tr>
<td>Diode</td>
<td>IS, VBI, N</td>
</tr>
<tr>
<td>Threshold</td>
<td>Level 1: VTO</td>
</tr>
<tr>
<td></td>
<td>Level 2: A0, A1, A2, A3</td>
</tr>
<tr>
<td>Linear and Saturation</td>
<td>Level 1: BETA, LAMBDAD, ALPHA</td>
</tr>
<tr>
<td></td>
<td>Level 2: BETA, GAMMA</td>
</tr>
<tr>
<td>Capacitance and AC</td>
<td>CGDO, CGSO, CDS, RDSS, RIN, A5</td>
</tr>
<tr>
<td></td>
<td>optionally: CGD, CGS, TAU</td>
</tr>
</tbody>
</table>

Table 51 Curtice GaAs MESFET Model Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inductance and Resistance Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>Drain Inductance. Specifies external drain inductance.</td>
<td>0 Henry</td>
</tr>
<tr>
<td>LG</td>
<td>Gate Inductance. Specifies external gate inductance.</td>
<td>0 Henry</td>
</tr>
<tr>
<td>LS</td>
<td>Source Inductance. Specifies external source inductance.</td>
<td>0 Henry</td>
</tr>
<tr>
<td>RD</td>
<td>Drain Resistance. Specifies external drain resistance.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td>RG</td>
<td>Gate Resistance. Specifies external gate resistance.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td>RS</td>
<td>Source Resistance. Specifies external source resistance.</td>
<td>0 Ohm</td>
</tr>
</tbody>
</table>
### Table S1  Curtice GaAs MESFET Model Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Diode Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>Diode Reverse Saturation Current. Models gate-drain and gate-source current.</td>
<td>$1 \times 10^{-14}$ Amp</td>
</tr>
<tr>
<td>VBI</td>
<td>Gate Junction Potential. Models built-in potentials of gate-source and gate-drain regions.</td>
<td>0.8 Volt</td>
</tr>
<tr>
<td>N</td>
<td>Diode Emission Coefficient. Models emission coefficient of an ideal diode. In TECAP and some simulators this parameter is called XN.</td>
<td>1.0</td>
</tr>
<tr>
<td>XTI</td>
<td>Diode Saturation Current. Temperature Coefficient.</td>
<td>3.0</td>
</tr>
<tr>
<td>EG</td>
<td>Diode Energy Gap</td>
<td>1.11 EV</td>
</tr>
<tr>
<td><strong>DC Parameters: Level 1 (Quadratic)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA</td>
<td>Coefficient of VDS. It is the Vds coefficient in the tanh function of the quadratic equation.</td>
<td>2.0 V$^{-1}$</td>
</tr>
<tr>
<td>BETA</td>
<td>Transconductance Parameter. Defines transconductance in the saturation or linear operating regions. Same as JFET model. In TECAP and some simulators this parameter is called BETA1 for level 1, and BETA2 for level 2.</td>
<td>$1 \times 10^{-4}$ A V$^{-2}$</td>
</tr>
<tr>
<td>LAMBDA</td>
<td>Channel Length Modulation Parameter. Models the finite output conductance of a MESFET in the saturation region.</td>
<td>0 V$^{-1}$</td>
</tr>
<tr>
<td>VTO</td>
<td>Threshold Voltage. Models gate turn-on voltage. Same as JFET model.</td>
<td>0 V</td>
</tr>
<tr>
<td><strong>DC Parameters: Level 2 (Cubic)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMMA</td>
<td>Coefficient of VDS. It is the Vds coefficient in the tanh function of the cubic equation.</td>
<td>0.5 V$^{-1}$</td>
</tr>
<tr>
<td>BETA</td>
<td>Coefficient for pinchoff. Defines change with respect to VDS in TECAP and some simulators this parameter is called BETA1 for level 1, and BETA2 for level 2.</td>
<td>$1 \times 10^{-4}$ A V$^{-1}$</td>
</tr>
<tr>
<td>A0</td>
<td>0-Order Coefficient for V1 in IDS cubic equation.</td>
<td>$1 \times 10^{-2}$ Amp</td>
</tr>
</tbody>
</table>
### Table S1  Curtice GaAs M ESFET Model Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1st-Order Coefficient for V1 in IDS cubic equation.</td>
<td>$1 \times 10^{-3} , \text{A} \cdot \text{V}^{-1}$</td>
</tr>
<tr>
<td>A2</td>
<td>2nd-Order Coefficient for V1 in IDS cubic equation.</td>
<td>$-1 \times 10^{-3} , \text{A} \cdot \text{V}^{-2}$</td>
</tr>
<tr>
<td>A3</td>
<td>3rd-Order Coefficient for V1 in IDS cubic equation.</td>
<td>$-1 \times 10^{-4} , \text{A} \cdot \text{V}^{-3}$</td>
</tr>
<tr>
<td>VDSO</td>
<td>Value of VDS at which A0 through A3 are determined</td>
<td>5.0 Volt</td>
</tr>
<tr>
<td>RDSO</td>
<td>Internal Resistance. Drain to Source AC Leakage Path. In TECAP and some simulators this parameter is called RDS</td>
<td>$1 \times 10^{12} , \text{Ohm}$</td>
</tr>
<tr>
<td>VDSDC</td>
<td>VDS Bias at which RDSO, CGD and CGS are determined</td>
<td>0V</td>
</tr>
</tbody>
</table>

### AC and Other Common Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>Proportionality Constant. Varies TAU as a function of VDS. Use TAU for constant time delay or A5 to vary delay as a function of VDS.</td>
<td>$0 , \text{S} \cdot \text{V}^{-1}$</td>
</tr>
<tr>
<td>TAU</td>
<td>Internal Time Delay. Constant internal time delay from drain to source.</td>
<td>0 Sec</td>
</tr>
<tr>
<td>VBR</td>
<td>Reverse Breakdown Voltage. From gate to drain.</td>
<td>100V</td>
</tr>
<tr>
<td>RIN</td>
<td>Series Resistance. In series with CGS. Used to model the change in input impedance with frequency.</td>
<td>0 Ohm</td>
</tr>
</tbody>
</table>

### Piecewise Linear Current Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Approximate Breakdown Resistance. R1 is the breakdown resistance from drain to gate.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td>R2</td>
<td>Resistance Relating Breakdown Voltage. R2 is the resistance relating breakdown voltage to channel current.</td>
<td>0 Ohm</td>
</tr>
<tr>
<td>RF</td>
<td>Effective Value. RF if the effective value of forward-bias resistance gate to source.</td>
<td>0 Ohm</td>
</tr>
</tbody>
</table>

### Constant Capacitance Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGD</td>
<td>Gate to Drain Capacitance</td>
<td>0 Farad</td>
</tr>
<tr>
<td>CGS</td>
<td>Gate to Source Capacitance</td>
<td>0 Farad</td>
</tr>
</tbody>
</table>
### Curtice GaAs MESFET Characterization

#### Table 51  Curtice GaAs MESFET Model Parameters (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS</td>
<td>Drain to Source Capacitance</td>
<td>0 Farad</td>
</tr>
<tr>
<td>FC</td>
<td>Coefficient for forward-bias depletion capacitance</td>
<td>0.5</td>
</tr>
</tbody>
</table>

#### Non-Linear Capacitance Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGDO</td>
<td>Zero bias Junction Capacitance. Non-linear Gate to Drain Capacitance at zero DC bias.</td>
<td>0 Farad</td>
</tr>
<tr>
<td>CGSO</td>
<td>Zero bias Junction Capacitance. Non-linear Gate to Source Capacitance at zero DC bias.</td>
<td>0 Farad</td>
</tr>
</tbody>
</table>

---

### Setup Attributes for the Curtice GaAs Model

<table>
<thead>
<tr>
<th>DUT/Setup</th>
<th>Inputs</th>
<th>Outputs</th>
<th>Transform</th>
<th>Function</th>
<th>Extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac/s_at_f</td>
<td>vg, vd, vs, freq</td>
<td>s</td>
<td>extract_L_and_R</td>
<td>GAASAC_L_and_R</td>
<td>LD, LG, LS, RD, RG, RS</td>
</tr>
<tr>
<td>dc/igvg_0v[sd]</td>
<td>vg, v[sd]</td>
<td>ig</td>
<td>extract</td>
<td>GAASDC_lev1</td>
<td>VBI, IS, N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optim1</td>
<td>Optimize</td>
<td>VBI, IS, N</td>
</tr>
<tr>
<td>dc/idvg_hi_vd</td>
<td>vg, vd, vs</td>
<td>id, ig</td>
<td>extract</td>
<td>GAASDC_cur1</td>
<td>Level 1: VTO Level 2: A0, A1, A2, A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optim</td>
<td>Optimize</td>
<td>Level 1: VTO Level 2: A0, A1, A2, A3</td>
</tr>
<tr>
<td>dc</td>
<td>vd, vg, vs</td>
<td>id, ig</td>
<td>extract</td>
<td>GAASDC_cur2</td>
<td>Level 1: BETA, ALPHA, LAMBDA BDA Level 2: BETA, GAMMA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>optim</td>
<td>Optimize</td>
<td>Level 1: BETA, ALPHA, LAMBDA BDA Level 2: BETA, GAMMA</td>
</tr>
<tr>
<td>ac</td>
<td>vg, vd, vs, freq</td>
<td>s</td>
<td>extract_CV</td>
<td>GAASC_cur</td>
<td>CGDO, CGSO, CDS, RDSO, RIN, A5 optionally: CGS, CGD, TAU</td>
</tr>
</tbody>
</table>

---

IC-CAP Nonlinear Device Models Volume 1

457
Test Instruments

The HP 4141, Agilent 4142, or HP 4145 can be used to derive DC model parameters from measured DC voltage and current characteristics.

The Agilent 8510, Agilent 8753, or HP 8702 (with an HP 41xx instrument) can be used to derive capacitance and inductance model parameters from S-parameter measurements.

Instrument-to-Device Connections

When the device is installed in a test fixture, verify the identity of device nodes by checking the inputs and outputs for the appropriate DUTs. Table 53 is a cross reference of the connections between the terminals of a typical MESFET device and various measurement units. These connections and measurement units are defined in CGaas1.mdl and CGaas2.mdl example files.

Input and output tables in the various setups use abbreviations D (drain), G (gate), and S (source) for the MESFET device nodes. These nodes are defined in the Circuit folder.

Measurement units (abbreviated as follows) are defined in Hardware Setup.

- **SMU#** for DC measurement units
- **NWA** for network analyzer units

<table>
<thead>
<tr>
<th>DUT</th>
<th>Source</th>
<th>Gate</th>
<th>Drain</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc</td>
<td>SMU3</td>
<td>SMU2</td>
<td>SMU1</td>
<td></td>
</tr>
<tr>
<td>ac</td>
<td>Ground</td>
<td>SMU2</td>
<td>SMU1</td>
<td>Calibrate for reference plane</td>
</tr>
<tr>
<td></td>
<td>NWA (port 1)</td>
<td>NWA (port 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S3  Instrument-to-Device Connections

<table>
<thead>
<tr>
<th>DUT</th>
<th>Source</th>
<th>Gate</th>
<th>Drain</th>
<th>Comments</th>
</tr>
</thead>
</table>

Notes:
1. DUT is the name of the DUT as specified in DUT-Setup. Source, Gate, and Drain are the names of the transistor terminals.
2. As an example of how to read the table, the first line indicates that the DUT named dc has the DC measurement instruments SMU1 connected to its drain, SMU2 connected to its gate, and SMU3 connected to its source.
Measuring and Extracting

This section general information as well as procedures for performing measurements and extractions of MESFET devices.

Measurement and Extraction Guidelines

The following guidelines are provided to help you achieve more successful model measurements and extractions.

Setting Instrument Options

Before starting a measurement, you can quickly verify instrument options settings. Save the current instrument option settings by saving the model file to `<file_name>.mdl` from the model window. Some of the Instrument Options specify instrument calibration. For the most accurate results, calibrate the instruments before taking IC-CAP measurements.

- DC measurements are generally taken with Integration Time = Medium.
- CV measurements in the femtofarad region usually require High Resolution = Yes and Measurement Freq (kHz) = 1000.
- When taking AC measurements with a network analyzer, several instrument settings are critical. In addition, the calibration must be performed on structures that have similar impedances as the stray parasitics of the DUT.
- Input power to the device is typically −10 to −30dBm (after port attenuation).
- Setting the averaging factor to the 2-to-4 range reduces measurement noise.
- Because IC-CAP requires the instrument to perform error correction, set Use Internal Calibration to Yes.

Experiment with the other network analyzer options to obtain the best results with specific devices.
Measuring Instruments

Ensure that the measuring instruments (specified by unit names in the input and output tables) are correctly connected to the DUT. Refer to Table 53 for a list of nodes and corresponding measurement units. The quality of the measuring equipment (instruments, cables, test fixture, transistor sockets, and probes) can influence the noise level in the measurements.

Ensure that all characteristics of the measurement stimulus and corresponding measured response are specified in the respective input and output tables.

Calibration

For some measurements the instruments or test hardware must be calibrated to remove non-device parasitics from the DUT. For MESFET devices, stray capacitance due to probe systems, bond pads, and so on should be calibrated out prior to each measurement.

For high-frequency 2-port measurements with a network analyzer, the reference plane of the instrument must be calibrated out to the DUT. IC-CAP relies on the internal calibration of the instruments for full error-corrected data. It is critical that calibration using OPEN, SHORT, THRU, and 50 ohm loads be properly done.

Extracting Model Parameters

IC-CAP’s extraction algorithms exist as transforms in the function list, under Extractions. Extraction transforms for a given setup are listed in the transform tile for the setup.

When the extract command is issued from the setup level, all extractions in the setup are performed in the order listed in the setup; this order is usually critical to proper extraction performance. The extractions are typically completed instantly and the newly extracted parameter values are placed in Model Parameters.
The configuration file supplied with IC-CAP contains the setups for two different extraction methods, and two different sets of model parameters (level 1 and 2). In general only one set of these parameters is important, and you need to perform only one of the methods in order to extract model parameters. Set the parameter MODEL to the desired number (1 or 2) before starting the extraction.

**Simulating Device Response**

Simulation uses model parameter values currently in the Parameters table. A SPICE deck is created and the simulation performed. The output of the SPICE simulation is then read into IC-CAP as simulated data.

HPSPICE is the only simulator fully compatible with the IC-CAP Curtice GaAs model configuration file. This simulator uses the JFET convention for calling the model. Figure 174 is an example of the circuit definition for the *Curtice GaAs MESFET* model to be used with this simulator. *JCGAAS* is the device name; *NMF1* is the model name; *RCAY* specifies to use the *Curtice GaAs* model; *NJF* specifies the N type FET, which is the only type supported in this model. *MODEL* = 1 specifies the level 1 model.

Simulations vary in the amount of time they take to complete. DC simulations generally run much faster than CV and AC simulations.

If simulated results are not as expected, use the simulation debugger (in the *Tools* menu) to examine the input and output simulation files. The output of manual simulations is not available for further processing by IC-CAP functions such as transforms and plots.
Displaying Plots

The Display Plot function displays all graphical plots defined in a setup. The currently active graphs are listed under the Plots folder in each setup. View the plots for agreement between measured and simulated data. Measured data is displayed as a solid line; simulated data is displayed as a dashed or dotted line.

Optimizing Model Parameters

Optimization of model parameters improves the agreement between measured and simulated data. An optimize transform whose Extract Flag is set to Yes is automatically called after any extraction that precedes it in the transform list.

Optimizing AC parameters can be very time consuming because of the number of SPICE simulations required.

Extraction Procedure Overview

This section describes the general procedure for extracting model parameter data from the Curtice GaAs MESFET. The procedure applies to all types of parameters. The differences between extracting one type and another lie primarily in the types of instruments, setups, and transforms used.

Parameters can be extracted from measured or simulated data. Measured data is data taken directly from instruments connected to the DUT inputs and outputs. Simulated data are

---

**Figure 174** Example of the circuit definition for HPSPICE

```
.SUBCKT CGAAS 1=D 2=G 3=S
JCGASS 11 22 33 NMF1
LD 1 11 1n
LG 2 22 1n
LS 3 33 1n
.MODEL NMF1 RCAY NJF
  + MODEL = 1
  + BETA  = 100u
  + VBI   = 0.7
  + ....
  + ....
.ENDS
```

---
results from the simulator. Once measured and simulated data have been obtained, both data sets can be plotted and compared.

The general extraction procedure is summarized next, starting with the measurement process.

1. Install the device to test in a test fixture and connect the test instruments.

2. Ensure the test fixture, signal source and measuring instruments, and workstation are physically and logically configured for the IC-CAP system.

3. Choose File > Open > Examples. Select CGaas2.mdl and choose OK. Select Open to load the file and open the model window. Choose OK.

When the CGaas2 model window opens you are ready to begin measurement and extraction operations.

4. Enter the variable name EXTR_PAR at the model level and enter NMF1 as its value. This allows the extractions to find the model parameters for the model name NMF1 within the subcircuit of the model file. This concept is covered in more detail in Chapter 9, “Circuit Modeling”.

5. Select the DUT and Setup.

6. Execute the Measure command.

7. Execute the Extract command.

8. Execute the Simulate command.

9. Display the results.

10. Fine tune the extracted parameters if needed by optimizing.

Parameter Measurement and Extraction

The recommended method for extracting Curtice GaAs model parameters is presented next. In this extraction, external resistances are extracted from AC data.
The Curtice GaAs MESFET model is a 2-level model. IC-CAP supports and extracts parameters for both levels of this model. The following procedure extracts parameters for level 1 or 2 depending on the value of the parameter MODEL.

Parameter extractions are dependent on each other; to ensure accuracy extractions must be done in this order:

**Inductance and resistance parameters (AC)**
External inductance and resistance parameters are extracted from an S-parameter measurement at a single bias setting. The gate of the device is strongly forward biased to make the device look like a short circuit. The s_at_f setup is used to take the measurements and extract the parameters LD, LG, LS, RD, RG, and RS.

**Diode parameters (DC)**
Diode parameters VBI, IS, and N are extracted from data produced by the measurement of Id versus Vg measured at zero drain voltage, with the source floating. The igvg_0vs or igvg_0vd setup is used to make the measurements and extractions, depending on whether the gate-source or gate-drain junction is preferred.

**Threshold parameters (DC)**
Parameters that describe the threshold characteristics are extracted using Id versus Vg measurement at a high drain voltage. The idvg_hi_vd setup is used for this extraction. For the level 1 model, VTO will be extracted; for the level 2 model, A0, A1, A2 and A3 will be extracted.

**Linear and saturation parameters (DC)**
Parameters that control the linear and saturation regions of device operation are extracted using Id versus Vd measurement at different gate voltages. The idvd_vg setup is used for this extraction.

**NOTE**
If AC data is not available, an alternative method (described in the section “Alternate Extraction Method” on page 467) uses the Fukui technique [3] for extracting the resistances from DC data. Use the alternative method only if AC data is not available; the recommended method produces parameters that are more precise.
BETA, LAMBDA and ALPHA are extracted for the level 1 model; BETA and GAMMA are extracted for the level 2 model.

**Capacitance parameters (AC)**  Capacitance parameters CGDO and CGSO, and AC parameters A5, CDS, RDSO and RIN are extracted from an S-parameter measurement using the \( s_{vs_f} \) setup. Measured data is corrected using the inductances and resistances extracted in the initial step; capacitance and other AC parameters are then extracted from corrected data.

By defining IC-CAP system variables \( LINEAR_CGS \), \( LINEAR_CGD \), and \( CONSTANT_TAU \) and setting their values to true, CGS, CGD, and TAU, respectively, can be extracted.

Use a network analyzer to make the next set of measurements. S-parameter measurements are highly sensitive—it is important that the instrument be properly calibrated.

1. Place the device to be measured in the test fixture.

**NOTE**  For the \( ac/s_{at_f} \) and \( s_{vs_f} \) measurements, the SMUs connected to the network analyzer’s port bias connections must correspond to the SMUs in Table 53.

2. Select the \( ac/s_{at_f} \) DUT/Setup and choose **Measure**.
3. In the \( ac/s_{at_f} \) DUT/Setup select **Extract** to extract the inductance and resistance parameters.
4. Select the \( ac/s_{vs_f} \) DUT/Setup and choose **Measure**. Do not extract the parameters for this setup yet.
5. Disconnect the device from the network analyzer and directly connect it to the appropriate units for DC measurements.
6. Select the \( dc/igvg_0vs \) or \( igvg_0vd \) DUT/Setup and choose **Measure**.
7. Repeat Step 6, but choose **Extract** to extract the diode parameters.
8. Repeat Step 6, but choose **Optimize**.
9 Select the **dc/idvg_hi_vd** DUT/Setup and choose **Measure** to measure \( I_d \) versus \( V_g \) at a constant \( V_d \).

10 Select the **dc/idvd_vg** DUT/Setup and repeat the Measure and Extract steps to measure and extract the other DC parameters.

11 Repeat Step 10, but choose **Optimize**.

12 Select the **ac/s_vs_f** DUT/Setup and choose **Extract** to extract the capacitances from the data that was measured in step 4.

All model parameters are extracted and their values added to the Parameters table; they can be viewed in the Model Parameters folder.

### Alternate Extraction Method

If AC data is not available, IC-CAP supports an alternate method for extracting Curtice MESFET model parameters. This procedure uses the *Fukui* technique [3]; external resistances are extracted along with the diode parameters from DC data—this differs from the recommended method. Use this method only if the AC data is not available—this alternate method produces parameters that are less precise than those of the recommended method.

**Resistance and diode parameters (DC)** Using DC measurements only, this procedure uses the *Fukui* algorithm to extract resistance parameters \( R_D \), \( R_G \), and \( R_S \) from DC data. Diode parameters \( V_{BI} \), \( I_S \), and \( N \) are also extracted. The extraction requires the setups listed in the following table.

<table>
<thead>
<tr>
<th>Setup</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>igvg_Ovd</td>
<td>( I_g ) versus ( V_g ), ( V_d = 0 ), with Source floating</td>
</tr>
<tr>
<td>idvg_low_vd</td>
<td>( I_d ) versus ( V_g ), Small ( V_d )</td>
</tr>
<tr>
<td>gvg_Ovs</td>
<td>( I_g ) versus ( V_g ), ( V_s = 0 ), with Drain floating</td>
</tr>
</tbody>
</table>
This extraction is located in the \textit{igvg\_0vd} setup. To use the Fukui algorithm, add the following inputs to the function \textit{GAAASDC\_lev1}.

\begin{itemize}
  \item VG (low Vds) \texttt{idvg\_low\_vd/vg}
  \item VD (low Vds) \texttt{idvg\_low\_vd/vd}
  \item ID (low Vds) \texttt{idvg\_low\_vd/id.m}
  \item VG (D Flt) \texttt{igvg\_0vs/vg}
  \item IG (D Flt) \texttt{igvg\_0vs/ig.m}
\end{itemize}

\textbf{Threshold Parameters ( )} Use the recommended method for measuring and extracting threshold parameters.

\textbf{Linear & Saturation Parameters ( )} Use the recommended method for measuring and extracting linear & saturation parameters.

\textbf{Inductance Parameters (AC)} Use the recommended method for measuring and extracting inductances. The parameters LD, LG, and LS are extracted from the S-parameter measurement. In addition, the Transform also extracts and overwrites the resistance parameters.

\textbf{Capacitance Parameters ( )} Use the recommended method for measuring and extracting capacitance parameters.

The alternate extraction procedure follows.

1. Connect the NWA to extract inductances and capacitances.
2. Place the device to be measured in the test fixture.

\textbf{NOTE}\hfill

For the \textit{ac/s\_at\_f} and \textit{s\_vs\_f} measurements, the SMUs connected to the network analyzer's port bias connections must correspond to the same SMUs in Table 53.

3. Select the \texttt{ac/s\_at\_f} DUT/Setup and choose \texttt{Measure}.
4. Repeat Step 2, but select \texttt{Extract} to extract the inductance and resistance parameters.
5. Select the \texttt{ac/s\_vs\_f} DUT/Setup and choose \texttt{Measure}. Do not extract the parameters for this setup yet.
6 Select the \texttt{ac/\_s\_vs\_f} DUT/Setup and choose \texttt{Extract} to extract the capacitances from the data that was measured in step 3.

7 Select \texttt{dc/\_igvg\_0vs} DUT/Setup and choose \texttt{Measure}.

8 Repeat Step 8 for \texttt{dc/idvg\_low\_vd} and \texttt{dc/igvg\_0vd}.

9 In the \texttt{dc/igvg\_0vd} DUT/Setup, choose \texttt{Extract} to extract the resistance and diode parameters from the measured data for the three DC Setups.

