Errata

Title & Document Type: 972A/973A Multimeter User's Guide

Manual Part Number: 00973-90001

Revision Date: April 1994

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We’ve added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

 www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
HP 972A and 973A Multimeters

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty/Service</td>
<td>1-2</td>
</tr>
<tr>
<td>Limited 3 Year Warranty</td>
<td>1-2</td>
</tr>
<tr>
<td>Service</td>
<td>1-2</td>
</tr>
<tr>
<td>Safety Summary</td>
<td>1-4</td>
</tr>
<tr>
<td>Safety Symbols</td>
<td>1-4</td>
</tr>
<tr>
<td>Operation</td>
<td>1-6</td>
</tr>
<tr>
<td>Terminals, Shutter, & Test Leads</td>
<td>1-6</td>
</tr>
<tr>
<td>Function Switch</td>
<td>1-7</td>
</tr>
<tr>
<td>Function Keys</td>
<td>1-8</td>
</tr>
<tr>
<td>Function Keys/Function Switch Matrix</td>
<td>1-11</td>
</tr>
<tr>
<td>Display</td>
<td>1-12</td>
</tr>
<tr>
<td>Audio</td>
<td>1-12</td>
</tr>
<tr>
<td>Calibration and Adjustment</td>
<td>1-13</td>
</tr>
<tr>
<td>Required Test Equipment</td>
<td>1-13</td>
</tr>
<tr>
<td>Calibration Procedure</td>
<td>1-13</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1-13</td>
</tr>
<tr>
<td>Battery Replacement</td>
<td>1-13</td>
</tr>
<tr>
<td>Fuse Replacement</td>
<td>1-14</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>1-14</td>
</tr>
<tr>
<td>Cleaning</td>
<td>1-14</td>
</tr>
<tr>
<td>Replaceable Parts/Accessories</td>
<td>1-14</td>
</tr>
<tr>
<td>Specifications</td>
<td>1-15</td>
</tr>
<tr>
<td>General</td>
<td>1-15</td>
</tr>
<tr>
<td>DC Voltage</td>
<td>1-15</td>
</tr>
<tr>
<td>AC Voltage HP 972A</td>
<td>1-16</td>
</tr>
<tr>
<td>AC Voltage HP 973A</td>
<td>1-16</td>
</tr>
<tr>
<td>AC + DC Voltage HP 973A</td>
<td>1-17</td>
</tr>
<tr>
<td>DC Current</td>
<td>1-17</td>
</tr>
<tr>
<td>AC Current</td>
<td>1-18</td>
</tr>
<tr>
<td>Resistance</td>
<td>1-18</td>
</tr>
<tr>
<td>Continuity</td>
<td>1-18</td>
</tr>
<tr>
<td>Diode</td>
<td>1-18</td>
</tr>
<tr>
<td>Capacitance</td>
<td>1-19</td>
</tr>
<tr>
<td>Frequency (Volts)</td>
<td>1-19</td>
</tr>
<tr>
<td>Frequency (Amps)</td>
<td>1-19</td>
</tr>
<tr>
<td>Temperature</td>
<td>1-20</td>
</tr>
<tr>
<td>Temperature HP 973A</td>
<td>1-20</td>
</tr>
<tr>
<td>dBm HP 973A</td>
<td>1-20</td>
</tr>
<tr>
<td>Adjustments</td>
<td>6-1</td>
</tr>
<tr>
<td>Calibration Table</td>
<td>6-1</td>
</tr>
<tr>
<td>Replaceable Parts/Accessories</td>
<td>6-4</td>
</tr>
<tr>
<td>Disassembly</td>
<td>6-5</td>
</tr>
<tr>
<td>Worldwide Service Centers</td>
<td>7-2</td>
</tr>
</tbody>
</table>

1 - 3
Safety Summary

The CAUTIONS and WARNINGS which appear on the following pages must be followed to ensure operator safety and to retain the operating condition of the Multimeter.