10 Repeat Step 9 but choose \texttt{Optimize}.

11 Select the \texttt{dc/idvg\_hi\_vd} DUT/Setup and choose \texttt{Measure} to measure \( I_d \) versus \( V_g \) at a constant \( V_d \).

12 Select the \texttt{dc/id\_vd\_vg} DUT/Setup and repeat the Measure and \texttt{Extract} steps to measure and extract the other DC parameters.

13 Repeat Step 10, but choose \texttt{Optimize}.

14 Select the \texttt{dc/id\_vd\_vg} DUT/Setup and repeat the Measure and \texttt{Extract} steps to measure and extract the other DC parameters.

15 Repeat Step 10, but choose \texttt{Optimize}.

Simulating

To simulate any individual setup, choose Simulate with that setup active. Simulations can be performed in any order after all of the model parameters have been extracted. For more information on simulation, refer to Chapter 6, “Simulating,” in the \textit{IC-CAP User’s Guide}.

Displaying Plots

To display plots of measured and simulated data issue the \textit{Display Plots} command from a DUT to display the plots for all setups contained in that DUT.

Viewing plots is an ideal way to compare measured and simulated data to determine if further optimization would be useful. For more information on displaying plots, refer to Chapter 10, “Printing and Plotting,” in the \textit{IC-CAP User’s Guide}.
Optimizing

The optimization operation uses a numerical approach to minimizing errors between measured and simulated data. As with the other IC-CAP commands, optimization can be performed at either the DUT or setup level. Optimization is more commonly performed from setups—optimization for all setups under a DUT is rarely required.

Optimization is typically interactive in nature, with the best results obtained when you specify the characteristics of the desired results.

For more information on optimization, refer to Chapter 7, “Optimizing,” in the *IC-CAP User’s Guide.*
Extraction Algorithms

This section describes the extraction algorithms used for inductance, capacitance, DC, and series resistance parameters of the Curtice GaAs MESFET. Setups for the Curtice MESFET model are similar to the UCB GaAs MESFET model and their extraction algorithms are similar. The Curtice model has more model parameters than the UCB model.

Inductance and Resistance Extraction

Inductors and resistors that are in series with each terminal of the MESFET are measured with a network analyzer at a high frequency and with the gate strongly forward-biased. Under these conditions the AC model for each terminal is reduced to a series R-L circuit. Inductors LD, LG, and LS and resistors RD, RG, and RS are extracted simultaneously from the measured impedance at the gate and drain ports.

DC Parameter Extractions

DC extractions are separated between the diode and forward active controlling parameters. Diode parameters VBI, IS, and N are extracted using a method similar to the method used for a silicon diode. The diode is swept over a forward bias and linear least-squares curve fits will produce the built-in potential and forward conduction properties.

The forward active region is extracted from measurements of the MESFET in both the linear and saturated modes of operation.

- If the MODEL parameter is set to 1, BETA, VTO, ALPHA, and LAMBDA are extracted.
- If the MODEL parameter is set to 2, A0, A1, A2, A3, BETA, and GAMMA are extracted.

(Note that for MODEL=1, BETA is a transconductance and for MODEL=2, BETA is a coefficient for pinchoff.)
Capacitance Parameter Extractions

The capacitance of the gate-to-drain CGDO and gate-to-source CGSO is measured with S-parameters over typical operating frequencies. Because the inductances and series resistance are already known, these capacitances can be extracted from the corrected impedances measured at the gate and drain ports.
References


7 Curtice GaAs MESFET Characterization
MOS Model 9 Characterization

MOS Model 9, developed by Philips, is a compact model for circuit simulation, suitable for both digital and analog applications. It provides the following features:

- Non-uniform doping effect on $V_{TH}$
- Mobility reduction due to vertical field
- $V_{bs}$ influence on mobility reduction
- Velocity saturation
- Channel length modulation
- Subthreshold conduction
- DIBL/Static-feedback
- Substrate current
- Parameter scaling with respect to $W$, $L$, and temperature
- Based on single-equation I-V and Q-V formulations
- Continuous $g_m$, $g_{m/d}$, and $g_{ds}$ behavior in the weak to strong inversion and linear to saturation transition regions

This implementation is intended only for enhancement mode MOSFETs. Although MOS Model 9 also has applications for depletion mode devices, this implementation does not support...
this option. It is intended to work in the absence of a circuit simulator with MOS Model 9 being available to IC-CAP. Thus, the MOS Model 9 equations are implemented with C routines that are linked directly to the IC-CAP executable.

The suitability and accuracy for DC, AC and statistical applications have been demonstrated by Philips in several publications (see References [1], [2], and [3] at the end of this chapter).
MOS Model 9 Characterization

MOS Model 9 Model

MOS Model 9 uses two IC-CAP models: *mm9* and *mm9_tempx*. Both of these models are stored in the file *mm9.mdl*. When saving in the Main window, ensure both model definitions are kept.

- *mm9* is the main model definition file and contains the templates for measurements and extraction.
- *mm9_tempx* is the template file for data that will be measured at non-nominal temperature. The most important aspect of this file is that the MM9 parameter values are set to the values in the model *MM9*.

The primary method of model evaluation relies on the function *MM9*, which appears in the Function Group MM9. This function requires the inputs VD, VG, VS, and VB, which are arrays that give the drain, gate, source, and bulk voltages, respectively. It also requires the parameter *Output*, which controls the current returned by the function and is defined by one of the following options:

- D to return drain current
- S to return source current
- B to return bulk (avalanche) current

The calculations performed by this function are also influenced by two variables (MODLEVEL and EQNTYPE). These quantities and their influence are shown in Table 56.

The following figure illustrates the overall structure of the model.
Figure 175 Overall Structure of MOS Model 9
The MM9 Model File

This section describes the MOS Model 9 model parameters, model variables, DUT/setup details, and macros.

Model Parameters

The following table describes the MOS Model 9 parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER</td>
<td>Effective channel length of the reference transistor.</td>
<td>501.3n</td>
</tr>
<tr>
<td>WER</td>
<td>Effective channel width of the reference transistor.</td>
<td>9.787u</td>
</tr>
<tr>
<td>LVAR</td>
<td>Difference between the actual and the programmed poly-silicon gate length.</td>
<td>-198.7n</td>
</tr>
<tr>
<td>LAP</td>
<td>Effective channel length reduction per side due to the lateral diffusion of the source/drain dopant ions.</td>
<td>0.000</td>
</tr>
<tr>
<td>WVAR</td>
<td>Difference between the actual and the programmed field-oxide opening.</td>
<td>-212.7n</td>
</tr>
<tr>
<td>WOT</td>
<td>Effective channel width reduction per side due to the lateral diffusion of the channel-stop dopant ions.</td>
<td>0.000</td>
</tr>
<tr>
<td>TR</td>
<td>Temperature at which the parameters have been determined.</td>
<td>27.00</td>
</tr>
<tr>
<td>VTOR</td>
<td>Threshold voltage at zero back-bias.</td>
<td>810.2m</td>
</tr>
<tr>
<td>STVTO</td>
<td>Coefficient of the temperature dependence of VTO.</td>
<td>-1.508m</td>
</tr>
<tr>
<td>SLVTO</td>
<td>Coefficient of the length dependence of VTO.</td>
<td>18.95n</td>
</tr>
<tr>
<td>SL2VTO</td>
<td>Second coefficient of the length dependence of VTO.</td>
<td>-15.09f</td>
</tr>
<tr>
<td>SWVTO</td>
<td>Coefficient of the width dependence of VTO.</td>
<td>55.35n</td>
</tr>
<tr>
<td>KOR</td>
<td>Low-back-bias body factor.</td>
<td>610.0m</td>
</tr>
<tr>
<td>SLKO</td>
<td>Coefficient of the length dependence of KO.</td>
<td>-76.45n</td>
</tr>
<tr>
<td>SWKO</td>
<td>Coefficient of the width dependence of KO.</td>
<td>55.79n</td>
</tr>
</tbody>
</table>
### MOS Model 9 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR</td>
<td>High-back-bias body factor.</td>
<td>170.5m</td>
</tr>
<tr>
<td>SLK</td>
<td>Coefficient of the length dependence of K.</td>
<td>-293.1n</td>
</tr>
<tr>
<td>SWK</td>
<td>Coefficient of the width dependence of K.</td>
<td>185.5n</td>
</tr>
<tr>
<td>VSBXR</td>
<td>Transition voltage for the dual-k factor model.</td>
<td>1.926</td>
</tr>
<tr>
<td>SLVSBX</td>
<td>Coefficient of the length dependence of VSBX.</td>
<td>443.2n</td>
</tr>
<tr>
<td>SWVSBX</td>
<td>Coefficient of the width dependence of VSBX.</td>
<td>-349.8n</td>
</tr>
<tr>
<td>BETSQ</td>
<td>Gain factor.</td>
<td>155.9u</td>
</tr>
<tr>
<td>ETABET</td>
<td>Exponent of the temperature dependence of the gain factor.</td>
<td>1.655</td>
</tr>
<tr>
<td>THE1R</td>
<td>Coefficient of the mobility due to the gate induced field.</td>
<td>306.3m</td>
</tr>
<tr>
<td>STTHE1R</td>
<td>Coefficient of the temperature dependence of THE1.</td>
<td>-613.8u</td>
</tr>
<tr>
<td>SLTHE1R</td>
<td>Coefficient of the length dependence of THE1.</td>
<td>66.10n</td>
</tr>
<tr>
<td>STLTHE1</td>
<td>Coefficient of the temperature dependence of the length dependence of THE1.</td>
<td>-95.78p</td>
</tr>
<tr>
<td>SWTHE1</td>
<td>Coefficient of the width dependence of THE1.</td>
<td>-44.23n</td>
</tr>
<tr>
<td>THE2R</td>
<td>Coefficient of the mobility due to the back-bias.</td>
<td>43.49m</td>
</tr>
<tr>
<td>STTHE2R</td>
<td>Coefficient of the temperature dependence of THE2.</td>
<td>97.75u</td>
</tr>
<tr>
<td>SLTHE2R</td>
<td>Coefficient of the length dependence of THE2.</td>
<td>-56.97n</td>
</tr>
<tr>
<td>STLTHE2</td>
<td>Coefficient of the temperature dependence of the length dependence of THE2.</td>
<td>-13.64p</td>
</tr>
<tr>
<td>SWTHE2</td>
<td>Coefficient of the width dependence of THE2.</td>
<td>19.14n</td>
</tr>
<tr>
<td>THE3R</td>
<td>Coefficient of the mobility due to the lateral field.</td>
<td>264.4m</td>
</tr>
<tr>
<td>STTHE3R</td>
<td>Coefficient of the temperature dependence of THE3.</td>
<td>8.227u</td>
</tr>
<tr>
<td>SLTHE3R</td>
<td>Coefficient of the length dependence of THE3.</td>
<td>135.8n</td>
</tr>
<tr>
<td>STLTHE3</td>
<td>Coefficient of the temperature dependence of the length dependence of THE3.</td>
<td>-509.4p</td>
</tr>
</tbody>
</table>
### Table 55  MOS Model 9 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWTHE3</td>
<td>Coefficient of the width dependence of THE3.</td>
<td>-20.09n</td>
</tr>
<tr>
<td>GAM1R</td>
<td>Coefficient for the drain induced threshold shift for large gate drive.</td>
<td>65.48m</td>
</tr>
<tr>
<td>SLGAM1</td>
<td>Coefficient of the length dependence of GAM 1.</td>
<td>28.22n</td>
</tr>
<tr>
<td>SWGAM1</td>
<td>Coefficient of the width dependence of GAM 1.</td>
<td>-9.967n</td>
</tr>
<tr>
<td>ETADESR</td>
<td>Exponent of the $V_{DS}$ dependence of GAM 1.</td>
<td>600.0m</td>
</tr>
<tr>
<td>ALPR</td>
<td>Factor of the channel-length modulation.</td>
<td>6.248m</td>
</tr>
<tr>
<td>ETAALP</td>
<td>Exponent of length dependence of ALP.</td>
<td>0.000</td>
</tr>
<tr>
<td>SLALP</td>
<td>Coefficient of the length dependence of ALP.</td>
<td>0.000</td>
</tr>
<tr>
<td>SWALP</td>
<td>Coefficient of the width dependence of ALP.</td>
<td>4.761n</td>
</tr>
<tr>
<td>VPR</td>
<td>Characteristic voltage of channel length modulation.</td>
<td>443.5m</td>
</tr>
<tr>
<td>GAMOOR</td>
<td>Coefficient of the drain induced threshold shift at zero gate drive.</td>
<td>20.40m</td>
</tr>
<tr>
<td>SLGAM0O</td>
<td>Coefficient of the length dependence of GAM O.</td>
<td>5.295f</td>
</tr>
<tr>
<td>ETAGAMR</td>
<td>Exponent of the back-bias dependence of GAM O.</td>
<td>2.000</td>
</tr>
<tr>
<td>MOR</td>
<td>Factor of the subthreshold slope.</td>
<td>536.6m</td>
</tr>
<tr>
<td>STMO</td>
<td>Coefficient of the temperature dependence of MO.</td>
<td>470.4u</td>
</tr>
<tr>
<td>SLMO</td>
<td>Coefficient of the length dependence of MO.</td>
<td>164.2u</td>
</tr>
<tr>
<td>ETAMR</td>
<td>Exponent of the back-bias dependence of M.</td>
<td>2.000</td>
</tr>
<tr>
<td>ZET1R</td>
<td>Weak-inversion correction factor.</td>
<td>1.815</td>
</tr>
<tr>
<td>ETAZET</td>
<td>Exponent of length dependence of ZET1.</td>
<td>500.0m</td>
</tr>
<tr>
<td>SLZET1</td>
<td>Coefficient of the length dependence of ZET1.</td>
<td>-1.413m</td>
</tr>
<tr>
<td>VSBTR</td>
<td>Limiting voltage of the VSB dependence of M and GAM O.</td>
<td>15.97</td>
</tr>
<tr>
<td>SLVSBT</td>
<td>Coefficient of the length dependence of VSBT.</td>
<td>10.12u</td>
</tr>
<tr>
<td>A1R</td>
<td>Factor of the weak-avalanche current.</td>
<td>61.47</td>
</tr>
</tbody>
</table>
Model Variables

The following table describes the MOS Model 9 model variables.

Table 55  MOS Model 9 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA1</td>
<td>Coefficient of the temperature dependence of $A_1$.</td>
<td>50.07m</td>
</tr>
<tr>
<td>SLA1</td>
<td>Coefficient of the length dependence of $A_1$.</td>
<td>-907.0n</td>
</tr>
<tr>
<td>SWA1</td>
<td>Coefficient of the width dependence of $A_1$.</td>
<td>-7.211u</td>
</tr>
<tr>
<td>A2R</td>
<td>Exponent of the weak-avalanche current.</td>
<td>31.48</td>
</tr>
<tr>
<td>SLA2</td>
<td>Coefficient of the length dependence of $A_2$.</td>
<td>-877.5n</td>
</tr>
<tr>
<td>SWA2</td>
<td>Coefficient of the width dependence of $A_2$.</td>
<td>-923.4n</td>
</tr>
<tr>
<td>A3R</td>
<td>Factor of the drain-source voltage above which weak-avalanche occurs.</td>
<td>755.6m</td>
</tr>
<tr>
<td>SLA3</td>
<td>Coefficient of the length dependence of $A_3$.</td>
<td>-114.4n</td>
</tr>
<tr>
<td>SWA3</td>
<td>Coefficient of the width dependence of $A_3$.</td>
<td>12.17n</td>
</tr>
<tr>
<td>TOX</td>
<td>Thickness of the oxide layer.</td>
<td>15.00n</td>
</tr>
<tr>
<td>COL</td>
<td>Gate overlap per unit channel width.</td>
<td>100.0p</td>
</tr>
<tr>
<td>NTR</td>
<td>Coefficient of the thermal noise.</td>
<td>0.000</td>
</tr>
<tr>
<td>NFR</td>
<td>Coefficient of the flicker noise.</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 56  MM9 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP_large</td>
<td>VP of large device in dataset</td>
<td>4.210</td>
</tr>
<tr>
<td>L_large</td>
<td>Length of large device in dataset</td>
<td>10.00u</td>
</tr>
<tr>
<td>SETUP_LIST_SIZE</td>
<td>Default number of visible setups</td>
<td>1</td>
</tr>
<tr>
<td>MACRO_LIST_SIZE</td>
<td>Default number of visible macros</td>
<td>16</td>
</tr>
<tr>
<td>VAR_ROW_SIZE</td>
<td>Default number of visible variables</td>
<td>22</td>
</tr>
<tr>
<td>PARAM_ROW_SIZE</td>
<td>Default number of visible parameters</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 56  MOS Model 9 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSUP</td>
<td>Maximum bias voltage</td>
<td>5.000</td>
</tr>
<tr>
<td>NUM DUT</td>
<td>Number of devices in dataset</td>
<td>14.00</td>
</tr>
<tr>
<td>DUT</td>
<td>Present device being measured/extracted</td>
<td>2</td>
</tr>
<tr>
<td>COM GATE</td>
<td>Scanner pin connected to common device gate</td>
<td>20.00</td>
</tr>
<tr>
<td>COM SOURCE</td>
<td>Scanner pin connected to common device source</td>
<td>26.00</td>
</tr>
<tr>
<td>COM BULK</td>
<td>Scanner pin connected to common device bulk</td>
<td>18.00</td>
</tr>
<tr>
<td>MATADD</td>
<td>Address of scanner as used in SWM_init statement</td>
<td>22.00</td>
</tr>
<tr>
<td>MATNAME</td>
<td>Name of scanner as used in SWM_init statement</td>
<td>HP4085B</td>
</tr>
<tr>
<td>DUT_LARGE</td>
<td>Index number for the DUT considered to be large</td>
<td>1.000</td>
</tr>
<tr>
<td>YLOW</td>
<td>Low bound for drain current optimization</td>
<td>500.0f</td>
</tr>
<tr>
<td>YHIGH</td>
<td>High bound for drain current optimization</td>
<td>1</td>
</tr>
<tr>
<td>KFACTOR</td>
<td>Choice of 1 or 2 K-factor model</td>
<td>2.000</td>
</tr>
<tr>
<td>YLOW_SUB</td>
<td>Low bound for substrate current optimization</td>
<td>-1</td>
</tr>
<tr>
<td>YHIGH_SUB</td>
<td>High bound for substrate current optimization</td>
<td>-5E-13</td>
</tr>
<tr>
<td>LIN_VGSSTEP</td>
<td>Vgs step size for linear region curves</td>
<td>100.0m</td>
</tr>
<tr>
<td>VBS1</td>
<td>Vbs bias used for saturation and subthreshold sweeps</td>
<td>0.000</td>
</tr>
<tr>
<td>VBS2</td>
<td>Vbs bias used for saturation and subthreshold sweeps</td>
<td>2.000</td>
</tr>
</tbody>
</table>
Table 56  MM9 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBS3</td>
<td>Vbs bias used for saturation and subthreshold sweeps</td>
<td>5.000</td>
</tr>
<tr>
<td>SAT_DELVGS</td>
<td>First saturation region curve in idvg1 is measured for VGS = TYPE * (VTH + SAT_DELVGS)</td>
<td>100.0m</td>
</tr>
<tr>
<td>SAT_VGS2</td>
<td>Vgs value for saturation region curves</td>
<td>2.000</td>
</tr>
<tr>
<td>SAT_VGS3</td>
<td>Vgs value for saturation region curves</td>
<td>3.500</td>
</tr>
<tr>
<td>SAT_VGS4</td>
<td>Vgs value for saturation region curves</td>
<td>5.000</td>
</tr>
<tr>
<td>SAT_VDSSTEP</td>
<td>Vds step size for saturation region curves</td>
<td>100.0m</td>
</tr>
<tr>
<td>SVT_DELVGS1</td>
<td>For the subthreshold curves Vgs is varied from</td>
<td>600.0m</td>
</tr>
<tr>
<td>SVT_DELVGS2</td>
<td>TYPE*(VTH-SVT_DELVGS1) to TYPE*(VTH-SVT_DELVGS2)</td>
<td>300.0m</td>
</tr>
<tr>
<td>SVT_VGSSTEP</td>
<td>Vgs step size for subthreshold region curves</td>
<td>50.00m</td>
</tr>
<tr>
<td>SUB_VDS1</td>
<td>Vds value for substrate current curves</td>
<td>4.000</td>
</tr>
<tr>
<td>SUB_VDS2</td>
<td>Vds value for substrate current curves</td>
<td>4.500</td>
</tr>
<tr>
<td>SUB_VDS3</td>
<td>Vds value for substrate current curves</td>
<td>5.000</td>
</tr>
<tr>
<td>SUB_VGSSTEP</td>
<td>Vgs step size for substrate current curves</td>
<td>100.0m</td>
</tr>
<tr>
<td>SVT_VDS1</td>
<td>Vds value for subthreshold curves</td>
<td>1.000</td>
</tr>
<tr>
<td>SVT_VDS2</td>
<td>Vds value for subthreshold curves</td>
<td>3.000</td>
</tr>
<tr>
<td>SVT_VDS3</td>
<td>Vds value for subthreshold curves</td>
<td>5.000</td>
</tr>
<tr>
<td>LIN_VDS</td>
<td>Vds for linear region curves</td>
<td>100.0m</td>
</tr>
<tr>
<td>NUM LPLOT</td>
<td>Array size for the data in extract/par_vs_L</td>
<td>7.000</td>
</tr>
<tr>
<td>NUM W PLOT</td>
<td>Array size for the data in extract/par_vs_W</td>
<td>5.000</td>
</tr>
</tbody>
</table>
### Table 56  M M 9 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM RPLT</td>
<td>Array size for the data in <code>extract/par_vs_R</code></td>
<td>3.000</td>
</tr>
<tr>
<td>IMIN</td>
<td>Low current limit used for determining optimization targets and the minimum current predicted by M M 9</td>
<td>500.0f</td>
</tr>
<tr>
<td>EQNTYPE</td>
<td>Allows equation simplification for linear parameter extraction:</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 = Use normal parameter extraction equations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Use a simplification to help linear region extraction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Use the extended equations that would be implemented in a circuit simulator.</td>
<td></td>
</tr>
<tr>
<td>MODLEVEL</td>
<td>Selects equation and parameter set for miniset, maxiset, single temperature or all temperature extraction:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0 = Use the miniset parameters to evaluate the currents. These miniset parameters are read from the variable table of the DUT from which M M 9 is invoked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Use the maxiset parameters and the full scaling rules but assuming operation at nominal temperature. The maxiset parameters are read from the model parameter list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Use the full geometry and temperature scaling rules (i.e., the normal model equation). The model parameters are read from the model parameter list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Use the full geometry scaling rules</td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>Device type: 1 for N M O S, -1 for P M O S</td>
<td>1.000</td>
</tr>
<tr>
<td>TEMP</td>
<td>Measurement temperature</td>
<td>21.00</td>
</tr>
<tr>
<td>MULTDUT</td>
<td>Indicates if there are multiple transistors connected in parallel</td>
<td>N</td>
</tr>
</tbody>
</table>
### Table 56  MM9 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBETYPE</td>
<td>Indicates how the devices are to be connected: M: manually; A: automatically with a scanner</td>
<td>M</td>
</tr>
<tr>
<td>NUM TEM P</td>
<td>Number of temperatures at which the devices will be measured for temperature parameter extraction</td>
<td>2.000</td>
</tr>
<tr>
<td>GEOM FILE</td>
<td>Name of system file in which the miniset parameters will be temporarily stored</td>
<td>mm9_geompars</td>
</tr>
<tr>
<td>TEM PFILE</td>
<td>Name of system file in which the temperature specific parameters will be temporarily stored</td>
<td>mm9_temppars</td>
</tr>
<tr>
<td>LIN_NUMVBS</td>
<td>Number of curves measured in the linear region</td>
<td>6.000</td>
</tr>
<tr>
<td>DISPLAYPLOTS</td>
<td>Automatically displays plots when measuring or optimizing. Hint: For a small number of devices, such as two, you may want to set this variable to Y. When measuring or optimizing three or more, set this variable to N.</td>
<td>N</td>
</tr>
<tr>
<td>DATASOURCE</td>
<td>Enables you to generate measured data from the model code if measured data is not available. To do this, set this variable to S and execute one of the measure macros. When measuring real data, this variable must be set to M.</td>
<td>M</td>
</tr>
<tr>
<td>SWAPDIRECTION</td>
<td>Help variable used during the setup of the non-nominal temperature models</td>
<td>1</td>
</tr>
<tr>
<td>TA_SWAP</td>
<td>Help variable used to set temperature</td>
<td>100</td>
</tr>
<tr>
<td>NUM TPL T</td>
<td>Array size for the data in extract/par_vs_T</td>
<td>3.000</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Description</td>
<td>Default Value</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>GDSM IN</td>
<td>Low GDS limit used for determining optimization targets</td>
<td>1.000p</td>
</tr>
<tr>
<td>VBSTOP</td>
<td>Last value of Vbs for linear region</td>
<td>5.0</td>
</tr>
<tr>
<td>LIMIT_FLAG</td>
<td>Indicates if one of the parameters is at its allowed limit</td>
<td>0</td>
</tr>
<tr>
<td>ERROR</td>
<td>Used to indicate an error with the quick extraction routines for the linear, subthreshold or saturation regions</td>
<td>0</td>
</tr>
<tr>
<td>THE3_STORE</td>
<td>Temporary store for THE3</td>
<td></td>
</tr>
<tr>
<td>RECALC</td>
<td>Indicates whether a quick extraction function should do a measurement or use existing data</td>
<td>0</td>
</tr>
</tbody>
</table>

**Linear Region Variables for Quick Extraction**

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSBREF</td>
<td>A reference value of Vsb to set the threshold voltage to at the end of the quick extraction routines.</td>
<td>0</td>
</tr>
<tr>
<td>VT_RANGE</td>
<td>The maximum expected change in threshold voltage between successive iterations. If the change in threshold voltage exceeds this value, an error occurs.</td>
<td>3</td>
</tr>
<tr>
<td>K_MODEL</td>
<td>Choice of K-factor model 1: a single K-factor is used 2: the dual K-factor model is used</td>
<td>2</td>
</tr>
<tr>
<td>DOBODY</td>
<td>Control variable for body-effect parameters 0: no body-effect parameters are extracted 1: body-effect parameters are extracted</td>
<td>1</td>
</tr>
<tr>
<td>VGATE1</td>
<td>First gate overdrive voltage</td>
<td>0.6</td>
</tr>
<tr>
<td>VGATE2</td>
<td>Second gate overdrive voltage</td>
<td>1.5</td>
</tr>
<tr>
<td>VGATE3</td>
<td>Third gate overdrive voltage</td>
<td>3.5</td>
</tr>
</tbody>
</table>
### MOS Model 9 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSB11</td>
<td>1st Vsb</td>
<td>0</td>
</tr>
<tr>
<td>VSB12</td>
<td>2nd Vsb</td>
<td>0.3</td>
</tr>
<tr>
<td>VSB21</td>
<td>3rd Vsb</td>
<td>4</td>
</tr>
<tr>
<td>VSB22</td>
<td>4th Vsb</td>
<td>5</td>
</tr>
<tr>
<td>VTHM AX</td>
<td>The maximum absolute value of threshold voltage anticipated for the device under test.</td>
<td>-0.15</td>
</tr>
<tr>
<td>VDSPRG</td>
<td>The drain voltage to be used during linear region extractions.</td>
<td>0.1</td>
</tr>
</tbody>
</table>

#### Subthreshold Region Variables for Quick Extraction

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDSSTH1</td>
<td>1st Vds</td>
<td>1</td>
</tr>
<tr>
<td>VDSSTH2</td>
<td>2nd Vds</td>
<td>5</td>
</tr>
<tr>
<td>VGATST1</td>
<td>Offset from threshold voltage of 1st Vgs bias</td>
<td>-0.15</td>
</tr>
<tr>
<td>VGATST2</td>
<td>Offset from threshold voltage of 2nd Vgs bias</td>
<td>-0.2</td>
</tr>
<tr>
<td>VSBSTH1</td>
<td>1st Vbs</td>
<td>0</td>
</tr>
<tr>
<td>VSBSTH2</td>
<td>2nd Vbs</td>
<td>5</td>
</tr>
</tbody>
</table>

#### Saturation Region Variables for Quick Extraction

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM IDS</td>
<td>Number of points chosen to optimize with respect to ids.</td>
<td>3</td>
</tr>
<tr>
<td>NUM GDS</td>
<td>Number of points chosen to optimize with respect to gds</td>
<td>3</td>
</tr>
<tr>
<td>VSBSAT</td>
<td>Vbs for saturation measurements</td>
<td>0</td>
</tr>
<tr>
<td>DVDGDS</td>
<td>The increment in drain voltage to be used when measuring output conductance</td>
<td>0.05</td>
</tr>
</tbody>
</table>

#### Weak Avalanche Variables for Quick Extraction
The extract DUT

The extract device contains all of the sequences used for the parameter optimizations and much of the setup information.

### Table 56  MM9 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSBWA</td>
<td>Vbs for weak avalanche measurements</td>
<td>0</td>
</tr>
<tr>
<td>VGSWA1</td>
<td>Offset from threshold voltage of 1st Vgs</td>
<td>0.75</td>
</tr>
<tr>
<td>VGSWA2</td>
<td>Offset from threshold voltage of 2nd Vgs</td>
<td>0.5</td>
</tr>
<tr>
<td>VGSWA3</td>
<td>Offset from threshold voltage of 3rd Vgs</td>
<td>1.5</td>
</tr>
<tr>
<td>VDSWA1</td>
<td>1st Vds</td>
<td>5</td>
</tr>
<tr>
<td>VDSWA2</td>
<td>2nd Vds</td>
<td>6.5</td>
</tr>
<tr>
<td>QTRANS_NAME</td>
<td>Holds the name of the transform in quick_extract/store, which can be used to set the variables associated with quick extraction</td>
<td>quick_extraction_setup</td>
</tr>
<tr>
<td>KO_INIT</td>
<td>Initial value for KO</td>
<td>0.8</td>
</tr>
<tr>
<td>K_INIT</td>
<td>Initial value for K</td>
<td>0.2</td>
</tr>
<tr>
<td>VSBX_INIT</td>
<td>Initial value for VSBX</td>
<td>1.5</td>
</tr>
<tr>
<td>GAMOO_INIT</td>
<td>Initial value for GAMOO</td>
<td>0.01</td>
</tr>
<tr>
<td>MO_INIT</td>
<td>Initial value for MO</td>
<td>0.5</td>
</tr>
<tr>
<td>ZET1_INIT</td>
<td>Initial value for ZET1</td>
<td>1</td>
</tr>
<tr>
<td>VP_INIT</td>
<td>Initial value for VP</td>
<td>1.5</td>
</tr>
<tr>
<td>ALP_INIT</td>
<td>Initial value for ALP</td>
<td>0.01</td>
</tr>
<tr>
<td>THE3_INIT</td>
<td>Initial value for THE3</td>
<td>0</td>
</tr>
<tr>
<td>GAM1_INIT</td>
<td>Initial value for GAM1</td>
<td>0.01</td>
</tr>
</tbody>
</table>
extract/devices holds setup information that has the form of an array. The input index is used to establish the size of the various arrays. Its size in turn is controlled by the variable NUMDUT from the model variable table. Note that the DUTs are labeled from 1 to the number of devices but the arrays holding the DUT information begin with index 0. The outputs for this setup are shown next.

- **width** Holds the widths of the devices to be measured
- **length** Holds the lengths of the devices to be measured
- **mult** Holds the values for MULT for each device, that is, the number of similar structures connected in parallel.
- **drain** Holds the matrix pin numbers connected to the drains (if a switching matrix is being used)
- **gate** The matrix pin numbers connected to the gates
- **source** The matrix pin numbers connected to the sources
- **bulk** The matrix pin numbers connected to the bulks
- **dotemp** An array that indicates if the devices are to be measured at temperature. If the value of dotemp for any device is set to 1, then this device will be measured at temperature.

The **devices** setup contains the following transforms:

- **connect** calls SWM_init and Connect to connect the matrix for a particular device or prompts you to connect the device. It uses information contained in the outputs described for the setup devices.

- **dummy** is an empty (apart from comments) PEL transform. It was found that when a variable that affects the array size in any setup (NUMDUT in this case) is changed from a C transform, then a call to a dummy transform is necessary to force IC-CAP to re-establish the proper array dimensions before attempting to write to these arrays.

- **extract/single_ext** contains the sequences for extracting the miniset parameters. The variable table of this setup contains a list of MIN and MAX values for use in the optimization steps. It is easier to modify the optimization limits from such a variable table rather than from the individual optimization transforms.
For the extraction of a miniset for any particular DUT, this setup is first copied into the appropriate DUT. The optimizations then operate on the miniset variables local to that DUT.

The single_ext setup contains the following transforms:

- **full_extract** is the controlling PEL for miniset extraction. For more information, refer to the discussion on full_extract in the section “Optimization Transforms and Macros” on page 516.

- **par_init** initializes parameter (local variables in fact) values at the beginning of miniset extraction.

- **lin_opt1** is an optimization call for linear region fitting at \( V_{bs} = 0 \) for the parameters \( \text{BET}, \text{THE1}, \) and \( \text{VTO} \).

- **lin_opt2** is an optimization call for linear region fitting for all \( V_{bs} \) for the parameters \( \text{KO}, \text{THE2}, \text{VSBX}, \) and \( \text{K} \). This transform is used for the case of the 2 k-factor model.

- **lin_opt3** is an optimization call for linear region fitting for all \( V_{bs} \) for the parameters \( \text{KO} \) and \( \text{THE2} \). This transform is used for the case of the 1 k-factor model.

- **subvt_opt1** is an optimization call for subthreshold region fitting at \( V_{bs} = 0 \) for the parameters \( \text{GAM00}, \text{MO}, \) and \( \text{ZET1} \).

- **normal_gds_opt1** is an optimization call for gds fitting at \( V_{bs} = 0 \) for the normal devices and for the parameters \( \text{GAM1} \) and \( \text{ALP} \).

- **large_gds_opt1** calls an optimization sequence for gds for the special case of the device with the largest length. This sequence in turn calls \( \text{vp_opt} \) and \( \text{alp_opt} \).

- **vp_opt** is an optimization call for gds fitting at \( V_{bs} = 0 \) for the parameter \( \text{VP} \).

- **alp_opt** is an optimization call for gds fitting at \( V_{bs} = 0 \) for the parameter \( \text{ALP} \).

- **set_VP** sets the VP of any device by scaling of the VP of the large device.
set\_VP\_large \hspace{1em} sets a model level variable \textit{VP\_large} to hold the VP of the large device.

\texttt{ids\_opt1} \hspace{1em} is an optimization call for ids fitting at Vbs = 0 for the parameter THE3.

\texttt{isub\_opt1} \hspace{1em} is an optimization call for avalanche current fitting for Vbs = 0 for the parameters A1, A2, and A3.

\texttt{subvt\_opt2} \hspace{1em} is an optimization call for subthreshold region fitting for all Vbs for the parameter VSBT.

\texttt{limit\_check} \hspace{1em} is called at the end of each miniset optimization to check the parameters with respect to the miniset limits. It is used by the macros \texttt{extract\_one\_miniset} and \texttt{extract\_all\_minisets}.

\texttt{extract\_scaled\_ext} \hspace{1em} contains the optimization sequences necessary for scaled (maxiset) extraction at the nominal temperature. The variable table of this setup contains the parameter MIN and MAX limits that will be used during optimization.

The \texttt{scaled\_ext} setup contains the following transforms:

\texttt{sim\_all} \hspace{1em} cause the currents in all the DUTs at the nominal temperature to be resimulated (i.e., evaluated with the MM9 C transform).

\texttt{sca\_opt} \hspace{1em} controls the sequence for maxiset optimizations. For more information, refer to the discussion on \texttt{sca\_opt} in the section “Optimization Transforms and Macros” on page 516.

\texttt{read\_sca\_opt\_files} \hspace{1em} reads the definitions of the optimization transforms from the UNIX file system. When you execute SETUP, the number of devices may change and the optimization tables for maxiset extraction need to be rebuilt. This is performed by the C transform SETUP which writes the new optimization definitions to the file system. This transform then reads these new definitions back into IC-CAP.

\texttt{sca\_lin\_opt1} \hspace{1em} is an optimization call for linear region fitting at Vbs = 0 for the parameters VTOR, SLVTO, SL2VTO, SWVTO, BETSQ, THE1R, SLTHE1R, and SWTHE1.
**sca_lin_opt2** is an optimization call for linear region fitting at all Vbs for the parameters THE2R, SLTHE2R, SWTHE2, KOR, SLKO, SWKO, KR, SLK, SWK, VSBXR, SLVSBX, and SWVSBX. This sequence is used for the 2 k-factor model option.

**sca_lin_opt3** is an optimization call for linear region fitting at all Vbs for the parameters THE2R, SLTHE2R, SWTHE2, KOR, SLKO, and SWKO. This sequence is used for the 1 k-factor model option.

**sca_subvt_opt1** is an optimization call for subthreshold optimization at Vbs = 0 for the parameters GAMOOR, SLGAMOO, MOR, SLMO, ZET1R and SLZET1.

**sca_gds_opt1** is an optimization call for gds fitting for Vbs = 0 for the parameters GAM1R, SLGAM1, SWGAM1, ALPR, SLALP, SWALP and VPR.

**sca_ids_opt1** is an optimization call for ids fitting for Vbs = 0 for the parameters THE3R, SLTHE3R, and SWTHE3.

**sca_isub_opt1** is an optimization call for substrate (avalanche) current fitting at Vbs = 0 for the parameters A1R, SLA1, SWA1, A2R, SLA2, SWA2, A3R, SLA3 and SWA3.

**sca_opt_subvt2** is an optimization call for subthreshold current fitting for all Vbs for the parameters VSBTR and SLVSBT.

**sca_limit_check** is called at the end of a maxiset extraction or optimization to check the parameters with respect to the maxiset limits. It is used by the macros *extract_maxiset* and *optimize_maxiset*.

**extract/single_temp_extract** contains the optimization sequences necessary for the extraction of the temperature sensitive parameters at a single temperature. It will be copied into each model that exists for a non-nominal temperature and the extraction sequences in this setup will therefore modify the variables of the model in which this setup occurs.

At a model level, the variables that represent the temperature-sensitive parameters are xVTOR, xBETSQ, xTHE1R, xSLTHE1R, xTHE2R, xSLTHE2R, xTHE3R, xSLTHE3R,
xMOR and xAIR. The variable table of `single_temp_extract` contains the upper and lower bounds that will be used during the optimization sequences.

The `single_temp_extract` setup contains the following transforms:

- `temp_par_init` initializes the temperature-sensitive parameters at any temperature to their value at the nominal temperature.
- `select_single_temp_model` sets MODLEVEL and EQNTYPE so that the single temperature option of the MM9 transform will be used. That is to say, where most parameters are read from the Parameters table and full geometry scaling is used, but where the values for the temperature-dependent parameters are read from the variable table of the model that has measurements at a non-nominal temperature.
- `swapdata` is used to transfer setup information (mainly bias voltages and temperatures) from the MM9 model to any model containing temperature data.
- `single_temp_opt` controls the optimization sequence for temperature optimizations at one temperature. For more information, refer to the discussion on `single_temp_opt` in the section “Optimization Transforms and Macros” on page 516.
- `single_temp_lin_opt1` is an optimization call to fit linear region data at Vbs = 0 for all the devices at a particular non-nominal temperature.

The variables optimized are xVTOR, xBETSQ, xTHE1R, and xSLTHE1R.

- `single_temp_lin_opt2` is an optimization call to fit linear region data for all Vbs for all the devices at a particular non-nominal temperature.

The variables optimized are xTHE2R and xSLTHE2R.

- `single_temp_subvt_opt1` is an optimization call to fit subthreshold data for Vbs = 0 for all the devices at a single non-nominal temperature. The variable optimized is xMOR.
single_temp_ids_opt1 is an optimization call to fit ids at Vbs = 0 for all the devices at a single non-nominal temperature. The variables optimized are xTHE3R and xSLTHE3R.

double_temp_isub_opt1 is an optimization call to fit the avalanche current at Vbs = 0 for all the devices at a single non-nominal temperature. The variable optimized is xA1R.

double_temp_limit_check is called at the end of the parameter optimization for a single non-nominal temperature to check the single temperature parameters with respect to their limits. It is used by the macro optimize_at_one_temperature.

extract/all_temp_extract contains the extraction sequences needed for optimization of the temperature coefficients of MOS Model 9 for all the devices measured at all non-nominal temperatures. These parameters are ETABET, STVTO, STTHE1R, STLTHE1, STTHE2R, STLTHE2, STM0, STTHER3R, STLTHE3, and STA1.

The variable table of this setup contains the MIN and MAX limits that are to be used for these parameters during optimization.

There is one input defined in this setup (index) that is used to set up the array size for the output temp. This output holds the list of non-nominal temperatures at which you want measurements to be performed. This array will be updated whenever you execute the SETUP macro.

The all_temp_extract setup contains the following transforms:

dummy is an empty (except for comments) PEL that is used to re-establish the array size in this setup when the variable NUMTEMP changes.

read_all_temp_opt_files forces the optimization tables to be rebuilt and read from the file system whenever SETUP macro is run.

all_temp_lin_opt1 fits the linear region data at Vbs = 0 by optimizing the parameters and ETABET, STVTO, STTHER1R, STLTHE1.
**all_temp_lin_opt2** fits the linear region data at all Vbs by optimizing the parameters STTHE2R and STLTHE2.

**all_temp_subvt_opt1** fits the subthreshold region data at Vbs = 0 by optimizing the parameter STMO.

**all_temp_ids_opt1** fits the ids (saturation) data at Vbs = 0 by optimizing the parameters STTHE3R and STLTHE3.

**all_temp_isub_opt1** fits the avalanche current data at Vbs = 0 by optimizing the parameter STA1.

**all_temp_limit_check** is used to check the overall temperature parameters with respect to their limits. It is used by the macros `extract_temperature_coefficients` and `optimize_temperature_coefficients`.

`extract/ par_vs_L, par_vs_W, par_vs_R, and par_vs_T` are used to illustrate the geometry (L, W, R) and temperature (T) scaling. The `par_vs_L`, `par_vs_W`, and `par_vs_R` setups store graphs of the miniset parameters A1, A2, A3, ALP, GAM1, GAMOO, K, KO, MO, THE1, THE2, THE3, VP, VSBT, VSBX, VTO, ZET1 and BET vs. 1/Leff, 1/Weff, or 1/Reff where Reff is a dimension number associated with transistors that do not lie on the standard length and width arrays.

The parameters in these 3 setups are initially created by the C transform MM9_GEOMSCAL, which extracts the geometry scaling coefficients (the maxiset model). In any of these plots, the variables with extension `.m` (e.g., `VTO.m`) represent the values of the miniset parameters as extracted for an individual device.

The variables with extension `.s` (e.g., `VTO.s`) represent the miniset value predicted by using the scaled model. Because the scaled model can be optimized, these values can be recalculated for the new scaling coefficients by a call to the C transform MM9_GEOMPAR.

The variables with suffix `_lsq` are used to hold the initial fits to the miniset parameters just after the least-squares fitting in MM9_GEOMSCAL.
The \textit{par_vs_T} setup shows the variation of the temperature-sensitive parameters \textit{VTOR}, \textit{BETSQ}, \textit{THE1R}, \textit{SLTHE1R}, \textit{THE2R}, \textit{SLTHE2R}, \textit{THE3R}, \textit{SLTHE3R}, \textit{MOR} and \textit{A1R} with temperature and their fitting with the temperature scaling rules.

In these plots, the extension \textit{.m} indicates the parameter values extracted at a single temperature, while the extension \textit{.s} indicates the predicted value of the parameter using the temperature coefficients of the current model set (assuming the plots have been updated with a call to the C transform \textit{MM9_TEMPVAR}) and the suffix \textit{_lsq} indicates the fits that were obtained by the temperature coefficients obtained from the least-squares extraction transform \textit{MM9_TEMPSCAL}.

\texttt{extract/par_vs_L2} and \texttt{par_vs_W2} enable parameter versus length plots for a user-specified width and parameter versus width plots for a user-specified length to be generated. This is useful if the device set includes more than one “L-array” and more than one “W-array.”

\textbf{The quick\_ext DUT}

The \textit{quick\_ext} device contains the measurement templates and the transforms used for quick extraction of the miniset parameters of MOS Model 9. The DUT variables are used to store the current values of the miniset parameters as they are being extracted.

\texttt{quick\_ext/lin_quick\_ext} is used during the extraction of the linear region parameters. It contains input definitions for the bias voltages \textit{vd}, \textit{vg}, \textit{vs}, and \textit{vb}, as well as the definition for the current to be measured, \textit{id}. The \texttt{lin_quick\_ext} setup contains the following inputs and outputs:

- \texttt{vd} \quad A constant value set by the variable \texttt{VDS}
- \texttt{vg} \quad A list with three voltages set by the variables: \texttt{VGS0}, \texttt{VGS1}, and \texttt{VGS2}
- \texttt{vs} \quad A constant value of 0V
- \texttt{vb} \quad A constant value set by the variable \texttt{VBS}
- \texttt{id} \quad The current output from the \texttt{vd} terminal
The variables VDS, VGS0, VGS1, VGS2 and VBS are setup variables and are set automatically by the function MM9_LIN_EXT.

The *lin_quick_ext* setup contains the following transforms:

- **mm9_ids**: calls the MM9 transform for current simulation.
- **copy_ids**: allows current to be copied from mm9_ids to id.m.
- **set_dimensions**: sets the dimension information in the *quick_ext* DUT from the information in the *extract/devices* arrays.
- **linear_extract**: calls the linear region extraction functions.
- **quick_measure**: used by MM9_LIN_EXT to initiate measurements. If the variable DATASOURCE is set to M, then real measurements are to be performed. If not, then it is assumed that measurements are being made using an ideal miniset. This causes a little confusion because the quick extraction changes the miniset parameters as it proceeds. Thus the ideal miniset parameters and the quick extraction miniset parameters have to be used appropriately. Some transforms in the setup *store* are used to achieve this.
- **par_init_quick_ext**: sets initial values of ETAGAM and ETAM.

**quick_ext/svt_quick_ext** used during the extraction of the subthreshold region parameters. It contains input definitions for the bias voltages vd, vg, vs and vb, as well as the definition for the current to be measured, id. The *svt_quick_ext* setup contains the following inputs and outputs:

- **vd**: A constant value set by the variable VD
- **vg**: A constant value set by the variable VG
- **vs**: A constant value set by the variable VS
- **vb**: A constant value set by the variable VB
- **id**: The current output from the vd terminal

The variables VD, VG, VS, and VB are setup variables and are set automatically by the function MM9_STH_EXT.
The *svt_quick_ext* setup contains the following transforms:

- **mm9_ids** calls the MM9 transform for current simulation.
- **copy_ids** allows current to be copied from mm9_ids to id.m.
- **subvt_extract** calls the subthreshold region extraction functions.
- **quick_measure** used by MM9_STH_EXT to initiate subthreshold region measurements. Its functionality is the same as that of *quick_measure* in *lin_quick_ext*.
- **quick_ext/sat_quick_ext** used during the extraction of the saturation (including output conductance) parameters. It contains input definitions for the bias voltages vd, vg, vs, and vb, as well as the definition for the current to be measured, id.

The *sat_quick_ext* setup contains the following inputs and outputs:

- **vd** A constant value set by the variable VD
- **vg** A constant value set by the variable VG
- **vs** A constant value set by the variable VS
- **vb** A constant value set by the variable VB
- **id** The current output from the vd terminal

The variables VD, VG, VS, and VB are setup variables and are set automatically by the function MM9_SAT_EXT.

The *sat_quick_ext* setup contains the following transforms:

- **mm9_ids** calls the MM9 transform for current simulation.
- **copy_ids** allows current to be copied from mm9_ids to id.m.
- **saturation_extract** calls the saturation region extraction functions.
- **quick_measure** used by MM9_SAT_EXT to initiate saturation region measurements. Its functionality is the same as that of *quick_measure* in *lin_quick_ext*. 
quick_ext/weav_quick_ext used during the extraction of the weak avalanche parameters. It contains input definitions for the bias voltages vd, vg, vs, and vb, as well as the definitions for the current to be measured, id and ib. The weav_quick_ext setup contains the following inputs and outputs:

- **vd** A constant value set by the variable VD
- **vg** A constant value set by the variable VG
- **vs** A constant value set by the variable VS
- **vb** A constant value set by the variable VB
- **id** The current output from the vd terminal
- **ib** The current output from the vb terminal

The variables VD, VG, VS, and VB are setup variables and are set automatically by the function MM9_WEAVAVAL_EXT.