Safety Symbols

⚠️ Indicates the operator must refer to an explanation in this manual or other documentation.

⚡️ Indicates terminals at which dangerous voltages may exist.

WARNING

⚠️ TO AVOID ELECTRICAL SHOCK or damage to the multimeter, do not apply more than ±1000 Vdc or 1000 Vrms between any terminal and earth ground. Use caution when working with voltages above 60 Vdc or 42 Vpeak. Ensure test leads are in good condition.

WARNING

⚠️ POSSIBLE ELECTRICAL SHOCK. Do not make measurements if the case is damaged or the rear cover is removed. Remove all electrical inputs before removing the rear cover.

WARNING

⚠️ POSSIBLE ELECTRICAL SHOCK or FIRE HAZARD. Do not expose this multimeter to rain or moisture. Do not operate the multimeter in the presence of flammable gases or fumes.

WARNING

⚠️ POSSIBLE ELECTRICAL SHOCK. Calibration and performance tests are to be performed by qualified personnel only. Do not attempt calibration or test procedures unless qualified to do so.
CAUTION

To avoid damage to the multimeter for inputs above 250 Vdc or Vac, disconnect the test leads before changing functions. Do not exceed the maximum input limits shown below.

<table>
<thead>
<tr>
<th>Function</th>
<th>Maximum Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 10 A</td>
<td>± 15 A (dc or ac rms)</td>
</tr>
<tr>
<td>~ mA or μA</td>
<td>± 500 mA (dc or ac rms)</td>
</tr>
<tr>
<td>Capacitance, Diode Test, Resistance, Continuity, Temperature</td>
<td>660 Vrms (sinewave)</td>
</tr>
</tbody>
</table>
| Frequency | 660 V rms 2 Hz to 10 kHz
100 V rms 10 kHz to 200 kHz |
| ~ V | ± 1000 Vdc or Vrms (sinewave) |

Maximum voltage between input terminals and earth ± 1000 V (dc or ac rms).
1 Terminals, Shutter, & Test Leads

SAFETY SHUTTER
Slide up to open shutters for current measurement inputs. Must have the function switch in one of the Current Measurement positions to open shutter. Close shutter to change function switch to any other measurement function.

RED LEAD
- Current Measurements (0 A to 10 A)
- Frequency (Amps) Measurements

BLACK LEAD
- COMMON
- ALL Measurements

RED LEAD
- Current Measurements (0 to 400 mA)
- Frequency (Amps) Measurements

DC & AC Voltage, Diode, Resistance, Capacitance, Frequency (Volts), Temperature, Continuity, and dBm Measurements
Function Switch

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>DC Current (10 mA to 10 A)</td>
</tr>
<tr>
<td>mA</td>
<td>DC Current (10 µA to 0.4 A)</td>
</tr>
<tr>
<td>µA</td>
<td>DC Current (0.1 µA to 4 mA)</td>
</tr>
<tr>
<td>+</td>
<td>Capacitance (10 pF to 1000 µF)</td>
</tr>
<tr>
<td>–</td>
<td>Diode Test (0 to 2 V)</td>
</tr>
<tr>
<td>Ω</td>
<td>Resistance (0.1 Ω to 40 MΩ)</td>
</tr>
<tr>
<td>mV</td>
<td>DC volts (10 µV to 400 mV)</td>
</tr>
<tr>
<td>≈ V</td>
<td>DC Volts (1 mV to 1000 V)</td>
</tr>
<tr>
<td>~ V</td>
<td>AC volts (to 1000 V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th>AC Current (10 mA to 10 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>AC Current (10 µA to 0.4 A)</td>
</tr>
<tr>
<td>Display</td>
<td>AC Current (0.1 µA to 4 mA)</td>
</tr>
<tr>
<td>Display</td>
<td>Capacitance (10 pF to 1000 µF)</td>
</tr>
<tr>
<td>Display</td>
<td>Diode Test (0 to 2 V)</td>
</tr>
<tr>
<td>Display</td>
<td>Resistance (0.1 Ω to 40 MΩ)</td>
</tr>
<tr>
<td>Display</td>
<td>DC volts (10 µV to 400 mV)</td>
</tr>
<tr>
<td>Display</td>
<td>DC Volts (1 mV to 1000 V)</td>
</tr>
<tr>
<td>Display</td>
<td>AC volts (to 1000 V)</td>
</tr>
</tbody>
</table>