The weav_quick_ext setup contains the following transforms:

- **mm9_ids** calls the MM9 transform for current simulation.
- **copy_ids** allows current to be copied from mm9_ids to id.m.
- **mm9_ib** calls the MM9 transform for ib simulation.
- **copy_ib** allows current to be copied from mm9_ids to ib.m.
- **weaval_extract** calls the weak avalanche extraction functions.
- **quick_measure** used by MM9_WEAVAVAL_EXT to initiate weak avalanche region measurements. Its functionality is the same as that of quick_measure in lin_quick_ext.

quick_ext/store contains miscellaneous data and transforms used during quick extraction. The store setup contains the following inputs and outputs:

- **index** An input definition used to set up array sizes
- **vdsids** An array containing the drain voltage offsets to be used by MM9_SAT_EXT for Ids measurements
- **vgsids** An array containing the gate voltages to be used by MM9_SAT_EXT for Ids measurements
The *store* setup contains the following transforms:

- **ideal_parameters** used to copy the present miniset parameters into the transform array.
- **restore_ideal_parameters** used to set the miniset parameters to the values stored in the array *ideal_parameters*
- **working_parameters** used to copy the present miniset parameters into the transform array
- **restore_working_parameters** used to set the miniset parameters to the values stored in the array
- **print_par** a call to MM9_SAVE_SPARS that appends the list of miniset variables to the file whose name is held in the model variable GEOMFILE.
- **quick_extraction_setup** used to specify the quick extraction setup details including options and bias voltages. It can be used as an alternative to entering these details from the keyboard. You can make multiple copies of this transform (with different names) to store the setup information for frequently used processes. The setups in the present transform apply to a typical 5V process.

The new quick extraction functions control all aspects of quick extraction, that is, determining the bias levels to be applied to the device, initiating measurements, and performing calculations to extract the appropriate parameters.

- **MM9_LIN_EXT** performs the linear region parameter extractions
- **MM9_STH_EXT** performs the subthreshold parameter extractions
- **MM9_SAT_EXT** performs the saturation parameter extractions including output conductance
- **MM9_WEAVAL_EXT** performs the weak avalanche (substrate current) parameter extractions
The following arrays in *quick_ext/store* control the applied drain and gate biases:

- `vgsids`  
  gate voltages for ids measurement
- `vdsids`  
  drain voltages for ids measurement
- `vgsgds`  
  gate voltages for gds measurement
- `vdsgds`  
  drain voltages for gds measurement

Note that Vds is never allowed to have a value of less than 0.1V during saturation region quick extraction measurements.

### The dutx DUT

The variable table of `dutx` contains the miniset parameters and the quantities VT1, VT2, and VT3, which are used to store the measured threshold voltages at the three back-biases used for the saturation and subthreshold measurements.

- `dutx/measure_vt` performs a linear region measurement, that is, Ids vs. Vgs for a low value of Vds to determine the threshold voltage of the devices at the three values of Vbs used for subsequent measurements. An estimate of these threshold voltages is necessary to establish the gate biases for the saturation and subthreshold measurements.

The *measure_vt* setup contains the following transforms:

- **id_fit** estimates Vt. It looks for the point of maximum transconductance, fits a straight line in the neighborhood of this point and estimates the threshold voltage from the intercept of this line with the Vgs axis. The output of this transform is the calculated current, based on the resulting transconductance and threshold voltage for display on the *vt_fit* plot.

- **calc_vt** invokes *id_fit* for each of three Ids - Vgs curves measured in the setup. This transform also rounds the Vt values to the nearest 10mV.

- **mm9_ids** calls the MM9 transform to evaluate the model current.
**copy_sim_to_meas**  Copies the current generated by the MM9 transform into the measured array. It is used for making sample *measured* data. It uses the MM9_COPY C transform, which is necessary to enable data to be copied into a measured array. The variables table of *measure_vt* contains two quantities *VT_FIT* and *CURVE* where *CURVE* points to the curve that *calc_vt* is working on at a given time and *VT_FIT* is the threshold voltage associated with this curve.

**dutx/idvg** performs the measurements required for extraction of the linear region parameters. The *idvg* setup contains the following transforms:

The *idvg* setup contains the following transforms:

- **mm9_ids** calls the MM9 transform to evaluate the model current.

- **set_dimensions** Sets the correct values for W, L and MULT. For the measurement of any device, *dutx* is first copied to a new DUT. Then the dimension information in this DUT has to be set to correct values.

- **tid_lin** converts the measured data to make a target array for the linear region extractions. It is common practice in Philips to filter any data points with current less than 10\% of maximum when doing the linear region optimizations.

  This transform mimics this procedure by setting any points less than 10\% of maximum to a value of 0.5*IMIN. Because IMIN will be used to set an optimization floor, the resulting data points are ignored.

- **calc_all** causes all the currents in the DUT to be re-evaluated with calls to MM9.

- **print_par** calls the *MM9_SAVE_SPARS* transform that writes the miniset parameters to a file.

- **copy_sim_to_meas** copies the current generated by the MM9 transform into the measured array. It is used for making sample *measured* data. It uses the *MM9_COPY C* transform which is necessary to enable data to be copied into a measured array.
set_par_from_quick_ext transfers miniset parameter values from the DUT quick_ext to a DUT containing the conventional optimization-type measured data. (found in idvg setup of dutx).

dutx/idvd1 performs the saturation region measurements for the first Vbs value (0V) that are needed for the optimization of the output conductance and saturation parameters.

The idvd1 setup contains the following transforms:

- gds is a call to the derivative function to evaluate the derivative of the measured current.
- mm9_gds is a call to the derivative function to evaluate the derivative of the simulated current
- mm9_ids calls the MM9 transform to evaluate the model current.
- copy_sim_to_meas copies the current generated by the MM9 transform into the measured array. It is used for making sample measured data. It uses the MM9_COPY C transform which is necessary to enable data to be copied into a measured array.
- set_vth stores the threshold voltage in the setup variable VTH.

dutx/idvd2, idvd3 perform the saturation region measurements at the two non-zero Vbs values. The data in these setups is not used during the parameter optimization sequences but is used as an extra check on model accuracy.

The idvd2, idvd3 setups contain the following transforms:

- gds is a call to the derivative function to evaluate the derivative of the measured current
- mm9_gds is a call to the derivative function to evaluate the derivative of the simulated current
- mm9_ids calls the MM9 transform to evaluate the model current.
**copy_sim_to_meas** copies the current generated by the MM9 transform into the measured array. It is used for making sample measured data. It uses the MM9_COPY C transform which is necessary to enable data to be copied into a measured array.

**dutx/subvt1** performs the subthreshold measurements for the first value of Vbs (0V). These measurements are used for the subthreshold optimizations at Vbs = 0V.

The **subvt1** setup contains the following transforms:

- **mm9_ids** calls the MM9 transform to evaluate the model current.
- **abs_vg** is a call to the equation transform to calculate the absolute value of Vgs. This is necessary for the plot logidvg_vbs which shows the subthreshold current at non-zero Vbs values.
- **tid_svt** generates target current values for subthreshold optimization. The main purpose is to eliminate data that could lie on the noise floor. It evaluates the transconductance on a log scale and eliminates points that have a transconductance of less than 70% of maximum on the low current side of the maximum point by setting their value to 0.5*IMIN.

**copy_sim_to_meas** copies the current generated by the MM9 transform into the measured array. It is used for making sample measured data. It uses the MM9_COPY C transform which is necessary to enable data to be copied into a measured array.

**set_vth** stores the threshold voltage in the setup variable VTH.

**dutx/subvt2, subvt3** enable measurement of subthreshold data for non-zero Vbs values that are required for the non-zero Vbs subthreshold optimizations.

The **subvt2, subvt3** setups contain the following transforms:

- **mm9_ids** calls the MM9 transform to evaluate the model current.
**abs vg** is a call to the equation transform to calculate the absolute value of Vgs. This is necessary for the plot logidvg_vbs which shows the subthreshold current at non-zero Vbs values.

**tid_svt** generates target current values for subthreshold optimization. The main purpose is to eliminate data that could lie on the noise floor. It evaluates the transconductance on a log scale and eliminates points that have a transconductance of less than 70% of maximum on the low current side of the maximum point by setting their value to 0.5*IMIN.

**copy_sim_to_meas** copies the current generated by the MM9 transform into the measured array. It is used for making sample measured data. It uses the MM9_COPY C transform which is necessary to enable data to be copied into a measured array.

**set_vth** stores the threshold voltage in the setup variable VTH.

**dutx/ibvg** allows the measurement of substrate (avalanche) current needed for the extraction of the substrate (avalanche) current parameters.

The *ibvg* setup contains the following transforms:

**mm9_isub** calls the MM9 transform to evaluate the avalanche current

**copy_sim_to_meas** copies the current generated by the MM9 transform into the measured array. It is used for making sample measured data. It uses the MM9_COPY C transform which is necessary to enable data to be copied into a measured array.

**Macros**

Macros control the overall extraction sequence.

**SETUP** Lets you provide setup information to describe the device type, dimensions, and matrix connections if appropriate, the bias voltages used, the nominal measurement temperature
and the measurement temperatures for temperature coefficient extraction. You can also specify minimum current and conductance levels for extraction. You can use setup to modify existing information as well as specify new information. The setup information is held in the model variable table of MM9 and in the devices and all_temp_ext setups of the extract DUT. Any information that can be represented by a single value is held in the variable table, while information represented as an array is held in the setups. When SETUP is run, the information is first read from the existing IC-CAP arrays or variables. At the end of SETUP, the information is written back into the IC-CAP tables or arrays. SETUP also builds optimization tables for use in the maxiset and temperature extractions and puts them in the setups scaled_ext, single_temp_ext, and all_temp_ext.

**measure** Controls the measurement sequence for all specified devices. The macro prompts you to specify whether you want to measure the devices at the nominal temperature or at another temperature. The template for the measurements is located in dutx.

When you measure devices at the nominal temperature, dutx is copied as dut1, dut2, etc., for each device specified, and then the measurement transforms are invoked in each of these new DUTs.

When you measure devices at non-nominal temperatures, a new model is created for each specified temperature by copying mm9_tempx to a new model, mm9_tx, where x is a number representing the temperature.

**extract_one_miniset** Invokes the miniset extraction sequence for one device. It is a special case of the extract_all_minisets macro.

**extract_all_minisets** Controls the miniset extraction for all the devices measured at the nominal temperature. Miniset extraction consists of a series of optimizations that act on the miniset parameters. These miniset parameters are stored as DUT variables in the individual DUTs. The template for the extraction sequence is held in the setup extract/single_ext. As the miniset parameters for each DUT are being extracted, the setup extract/single_ext is first copied into the DUT. The
optimizations are then performed and the single_ext setup is then deleted from the DUT. This procedure was implemented to prevent multiple copies of what should be the same extraction sequence.

**extract_maxiset** Invokes the extraction of the maxiset parameters, i.e., the normal MOS Model 9 parameters at nominal temperature. First each of the miniset parameter sets is written to a file (whose name is given by the variable GEOMFILE) and then the transform MM9_GEMSCAL is called. This reads the miniset parameters from the file just created and performs a least-squares fitting to obtain the maxiset parameters. This function writes the new parameter values into the parameter list and creates plots in the par_vs_L, par_vs_W, and par_vs_R setups of extract showing the variation of the miniset parameters with geometry and the fitting of this variation achieved by the maxiset parameters. Finally all the nominal devices are resimulated using the new maxiset parameters.

**optimize_maxiset** Calls the optimization sequence for the maxiset parameters at the nominal temperature. The extraction sequence itself is controlled by the transform extract/scaled_ext/sca_opt. After the optimization, all the devices are resimulated using the new model parameters.

**display_parameter_vs_geometry_plots** Displays plots of the chosen miniset parameters vs. geometry.

**simulate_using_extended_equations** Causes all the DUTs at the nominal temperature to be resimulated using the extended equations as would be used in a circuit simulator.

**optimize_at_one_temperature** Prompts you to specify the temperature of interest, calls the extract/single_temp_ext/single_temp_opt transform to perform optimizations of the temperature sensitive parameters at the chosen temperature, and then causes all the devices at this temperature to be resimulated using the new parameters. You would typically execute this macro once for each non-nominal temperature being used.
extract_temperature_coefficients Controls the extraction of the temperature coefficients that are valid over the full range of temperatures. First the temperature-sensitive parameters at all the temperatures are written to a file whose name is given by the variable TEMPFILE. Then the function MM9_TEMPSCAL is called which reads the parameters from the file just created and extracts the temperature coefficients using least-squares fitting. The DUTs at the non-nominal temperatures are then resimulated with the new parameters.

optimize_temperature_coefficients Calls the optimization sequences in extract/all_temp_ext to optimize the temperature coefficients for all the devices measured at the non-nominal temperatures. Each such device is resimulated with the new parameters when the optimizations are complete.

display_parameter_vs_temperature_plots Displays plots of specified parameters versus temperature.

quick_extraction_one_dut This asks the user to specify a DUT number (one of the devices already specified in setup) and then performs the quick extraction procedures on these. The measurements are performed in the quick_ext DUT and the miniset parameters extracted are placed in this DUT also. Therefore performing a quick extraction on a device will overwrite any data or miniset parameters in quick_ext associated with a previous device. Therefore, performing a quick extraction does not create any new data structures in IC-CAP. This choice to consider the quick extraction data as temporary and not to create new data structures for every device measured was made to keep the quick extraction time to a minimum and to avoid the possibility of generating an unmanageable model size when IC-CAP is being used to gather volume data (i.e. hundreds or more model sets) for statistical analysis.

test_quick_ext_with_ideal_pars This macro is used to test the quick extraction algorithms using synthetic data generated from a previously extracted/optimized set of miniset parameters.
make_extra_par_vs_geometry_plots  This macro is used to create parameters versus length plots for a user-specified width and parameter versus width plots for a user-specified length. This is useful if the device set includes more than one “L-array” and more than one “W-array.”

display_extra_par_vs_geometry_plots  Displays plots of the chosen miniset parameters versus L2 and W2.

read_data_from_directory  Reads data previously stored in a subdirectory under the current working directory.

write_data_to_directory  Writes data to a subdirectory under the current working directory.
Parameter Extraction

The purpose of parameter extraction is to determine the maxiset parameters needed to characterize a particular process. The implementation of MM9 in IC-CAP allows the extraction of all the model parameters that control DC behavior over a wide temperature range. The aim of this implementation is to extract values for parameters 1 through 70 in section 4.4, "List of scaling and reference parameters" of the Philips MOS Model 9 documentation (see Reference [4] at the end of this chapter).

The main extraction sequence is defined as a set of optimization transforms with a special function (MM9GEOMSCAL) used to determine a first-guess for the maxiset parameters by regression.

The main steps for parameter extraction are as follows:

1. Measure several devices at nominal temperature.
2. For each device, extract values for parameters 1 through 21 in section 4.5, “List of Parameters for an individual transistor” of the Philips MOS Model 9 documentation (see Reference [4] at the end of this chapter). These parameters are referred to as the miniset parameters. In practice, this step consists of a series of optimizations on the data for the individual devices.
   a. Initialize parameter values
      Choose 1 or 2 body-effect factors
      Set ETAM, ETAGAM and ETADS
   b. Linear $I_{ds} - V_{gs}$ data
      Optimize BET, THE1 and VTO for $V_{sb} = 0V$
      Optimize KO, (K, VSBX) and THE2 for all $V_{sb}$
   c. Subthreshold $I_{ds} - V_{gs}$ data for $V_{sb} = 0V$
      Optimize GAMOO, MO and ZET1
   d. Saturation $g_{ds} - V_{ds}$ data for $V_{sb} = 0V$
      Optimize VP for large device
Optimize GAM1 and ALP for other devices

- Saturation $I_{ds} - V_{ds}$ data for $V_{sb} = 0V$

Optimize THE3

- Substrate current $(I_{sub} - V_{gs})$ data for $V_{sb} = 0V$

Optimize A1, A2 and A3

- Repeat steps b through f

- Subthreshold $I_{ds} - V_{gs}$ data for all $V_{sb}$

Optimize VSBT

3 Apply the geometry scaling rules to the parameter sets generated in the previous step, and generate the full set of device parameters at the nominal temperature. (In practice, this step consists of a least-squares fitting procedure followed by optimizations on all the devices at nominal temperature.) This set of parameters is referred to as the *maxiset*.

- An initial estimate is obtained by fitting the scaling rules directly to the *miniset* parameters. This step also sets the parameters ETAALP, ETAGAMR, ETAMR, ETAZET, and ETADSR to their correct constant values.

- The resulting parameters are optimized to the measured characteristics of all the devices in the set.

4 For each temperature above or below the nominal, extract values of the temperature-sensitive parameters appropriate to this temperature. (In practice, this step consists of a series of optimizations on the devices measured at a particular non-nominal temperature.)

5 Apply the temperature scaling rules to the sets of parameters extracted in the previous step to generate the temperature coefficients of the model. (In practice, this step consists of a least-squares fitting followed by optimizations on all the devices measured at the non-nominal temperature.)
Data Organization

For extraction of MOS Model 9 parameters, I-V data is measured in accordance with the recommendations of the Philips' report NL-UR 003/94 “MOS Model 9.” This is basically:

- **Linear region data:**
  - $I_{ds} - V_{gs}$ for low $V_{ds}$, range of $V_{sb}$
  - $V_{gs} > V_{th}$

- **Subthreshold region data:**
  - $I_{ds} - V_{gs}$ for range of $V_{ds}$ and $V_{sb}$
  - $V_{gs}$ low to just above $V_{th}$

- **Saturation characteristics:**
  - $I_{ds} - V_{ds}$ for range of $V_{gs}$ and $V_{sb}$
  - includes one curve at $V_{gs} = V_{th} + 100 \text{ mV}$

- **Output conductance data:**
  - $g_{ds} - V_{ds}$ (derivative of $I_{ds} - V_{ds}$ data)

- **Substrate current data:**
  - $I_{sub} - V_{gs}$ for range of $V_{ds}$ and $V_{sb} = 0V$

Scaling Rules

This section describes the scaling rules applied to individual parameters.

**ALP**

$$ALP = ALPR + \left( \frac{1}{L_{eff}} - \frac{1}{L_{er}} \right) SLALP + \left( \frac{1}{W_{eff}} - \frac{1}{W_{er}} \right) SWALP$$

where $ETAALP = 0$ or 1.

**BET**

$$BET = BETSQ \cdot \frac{W - dW}{L - dL}$$

where $dW = 2WOT - WVAR$ and $dL = 2LAP - LVAR$
Here, BETSQ, dW, and dL can be extracted by a nonlinear fit to the miniset parameter BET versus W and L. GAMO0, MO, ZET1 and VSBT

\[ P(W, L) = P_R + \left( \frac{1}{L_{\text{eff}}} - \frac{1}{L_{\text{er}}} \right) S_L \]

where \( n \) can have the value of 2, 0.5, ETAZET (0.5 or 1) or 1.

Here, the reference parameter \( P_R \) and the scaling coefficients \( S_L \) and \( S_W \) can be extracted by linear regression. The quantities \( W_{\text{er}} \) and \( L_{\text{er}} \) are the effective width and length of a reference device you choose.

KO, K, VSBX, THE1, THE2, THE3, GAM1, A1, A2, and A3

\[ P(W, L) = P_R + \left( \frac{1}{L_{\text{eff}}} - \frac{1}{L_{\text{er}}} \right) S_L + \left( \frac{1}{W_{\text{eff}}} - \frac{1}{W_{\text{er}}} \right) S_W \]

VP

\[ VP = VPR \left( \frac{L_{\text{eff}}}{L_{\text{er}}} \right) \]

VTO

\[ VTO = VTOR + \left( \frac{1}{L_{\text{eff}}} - \frac{1}{L_{\text{er}}} \right) S_{VTO} + \left( \frac{1}{W_{\text{eff}}} - \frac{1}{W_{\text{er}}} \right) S_{WVTO} \]

**Device Geometries**

The recommended criteria for selecting devices for extraction is illustrated in the following figure where \( L \)-array represents a set of devices with the same width but different lengths and \( W \)-array represents a set of devices with the same length but different widths.
A quantity $R_{\text{eff}}$ is defined to aid visualization of the scaling rules. For devices on the L and W arrays respectively:

$$\frac{1}{R_{\text{eff}}} = \frac{1}{L_{\text{eff}}} \quad \text{or} \quad \frac{1}{R_{\text{eff}}} = \frac{1}{W_{\text{eff}}}$$

For the other devices:

$$\frac{1}{R_{\text{eff}}} = \sqrt{\frac{1}{L_{\text{eff}}^2} + \frac{1}{W_{\text{eff}}^2}}$$

**Figure 176** Device Size Selection
Optimizing

The steps below represent the basic maxiset optimization sequence.

1 Linear $I_d - V_{gs}$ data
   
   \[ V_{sb} = 0 \text{V}: \text{Optimize VTOR, SLVTO, SL2VTO, SWVTO, BETSQ,}
   \]
   \[ \text{THE1R, SLTHE1R, and SWTHE1.} \]


2 Subthreshold $I_d - V_{gs}$ data
   
   \[ V_{sb} = 0 \text{V}: \text{Optimize GAMOOR, SLGAMOO, MOR, SLMO,}
   \]
   \[ \text{ZET1R, and SLZET1.} \]

3 Saturation $g_d - V_{ds}$ data
   
   \[ V_{sb} = 0 \text{V}: \text{Optimize GAM1R, SLGAM1, SWGAM1, ALPR,}
   \]
   \[ \text{SLALP, SWALP, and VPR.} \]

4 Saturation $I_d - V_{ds}$ data
   
   \[ V_{sb} = 0 \text{V}: \text{Optimize THE3R, SLTHE3R, and SWTHE3.} \]

5 Substrate current ($I_{sub} - V_{gs}$) data
   
   \[ V_{sb} = 0 \text{V}: \text{Optimize A1R, SLA1, SWA1, A2R, SLA2, SWA2,}
   \]
   \[ A3R, SLA3, and SWA3.} \]

6 Subthreshold $I_d - V_{gs}$ data
   
   Varying $V_{sb}$: Optimize VSBTR and SLVSBT.

Optimization Transforms and Macros

The transforms described in this section are available with the DUT `extract`.

`full_extract`
The full_extract transform controls the optimization sequence for miniset extraction. It can be found under the setup single_ext.

1. Initialize parameters (par_init)
2. Linear region fitting at $V_{bs} = 0$ (lin_opt1)
3. Linear region fitting at all $V_{bs}$ (lin_opt2 for 2 k-factor model) or (lin_opt3 for 1 k-factor model)
4. Subthreshold fitting at $V_{bs} = 0$ (subvt_opt1)
5. Gds fitting at $V_{bs} = 0$ (normal_gds_opt1 for most devices) or (large_gds_opt1 for the large device)
6. Ids fitting for $V_{bs} = 0$ (ids_opt1)
7. Avalanche fitting for $V_{bs} = 0$ (isub_opt1)
8. Repeat steps 2 through 7
9. Subthreshold fitting for all $V_{bs}$ (subvt_opt2)

sca_opt

The sca_opt transform controls the optimization sequence for maxiset extraction. It can be found under the setup scaled_ext.

1. Linear region fitting at $V_{bs} = 0$ (sca_lin_opt1)
2. Linear region fitting for all $V_{bs}$ (sca_lin_opt2 for the 2 k-factor option) or (sca_lin_opt3 for the 1 k-factor option)
3. Subthreshold fitting at $V_{bs} = 0$ (sca_subvt_opt1)
4. Gds fitting at $V_{bs} = 0$ (sca_gds_opt1)
5. Ids fitting at $V_{bs} = 0$ (sca_ids_opt1)
6. Avalanche current fitting at $V_{bs} = 0$ (sca_isub_opt1)
7. Subthreshold fitting for all $V_{bs}$ (sca_subvt_opt2)

single_temp_opt

The single_temp_opt transform controls the optimization sequence for the temperature-dependent parameters at a single non-nominal temperature. It can be found under the setup single_temp_extract.

1. Initialize variables (temp_par_init)
2. Linear fitting at $V_{bs} = 0$ (single_temp_lin_opt1)
3 Linear fitting at all Vbs (*single_tep_lin_opt2*)
4 Subthreshold fitting at Vbs = 0 (*single_temp_subvt_opt1*)
5 Ids fitting at Vbs = 0 (*single_temp_ids_opt1*)
6 Avalanche current fitting at Vbs = 0 (*single_temp_isub_opt1*)

**optimize_temperature_coefficients**

The *optimize_temperature_coefficients* macro controls the optimization sequence for the temperature coefficients by calling the transforms listed below (found under the *all_temp_extract* setup) in the order shown.

1 *all_temp_lin_opt1*
2 *all_temp_lin_opt2*
3 *all_temp_subvt_opt1*
4 *all_temp_ids_opt1*
5 *all_temp_isub_opt1*
The JUNCAP Model

The JUNCAP model represents the C-V and I-V behavior of the parasitic source and drain regions of MOSFET devices [5].

The JUNCAP model file contains four DUTs: area, locos, gate and analysis. The area, locos, and gate DUTs hold the data for the area, locos and gate test structures, respectively. The analysis DUT, and its associated setups, contains the transforms that control the parameter extraction strategies.

The area, locos, and gate DUTs

The area, locos, and gate DUTs all have the same structure, as shown in the following table.

<table>
<thead>
<tr>
<th>area</th>
<th>locos</th>
<th>gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB is set to AB1</td>
<td>AB is set to AB2</td>
<td>AB is set to AB3,</td>
</tr>
<tr>
<td>LS is set to LS1 and</td>
<td>LS is set to LS2 and</td>
<td>LS is set to LS3 and</td>
</tr>
<tr>
<td>LG is set to 0</td>
<td>LG is set to 0</td>
<td>LG is set to LG3</td>
</tr>
</tbody>
</table>

Table 57 Parameters for area, locos and gate Test Structures

Each of these DUTs contain three setups: cv, fwd_iv and rev_iv.

cv This setup contains measured and simulated C-V data. It consists of the following:

- va This input defines the voltage sweep for C-V measurement. It uses the variables CVSTART, CVSTOP and CVSTEP as defined in the setup_details macro.
- cap This output holds the measured capacitance.
- cap_sim This transform calls JUNCAP to evaluate the simulated capacitance.
- make_cv_data This transform is used for making synthetic data for demonstration purposes. It performs a model evaluation using the existing parameter set by calling
cap_sim and then copies the resulting simulated data into the $m$ part of the cap output. This macro assumes that the MOS Model 9 function MM9_COPY is available.

**connect_cv** Modify this transform to enable automatic connection to the area DUT for C-V measurements.

**cv_plot** This is a plot definition showing measured and simulated C-V data.

**fwd_iv** This setup contains the measured and simulated forward I-V data. It consists of the following:

- **va, vk** These inputs define the anode and cathode voltages for forward I-V measurements. The variables FIVSTART, FIVSTOP and FIVSTEP control the voltage sweeps.
- **id** The output current
- **id_sim** A call to JUNCAP to evaluate the simulated current
- **make_iv_data** A transform to make synthetic forward I-V data. The function MM9_COPY is used in this transform.
- **connect_fiv** Modify this transform to enable automatic connection to the DUT for forward I-V measurements.
- **fwd_ivplot** The plot definition for the forward I-V data

**rev_iv** This setup contains the measured and simulated reverse I-V data. It consists of the following:

- **va, vk** These inputs define the anode and cathode voltages for reverse I-V measurements. The variables RIVSTART, RIVSTOP and RIVSTEP control the voltage sweeps.
- **id** The output current
- **id_sim** A call to JUNCAP to evaluate the simulated current
- **set_temp** This transform sets the setup level variable TEMP to the model level variable TREVERSE. The reverse data may be measured at a different temperature, TREVERSE, than the forward I-V or C-V data. However, the JUNCAP function looks for a variable TEMP to determine the device temperature. Therefore TEMP is defined as a setup level variable in the
area/rev_iv, locos/rev_iv, gate/rev_iv and analysis/rev_iv setups. Thus, during simulations in these setups, the setup variable TEMP will supersede the model level variable TEMP.

**make_iv_data**  A transform to make synthetic reverse I-V data. The function MM9_COPY is used in this transform.

**connect_riv**  You can modify this transform to enable automatic connection to the DUT for reverse I-V measurements.

**rev_ivplot**  The plot definition for the reverse I-V data.

### The analysis DUT

In the analysis DUT, the dimensions AB, LS and LG are set to unity. The setups are *cv*, *fwd_iv* and *rev_iv*.

**cv**  This setup controls the extraction of the C-V parameters and contains the following:

- **va**  This input definition for the anode voltage is the same as that in the area/cv, locos/cv and gate/cv setups.

- **cjbvn**  A transform that extracts (and holds) the normalized area sub-region contribution to capacitance from the measurements in the area/cv, locos/cv and gate/cv setups.

- **set_cjbr**  A transform that makes an initial approximation to the parameter CJBR by setting it to the value of cjbvn at the point where the anode voltage is closest to zero.

- **cjbvn_sim**  A transform that calls JUNCAP to evaluate the area sub-region component of capacitance.

- **fit_cjbvn**  An optimization definition that causes the parameters CJBR, PB and VDBR to be optimized with respect to the normalized area sub-region capacitance. The parameter limits are controlled by the following model variables, which you can change in the model variables table:

  - CJBR_MIN
  - CJBR_MAX
  - PB_MIN
  - PB_MAX
  - VDBR_MIN
  - VDBR_MAX
The data limits are controlled by the following variables, which are also in the model variables table:

\[
\begin{align*}
CV_{VMIN} & \quad CV_{VMAX} \\
CJSR_{MIN} & \quad CJSR_{MAX} & \quad PS_{MIN} \\
PS_{MAX} & \quad VDSR_{MIN} & \quad VDSR_{MAX}
\end{align*}
\]

\textbf{cjsvn} A transform that extracts (and holds) the normalized locos sub-region contribution to capacitance from the measurements in the \textit{area/cv, locos/cv and gate/cv setups}.

\textbf{set_cjsr} A transform that makes an initial approximation to the parameter CJSR by setting it to the value of cjsvn at the point where the anode voltage is closest to zero.

\textbf{cjsvn_sim} A transform that calls JUNCAP to evaluate the locos sub-region component of capacitance.

\textbf{fit_cjsv} An optimization definition that causes the parameters CJSR, PS and VDSR to be optimized with respect to the normalized locos sub-region capacitance. The parameter limits are controlled by the following model variables, which you can change in the model variables table.

The data limits are controlled by the variables, which are also in the model variables table.

\[
\begin{align*}
CV_{VMIN} & \quad CV_{VMAX} \\
CJSR_{MIN} & \quad CJSR_{MAX} & \quad PS_{MIN} \\
PS_{MAX} & \quad VDSR_{MIN} & \quad VDSR_{MAX}
\end{align*}
\]

\textbf{cjgvn} A transform that extracts (and holds) the normalized gate sub-region contribution to capacitance from the measurements in the \textit{area/cv, locos/cv and gate/cv setups}.

\textbf{set_cjgr} A transform that makes an initial approximation to the parameter CJGR by setting it to the value of cjgvn at the point where the anode voltage is closest to zero.

\textbf{cjgvn_sim} A transform that calls JUNCAP to evaluate the gate sub-region component of capacitance.
**fit_cjgvn**  An optimization definition that causes the parameters CJGR, PG and VDGR to be optimized with respect to the normalized gate sub-region capacitance. The parameter limits are controlled by the following model variables, which you can change in the model variables table.

\[
\begin{align*}
\text{CJGR}_\text{MIN} & \quad \text{CJGR}_\text{MAX} & \quad \text{PG}_\text{MIN} \\
\text{PG}_\text{MAX} & \quad \text{VDGR}_\text{MIN} & \quad \text{VDGR}_\text{MAX}
\end{align*}
\]

The data limits are controlled by the following variables, which are also in the model variables table:

\[
\begin{align*}
\text{CV}_\text{VMIN} & \quad \text{CV}_\text{VMAX}
\end{align*}
\]

**init_cv_pars**  A transform to initialize some of the C-V parameters before optimization begins. The parameters initialized are:

\[
\begin{align*}
\text{VDBR} = \text{VDSR} = \text{VDGR} = 0.75 \\
\text{PB} = \text{PS} = \text{PG} = 0.4
\end{align*}
\]

**opt_all_cv**  An optimization definition that causes all the C-V parameters to be optimized with respect to the measured data in the area/cv, locos/cv and gate/cv setups. The parameters optimized are:

\[
\begin{align*}
\text{CJBR} & \quad \text{CJSR} & \quad \text{CJGR} \\
\text{VDBR} & \quad \text{VDSR} & \quad \text{VDGR} \\
\text{PB} & \quad \text{PS} & \quad \text{PG}
\end{align*}
\]

The parameter limits are controlled by the following model variables:

\[
\begin{align*}
\text{CJBR}_\text{MIN} & \quad \text{CJBR}_\text{MAX} & \quad \text{CJSR}_\text{MIN} & \quad \text{CJSR}_\text{MAX} & \quad \text{CJGR}_\text{MIN} \\
\text{CJGR}_\text{MIN} & \quad \text{VDBR}_\text{MIN} & \quad \text{VDBR}_\text{MAX} & \quad \text{VDSR}_\text{MIN} & \quad \text{VDSR}_\text{MAX} \\
\text{VDGR}_\text{MIN} & \quad \text{VDGR}_\text{MAX} & \quad \text{PB}_\text{MIN} & \quad \text{PB}_\text{MAX} & \quad \text{PS}_\text{MIN}
\end{align*}
\]
The data limits are controlled by the following variables:

\[
\text{PS}_\text{MAX} \quad \text{PG}_\text{MIN} \quad \text{PG}_\text{MAX}
\]

\[
\text{CV}_\text{VMIN} \quad \text{CV}_\text{VMAX}
\]

**set_unit_dimensions**  A transform that sets the dimensions AB, LS and LG in the *analysis* DUT to unity.

**update_cv_curves**  A transform that resimulates all the C-V curves in the *area/cv, locos/cv, gate/cv* and *analysis/cv* setups.

**cjb**  A plot definition for the normalized area sub-region contribution to capacitance.

**cjs**  A plot definition for the normalized locos sub-region contribution to capacitance.

**cjs**  A plot definition for the normalized gate sub-region contribution to capacitance.

**fwd_iv**  This setup controls the extraction of the I-V parameters with respect to the forward I-V data. In the forward region at moderate and high applied voltages the diffusion current components dominate. However for low-applied voltages the generation components are also important. Therefore all the optimizations to the forward I-V curves target both the diffusion and generation parameters.

**va, vk**  These input definitions for the anode and cathode voltages are the same as those in the *area/fwd_iv, locos/fwd_iv* and *gate/fwd_iv* setups.

**ibn**  A transform that extracts (and holds) the normalized area sub-region contribution to forward current from the measurements in the *area/fwd_iv, locos/fwd_iv* and *gate/fwd_iv* setups.

**ibn_sim**  A transform that calls JUNCAP to evaluate the area sub-region component of current.
**fit_ibn**  An optimization definition that causes the parameters JSDBR, NB and JSGBR to be optimized with respect to the normalized area sub-region forward current. The parameter limits are controlled by the model variables, which you can change in the model variables table.

\[
\begin{align*}
J_{\text{SDBR}}_{\text{MIN}} & \quad J_{\text{SDBR}}_{\text{MAX}} & \quad N_{\text{B}}_{\text{MIN}} \\
N_{\text{B}}_{\text{MAX}} & \quad J_{\text{SGBR}}_{\text{MIN}} & \quad J_{\text{SGBR}}_{\text{MAX}}
\end{align*}
\]

The data limits are controlled by the following variables, which are also in the model variables table.

\[
\begin{align*}
FIV_{\text{VMIN}} & \quad FIV_{\text{VMAX}}
\end{align*}
\]

**isn**  A transform that extracts (and holds) the normalized locos sub-region contribution to forward current from the measurements in the area/fwd_iv, locos/fwd_iv and gate/fwd_iv setups.

**isn_sim**  A transform that calls JUNCAP to evaluate the locos sub-region component of current.

**fit_isn**  An optimization definition that causes the parameters JSDSR, NS and JSGSR to be optimized with respect to the normalized locos sub-region forward current. The parameter limits are controlled by the following model variables, which you can change in the model variables table.

\[
\begin{align*}
J_{\text{SDSR}}_{\text{MIN}} & \quad J_{\text{SDSR}}_{\text{MAX}} & \quad N_{\text{S}}_{\text{MIN}} \\
N_{\text{S}}_{\text{MAX}} & \quad J_{\text{SGSR}}_{\text{MIN}} & \quad J_{\text{SGSR}}_{\text{MAX}}
\end{align*}
\]

The data limits are controlled by the following variables, which are also in the model variables table:

\[
\begin{align*}
FIV_{\text{VMIN}} & \quad FIV_{\text{VMAX}}
\end{align*}
\]
ign A transform that extracts (and holds) the normalized gate sub-region contribution to forward current from the measurements in the area/fwd_iv, locos/fwd_iv and gate/fwd_iv setups.

ign_sim A transform that calls JUNCAP to evaluate the gate sub-region component of current.

fit_ign An optimization definition that causes the parameters JSDGR, NG and JSGGR to be optimized with respect to the normalized gate sub-region forward current. The parameter limits are controlled by the following model variables, which you can change in the model variables table:

<table>
<thead>
<tr>
<th>JSDGR_MIN</th>
<th>JSDGR_MAX</th>
<th>NG_MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG_MAX</td>
<td>JSGGR_MIN</td>
<td>JSGGR_MAX</td>
</tr>
</tbody>
</table>

The data limits are controlled by the following variables, which are also in the model variables table:

FIV_VMIN FIV_VMAX

init_iv_pars A transform to initialize some of the I-V parameters before optimization begins. The parameters initialized are:

| J SDBR = 10n | J SDSR = J SDRG = 10f | NB = NS = NG = 1 |
| J SGBR = 1u  | J SGSR = J SGRG = 100p |

opt_all_fwd_iv An optimization definition that causes all the I-V parameters to be optimized with respect to the measured data in the area/fwd_iv, locos/fwd_iv and gate/fwd_iv setups. The parameters optimized are:

<table>
<thead>
<tr>
<th>J SDBR</th>
<th>J SDSR</th>
<th>J SDGR</th>
<th>NB</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>J SGBR</td>
<td>J SGSR</td>
<td>J SGGR</td>
<td></td>
</tr>
</tbody>
</table>
The parameter limits are controlled by the following model variables:

\[
\begin{align*}
JSDBR\_MIN & & JSDBR\_MAX & & JSDSR\_MIN & & JSDSR\_MAX \\
JSDGR\_MIN & & JSDGR\_MAX & & NB\_MIN & & NB\_MAX \\
NS\_MIN & & NS\_MAX & & NG\_MIN & & NG\_MAX \\
JSGBR\_MIN & & JSGBR\_MAX & & JSGSR\_MIN & & JSGSR\_MAX \\
JSGGR\_MIN & & JSGGR\_MAX & & & & & \\
\end{align*}
\]

The data limits are controlled by the variables:

\[
FIV\_VMIN \quad FIV\_VMAX
\]

**update_iv_curves** A transform that resimulates all the I-V curves in the following setups:

\[
\begin{align*}
\text{area} & & \text{fwd\_iv, rev\_iv} \\
\text{locos} & & \text{fwd\_iv, rev\_iv} \\
\text{gate} & & \text{fwd\_iv, rev\_iv} \\
\text{analysis} & & \text{fwd\_iv, rev\_iv} \\
\end{align*}
\]

**ib** A plot definition for the normalized area sub-region contribution to current

**is** A plot definition for the normalized locos sub-region contribution to current

**ig** A plot definition for the normalized gate sub-region contribution to current

**rev\_iv** This setup controls the extraction of the I-V parameters with respect to the reverse I-V data. Current in the reverse region is dominated by the generation effects and so only the generation parameters are considered during these extractions.
va, vk These input definitions for the anode and cathode voltages are the same as those in the area/rev_iv, locos/rev_iv and gate/rev_iv setups.

ibn A transform that extracts (and holds) the normalized area sub-region contribution to reverse current from the measurements in the area/rev_iv, locos/rev_iv and gate/rev_iv setups.

ibn_sim A transform that calls JUNCAP to evaluate the area sub-region component of current.

fit_ibn An optimization definition that causes the parameter JSGBR to be optimized with respect to the normalized area sub-region reverse current. The parameter limits are controlled by the following model variables, which you can change in the model variables table.

\[
\begin{align*}
\text{JSGBR_MIN} & \quad \text{JSGBR_MAX} \\
\text{RIV_VMIN} & \quad \text{RIV_VMAX}
\end{align*}
\]

The data limits are controlled by the following variables, which are also in the model variables table.

\[
\begin{align*}
\text{RIV_VMIN} & \quad \text{RIV_VMAX}
\end{align*}
\]

isn A transform that extracts (and holds) the normalized locos sub-region contribution to reverse current from the measurements in the area/rev_iv, locos/rev_iv and gate/rev_iv setups.

isn_sim A transform that calls JUNCAP to evaluate the locos sub-region component of current.

fit_isn An optimization definition that causes the parameter JSGSR to be optimized with respect to the normalized locos sub-region reverse current. The parameter limits are controlled by the following model variables, which you can change in the model variables table.

\[
\begin{align*}
\text{JSGSR_MIN} & \quad \text{JSGSR_MAX}
\end{align*}
\]
The data limits are controlled by the following variables, which are also in the model variables table.

\[ \text{RIV\_VMIN} \quad \text{RIV\_VMAX} \]

**ign** A transform that extracts (and holds) the normalized gate sub-region contribution to reverse current from the measurements in the \textit{area/rev\_iv}, \textit{locos/rev\_iv} and \textit{gate/rev\_iv} setups.

**ign\_sim** A transform that calls JUNCAP to evaluate the gate sub-region component of current.

**fit\_ign** An optimization definition that causes the parameter JSGGR to be optimized with respect to the normalized gate sub-region reverse current. The parameter limits are controlled by the following model variables, which you can change in the model variables table.

\[ \text{J\_SGGR\_MIN} \quad \text{J\_SGGR\_MAX} \]

The data limits are controlled by the following variables, which are also in the model variables table.

\[ \text{RIV\_VMIN} \quad \text{RIV\_VMAX} \]

**set\_temp** This transform sets the setup level variable TEMP to the model level variable TREVERSE.

**opt\_all\_rev\_iv** An optimization definition that causes all the generation parameters to be optimized with respect to the measured data in the \textit{area/rev\_iv}, \textit{locos/rev\_iv} and \textit{gate/rev\_iv} setups. The parameters optimized are:

\[ \text{J\_SGBR} \quad \text{J\_SGSR} \quad \text{J\_SGGR} \]

The parameter limits are controlled by the following model variables:
The data limits are controlled by the following variables:

\[ \begin{align*}
\text{J SGBR_MIN} & \quad \text{J SGBR_MAX} & \quad \text{J SGSR_MIN} \\
\text{J SGSR_MAX} & \quad \text{J SGGR_MIN} & \quad \text{J SGGR_MAX}
\end{align*} \]

The data limits are controlled by the following variables:

\[ \begin{align*}
\text{FIV_VMIN} & \quad \text{FIV_VMAX}
\end{align*} \]

**ib**  A plot definition for the normalized area sub-region contribution to current.

**is**  A plot definition for the normalized locos sub-region contribution to current.

**ig**  A plot definition for the normalized gate sub-region contribution to current.

**Macros**

This section describes the macros provided with the JUNCAP model.

**setup_details**  This macro prompts you for various setup details. These details are stored in the model variables table. The current values of the variables are used as prompts so you can easily change one setting by executing the macro a second time and choosing OK to all questions except the change required. The information requested by this macro is as follows:

\[ \begin{align*}
\text{TR} & \quad \text{Model parameter representing reference temperature} \\
\text{VR} & \quad \text{Model parameter representing the reference voltage for parameter scaling (usually 0)} \\
\text{TEMP} & \quad \text{Ambient temperature at which the forward I-V and the C-V curves will be measured} \\
\text{TREVERSE} & \quad \text{The temperature at which the reverse I-V curves will be measured. If possible, this should be higher than TEMP to accentuate the current component from generation effects} \\
\text{AB1} & \quad \text{The area of the area DUT} \\
\text{LS1} & \quad \text{The locos perimeter length of the area DUT}
\end{align*} \]
The `setup_details` macro also calls the transform `set_unit_dimensions`, which sets the dimensions in the `analysis DUT` to unity.

`measure_cv` This macro causes a measurement to be taken in the `cv` setups of the `area`, `locos` and `gate` DUTs. At the end of these measurements, you are prompted to specify the following information:

- **AB2** The area of the locos DUT
- **LS2** The locos perimeter length of the locos DUT
- **AB3** The area of the gate DUT
- **LS3** The locos perimeter length of the gate DUT
- **LG3** The gate perimeter length of the gate DUT
- **CONNECT_CV** This variable is set depending on whether the user wishes to use manual or automatic connections for C-V measurement.
- **CONNECT_FIV** This variable is set depending on whether the user wishes to use manual or automatic connections for forward I-V measurement.
- **CONNECT_RIV** This variable is set depending on whether the user wishes to use manual or automatic connections for reverse I-V measurement.
- **CVSTART** The start voltage for C-V sweeps
- **CVSTOP** The stop voltage for C-V sweeps
- **CVSTEP** The voltage step for C-V sweeps
- **FIVSTART** The start voltage for forward I-V sweeps
- **FIVSTOP** The stop voltage for forward I-V sweeps
- **FIVSTEP** The voltage step for forward I-V sweeps
- **RIVSTART** The start voltage for reverse I-V sweeps
- **RIVSTOP** The stop voltage for reverse I-V sweeps
- **RIVSTEP** The voltage step for reverse I-V sweeps
- **DATASOURCE** If set to M, measurements will be taken. Otherwise data will be generated from simulations
- **DISPLAYPLOTS** If set to Y, plots are displayed during measurement and optimizations. Otherwise they are not (unless they have previously been displayed and not closed).
measure_forward_iv  This macro causes a measurement to be taken in the \textit{fwd\_iv} setups of the \textit{area, locos} and \textit{gate} DUTs. At the end of these measurements, you are prompted to specify the following information:

\begin{itemize}
  \item \texttt{FIV\_VMIN}  The lower voltage limit for optimizations with respect to the forward I-V data
  \item \texttt{FIV\_VMAX}  The upper voltage limit for optimizations with respect to the forward I-V data
\end{itemize}

measure_reverse_iv  This macro causes a measurement to be taken in the \textit{rev\_iv} setups of the \textit{area, locos} and \textit{gate} DUTs. At the end of these measurements, you are prompted to specify the following information:

\begin{itemize}
  \item \texttt{RIV\_VMIN}  The lower voltage limit for optimizations with respect to the reverse I-V data
  \item \texttt{RIV\_VMAX}  The upper voltage limit for optimizations with respect to the reverse I-V data
\end{itemize}

extract_cv_pars  This macro controls the extraction of the C-V parameters by splitting the C-V data into the \textit{area, locos} and \textit{gate} contributions and optimizing the parameters to these. At the end of the extractions, the simulated C-V arrays in the \textit{area, locos, gate} and \textit{analysis} DUTS are updated with the new parameters.

extract_fwd_iv_pars  This macro controls the extraction of the forward I-V parameters by splitting the forward I-V data into the \textit{area, locos} and \textit{gate} contributions and optimizing the parameters to these. At the end of the extractions, the simulated I-V arrays (forward and reverse) in the \textit{area, locos, gate} and \textit{analysis} DUTS are updated with the new parameters.
extract_rev_iv_pars  This macro controls the extraction of the reverse I-V parameters by splitting the reverse I-V data into the area, locos and gate contributions and optimizing the parameters to these. At the end of the extractions, the simulated I-V arrays (forward and reverse) in the area, locos, gate and analysis DUTS are updated with the new parameters.

opt_all_cv  This macro controls the optimization of the full set of C-V parameters with respect to the measured data in the area, locos and gate DUTs. At the end of the extractions, the simulated C-V arrays in the area, locos, gate and analysis DUTS are updated with the new parameters.

opt_all_fwd_iv  This macro controls the optimization of the full set of I-V parameters with respect to the measured forward I-V data in the area, locos and gate DUTs. At the end of the extractions, the simulated I-V arrays (forward and reverse) in the area, locos, gate and analysis DUTS are updated with the new parameters.

opt_all_rev_iv  This macro controls the optimization of the generation current parameters with respect to the measured reverse I-V data in the area, locos and gate DUTs. At the end of the extractions, the simulated I-V arrays (forward and reverse) in the area, locos, gate and analysis DUTS are updated with the new parameters.

simulate_all_curves  This macro allows all the curves to be resimulated.

set_new_TR  This macro allows the model parameters to be recalculated for a new reference temperature.

read_data_from_directory  Reads data previously stored in a subdirectory under the current working directory.

write_data_to_directory  Writes the data to a subdirectory under the current working directory.

**General Extraction Methodology**

The JUNCAP model extraction methodology assumes that the parasitic source and drain regions consist of three sub-regions:

- The area of the source/drain
- On an IC layout, this is the area of the source/drain active region. This area is labeled AB and has dimensions of $m^2$.
- The LOCOS edge
  - On an IC layout, this is the perimeter of the source/drain region that is shared with the LOCOS edge. This perimeter is labeled LS and has dimensions of $m$.
- The gate edge
  - On an IC layout, this is the perimeter of the source/drain region that is shared with the gate polysilicon edge. This perimeter is labeled LG and has dimensions of $m$.

Parameters are specified for each of these three sub-regions separately. To enable these parameters to be uniquely determined, at least three different source/drain regions must be measured with various dimensions for the three sub-regions. The present implementation assumes that three different test structures labeled area, locos and gate will be measured, as shown in the following table.