Display	Frequency (2 Hz to 10 kHz)
Display	Frequency (2 Hz to 10 kHz)
Display	Frequency (2 Hz to 10 kHz)
Display	Frequency (2 Hz to 10 kHz)
Display	Capacitance (10 pF to 1000 µF)
Display	Diode Test (0 to 2 V)
Display	Resistance (0.1 Ω to 40 MΩ)
Display	DC volts (10 µV to 400 mV)
Display	DC Volts (1 mV to 1000 V)
Display	AC volts (to 1000 V)

Display	Temperature in °F (-112° F to 302° F)
Display	Temperature in °F (-59.9° F to -5.7 dBm)
Display	Temperature in °C (-80° C to 150° C)
Display	Temperature in °F (-58° F to 1292° F)
Display	Temperature in °C (-50° C to 700° C)
Display	Frequency (2 Hz to 200 kHz)
Display	Frequency (2 Hz to 200 kHz)

1. AC input value is shown in secondary display.
Operation

Function Keys

Power

Automatic power off after 30 minutes. Alarm sounds 30 seconds before power off. Power off if input < 80 V or < 400 mA. Power save if input > 80 V or > 400 mA, last measurement displayed, power consumption is reduced. Press any key or change any function to cancel. Defeat by holding the [Auto] key for 2 seconds while applying power.

Relative/Percent

<table>
<thead>
<tr>
<th>Press</th>
<th>Action</th>
<th>Main Display</th>
<th>Secondary Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Rel/%]</td>
<td>Makes the last displayed measurement the reference</td>
<td>Each measured value relative to the reference value (difference)</td>
<td>Reference value</td>
</tr>
<tr>
<td>[Rel/%]</td>
<td>Calculates the percentage change from the reference</td>
<td>Each measured value as a percent change of the reference value</td>
<td>Reference value</td>
</tr>
<tr>
<td>[Rel/%]</td>
<td>Cancels the Relative/% function</td>
<td>Measured Value</td>
<td>Range</td>
</tr>
</tbody>
</table>

Perform a zero adjust when using the 400 Ω range or 40 mV range and displayed value is less than 99 by shorting the test leads and pressing this key. Perform a zero adjust on the 10 nF Capacitance range with the leads open. Cycle power to erase the stored zero adjustment.
Minimum/Maximum

<table>
<thead>
<tr>
<th>Press</th>
<th>Action</th>
<th>Main Display</th>
<th>Secondary Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN/MAX</td>
<td>Begin recording of minimum and maximum values</td>
<td>Each measured value</td>
<td>Elapsed time</td>
</tr>
<tr>
<td>MIN/MAX</td>
<td>Display recorded maximum</td>
<td>Maximum measurement</td>
<td>Time of Maximum</td>
</tr>
<tr>
<td>MIN/MAX</td>
<td>Display recorded minimum</td>
<td>Minimum measurement</td>
<td>Time of Minimum</td>
</tr>
<tr>
<td>MIN/MAX</td>
<td>Display last recorded measurement</td>
<td>Latest measurement</td>
<td>Elapsed time</td>
</tr>
<tr>
<td>H/MAX</td>
<td>Pause recording of minimum and maximum values</td>
<td>Holds display</td>
<td>Total elapsed time</td>
</tr>
<tr>
<td>H/MAX</td>
<td>Resume recording of minimum and maximum values</td>
<td>Each measured value</td>
<td>Elapsed time</td>
</tr>
<tr>
<td>H/MAX</td>
<td>Press and hold 1 second to cancel</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Automatic power off and auto ranging are disabled when Min/Max is selected. Bargraph will indicate and hold the minimum and maximum values of the bargraph.

2 Time is recorded and displayed in minutes up to the maximum recording time of 1999 minutes. Recording will stop at the maximum time.

3 H annunciator is displayed when Min/Max recording

Average

<table>
<thead>
<tr>
<th>Press</th>
<th>Action</th>
<th>Main Display</th>
<th>Secondary Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
<td>Makes the displayed measurement the average of the last eight measurements</td>
<td>Average value of last eight measurements</td>
<td>Range</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>Disables the averaging of measurements</td>
<td>Each measurement</td>
<td>Range</td>
</tr>
</tbody>
</table>
Operation

Hold/Auto-Hold

<table>
<thead>
<tr>
<th>Press</th>
<th>Action</th>
<th>Main Display</th>
<th>Secondary Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>#/auto#</td>
<td>Holds the measurement value in the display</td>
<td>Measurement value when hold pressed</td>
<td>Input value</td>
</tr>
<tr>
<td>#/auto#</td>
<td>Enters Auto-Hold function ¹</td>
<td>Measurement value when multimeter beeps</td>
<td>Range</td>
</tr>
<tr>
<td>#/auto#</td>
<td>Cancels Hold function</td>
<td>Measurement value</td>
<td>Range</td>
</tr>
</tbody>
</table>

¹ Auto-Hold Operation. When measurement becomes stable, multimeter will beep and save the stable reading. Removing probe from measuring circuit will display and hold the last stable reading.

Range

<table>
<thead>
<tr>
<th>Press</th>
<th>Action</th>
<th>Main Display</th>
<th>Secondary Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Changes from auto-ranging to manual ranging</td>
<td>Measurement value</td>
<td>Range</td>
</tr>
<tr>
<td>Range</td>
<td>Change manual range UP once with each keypress ¹</td>
<td>Measurement value</td>
<td>Range</td>
</tr>
<tr>
<td>Range</td>
<td>Returns to auto-ranging when key is held for 1 second</td>
<td>Measurement value</td>
<td>Range</td>
</tr>
</tbody>
</table>

¹ When upper range is reached, the sequence begins again at the lowest range.

Select

Select

Press this key to use the functions indicated in yellow on the multimeter. See table on page 1-7.

To test display, hold this key when turning meter on.

HP 973A: Not all annunciators turned on during the display test.
Function Keys and Function Switch Matrix

<table>
<thead>
<tr>
<th>Function</th>
<th>Relative</th>
<th>% (Percent)</th>
<th>Min/Max</th>
<th>Average</th>
<th>Data Hold</th>
<th>Auto-Hold</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sim) μA, mA</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(\sim) 10A</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hz(Amps)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>+ 7</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>- 8</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>* 9</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ω 10</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ALL</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>°F, °C Therm 11</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(\sim) mV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(\sim) mV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>dBm 12</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>°F, °C Temp 13</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(\sim) V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>(\sim) V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hz(Volts)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>dBm 12</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

1. Zero adjust when display shows < 99 on lowest range.
2. Secondary display shows reference value.
3. Secondary display shows AC input voltage.
4. Changes input attenuator, frequency is always auto range.
5. Secondary display shows elapsed time (in minutes).
6. Secondary display and bargraph updates with input value.
7. Bargraph not available.
Display

Low Battery indicator
Replace batteries when on.