<table>
<thead>
<tr>
<th>DUT</th>
<th>AB</th>
<th>LS</th>
<th>LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>AB1 large</td>
<td>LS1 small</td>
<td>LG1 zero</td>
</tr>
<tr>
<td>locos</td>
<td>AB2 small</td>
<td>LS2 large</td>
<td>LG2 zero</td>
</tr>
<tr>
<td>gate</td>
<td>AB3 intermediate</td>
<td>LS2 intermediate</td>
<td>LG3 non-zero</td>
</tr>
</tbody>
</table>

The parameters AB1, AB2 and AB3 are the areas associated with the three DUTs; LS1, LS2 and LS3 are the LOCOS perimeters; and LG1, LG2, and LG3 are the gate perimeters. In the area DUT, the contribution of the area sub-region is assumed to be large while the contributions of the locos and gate sub-regions are small or zero. The locos DUT is assumed to have a larger contribution from the locos sub-region and the gate DUT has a non-zero contribution from the gate sub-region.
The capacitance associated with any DUT is considered to be the sum of the contributions of the three sub-regions. For example, for the DUT gate, the capacitance at any voltage $V$ is given by:

$$C(V) = C_{\text{AREA}}(V) \cdot AB3 + C_{\text{LOCOS}}(V) \cdot LS3 + C_{\text{GATE}}(V) \cdot LG3$$

where $C_{\text{AREA}}(V), C_{\text{LOCOS}}(V)$ and $C_{\text{GATE}}(V)$ are the normalized contributions of the area, locos and gate sub-regions at voltage $V$.

With respect to current, JUNCAP includes two mechanisms: diffusion and generation. These are described separately for each sub-region so that for the DUT gate, the current flow at any voltage $V$ is given by:

$$I(V) = (I_{\text{D AREA}}(V) + I_{G \text{ AREA}}(V)) \cdot AB3 + (I_{\text{D LOCOS}}(V) + I_{G \text{ LOCOS}}(V)) \cdot AL3 + (I_{\text{D GATE}}(V) + I_{G \text{ GATE}}(V)) \cdot AG3$$

where $I_{\text{D AREA}}(V)$ and $I_{G \text{ AREA}}(V)$ are the normalized contributions of the diffusion current and generation current, respectively, for the area sub-region at voltage $V$ with similar notation being used for the locos and gate sub-regions.

Once the three DUTs have been measured, a set of simultaneous equations can be solved that allows the contributions of the area, locos and gate sub-regions to be separated and normalized. Parameter extraction then proceeds by optimizing the relevant parameters to each of the sub-region contributions in turn. Finally, the model parameters may be fine-tuned by optimization with respect to the directly-measured data in the area, locos and gate DUTs.

For the case of a well diode, you should specify that there is no gate test structure by setting the variable $AB3$ to zero. With $AB3=0$, the gate device will be ignored during measurements and optimizations.
References

1 “Compact MOS modeling for analog circuit simulation” (IEDM ’93)
2 “The high-frequency analogue performance of MOSFETs” (IEDM ’94)
3 “Circuit Sensitivity Analysis in Terms of Process Parameters” (SISDEP ’95)
5 Unclassified report, NL-UR 028/95, R.M.D.A. Velghe
Circuit modeling is a natural extension of single device modeling. With IC-CAP’s flexible structure, it is as easy to measure and characterize a multicomponent circuit as a single device. This chapter provides details for performing circuit modeling; typical applications are also provided to use as a guide for meeting specific circuit modeling requirements.
Definition of an IC-CAP Circuit

IC-CAP defines a circuit as any connection of two or more components. Previous chapters have dealt primarily with single devices such as bipolar, GaAs or MOS transistors. An IC-CAP circuit can be a simple two-resistor voltage divider or a complex operational amplifier or A/D converter.

The circuit, like a single device, is specified in the Circuit folder of the model window using SPICE compatible circuit definition syntax. All circuit decks in IC-CAP begin with the .SUBCKT subcircuit definition and end with the .ENDS statement. Circuit modeling allows more accurate solutions to many single device modeling requirements and expands the level of systems modeling possible.
IC-CAP Circuit Modeling Operations

With IC-CAP, every type of characterization operation performed on a single component can also be performed on a circuit. IC-CAP allows easy measurement of circuit characteristics, extraction and optimization of model parameters, and simulation of the circuit’s performance. Measurement and simulation operations use the same setup information as single components. Extraction and optimization operations enable more options for methods of obtaining model parameters. These operations can be performed on the circuit as a whole or on any sub-component of the circuit. This is explained in the section, “Circuit Parameter Extraction” on page 545.
9 Circuit Modeling

Defining a Circuit

The process of defining a circuit in IC-CAP is similar to defining a single device. The main difference is the interconnection of the components and the use of subcircuit lines to define the circuit block. For detailed information on defining circuits, refer to the appropriate Reference chapter (Chapter 3, “SPICE Simulators,” Chapter 4, “SPECTRE Simulator,” Chapter 5, “Saber Simulator,” Chapter 6, “MNS Simulator”).

Supported Circuit Components

Circuits in IC-CAP support the standard components that can be simulated with SPICE:

- **Passive elements**  R, L, C, Transmission lines
- **Semiconductors**  Bipolar, MOS, GaAs, JFET, Diode
- **Sources**  V, I, VCVS, VCIS, ICVS, ICIS

The syntax for defining a circuit in IC-CAP is similar to a SPICE simulation input deck. Each line contains a component, its node numbers, value, and (if applicable) an associated model name reference. Proper specification and use of these components is critical to the success of circuit simulation and parameter extraction.

In general, independent voltage sources are specified as inputs within a given setup. This allows you to specify their values and use them in additional numerical or graphic analysis. Some of the differences between SPICE and IC-CAP circuit definitions are listed.

- The .OPTIONS statement (if used) must be the first line in the circuit description. All options must be on one line (no continuation).
- The next line of the circuit is .SUBCKT.
- A TITLE specification is automatically generated by IC-CAP and should not be included in the circuit definition.
- The last line of the circuit is .ENDS
• An .END statement is automatically generated by IC-CAP and should not be included in the circuit definition.

The following figure shows an example circuit description. This circuit defines the input section of an ECL OR/NOR logic gate. (Figure 178 shows the schematic.) This circuit is referenced several times in this chapter. You can create it using the circuit editor or read it from the file $ICCAP_ROOT/data/ECLornor.mdl.

```
.SUBCKT ECLORNOR 1=IN1 2=IN2 3=OR 4=NOR + 5=VCC 6=VEE 7=VREF * ECL OR/NOR LOGIC GATE
Q1 4 1 8 NPN1
Q2 4 2 8 NPN1
Q0 3 7 8 NPN2
.MODEL NPN1 NPN + IS = 2E-14  NF = 0.998  BF = 120 + RB = 225  CJC = 300p  TF = 20p
.MODEL NPN2 NPN + IS = 4E-14  NF = 0.998  BF = 120 + RB = 110  CJC = 530p  TF = 18p
RL1 5 4 300
RL0 5 3 300
RIEE 8 6 1.2K
.ENDS
```

**Figure 177** Circuit Description for an ECL OR/ NOR Logic Gate

When you enter the circuit description in the Circuit folder of the model window, moving the mouse out of the Circuit folder automatically causes the circuit to be parsed, that is, the specified circuit elements are read and entries are created for them in Model Parameters. When they are added initially, they assume the value specified in the circuit description. To change a value subsequently, you must change it in Model Parameters. To change all entries in Model Parameters to the values in the circuit description, choose **Reset**.

Note the difference in the Parameters table parameter names for a transistor in a circuit. In a single transistor circuit, the model parameter names of the transistor are the entries in the Parameters table. In a multi-component circuit the transistor’s model parameters must be associated with a specific model, so the parameters take on a prefix of that model’s name. Thus, the forward Beta model parameter \( BF \) for a model named \( NPN1 \) is...
listed in the Parameter Editor as \textit{NPN1.BF}. In the example above, transistors \textit{Q1} and \textit{Q2} both use the \textit{NPN1} model, while transistor \textit{Q0} uses the \textit{NPN2} model.
Circuit Measurement

The process of measuring a circuit in IC-CAP is identical to measuring a single device. The circuit stimuli and responses are specified in the input and output tables, respectively, of the Measure/Simulate folder. You can perform a measurement by clicking Measure in the Measure/Simulate folder the DUT or Setup levels. In performing measurements on circuits, there are several additional items not found in single component measurement.

Multiple Instrument Names

In measuring a single component, it is common to use only one DC source and measurement instrument because only four terminals are involved. The typical circuit can have more than four terminals and require several DC source and measurement instruments. Any number of instruments of the same or similar type can be connected to the circuit under test as long as they are entered in Hardware Setup. When using multiple instruments, each of their units must have a unique name.

Isolating Circuit Elements for Measurement and Extraction

The characterization of a circuit may require the measurement and modeling of several sub-circuit elements. The accuracy of the sub-circuit model generated is dependent upon how well that circuitry can be isolated from the rest of the overall circuit.

Examine the simplified schematic of the input to an ECL OR/NOR gate in Figure 178. The input stage of this circuit is a differential amplifier with a collector resistor in each leg and a resistor for a current source. It is possible to characterize the individual transistors in this circuit by selectively biasing only the terminals that make it active and that keep other parts of the circuit in an off or latent state. In this case, biasing IN1, VCC, and VEE turns on the circuit that contains RL1, Q1, and RIEE. These components have now been isolated so that their model parameters can be
extracted. This type of selective measurement allows characterization of individual or small groups of sub-circuit elements.

**Figure 178** ECL OR/NOR Schematic Diagram
Circuit Parameter Extraction

Circuit parameter extraction is identical to single component parameter extraction through the use of Transforms. However, because circuits are custom in nature, most of the extraction routines must also be custom designed. With the availability of the Program function and optimize transforms, this is simple and quick to evaluate and execute. The critical factor in a successful circuit level parameter extraction is the ability to make a measurement and subsequent extraction involving only the dominant component parameters.

For a full model extraction of a single component, you will attain more accuracy if that device is available without any additional components connected to it. For most functional block level circuits however, a subset of the transistor model parameters is usually sufficient for studying circuit behavior.

Extracting Transistor Parameters Using Library Functions

In the explanation of a selective measurement on a sub-portion of a circuit in the previous section, Q1 and its neighboring resistors were isolated in the ECL logic gate. The forward active model parameters can be extracted from this measurement using the model extraction functions in the function list or by setting up a custom optimization. To access the functions, add transforms that use them to a setup that contains the measurement. It is possible to use the provided transistor extraction functions to obtain model parameters for devices connected into a larger circuit.

Because all models in a circuit have model parameters in the Parameters table with the model's name as a prefix, IC-CAP must be told which model to use with the extraction transforms. This is easily done by setting a variable in the model level variable table. Enter a variable in the table called EXTR_MODEL and set its value to the name of the transistor whose parameters are being extracted. When the extraction transforms are executed, IC-CAP refers to the correct Parameters table entry as it writes the extracted value back to
the table. For example, to use a function list transform on the model \textit{NPN1} mentioned above, add the following to the model level variable table:

\begin{verbatim}
EXTR_MODEL     NPN1
\end{verbatim}

Each time another transistor is used for an extraction, place its name in the value field. A more efficient method of extracting individual transistor models is to create an individual setup for each device. The variable table at the setup level can then include the \texttt{EXTR\_MODEL} entry, keeping the transistor extraction local to that setup. This can also be done in an analogous way at the DUT level.

It is sometimes necessary to specify the particular DUT in a circuit that should be used in an extraction routine. For example, in a circuit that contains two MOSFETs there are two different sets of geometry parameters (L and W). For the extraction to work correctly, the \texttt{EXTR\_DUT} variable must be set to the name of the transistor with the correct geometry parameters. Therefore, to characterize transistor \textit{M1}, which uses model \textit{NMOS1}, add the following to the model level variable table:

\begin{verbatim}
EXTR_DUT        M1
EXTR_MODEL      NMOS1
\end{verbatim}

Situations where \texttt{EXTR\_DUT} must be set can also arise when test circuits are defined. In this case, DUT parameters that normally appear without a prefix in the DUT Parameters table will include the transistor name from the Test Circuit as a prefix. For the extractions to use these parameters, \texttt{EXTR\_DUT} must be set to the transistor name that is used in the test circuit.

\section*{Extracting Parameters Through Optimization}

It is not always possible to adequately isolate a circuit component before using a standard extraction function. In these cases it is still possible to extract model parameters by using the optimize function. As with any extraction function, successful use of the optimizer requires that the parameters being optimized have a dominant effect over the simulation of the

In the OR/NOR gate shown in Figure 178, it is possible to use the optimizer to extract the values of NPN1.IS, NPN1.NF, NPN1.BF and RIEE. The following sequence of operations describes how to accomplish this.

1. Make an Ic and Ib versus V measurement between the NOR, IN1 and VEE terminals.
   a. Connect the VEE, VREF and IN2 terminals to constant voltage sources of 0V. This keeps the base-emitter diodes of Q2 and Q0 in an off state. Disconnect VCC from the circuit.
   b. Connect the NOR terminal to a voltage of approximately 1.0V.
   c. Sweep the voltage on the IN1 terminal so that the measured currents at the NOR (collector) terminal are in the 1nA to 1µA range.

2. Set up an optimization transform that optimizes the values of NPN1.IS, NPN1.NF, and NPN1.BF over the measured current. At low currents, RIEE has a minimal effect on the I-V relationship.
   - The target data is the measured Ic and Ib currents. The simulated data comes from the simulation of these currents.
   - The Parameters table contains NPN1.IS, NPN1.NF and NPN1.BF

3. Change the sweep voltage on the IN1 terminal so that the measured current at the NOR terminal is in the 10µA to 1mA range.
   - The measured current should deviate from an exponential function due to the debiasing effect from RIEE.

4. Set up an optimization transform that optimizes the value of RIEE over the measured current.
   - The target data is the measured Ic current. The simulated data comes from the simulation of this current.
The Parameters table contains only the circuit element RIEE.

After each of these measurements and optimizations has been executed, the Model Parameters table is updated with the extracted values of these elements.
Circuit Simulation

Circuit simulation is performed identically to single device simulation. The circuit usually has more inputs and outputs defined than a single device. In addition, the simulated circuit can use independent or controlled voltage and current sources that are defined within the Circuit Editor. When IC-CAP simulates a circuit, it first builds a complete SPICE deck from the circuit description and the setup table. The source names are built from the source type (V or I) and the nodes to which they are connected. Use of the simulation debugger can improve efficiency in performing successful simulations. Knowledge of how IC-CAP interacts with the SPICE simulators gives you more control over the options available for circuit simulation. For more information, refer to Chapter 3, “SPICE Simulators,” in the Reference.

One of the advantages of simulating circuits through IC-CAP is the increased levels of analysis available. IC-CAP allows a sweep of more parameters than with a stand-alone SPICE simulator. For example, it is possible to simulate a circuit's behavior over bias conditions, component values and temperature in the same simulation. Once a simulation is complete, you may further analyze the stimulus and response data with IC-CAP’s numerical and graphic capabilities. The two-port simulation features enable you to study the high-frequency characteristics of a circuit using any of the S, H, Y, or Z 2-port parameters.

Design Optimization

Designing a circuit usually follows a path of defining a block level functional description, translating it into discrete circuit components, then optimizing those components for the required performance. This last stage can be simplified with the IC-CAP system. It is possible to specify the desired performance from a
circuit and then let the IC-CAP optimizer find the best component and model parameters to satisfy it. The following is an overview of how to do this.

1. Enter a circuit with a first order estimate of the required parameters and component values.

2. Create a setup with the inputs and outputs that simulate the desired region of performance.

3. Simulate the circuit to create a set(s) of output data.

4. Copy the simulated data into the measured data set(s) in the outputs.
   a. Type the letter S in the Type field and press Return.
   b. Type the letter B in the same field to replace the letter S.

5. Save the desired outputs to files using the Write to File menu choice on each output.

6. Edit the files using any editor. Scan down the file to find the type MEAS data section. This is where the measured data begins. Edit the output values, replacing them with the desired performance values for the circuit. Save the file when done.

7. Read the file (and thus the new data) back into the outputs in IC-CAP using the Read from file command on the desired outputs.

8. Set up an optimization transform to find the required parameter and component values that best match the new measured data.

This type of design optimization can save many hours of iteration in fine-tuning high-performance circuit designs.
Test Circuits

When measuring a single device or a complex circuit you often require additional components for biasing, setting operating points, or tuning the high-frequency performance characteristics. Even when no additional components are required, there may still be some parasitic elements introduced by the connections of the device to the instrumentation. Examples of this are DC resistance in probe-to-wafer contacts, inductances in IC package bond wires, and the shunt resistances in the bias ports of network analyzers. The Test Circuit in IC-CAP allows you to include these elements when performing a simulation or optimization without including them in the main circuit description or device model.

Syntax

A circuit editor is available for each DUT. To access it, select Edit in the DUT Circuit folder. This produces a window that has both the DUT Parameters table and the test circuit editor. The mechanics of using this editor are the same as using the circuit editor.

The test circuit adds another level of circuit hierarchy to the overall system being measured and modeled. It is implemented through a circuit description that uses the SPICE subcircuit syntax. The example test circuit shown in Figure 179 adds a capacitor and resistor to the outputs of the ECL logic gate described earlier.

* Resistive / Capacitive circuits to simulate the effect of gate loading

```
.SUBCkt gateload 1=IN1  2=IN2  3=OR + 4=NOR  5=VCC  6=VEE  7=VREF
Xornor 1 2 3 4 5 6 7 ECLornor
Cor 3 0 1p
Ror 3 0 10MEG
Cnor 4 0 1p
Rnor 4 0 10MEG
.ENDS
```

**Figure 179** Test Circuit for an ECL Logic Gate
This test circuit is added to the SPICE circuit deck each time a simulation is called or when an optimization that uses a SPICE simulation is performed. It does not modify the original model description in any way. The values of the elements in the test circuit can be modified in the DUT Model Parameters.
Hierarchical Modeling

The previous test circuit section on illustrated one way to include hierarchy in an overall circuit description. The test circuit, however, is at the highest level of hierarchy in an IC-CAP circuit. It is also possible to build a complete circuit by combining smaller circuit or transistor models into one subcircuit definition. This way, you can update the models of smaller subcircuits or individual components and have these changes automatically propagate into all circuits that use it.

Circuits Built from Sub-models

The ECL logic gate defined in Figure 178 uses two sizes of NPN transistors. Each transistor has a separate .MODEL card associated with it. These transistor model definitions can be removed from the logic gate circuit and reference other models currently active in IC-CAP. When a simulation is performed, IC-CAP includes these device models in the circuit definition.

To use external models, the models that you want to include must be in the IC-CAP model list. In the circuit definition that uses these model references, remove the .MODEL card. The model name used for the transistors should then be the same as the names in the IC-CAP model list. To use this technique for the ECL logic gate, read in models for the $NPN1$ and $NPN2$ transistors into IC-CAP. Then delete the two model cards in the logic gate circuit. The resulting model list and circuit description are shown in Figure 180 and Figure 181.

This approach provides flexibility. It allows you to keep a standard library of device models to include in larger circuits requiring accurate device models. This allows you to quickly cut-and-paste different component models into circuits and compare performance. It also greatly reduces the size of the circuit definition that needs to be maintained.
Figure 180  Model List Window for Hierarchical Circuit Definition

.Model List  Help  Close

.MODEL
NPN1
NPN2
ECLornor

.SUBCKT ECLORNOR  1=IN1  2=IN2  3=OR  4=NOR
+  5=VCC  6=VEE  7=VREF
* ECL OR/NOR LOGIC GATE
Q1  4  1  8  NPN1
Q2  4  2  8  NPN1
Q0  3  7  8  NPN2
RL1  5  4  300
RL0  5  3  300
RIEE  8  6  1.2K
.ELDS
.ENDS

Figure 181  Hierarchical Circuit Description for ECL OR/NOR Logic Gate
Functional Circuit Blocks

Previous sections in this chapter provided different aspects of the use of IC-CAP for modeling complete functional circuits. This section provides detailed examples of circuit models and custom model extractions you can create. These examples are provided to stimulate ideas for using IC-CAP to meet specific circuit modeling requirements.

Types of Circuits in IC-CAP

The types of circuits for measurement and simulation with IC-CAP are unlimited. Anything that can be simulated on a stand-alone SPICE simulator can be simulated with IC-CAP. In fact, any type of system that can be measured with the IC-CAP library of instruments can be characterized.

With the variety of components supported by SPICE, IC-CAP can be used to both characterize and design circuit modules. Classical examples of both single device and functional circuit modeling problems that are easily solved with IC-CAP are included.

Modeling the Reverse Active Region of an NPN Transistor

One of the constant sources of error in modeling the performance of a reverse active NPN transistor is the parasitic PNP formed by the base, collector, and substrate of the integrated structure. (This was briefly described in “PNP Transistors” on page 28.) A simple solution to modeling this region of operation is to use the complete functional circuit displayed in the following figure.
Model file npnwpnp.mdl is included as an example of solving this problem. It has a single DUT/Setup that measure and model the reverse active operation of an NPN transistor.

The previous figure shows that the emitter of the PNP steals current from the base terminal of the NPN. The single dominant parameter that models this PNP current flow is the saturation current IS. (Modeling the transistor at this point assumes that the DC NPN parameters have already been obtained using another model file. The bjt_npn.mdl model file has a complete set of DUTs and setups to perform this. For more information, refer to Chapter 1, “Bipolar Transistor Characterization.”)

The rgummel setup then uses an optimize function to simultaneously extract the reverse active NPN parameters BR, IKR, ISC, and NC and the PNP parameter IS. The optimization proceeds by simulating the compound device, which is represented as a 2-transistor circuit, and numerically adjusting these model parameters.

The plot in the following figure is of reverse beta versus emitter current. It includes the simulation of the single transistor reverse model and measurement and simulation of the 2-transistor compound structure. The result of this extraction is a near perfect agreement between measured and simulated data. Also examine the resulting magnitudes of both IS (large enough to not be negligible) and BR (much higher than for a
single device extraction). This example shows the improvement you can attain in using a full circuit description to model an integrated device structure.

**Modeling an Operational Amplifier**

The operational amplifier is included with IC-CAP as an example of how to do relatively complex macro modeling. It illustrates the simplification of a complex circuit to the necessary and sufficient components that enable it to be accurately represented. This model includes a Program transform that extracts model parameters from data sheet specifications of its performance. The inputs to this transform could also be measurements of the opamp’s electrical characteristics. This same Program transform has also been converted into a standard IC-CAP function by writing it in the C programming language (in the `userc.c` module) and compiling.
Circuit Modeling

and linking it into the system. The circuit chosen follows the model developed by Boyle, Cohn, Pederson, and Solomon [1]. This circuit model is in the `opamp.mdl` example file.

**Opamp Macro Model**

The stages in this opamp model are: non-linear differential input, intermediate linear gain, and output driver. These enable most of the possible operating regions of the complete circuit to be adequately simulated.

The input stage contains transistors Q1 and Q2 connected as a differential amplifier, biased with a fixed current source (see Figure 183). Q1 and Q2 provide both differential mode (DM) and common mode (CM) characteristics. Passive components in the input stage provide slew rate effects (C2, Ce, Re1, Re2), 0dB frequency control (Rc1, Rc2), DM excess phase (C1), and CM input resistance (R1).

The intermediate gain stage provides linear amplification through voltage controlled current sources Ga, and Gb, which model the differential gain of the opamp. Capacitor C2 controls the dominant pole. CM gain is modeled with the voltage controlled source that has the coefficient Gcm.

In the output stage, AC and DC output resistances are modeled with Ro1 and Ro2. Output drive voltage is supplied through diodes D1 and D2 and voltage controlled voltage source (Gc*v6*Rc). The independent voltage sources in series with diodes D3 and D4 clamp the opamp under conditions that would force the output voltage to one of the supply rails.