Main Display
(Annunciaters shown inside front cover)
- Number of digits is set by range and function
- Displays O.L. to indicate an overload condition
- Entire display flashes if:
 - Input overvoltage or
 - During Amps fuse check

Secondary Display
Shows:
- Range (most functions)
- AC input value (Frequency)
- Reference value (Relative/%)
- Elapsed time (Min/Max)

Bargraph
Active for all functions except:
- Capacitance, Temperature,
- AC +DC, dBm

Audio

<table>
<thead>
<tr>
<th>Beep Pattern</th>
<th>Description</th>
</tr>
</thead>
</table>
| ⏯️ ⏯️ ⏯️ ⏯️ | Power on:
First beep at power on.
Second beep when beginning to make measurements. |
| ⏯️ ⏯️ ⏯️ ⏯️ | Single beep
Indicates any valid function key press. |
| ⏯️ ⏯️ ⏯️ ⏯️ | Steady repeating beep
Indicates when measurement is steady when using Auto-Hold function. |
| ⏯️ ⏯️ ⏯️ ⏯️ | Rapid repeating beeps
Indicates wrong input terminals used for function selected.
Indicates an overload condition at the measurement terminals. |
| ⏯️ ⏯️ ⏯️ ⏯️ | Continuous tone
Indicates a resistance of < 20 Ω when using the Continuity function. |
| ⏯️ ⏯️ ⏯️ ⏯️ | Auto Power Off/Auto Power Save
Pairs of beeps for 30 seconds.
Long beep just before power off.
Cancel by changing function switch position or pressing any key. |
Calibration and Adjustment

Required Test Equipment
The source used for the calibration should have an output accuracy as good or better than that listed in the specifications.

Calibration Procedure
Environmental range for calibration: 23°C ± 5°C, < 80% RH
Calibration interval: 1 Year
1. Disconnect all inputs from the multimeter and open the case as described on page 6-5.
2. Install new batteries (described below) and close the cover. Turn the multimeter on and allow a 30 minute warm-up. Open the case.
3. Set the multimeter function and range and the source output to the values specified at each step in the table on page 6-1.
4. When appropriate, make the adjustments indicated in the table to bring the multimeter display within the limits.

CAUTION
Dangerous voltages are present during the calibration procedure. Calibration should only be performed by qualified service technicians. Use a non-conductive adjustment tool.

Maintenance

Battery Replacement
Replace the battery when the symbol appears in the display or before calibration. Replace both batteries at the same time. Use high-quality type AA alkaline (IEC LR6) batteries. Remove the batteries if the multimeter is to be stored for extended periods of time. Refer to the disassembly drawing on page 6-5.
Maintenance

Fuse Replacement

Fuse locations are shown in the diagram on page 6-5. Fuses are listed in the replaceable part list on page 6-4. See fuse check procedure in the Troubleshooting table below.

⚠️ CAUTION

For continued protection use only the correct rated fuse for replacement purposes.

<table>
<thead>
<tr>
<th>Troubleshooting</th>
<th>Possible Cause</th>
<th>Suggested Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit won't turn on</td>
<td>Dead Batteries</td>
<td>Replace batteries</td>
</tr>
<tr>
<td>Unit won't turn off</td>
<td>Input limit exceeded</td>
<td>Remove test leads and press any key to reset</td>
</tr>
<tr>
<td>Display flashes and Rapid beeps</td>
<td>Input limit exceeded</td>
<td>Remove test leads and press any key to reset</td>
</tr>
<tr>
<td></td>
<td>Test leads in wrong terminal for measurement function</td>
<td>Change test leads or function switch position</td>
</tr>
<tr>
<td>Battery Annunciator on</td>
<td>Low battery voltage</td>
<td>Replace batteries</td>
</tr>
<tr>
<td>Unable to measure current</td>
<td>Blown input protection fuse</td>
<td>Check fuse. Connect test lead between V input terminal and 10A or mA μA terminal. Unit will rapidly beep if fuse is OK. Replace fuse if no beep.</td>
</tr>
</tbody>
</table>

Cleaning

Wipe instrument with a soft rag dampened with soap and water. Do not immerse in water.
Do not use chemical cleanser or solvents.

Replaceable Parts/Accessories

Refer to the disassembly diagram on page 6-5.
Specifications

Calibration period: one year minimum. Specifications apply at 23°C ± 5°C, < 80% RH
Accuracy = ± (% of reading + number of digits)
Temperature Coefficient = Accuracy × 0.1°C (-10°C to 18°C, 28°C to 55°C)

General

Display reading rate:
ACV, DCV, Diode, Continuity: Approximately 2.3/second
Frequency: Approximately 1/second
Capacitance: Approximately 0.03 to 2/second
AC + DC: Approximately 0.5 to 1/second

Bargraph reading rate: Approximately 23/second
Battery life: Approximately 600 hours

DC Voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>972A Accuracy</th>
<th>973A Accuracy</th>
<th>Input Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>± (0.3% + 5)</td>
<td>± (0.3% + 5)</td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>400 mV</td>
<td>100 μV</td>
<td>± (0.2% + 1)</td>
<td>± (0.1% + 1)</td>
<td>11 MΩ (nominal)</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (0.2% + 1)</td>
<td>± (0.2% + 1)</td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normal Mode Rejection Ratio: > 60 dB @ 50 or 60 Hz
Effective Common Mode Rejection Ratio (1 kΩ imbalance): > 120 dB @ 50 or 60 Hz
AC Voltage HP 972A (Average responding, calibrated to display rms)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input Impedance (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 µV</td>
<td>± (1% + 10)</td>
<td>10 MΩ < 70 pF</td>
</tr>
<tr>
<td>400 mV</td>
<td>0.1 mV</td>
<td>± (1% + 3)</td>
<td>Not Specified</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1% + 3)</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1% + 2) ± (0.5% + 2)</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (1.5% + 3) ± (3% + 6)</td>
<td>Not Specified</td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 2) (40 Hz to 500 Hz)</td>
<td>Not Specified</td>
</tr>
</tbody>
</table>

Common Mode Rejection Ratio (1 kΩ imbalance): > 60 dB @ DC to 60 Hz
Response time: 2 seconds maximum

AC Voltage HP 973A (True rms, calibrated for sinewave)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input Impedance (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 µV</td>
<td>± (1% + 3)</td>
<td>10 MΩ < 70 pF</td>
</tr>
<tr>
<td>400 mV</td>
<td>0.1 mV</td>
<td>± (1% + 3)</td>
<td>Not Specified</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (0.7% + 3) ± (1.2% + 4) ± (2% + 15)</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1% + 4) (40 Hz to 500 Hz)</td>
<td>Not Specified</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (1% + 4) (40 Hz to 500 Hz)</td>
<td>Not Specified</td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 4) (40 Hz to 500 Hz)</td>
<td>Not Specified</td>
</tr>
</tbody>
</table>

Measurement range:
- 40 Hz to 1 kHz
- 40 mV to 400 V range
- 1 kHz to 20 kHz
- 5% to 100% of range
- 100 V range
- 4 V to 400 V range
- 10% to 100% of range

Response time: <2 seconds on fixed range
Crest factor: <3
Common Mode Rejection Ratio (1 kΩ imbalance): > 60 dB @ DC to 60 Hz
AC + DC Voltage HP 973A (True rms, computed from acV, dcV)

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input Impedance (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DC, 40 Hz to 1 kHz</td>
<td>DC, 1 kHz to 5 kHz</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1% + 4)</td>
<td>± (1.5% + 6)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 6) DC, to 500 Hz</td>
<td>Not Specified</td>
</tr>
</tbody>
</table>

Measurement range:
- DC, 40 Hz to 1 kHz: 4 V to 400 V range 5% to 100% of range
- DC, 1 kHz to 20 kHz: 4 V to 400 V range 10% to 100% of range

Response time: < 5 seconds on fixed range
Crest factor: <3
Common Mode Rejection Ratio (1 kΩ imbalance): > 60 dB @ DC to 60 Hz

DC Current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input Resistance</th>
<th>Maximum Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>100 nA</td>
<td>± (0.5% + 2)</td>
<td>< 550 Ω</td>
<td>± 0.5 A (fused)</td>
</tr>
<tr>
<td>4000 μA</td>
<td>1 μA</td>
<td>± (0.8% + 2)</td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td></td>
<td>< 0.05 Ω</td>
<td>± 15 A (fused)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td>± (1.0% + 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifications

AC Current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy (40 Hz to 2 kHz)</th>
<th>Input Resistance</th>
<th>Maximum Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>100 nA</td>
<td>± (1.5% + 4)</td>
<td>< 550 Ω</td>
<td>0.5 Arms (fused)</td>
</tr>
<tr>
<td>4000 μA</td>
<td>1 μA</td>
<td></td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td></td>
<td>< 0.05 Ω</td>
<td>15 Arms (fused)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HP 972A average responding
HP 973A rms responding, crest factor <3, specified for 5% to 100% of range

Resistance

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Test Current</th>
<th>Max Open Circuit Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Ω</td>
<td>100 mΩ</td>
<td>± (0.2% + 1)</td>
<td>< 0.8 mA</td>
<td>< 3.2 V</td>
</tr>
<tr>
<td>4.0 kΩ</td>
<td>1 Ω</td>
<td>± (0.2% + 1)</td>
<td>< 80 μA</td>
<td></td>
</tr>
<tr>
<td>40 kΩ</td>
<td>10 Ω</td>
<td>± (0.5% + 1)</td>
<td>< 10 μA</td>
<td>< 1.1 V</td>
</tr>
<tr>
<td>400 kΩ</td>
<td>100 Ω</td>
<td>± (0.5% + 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 MΩ</td>
<td>1 kΩ</td>
<td>± (1.2% + 1)</td>
<td>110 nA</td>
<td></td>
</tr>
<tr>
<td>40 MΩ</td>
<td>10 kΩ</td>
<td>± (1.2% + 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 After zero adjust of input leads. Zero adjust range up to 9.9 Ω.

Continuity

Measurement Current: 0.8 mA nominal
Displayed resistance: 0 Ω to 400 Ω
Alarm: Tone when input < 20 Ω
Open circuit voltage: < 3.2 Vpeak
Input protection: 660 Vrms (sinewave)
Resolution: 100 mΩ

Diode

Measurement current: ±0.5 mA nominal ⊕ 0.6 V
Open circuit voltage: < 3.2 Vpeak
Displayed Voltage: 0 V to 2.000 V
Input protection: 660 Vrms (sinewave)
Accuracy: ± (1% + 2)
Resolution: 1 mV
Capacitance

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nF</td>
<td>10 pF 1</td>
<td>± (2% + 3)</td>
</tr>
<tr>
<td>100 nF</td>
<td>100 pF</td>
<td>± (1.2% + 2)</td>
</tr>
<tr>
<td>10 µF</td>
<td>1 nF</td>
<td>± (3% + 2)</td>
</tr>
<tr>
<td>1000 µF</td>
<td>10 nF</td>
<td></td>
</tr>
<tr>
<td>1000 µF</td>
<td>1 µF</td>
<td></td>
</tr>
</tbody>
</table>

1 After zero adjust of input leads
Method used: Charge/Discharge of capacitor under test
Maximum display 1199

Frequency (Volts)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input Voltage (rms)</th>
<th>Maximum Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz to 99.99 Hz</td>
<td>0.01 Hz</td>
<td>± (0.02% + 1)</td>
<td>0.2 V to 400 V</td>
<td>660 Vrms</td>
</tr>
<tr>
<td>90 Hz to 999.0 Hz</td>
<td>0.1 Hz</td>
<td></td>
<td>0.4 V to 400 V</td>
<td></td>
</tr>
<tr>
<td>900 Hz to 9999 Hz</td>
<td>1 Hz</td>
<td>± (0.02% + 1)</td>
<td>0.8 V to 100 V</td>
<td></td>
</tr>
<tr>
<td>9.00 kHz to 99.99 kHz</td>
<td>10 Hz</td>
<td></td>
<td>2 V to 100 V</td>
<td>100 Vrms</td>
</tr>
<tr>
<td>90 kHz to 200 kHz</td>
<td>100 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency (Amps)