The development of this opamp model uses the concepts of simplification and buildup to reduce the number of active and passive components. For example, to maintain non-linear effects the input stage has been simplified to two transistors, and an independent current source has been substituted for the usual bias circuitry. In the interstage amplifier, *buildup* is used to emulate a circuit characteristic through alternate circuitry. The stage is modeled by two voltage controlled current sources and a capacitor for compensation. These techniques take a piece-by-piece approach to the development of a model. They can be applied to virtually any circuit or subcell.
Opamp Circuit Model

The following figure shows the macro model that represents the full opamp circuit, followed by circuit elements in order from the input to the output stage. Figure 185 shows the complete opamp model circuit definition used in this example.

```plaintext
.SUBCKT OPAMP_1 2 = VINP 3 = VINN
+ 4 = VEE 6 = VOUT 7 = VCC
Q1 10 2 12 NPN1
Q2 11 3 13 NPN2
.MODEL NPN1 NPN IS = 8.0E-16 BF = 111.7
.MODEL NPN2 NPN IS = 8.31E-16 BF = 143.6
RC1 7 10 5305
RC2 7 11 5305
C1 10 11 5.46p
RE1 12 14 2712
RE2 13 14 2712
RE 14 0 9.872m
CE 14 0 2.41p
RP 7 4 15.36K
GCM 0 15 14 0 6.28n
GA 15 0 10 11 188.6u
R2 15 0 123.4K
C2 15 16 30p
GB 16 0 15 0 247.5
RO2 16 0 42.87
D1 16 17 DMOD1
D2 17 16 DMOD1
.MODEL DMOD1 D IS = 8.0E-16
RC 17 0 0.02129m
GC 0 17 6 0 46964.0
RO1 16 6 32.13
D3 6 18 DMOD2
D4 19 6 DMOD2
.MODEL DMOD2 D IS = 8.0E-16
VC 7 18 1.803
VE 19 4 2.303
IEE 14 4 20.26u
.ENDS
```

Figure 184  Opamp Circuit Definition
Figure 185  Opamp Circuit Diagram
Inputs to the Opamp Macro Extraction

Inputs to the opamp model extraction describe its electrical performance. These characteristics can be measured on actual devices or obtained from data sheet specifications. Due to the flexibility of the origin of the inputs, you can experiment with the opamp's performance as it relates to the model elements that control it. The following table lists the inputs to the opamp extraction.

Table 59  opamp Extraction Inputs

<table>
<thead>
<tr>
<th>Input Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slew Rate +</td>
<td>positive-going slew rate</td>
</tr>
<tr>
<td>Slew Rate-</td>
<td>negative-going slew rate</td>
</tr>
<tr>
<td>Bias Current</td>
<td>average input base bias current</td>
</tr>
<tr>
<td>Bias Offset</td>
<td>input bias offset current</td>
</tr>
<tr>
<td>Volt Offset</td>
<td>input offset voltage</td>
</tr>
<tr>
<td>Av(DM)</td>
<td>open loop differential mode voltage gain</td>
</tr>
<tr>
<td>BW</td>
<td>unity gain bandwidth (Av(DM) * f(-3dB))</td>
</tr>
<tr>
<td>Excess Phase</td>
<td>excess phase at f(0dB) due to 2nd pole</td>
</tr>
<tr>
<td>CM RR (dB)</td>
<td>common mode rejection ratio</td>
</tr>
<tr>
<td>Rout</td>
<td>low-frequency output resistance</td>
</tr>
<tr>
<td>Rout-ac</td>
<td>high-frequency output resistance</td>
</tr>
<tr>
<td>Isc+</td>
<td>positive short circuit current</td>
</tr>
<tr>
<td>Isc-</td>
<td>negative short circuit current</td>
</tr>
<tr>
<td>Vout_max+</td>
<td>positive output voltage where opamp clamps Iout</td>
</tr>
<tr>
<td>Vout_min-</td>
<td>negative output voltage where opamp clamps Iout</td>
</tr>
<tr>
<td>Power Diss</td>
<td>quiescent state power dissipation</td>
</tr>
<tr>
<td>Vcc supply</td>
<td>positive supply voltage</td>
</tr>
<tr>
<td>Vee supply</td>
<td>negative supply voltage</td>
</tr>
<tr>
<td>Nom. Q.IS</td>
<td>nominal transistor and diode saturation current</td>
</tr>
</tbody>
</table>
Extraction Equations for the Opamp Macro Model

The inputs to the macro model extraction described are used by the set of equations shown in Figure 186 to produce the model parameters. These equations are programmed into the userc.c module exactly as shown.

Because of the simplicity of the equations, they can also be entered into a Program transform using the Parameter Extraction Language. This allows experimentation with model extraction techniques before coding the final extraction in C and linking it to IC-CAP. This has been done with the opamp macro model to provide a typical example of writing custom model extractions.
The opamp model, fully defined and model parameters extracted, can now be used as a functional circuit block. This requires that the opamp be biased with external supply voltages and circuit configuring components. This was demonstrated previously through the use of a test circuit. The test circuit implemented forms an inverting amplifier using an input and feedback resistor with the opamp. This results in a complete functional circuit whose performance can be studied in more detail. The test circuit definition and the resulting equivalent circuit are shown in Figure 187 and Figure 188.

**Figure 186** C Coded Opamp Extraction Equations

**Bias Circuitry**

The opamp model, fully defined and model parameters extracted, can now be used as a functional circuit block. This requires that the opamp be biased with external supply voltages and circuit configuring components. This was demonstrated previously through the use of a test circuit. The test circuit implemented forms an inverting amplifier using an input and feedback resistor with the opamp. This results in a complete functional circuit whose performance can be studied in more detail. The test circuit definition and the resulting equivalent circuit are shown in Figure 187 and Figure 188.
The plot in Figure 189 illustrates how this functional circuit can be studied. The opamp circuit has been simulated with the compensation capacitance used as one of the sweep parameters. The AC voltage gain is plotted versus frequency with steps of different values of C2. The diagonal line is the break point between process limitations and circuit limitations. To increase frequency response, the internal capacitor on the chip (nominal 30pF) would have to be reduced. To force earlier roll-off, more external capacitance can be added. This analysis indicates the range of gain-bandwidth product available for different values of capacitance. Similar analyses can be performed for any area of this circuit’s operation.
Figure 189  AC Opamp Response vs C2 Capacitance
9 Circuit Modeling

References

10
1/ f Noise Extraction Toolkit

Types of Noise  568
The Significance of 1/ f Noise  569
1/ f (Flicker Noise) Modeling  570
Noise Measurement Setup  573
Parameter Extraction Procedure  575
1/ f Noise Toolkit Description  578
Opening the 1/ f Toolkit  579
System Settings  582
General Settings  584
Verify DC  590
Measure Noise  595
1/ f Noise Extraction with MOS Transistors  614

The 1/f Noise Extraction Toolkit runs with a GUI. The Toolkit can measure and extract 1/f noise parameters.
Types of Noise

The main sources of noise in semiconductor devices are:

1. **Thermal Noise** is due to the Johnson effect in the ohmic regions. It is practically frequency independent.

2. **Shot Noise** is due the diffusion and passage of carriers across barriers. This noise can be represented by independent random events. Its spectral distribution depends on the bias current and is frequency independent.

3. **Burst Noise** is due to the capture and emission of carriers in localized traps causing a fluctuation between current levels. It is usually present in small devices and Si-SiO2 interfaces (e.g. MOS).

4. **1/f Noise** (also called Flicker Noise) is believed to be caused by surface recombination due to traps and defects in the crystal.
The Significance of 1/f Noise

Due to their broadband spectral distribution, thermal and shot noise contribute to the circuit noise figure. The circuit (in terms of bias, gain, matching networks, etc.) is usually optimized to minimize or lower the noise figure.

Although the 1/f noise is generated at low frequencies, its contribution to the overall noise can be very significant to some RF circuits since its spectral power density is up converted in the band of interest by circuit nonlinearities. This is especially true in mixers and oscillators.
1/f (Flicker Noise) Modeling

The state of the art of 1/f noise modeling will be reviewed, and then the 1/f noise setup will be described with more details. The 1/f noise spectral power density is given by [8]:

\[ S_{1/f}(f) = K_f \cdot \frac{A_f}{f} \]  \hspace{1cm} (128)

where \( K_f \) and \( A_f \) are the model parameters that needs to be extracted, \( I \) is the current flowing through the junction where the flicker noise is generated. The figure below shows the small signal equivalent circuits of bipolar and MOS transistors. All the noise sources, including thermal and shot, are represented. In bipolar transistors the noise is generated by the recombination current in the base, therefore \( I = I_b \). The 1/f noise is represented by the current source \( I_{nb} \). Its squared mean value is given by:

\[ \langle I_{nb}^2 \rangle = \int_B S_{1/f}(f) df \]  \hspace{1cm} (129)

where \( B \) is the frequency band of interest.

In FET and MOS devices the noise is generated in the channel, therefore \( I = I_d \). In the MOS equivalent circuit shown below, the 1/f noise is represented by the current source \( I_{d} \). The expression for the density is:

\[ S_{1/f}(f) = K_f \cdot \frac{f_{Ef}^A}{f} \cdot \frac{I_d}{C_{ox} \cdot L_{eff}^2} \]  \hspace{1cm} (130)

The bipolar equivalent circuit used is shown below.
The BSIM3 and BSIM4 models for MOSFETs offer, as an alternative, a more complex description which includes other device parameters. As with the conventional BSIM3 and BSIM4 formulation in equation (3), some models (e.g., VBIC) also offer a parameter $E_f$ to model the 1/f slope. The goal is to be able to measure the noise spectrum at low frequencies, where the 1/f noise is dominant, and at several bias points in order to extract the parameters $K_f$ and $A_f$.

$K_f$ is determined by the power vs. frequency characteristics; $A_f$ is extracted by varying the bias current.

In both cases, bipolar or MOS, the noise phenomena is related to the current flowing through the device. The formulation gives the spectral density of a random noise current source. The bipolar transistor is by nature a current amplifier. The equivalent circuit is shown above.

The power noise spectrum of the base current is simply amplified by a factor $h_{fe}^2$ at the output ($h_{fe}$ is the small signal current gain). Having considered this, the most natural choice for amplifying the device output noise is a current amplifier.
The low noise current amplifier converts the output current noise into voltage. This avoids current to voltage conversions in the circuit. These conversions depend on other circuit parameters, and therefore introduce errors.
Noise Measurement Setup

The figure below shows the block diagram of the measurement setup. The input bias is applied by a 4142 (or 4156) parametric analyzer and a 1Hz or a 10 Hz filter. The filter eliminates the line noise from the bias source. When measuring bipolar devices, the filter output impedance, which is typically 50 ohm, has to be increased since such a low value would short circuit the current noise source at the input.

The device output is directly connected to the SR570 low noise amplifier. Besides amplifying the output noise, the amplifier provides a current and a voltage supply which are used to bias the device output. The voltage supply allows the setting of the collector or drain voltage while the current source provides an offset current which is used to bias the device. The reason for using the current compensation is that the amplifier works best when the feedback current is minimal (the feedback current flows through R into the device to create the virtual null at the amplifier input). The SR570 can supply an output voltage of up to 5 V and a maximum current compensation of 5 mA.

Figure 191  1/f Noise Measurement Setup
The gain (expressed in terms of sensitivity A/V) can be varied between 10e-3 to 10e-12 A/V. For this application, since the amplifier bandwidth decreases with the sensitivity, only the higher sensitivities which ensure bandwidth of at least 1 KHz are actually used.

The device 1/f noise is amplified and measured by the 35670A dynamic signal analyzer. This instrument is ideal for analyzing signals with a low frequency power spectrum (such as 1/f noise) as opposed to a spectrum analyzer which is used at higher frequency bands. Because of the relatively low frequency range, the dynamic signal analyzer can directly sample the signal over a 1/f period and operate a FFT transform to calculate the spectral density.
Parameter Extraction Procedure

As mentioned already, to extract the noise parameters, $A_f$ and $K_f$, the $1/f$ noise spectral density of the noise current source needs to be measured at various bias points. Since the current amplifier does not have GP-IB control, its settings (bias voltage, current offset and sensitivity) have to be manually set at each bias point. The measurement is therefore semi-automated with the data acquisition and display controlled by IC-CAP. IC-CAP provides different model files for bipolar and MOS $1/f$ noise, but similar extraction procedures. The procedure consists of three steps and a verification phase.

In the BJT extraction, the $I_c$ vs. $V_{be}$ DC traces are measured. This is accomplished by running the step Measure and Simulate DC Data in the GUI sequence. The DC current gain $\beta$, and the output conductance $g_{ce}$ are calculated using the measured data.

In the MOS extraction, the $I_d$ vs. $V_d$ DC traces are measured instead and the output conductance $g_o$ is calculated.

Based on those data the user is asked to choose the bias points where the $1/f$ noise will be measured. Running the macro GUI step Measure Noise Data starts the interactive procedure for measuring the noise. For each bias point, the device is first biased at the base after some time that depends on the filter time constant. The operator is then asked to set the collector voltage, current offset and sensitivity on the SR570. The toolkit then calls the dynamic signal analyzer for measurement of the output noise. The spectral noise density at the output of the device is given by:

$$S_{ic}(f) = (N_{meas} \times S_{SR570})^2$$

(131)

where $N_{meas}$ is the noise measured by the analyzer expressed in $\sqrt{\text{Hz}}$, and SR570 is the sensitivity of the amplifier. In the bipolar case, assuming the DC beta is equal to the small signal current gain, the actual spectral power density of the base current noise source is given by:
The third step is the extraction of the 1/f noise parameters. In the bipolar case, after selecting a set of traces at constant $V_c$, a macro linearizes equation (1) as follows:

$$\log(fS_{ib}(f)) = \log(K_f) + A_f \log(I_b)$$

and extracts the $A_f$ and $K_f$ using a linear interpolation in the area where 1/f noise is present. Typically, the extraction is performed between 10 and 100 Hz of the 1/f band.

**Low pass filter**

The filter schematic is shown in the figure below:

![Filter Schematic](image)

- $C_1 = 100 \mu F$ electrolytic
- $C_2 = 100 pF$ ceramic
- $R_0 = 50 \Omega$ for CMOS
- $R_o = 330 k\Omega$ for bipolar

For Noise measurements of bipolar transistors, the low pass filter can be designed using an RC values network with a large output impedance ($R_o = 330 k\Omega$). This large resistance prevents the noise voltage across the base of the transistor from being shorted out. Due to these large value, the filter series resistance is rather large, and so is the RC constant. This large resistance slows down the filter charge, and the device bias time is in the order of minutes. Also, the voltage across the filter might be several volts, therefore the input SMU voltage compliance must be set to a rather high value.
For Noise measurements of MOS transistors, the resistance $R_0$ might be set to 50 ohm. The series resistances of the filter is 30k ohm, so that the filter charging will not be as long as in the bipolar case.
1/f Noise Toolkit Description

- The Toolkit uses IC-CAP .mdm model files.
- The GUI layer uses advanced data management techniques for handling .mdm model files.
- New GUI interface leads the user through DC and Noise measurements and extraction.
- Dedicated transforms drive the 4142 or 4156.

System Parts List (Hardware)

- Stanford Research low noise amplifier LNA SR570.
- Agilent Dynamic Signal Analyzer (DSA) 35670A.
- Agilent 4142B or 4156B/C.
- Voltage DMM.
- 1 or 10 Hz low pass filter.
- Cables (BNC, triax).
- GSG probes for on-wafer measurement.

Software Requirements

- IC-CAP software. Agilent 85190A, revision 2001 or higher.
- DSA Driver. Agilent 3567A driver is the 85199G.
- IC-CAP Model Files (part of the new toolkit). These files are located in the directory examples/model_files/noise/1_f_toolkit.
- 1/f Noise Toolkit License for running Measurement and Extraction of these files.
Opening the 1/f Toolkit

In the IC-CAP/Main window click on the Examples icon to open a browser.

See figure below. Select:

`./examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl`

Click on the NPN_1_f icon to start the Demo Wizard.

The step by step explanations refer to bipolar junction transistor (BJT) technology. MOS will be described in a later section.
This Wizard will run you through the measurement, extraction and simulation of the 1/f noise. To run a complete extraction, please select these buttons in sequence.

On the wizard’s window labeled Welcome to 1/f Noise Extraction there are three buttons: Start, Open Model File, and Start Demo.
• Click Start to start measurement setting, perform DC and noise measurements and extract 1/f noise parameters.
• Click Open Model File to edit variables, DUTs, setups etc.
• Click Start Demo to begin a demonstration of the measurement and extraction procedure (Measurements cannot actually be performed during the demo).

Click Start on the Welcome to 1/f Noise Extraction window. It will launch the Start Wizard window shown below.

During a DEMO the label Demo Mode Active will appear on all dialog boxes to remind you that the system is not in the full measurement mode.

This window let you access the various steps of the measurement and extraction procedure.
- Click on **Settings** to access system settings (file notes and comments, bias settings, system hardware configuration and instrument option settings).

- Click on **Verify DC** to open the DC measurements wizard.

- Click on **Measure Noise** to open the Noise measurements wizard.

- Click on **Extract** to extract the noise parameters from selected measured data.

- Click on **Simulate** to compare measured and simulated noise and tune the extracted parameters.

- Click on **Data Manager** to read/save data and generate reports.
**System Settings**

**Start > Settings**

Clicking on Settings in the Start Wizard window launches the 1/f Noise System Settings window shown below.

![1/f Noise System Settings](image)

### Notes

**Start > Settings > Notes**

The Notes page allows any free-form entry, typically:
• the technology,
• the source of the wafer, chip or package used for the test,
• the operator,
• data of special interest to this measurement,
• etc.

NOTE
Any text entered on the Notes page will be printed in the final report.
In the Demo Mode the user is not allowed to change the input data (SMU settings) since this action would clear the measured data.
General Settings

Start > Settings > General Settings

The Simulator Settings part of the dialog box allows
• Selection of a simulator, for example, hpspice or spectre.
• Specifying the Main Circuit File, Subcircuit File, and Parameter File. These are automatically loaded into the model file.

CAUTION
Changing the simulator will load new Circuit, Subcircuit, and Parameter files (if those are found). Previous data will be lost.

The IC-CAP General Settings part of the dialog box allows setting:
• **Working Precision:** this value must be at least set to 6, since the NDA frequency range must be saved with at least 6 figures.
• **Min Log Value:** defines the value to be used in a LOG plot, if data point value is zero or negative. Default is $10^{-18}$ but for this application needs to be lowered to $10^{-23}$.
• **Retain Data:** causes data from a Setup to be retained if a sweep changes but the number of points remains the same. Default in this application is Yes, which causes the data to be kept.
Instrument Settings

Start > Settings > Instrument Settings

Click on Instrument Settings. The tabbed page, shown below, appears.
The Instruments Selection part of the dialog box allows

- Selection of the DC Source for noise measurements - e.g. Agilent 4142B or Agilent 4156B/C
- Selection of the Dynamic Signal Analyzer, e.g. Agilent 35670A

**NOTE**

The selection of the DC Source for the Verification DC Measurements (I-V curves) is done in the IC-CAP Hardware setup window since the IC-CAP driver for the 4142 or 4156 is used.

At present only the Agilent 35670 is supported. However you can use another analyzer, and modify the model file accordingly.
The Instruments Options part of the dialog box allows

1 Setting DC Source Options for Noise Measurements by clicking on Set Options...

- Interface Name, e.g. lan[ ]:hpib, hpib, /dev/gpib0
- DC Source Address GP-IB address of the DC Source
- Unit Slot Number (For the 4142 or 4145, this is the actual slot of the SMU being used to bias the input of the device.)
- Force I/V For bipolar, current (I) is typically forced into the base. For MOS, voltage (V) is typically forced on the gate.
- Compliance Max voltage when forcing current (keep in mind the series resistance of the filter). Max current when forcing voltage.

These 5 settings (above) are used by the transforms NOISE_1f_force_ bias and NOISE_1f_stop_ bias to force the bias during noise measurements.

2 Setting DSA Options (These settings refer to the Agilent 35670 DSA)

- Number of Averages
- Window Type
- UnitCH1

3 Setting DC Source Options for I-V Measurements

The Toolkit uses the internal driver for the 3570 to measure the spectral noise density of the output noise. These settings will change the instrument options in the setup /Measure/Noise.

These settings are used by the 4142 or 4156 IC-CAP drivers to measure the I-V curves. See the Verify DC dialog.

- DC Averaging Time (S/M/L)
- Compliance Port 1
- Compliance Port 2

These settings will change the Instrument Option settings in the setup /Measure/DC-Sweep.
GUI Options

Start > Settings > GUI Options

The General GUI Options part of the dialog box allows

• General GUI Options
  • Activate check boxes for LNA settings

  This option will display 3 check boxes - to be checked at each Noise Point measurement. The operation will go through each step of the settings each time checking the corresponding box. Only when all the boxes are checked will the measurement be allowed to proceed.

Plot Options

• Show Plots Automatically
• Annotate DC Plots
• Annotate Noise Plot

The Backup Options part of the dialog box allows

• Allow backup after measurements
• Ask after the measurement for backup
• Automatically backup setup Noise Data after measurements to mdm file: <filename>.
Verify DC

Start > Verify DC

Clicking on Verify DC in the Start Wizard window launches the Measure and Simulate DC Data window, shown below in two parts. The objective of this measurement is to verify the transistor I-V curves, and (for bipolar) tune the DC current gain, $\beta$, and calculate the output conductance $g_0$.

This window guides you through the DC measurements and simulation of the Ic-Vce characteristics.

Buttons on the Left Side of the Dialog:

- Run All: Run measurement and simulation automatically.
- Measure: Run measurement in the setup DC_sweep.
- Simulate: Run simulation in the setup DC_Sweep.
- Display All: Display all the DC plots.
- Close All: Close all the DC plots.

The DC working area consists of three parts:

- DC Verification Measurements Set the DC bias source (start, stop number of points) for input and outputs. Set integration time. Run the measurement or clear the measurement data.
• Plots A text comment region lets you write text which will be reported in the output characteristics plot. Use Update Plot Annotation to update plot comments. The annotation macro is defined under Macros and is called dc_plot. Annotation will be printed with the plot. Also, any annotation text will be printed on the final report.

• Simulation Select the simulator. Use the Simulate button to run the simulation. The Tuning table allows you to fine tuning the device current gain $\beta$. This is extremely important since the device $\beta$ will be used later in the final tuning of the extracted parameters obtained by comparing measured and simulated noise.

**CAUTION** Changing the simulator will load new Circuit, Subcircuit, and Parameter files (if those are found). Previous Circuit/ Subcircuit and extracted parameters will be lost.
The left side of the dialog box is captioned DC Verification Measurements. It is used to make automatic measurements of a number of points. This number is determined by the product of the number of Ib points swept and the number of Vc points swept. The DC Averaging Time option changes the DC Analyzer integration time without re-opening the Settings dialog. An internal transform checks start, stop, and step input values. When errors are found, the input field turns red, and a warning is written to the IC-CAP status window. The transform also checks whether the total number of DC points for DC I-V measurements is greater than the maximum number allowed (see Settings).

**Figure 192** The Measure and Simulate DC Data Window - LEFT HALF
In order to simulate noise values you need a value of beta that is a good fit over the measured range of data. This is done by setting the maximum and minimum values of beta - in this example 150 and 250 respectively (see previous figure.). The actual value used is controlled by the slider.

**Figure 193** The Measure and Simulate DC Data Window - RIGHT HALF

**CAUTION** Changing the simulator at this point forces a reload of the circuit, subcircuit, and parameter decks. Any previous changes will be lost unless they are saved first.

**Tuning Beta**

In order to simulate noise values you need a value of beta that is a good fit over the measured range of data. This is done by setting the maximum and minimum values of beta - in this example 150 and 250 respectively (see previous figure.). The actual value used is controlled by the slider.
plot (titled ic_vce), the yellow simulated (calculated) curves yellow match the red measured data curves best with beta (BF) at 150. See Figure below.

The Mem Store and Mem Recall buttons in the Tuning box allow you to store and recall the “tuned” values of beta for the subsequent noise measurements.
Measure Noise

Start > Measure Noise

The diagram below shows the general setup for noise measurement.

![Noise Measurement Test Setup](image)

Figure 194  Noise Measurement Test Setup

Clicking on Measure Noise on the Start Wizard window launches the Measure Noise Data window shown below.

This half of the dialog box is captioned Noise Measurements (All Points). It is used to make automatic measurements of a number of DC bias points. This number is determined by the product of the number of Ib points swept and the number of Vc points swept. This is typically 10 to 20—in this example 15. Within this box is the Noise Bias SMU Settings box. You use this to set the start and stop values of Ib and Vc, and the step sizes. From this data, the number of points in each range is calculated and displayed, and also the total number of Noise Bias Points.
In the Measurement Control box the Measure All button is used to start the automatic measurement. The Clear All button is simply a convenience in starting a new measurement setup.

---

**NOTE**

The Noise Points MUST be a subset of the points measured in the Verify DC setup.
The Instrument Options box contains only the DSA Number of Averages value. This is typically between 50 and 100.

The button titled Display Plot only displays noise measurements at constant Vc.

**Individual Noise Measurements at constant Vc**

The box captioned Noise Measurements at constant Vc is used to make noise measurements at constant Vc only. The bias conditions are chosen from the set defined in the All Points window to the left.

Use the Choose Vc dropdown list to select the value.

**NOTE**

When selecting a Vc value, the previously measured noise points at other Vc values are skipped during this measurement, and the past measurement data are left unchanged in the repository.

**Figure 196** Measurement of Ic at a Single Constant Vc versus at All Points
Use the Measure button to start the measurement. It will launch a window titled Measure Single Noise Point Setup shown in the next figure.

This dialog gives you guidance and a checklist for completing the single point measurement. The top box titled Now Measuring gives the bias point sequence number, and the Vc and Ib bias conditions. The next four boxes let you check and launch the measurement.
Step 1 Set the output bias voltage on the Low Noise Amplifier (LNA). In the Stanford Research LNA this has to be done manually. In the front panel, look under the area “Bias Voltage”. The output voltage is switched on using the “ON” button. The other buttons are used to set the voltage. The user should use a voltage multimeter to check the collector voltage by probing the contact labeled TEST. Check the check box when the LNA is set.

NOTE Before proceeding to the next step, make sure that the input filter has had enough time to be fully charged so that the device is biased at the chosen operating point.

Step 2 Set the current offset in the LNA. The suggested value is the value measured during the DC trace measurements for that bias point. For the Stanford Research LNA, this has to be done manually. Refer to the area labeled “Input Offset” in the LNA front panel. When set, check the check box. Choose a value as near as possible to the DC device output current.

Step 3 Set the sensitivity of the LNA. Refer to the area labeled “Sensitivity” in the LNA front panel. When in Demo mode, the suggested value of \(4 \times 10^{-6}\) Amps/Volt is automatically generated and it is based on the device output conductance. In order to obtain the best performance out of the LNA, the sensitivity of the LNA should be set equal to the device output conductance. However, keep in mind the following considerations:

- The output conductance is calculated using a derivative function and therefore may be rather noisy and give non-meaningful values for the sensitivity.
- If the gain is too high, the amplifier output will saturate.
The operator should choose the minimum sensitivity which does not saturate the amplifier output. The operator has to set the actual value in the instrument (in this example: 200e-6 Amps/Volt) and then enter it manually into the box labeled Type Actual Value. When set, click the **check step 3** box.

**Step 4** Measure noise at this bias point. Click on the button labeled **OK**, Measure to start the noise measurement at this point. After the noise measurement, the Single Point setup will take you automatically to the next point in the sequence.

Instead of measuring the noise at this bias point you can click on **NextPoint**. When skipping the point, the noise data in the repository are retrieved. Exit will skip all the remaining points, and end the measurement procedure.

At the end of each Noise point measurement the following dialog pops up:

![User Displayed Dialog](image)

By clicking **OK**, the operator accepts the measurement data at this bias point and proceeds to the next point in the sequence. Clicking **Repeat Measurements** will display the Single Point measurement dialog to repeat the measurements. The user might vary the LNA settings, the number of averages and repeat the measurement.
Buttons on the left:

- **Measure All**: Measures all noise points (Same as Measure All in the Noise Measurement All Points area).
- **Display Plots**: Displays noise at the selected Vc and the noise of the last point measured.
- **Close Plots**: Closes all plots.
Start > Extract > Select Vc

Clicking on **Extract** in the Start Wizard window launches the Extract Noise Parameters window shown below. The DC Bias Overview shows the DC setting used for the noise measurement. The user is not allowed to change this table since the noise bias point were set before the Noise Measurements and the noise have been measured already.

Click on the **Select Vc** tab. Select the Vc value at which you want to perform the extraction. A noise data plot at the selected Vc will be displayed automatically, as shown below.
Extraction of noise parameters $A_f$ and $K_f$

Start > Extract > Select Frequency
Click on the **Select Frequency** tab. A Noise - Frequency versus Frequency plot will be displayed automatically, as shown below. On the plot select the area where you would like to extract the noise parameters with a box, then press **Get from Plots**. Alternatively, type the frequency range directly in the Start freq and Stop freq boxes.

**NOTE**
Choose a frequency range where the traces are flat, i.e., show an ideal $1/f$ behavior.
Start > Extract > Extract Af, Kf

Click on the ExtractAf, Kf tab. Select Extract to extract Af and Kf in the selected frequency range. The plot of measured and calculated noise versus frequency, shown below, will appear and the parameters Af and Kf will be extracted.

**NOTE**
The calculated noise sample uses equation (1) for bipolar or (3) for MOS. The calculated noise is only valid in the 1/f noise region.

You can change the values of Af and Kf and the calculated noise will update automatically.
1/ f Noise Extraction Toolkit
Buttons on Left Side of Dialog Box

- Extract All: automatically extracts $A_f$ and $K_f$ using the previously specified $V_c$ and frequency range. Automatically opens all plots and ends in the last tab displaying the extracted $A_f$ and $K_f$.
- Display All: Displays all plots.
- Close All: Closes all plots.

Start > Simulate

Clicking on Simulate in the Start Wizard window launches the Simulate Noise window shown below.
The simulation dialog has three main areas:

- **Simulation settings.** Select or change the simulator. Select the collector voltage \( V_c \). Selecting \( V_c \) will retrieve the Noise Data from the dataset and display them.

- **Tune Noise parameters.** Tune parameters \( A_f \) and \( K_f \).

- **Plots.** Use plot annotation to add relevant information to simulated Vs measured noise data plot. Press **Update Plots Annotation** to update plot with the text.
The Tune Noise Parameters box

In order to simulate noise values it is necessary to have values of $A_f$ and $K_f$ that are a good fit over the measured range of data. This is done by setting their maximum and minimum values - in this example 2.0 and 0.5 for $A_f$, and 1f and 0.01f for $K_f$. The actual values used are controlled by the slider. In the noise_vs_frequency plot, shown below, the yellow simulated (calculated) curves yellow respond to the slider-selected value of $A_f$, and match the red (measured) data curves best with $A_f$ at 979.4m. This “eye-ball” method of curve-fitting works quickly and well.

The simulation is performed using the selected $V_c$, change $V_c$ and re-simulate to see how the extracted parameters fit the other $V_c$ values.

NOTE
1/f Noise Extraction Toolkit

Buttons on the Left Side of the Dialog:

- **Simulate**: runs simulation in setup verify/simulate.
- **Clear**: clears simulated data.
- **Display Plots**: displays measured vs simulated noise data at constant Vc.
- **Close Plots**: closes noise plot.

**Start > Data Manager**

Clicking on **Data Manager** in the Start Wizard window launches the Data Manager Dialog window shown below.
The Data Manager Dialog has three tabbed folders, titled:

- Save Data
- Load Data
- Report Data

Start > Data Manager > Save Data

Click on the **Save Data** tab.

The dialog presents two choices:

- Attach Noise and DC Data setups to an opened model
- Save Noise and DC Data to different MDM files.

Selecting Attach Noise and DC Data setups... allows you to save the noise and DC measurement data to a model. The model must be opened with its icon in the IC-CAP main window. This
option may be useful when you want to keep all the measurement data (electrical, noise, etc.) in the same model file.

Selecting Save Noise and DC Data to different MDM files Noise and DC data are saved in the specified MDM files.

Important Note: Along with the DC and Noise Data, IC-CAP also saves to a DUT or the MDM files some key setting variables and the extracted noise parameters. IC-CAP saves the following variables:

- the DC sweeps variables (inDC_IB_START, inDC_IB_STOP, inDC_IB_STEP, inDC_VCE_START, etc.) and the extracted BF.
- the noise sweep variables (inNOISE_IB_START, inNOISE_IB_STOP, etc.).
- the extracted noise parameters Af, Kf (Ef for CMOS).
- the sensitivity settings of the LNA (Sensitivity). This is essential to display the noise when reading the files back.

Start > Data Manager > Load Data

Click on the Load Data folder.

Select Read Noise and DC Data from an opened model to read noise and DC measurement data from a model. The model must be opened and located in the IC-CAP main window. Selecting Read reads DC and Noise measurement data from the DUT to the repository’s setups.

DC_Sweep and Noise Data.

**CAUTION**

Bias settings for DC and Noise measurements will be changed according to the settings stored in the DUT. Actual DC and Noise bias settings, extracted values, and LNA sensitivity settings will be lost and replaced by the values saved in the DUT.

Select Read Noise and DC Data from MDM files to save Noise and DC data to the specified MDM files.
Bias settings for DC and Noise measurements will be changed according to the settings in the MDM files. Actual DC and Noise bias settings, extracted values and LNA sensitivity settings will be lost and replaced by the values saved in the MDM files.

**CAUTION**

Start > Data Manager > Report Data

Report Data tab folder.

Select Generate Report to write a text report to the specified file name. To change the report format see transform Gui Driver/Data Manager/Generate Text.
1/f Noise Extraction Toolkit

1/f Noise Extraction with MOS Transistors

All previous examples in this chapter have dealt with bipolar junction transistors.

The model selected was

`.../examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl`

For MOS transistors use this model instead

`.../examples/model_files/noise/1_f_toolkit/mos_1f_noise.mdl`

The basic operation for MOS is the same as for bipolar, except where shown in this section.

Some Basic Differences

- **Terminals**: The emitter, base and collector terminal are replaced by the source, gate and drain terminals respectively.

- **Impedances**: The bipolar transistor has a low input impedance from base to emitter, whereas the gate to source impedance of the MOS transistor is essentially infinite.

- **Currents**: The drain current $I_{ds}$ replaces the collector current $I_{ce}$.

- **Voltages**: The voltages $I_b$ and $V_{ce}$ are replaced by $V_{gs}$ and $V_{ds}$ respectively, as shown in the Measure and Simulate DC Data Dialog Box show below.
Three plots are displayed when the Measure and Simulate DC Data Dialog box is launched. The first is \( I_d \) versus \( V_d \), as shown below. The second plot is \( g_{ds} \) versus \( V_d \) and the third is \( i_g \) versus \( V_d \).
The left side of the Measure Noise Data dialog box is shown below. The difference is that the Noise Bias SMUs Settings are for Vg and Vd, rather than Ib and Vc.
The left side of the Measure Noise Data dialog box is shown below. The difference is that Choose Vd replaces Choose Vc.
The Noise versus Frequency plot shown below is displayed in the Demo Mode when the Measure Noise Data dialog box is launched.

**Figure 202** RIGHT SIDE of Measure Noise Data
Choose Vd replaces Choose Vc
When the Extract Noise Parameters dialog box is launched the previous plot is displayed (also when the Select Vd tab is selected).
Select the tab **Extract Ef**. A plot showing measured versus calculated noise will be shown. Choose the frequency range in which you want to perform the Ef extraction. The extraction of the Ef is performed using only one of the noise traces. The Extract box is used to pick the Vg trace to be used, as shown below. Choose a trace and click on **Extract Parameter Ef**.

**Figure 203** With Select Vd tab selected the DC Bias Overview is for Vg and Vd.
When the Extract Ef tab is selected, the Calculated and Simulated values of Ef versus frequency are displayed, as shown below. So far, only the slopes should match—the y-intersects will be modeled by AF and KF in the next steps.
Selecting the **Extract 1Hz Point** tab produces the page shown below. The plot Noise*freq^Ef vs. frequency is shown. Select the frequency range in which you want to extract the parameters Af and Kf. Choose a range for which the traces are flat.
From the Extract 1Hz page the type of plot shown below is produced.
From the Extract Af, Kf page, shown below, a plot of Measured and Calculated Noise versus frequency is produced (shown following dialog box). Click on Extract to extract the parameters Af and Kf in the previously selected frequency range.
From the Simulate Noise dialog box a plot of Measured and Simulated Noise versus frequency is produced, as shown below.
### 1/f Noise Function Descriptions

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise_1f_bjt_1Hz</td>
<td>For each noise trace this function finds the 1 Hz intercept point by calculating the average noise in the specified frequency range. The frequency range can be specified by using the variables X_LOW and X_HIGH. If N is the number of noise traces, the function returns an output dataset of size N filled with the N intercept points (one for each trace).</td>
</tr>
</tbody>
</table>
## 10 1/f Noise Extraction Toolkit

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Function Description</th>
</tr>
</thead>
</table>
| Noise_1f_bjt_calc       | This function calculates the current noise density at the device output (collector) given the frequency range, the device current gain $B_f$, the base current and the parameters $A_f$ and $K_f$ listed in the Parameters table. The noise is calculated as follows: \[
<\text{S}_{\text{nc}}> = K_f \cdot \left(\frac{\text{ib}^{A_f}}{f}\right) \cdot \text{Beta}^2
\]
If $N$ is the number of traces (number of DC bias points) the inputs are defined as follows:
**Inputs:**
- Beta: Dc current gain dataset. Size: $N$
- frequency: Frequency point dataset. Size: $N \cdot \text{freqpoints}$.
**Output:**
Dataset filled with the calculated noise. Size: $N \cdot \text{freqpoints}$.
**Examples:**
This transform is used during 1/f noise parameters extraction for bipolar devices. See model file examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl The transform is used in the setup modeling/extract.

| Noise_1f_bjt_extract   | This function extracts the parameters $A_f$ and $K_f$. If $N$ is the number of noise traces at a given $V_c$, inputs and output are as follows:
**Inputs:**
- Beta: Dc current gain dataset. Size: $N$.
- Ic noise 1 Hz: 1 Hz intercept dataset. Size: $N$.
- Base Current: base current at each bias point. Size: $N$.
**Output:**
Return a dataset of size $N$ with the calculated 1 Hz values using the extracted $A_f$ and $K_f$.
**Examples:**
This transform is used during 1/f noise parameters extraction for bipolar devices. See model file examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl The transform is used in the setup modeling/extract.
## Function Name | Function Description
--- | ---

**Noise_1f_force_bias**  
This function forces a current or a voltage from the specified unit of a 4142B or 4156B/C.  
Warning: the instrument will continue to force the bias until the function NOISE_1f_stop_bias is called.  
**Variables:**  
- GPIB Address: instrument address.  
- Compliance: voltage or current compliance.  
- Value: voltage or current value to be forced.  
**Parameters:**  
- Bias source: specify DC Bias Source Type (4142/4156).  
- GPIB Interface: interface name.  
- Unit Slot (4142) or SMU (4156).  
- Force Current (I) or Voltage (V).  
**Examples:**  
```python  
re = NOISE_1f_force_bias(29, 2, 25e-6, "4142", "hpib", "2", "I"). This forces 25 uA of current from unit source on slot 2 of the 4142 at address 29. The interface name is "hpib" and the voltage compliance is 2 V.  
This transform is used during 1/f noise parameters extraction for bipolar and MOS devices. See model file examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl The transform is used in the setup measure/Noise. It is called by the GUI interface function btMeasure located in the setup GuiDriver/MeasureNoise.  
```

**Noise_1f_get_Af**  
This function returns the value of the parameter $A_f$/Af/af stored in the parameter list.  
**Syntax:**  
```python  
x = NOISE_1f_get_Af()  
```

**Noise_1f_get_Bf**  
This function returns the value of the parameter $B_f$/Bf/bf stored in the parameter list.  
**Syntax:**  
```python  
x = NOISE_1f_get_Bf()  
```

**Noise_1f_get_Ef**  
This function returns the value of the parameter $E_f$/Ef/Ef stored in the parameter list.  
**Syntax:**  
```python  
x = NOISE_1f_get_Ef()  
```

**Noise_1f_get_Kf**  
This function returns the value of the parameter $K_f$/Kf/kf stored in the parameter list.  
**Syntax:**  
```python  
x = NOISE_1f_get_Kf()  
```

**Noise_1f_mos_1hz**  
For each noise trace this function calculates the 1 Hz intercept point by calculating the average noise in the specified frequency range. The frequency range can be specified by using the variables X_LOW and X_HIGH. If N is the number of noise traces, the function returns an output dataset of size N filled with the N intercept points (one for each trace).  
**Syntax:**  
```python  
x = NOISE_1f_mos_1hz()  
```

**Noise_1f_set_Af**  
This function sets the value of the parameter $A_f$/AF/af in the parameter list.  
**Syntax:**  
```python  
NOISE_1f_set_Af(value)  
```
### 1/ f Noise Extraction Toolkit

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise_1f_set_Bf</td>
<td>This function sets the value of the parameter Bf/ BF/ bf in the parameter list.</td>
</tr>
<tr>
<td></td>
<td>Syntax: NOISE_1f_set_Bf(value)</td>
</tr>
<tr>
<td>Noise_1f_set_Ef</td>
<td>This function sets the value of the parameter Ef/ EF/ ef in the parameter list.</td>
</tr>
<tr>
<td></td>
<td>Syntax: NOISE_1f_set_Ef(value)</td>
</tr>
<tr>
<td>Noise_1f_set_Kf</td>
<td>This function sets the value of the parameter Kf/ KF/ kf in the parameter list.</td>
</tr>
<tr>
<td></td>
<td>Syntax: NOISE_1f_set_Kf(value)</td>
</tr>
<tr>
<td>Noise_1f_stop_bias</td>
<td>This function stops the bias from the specified DC source.</td>
</tr>
<tr>
<td></td>
<td>It is used in conjunction with the NOISE_1f_force_bias.</td>
</tr>
<tr>
<td></td>
<td>Variables: GP-IB Address: instrument address.</td>
</tr>
<tr>
<td></td>
<td>Parameters: Bias source: specify DC Bias Source Type (4142/ 4156).</td>
</tr>
<tr>
<td></td>
<td>GPIB Interface: interface name.</td>
</tr>
<tr>
<td></td>
<td>Unit Slot (4142) or SMU (4156).</td>
</tr>
<tr>
<td></td>
<td>Examples: ret = NOISE_1f_force_bias(29, “4142”, “hpib”, “2”) the SMU unit at slot 2 of the 4142 at address 29 will stop any voltage or current bias.</td>
</tr>
<tr>
<td></td>
<td>This transform is used during 1/ f noise parameters extraction for bipolar and MOS devices. See model file examples/ model_files/ noise/ 1_f_toolkit/ bjt_1f_noise.mdl</td>
</tr>
<tr>
<td></td>
<td>The transform is used in the setup measure/ Noise. It is called by the GUI interface function btM easure located in the setup GuiDriver/ MeasureNoise.</td>
</tr>
</tbody>
</table>
References


5. Private communication: G. Knoblinger, Infineon AG, Munich and F. Sischka.


10 1/f Noise Extraction Toolkit
Index

Numerics

1/f Noise
   Af, 605
   Af MOS, 624
   beta tuning, 593
   data manager, 610
   Ef MOS, 620
   extract Af, Kf, 605
   extract noise parameters, 602
   function descriptions, 627
   general settings, 584
   GUI options, 588
   hardware, 578
   Id/Vd curves, 615
   individual noise measurements, 597
   instrument settings, 585
   Kf, 605
   Kf MOS, 624
   measure noise, 595
   modeling, 570
   MOS transistors, 614
   notes, 582
   references, 631
   simulate, 607
   software, 578
   system settings, 582
   test setup, 595
   tune noise parameters, 609
   verify DC, 590

B

beta tuning, 593
bipolar transistor
   AC extraction, 35
   algorithms, 33
   characterization, 13
   connections, 23
   cv extraction, 34
   DC extraction, 33
   extracting parameters, 29
   extraction guidelines, 25
   instrument options, 25
   instruments, 23
   measurement hints, 26
   model, 15
   NPN, 13
   optimizing, 28
   parameters, 17
   PNP, 28
   resistance extraction, 34, 35
   simulating, 16, 27
   bjt_1f_noise.mdl, 579
   bjt_npn.mdl, 13
   bjt_pnp.mdl, 13

BSIM 4
   Acknowledgements, 425
   Capacitance, 85
   Capacitance DUTs, 108
   Data Structure inside the BSIM 4 Modeling Package, 72, 400
   DC Diode, 86
   DC Diode DUTs, 116
   DC Transistor, 83
   DC Transistor DUTs, 92
   Drain/Source - Bulk Diodes for DC Measurements, 121
   Measurement, 77, 400
   Measurement Conditions, 81
   Options, 121
   Project Notes, 80
   Switch Matrix, 88
   Temperature Setup, 87
   Teststructures for Deep Submicron CMOS Processes, 398, 399

C

calibration, MOSFET, 51
   capacitance extraction
      Curtice GaAs MESFET, 466
      UCB GaAs MESFET, 441
   CGaas1.mdl, 449
   CGaas2.mdl, 449
   characterization circuits, 537

IC-CAP Nonlinear Device Models Volume 1 633
Index

circuits
  characterizing, 537
  characterizing portions, 543
  defining, 540
  design optimization, 549
  ECL OR/NOR logic gate, 541
  extracting parameters, 545
  measurement, 543
  modeling, 537
  multiple instruments, 543
  NPN with PNP, 555
  operational amplifier, 557
  optimizing parameters, 546
  simulation, 549
  test, 551
  types, 555
connections
  bipolar transistor, 23
  MOSFET, 49
  Curtice GaAs MESFET
    alternative extraction method, 467
    capacitance parameter extraction, 466, 472
    DC extraction, 471
    device connections, 458
    diode parameter extraction, 465
    extraction algorithms, 471
    extraction guidelines, 460
    extraction procedure, 464
    extraction procedure overview, 463
    inductance extraction, 471
    inductance parameter extraction, 465
    instrument calibration, 461
    instrument options, 460
    linear parameter extraction, 465
    measuring instruments, 461
    model, 451
    N-channel, 453
    optimizing, 463, 470
    P-channel, 453
    resistance extraction, 471
    resistance parameter extraction, 465
    saturation parameter extraction, 465
    simulating, 462, 469
    simulators, 452
    transistor, 449
  cv extraction
    bipolar transistor, 34
    MOSFET, 57, 62
  data manager, 610
  DC extraction
    bipolar transistor, 33
    Curtice GaAs MESFET, 471
    MOSFET, 54, 61
    UCB GaAs MESFET, 446
  DC Transistor, 83
  design optimization circuits, 549
  device connections, 458
  diode parameter extraction, 465
  dub, 502
E
  ECL OR/NOR logic gate, 541
  EF MOS, 620
  example files
    bj1_1f_noise.mdl, 579
    bj1_npn.mdl, 13
    CGaas1.mdl, 449
    CGaas2.mdl, 449
    nmoss6.mdl, 64
    nmos2.mdl, 40
    nmos3.mdl, 40
    npnw6.mdl, 34, 556
    pamp.mdl, 558
    pmos2.mdl, 40
    pmos3.mdl, 40
    UCBGaas.mdl, 429
  extract
    Af, 605
    Af, Kf, 605
    Kf, 605
    M M 9 DUTs, 489
    noise parameters, 602
    extracting parameters
      bipolar transistor, 29
      circuits, 545
      MOSFET, 53
D
  data manager, 610
  DC extraction
    bipolar transistor, 33
    Curtice GaAs MESFET, 471
    MOSFET, 54, 61
    UCB GaAs MESFET, 446
  DC Transistor, 83
  design optimization circuits, 549
  device connections, 458
  diode parameter extraction, 465
  dub, 502
E
  ECL OR/NOR logic gate, 541
  EF MOS, 620
  example files
    bj1_1f_noise.mdl, 579
    bj1_npn.mdl, 13
    CGaas1.mdl, 449
    CGaas2.mdl, 449
    nmoss6.mdl, 64
    nmos2.mdl, 40
    nmos3.mdl, 40
    npnw6.mdl, 34, 556
    pamp.mdl, 558
    pmos2.mdl, 40
    pmos3.mdl, 40
    UCBGaas.mdl, 429
  extract
    Af, 605
    Af, Kf, 605
    Kf, 605
    M M 9 DUTs, 489
    noise parameters, 602
    extracting parameters
      bipolar transistor, 29
      circuits, 545
      MOSFET, 53
F
  function descriptions, 627
G
  geometry, single, 57
  GUI options, 588
H
  hierarchy test circuit, 553
  nmoss6.mdl, 64
  HSPICE
    Level 6 MOSFET model, 64
I
  Id/Vd curves, 615
  inductance extraction
    Curtice GaAs MESFET, 471
    UCB GaAs MESFET, 446
  instrument
    calibration
      Curtice GaAs MESFET, 461
      UCB GaAs MESFET, 437
    options
      bipolar transistor, 25
      Curtice GaAs MESFET, 460
      MOSFET, 51
    settings
      1/f Noise, 585
      UCB GaAs MESFET, 436
Index

T
Temperature Setup, 87
test circuit, 551
   hierarchy, 553
   syntax, 551
test instruments, UCB GaAs, 435
tune noise parameters, 1/f Noise, 609

U
UCB bipolar transistor
   See bipolar transistor
UCB GaAs MESFET
   alternative extraction, 442
capacitance extraction, 441, 446
DC extraction, 446
   extraction, 440
   extraction algorithms, 446
   extraction guidelines, 436
   inductance extraction, 446
   instrument calibration, 437
   instrument connections, 435
   instrument settings, 436
   measuring instruments, 437
   model, 429
   model configuration, 434
   model parameters, 433
   N-channel, 431
   optimizing, 438, 444
   P-channel, 431
   resistance extraction, 446
   setup attributes, 457
   simulation, 438, 444
   simulators, 430
   test instruments, 435
UCB MOSFET model, 41
UCBGaas.mdl, 429