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input Current (rms)</th>
<th>Maximum Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz to 99.99 Hz</td>
<td>0.01 Hz</td>
<td>± (0.02% + 1)</td>
<td>50 μA to 10 A</td>
<td>15 A (fused)</td>
</tr>
<tr>
<td>90 Hz to 999.0 Hz</td>
<td>0.1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 Hz to 9999 Hz</td>
<td>1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response time 3 sec max on fixed range
Specifications

Temperature (5 kΩ @ 25°C Thermistor probe)

<table>
<thead>
<tr>
<th></th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>-80° to 150°</td>
<td>-112° to 302°</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1°</td>
<td>0.2°</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 0.3°C</td>
<td>± 0.5°F</td>
</tr>
</tbody>
</table>

Accuracy does not include 5 kΩ Thermistor error

Temperature HP 973A (K type Thermocouple probe)

<table>
<thead>
<tr>
<th></th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>-50° to 700°</td>
<td>-58° to 1292°</td>
</tr>
<tr>
<td>Resolution</td>
<td>1°</td>
<td>1°</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± (2% + 2°)</td>
<td>± (2% + 4°)</td>
</tr>
</tbody>
</table>

Accuracy does not include K type Thermocouple error

dBm HP 973A (600 Ω, 1 mW reference)

<table>
<thead>
<tr>
<th>Function</th>
<th>Input dBm</th>
<th>Input Voltage</th>
<th>40 Hz to 1 kHz</th>
<th>1 kHz to 5 kHz</th>
<th>5 kHz to 20 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACmV</td>
<td>-51.8 dBm to -5.7 dBm</td>
<td>2.0 mV to 400 mV</td>
<td>± 0.3 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-11.8 dBm to -5.7 dBm</td>
<td>0.2 V to 0.4 V</td>
<td>± 0.2 dBm</td>
<td></td>
<td>± 0.2 dBm</td>
</tr>
<tr>
<td></td>
<td>-5.7 dBm to 53.3 dBm</td>
<td>0.4 V to 360 V</td>
<td>± 0.2 dBm</td>
<td>± 0.2 dBm</td>
<td>± 0.7 dBm</td>
</tr>
<tr>
<td></td>
<td>53.3 dBm to 62.2 dBm</td>
<td>360 V to 1000 V</td>
<td>± 0.2 dBm</td>
<td>40 Hz to 500 Hz</td>
<td>Not specified</td>
</tr>
<tr>
<td>AC V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not specified
Gewährleistung/Kundendienst

Gewährleistungsfrist von 3 Jahren

Gewährleistungsansprüche

Einschränkung der Gewährleistung
Die Gewährleistung gilt nicht bei Schäden, die durch unsachgemäße Benutzung oder durch eine ohne Zustimmung von Hewlett-Packard vorgenommene Veränderung oder Reparatur verursacht wurden. Hewlett-Packard haftet nicht für Schäden, die durch den Einsatz für die Verwendung mit dem Produkt ungeeigneter Waren anderer Hersteller entstanden sind.

Service

Multimeter HP 972A und 973A

Inhaltsverzeichnis

Gewährleistung/Kundendienst 2-2
Gewährleistungsfrist von 3 Jahren 2-2
Service 2-2
Sicherheitsübersicht 2-4
Sicherheitssymbole 2-4
Bedienung 2-6
Anschlüsse, Sicherheitsverschluß und Meßkabel 2-6
Funktionsschalter 2-7
Funktionstaste 2-8
Funktionstasten- und Funktionsschalterübersicht 2-11
Anzeige 2-12
Audio .. 2-12
Kalibrierung und Abgleich 2-13
Erforderliche Testeinrichtung 2-13
Kalibrierungsvorgang 2-13
Wartung 2-14
Austauschen der Batterien 2-14
Austauschen der Sicherung 2-14
Fehlerbehebung 2-15
Reinigen 2-15
Technische Daten 2-17
Allgemein 2-17
Gleichspannung 2-17
Wechselspannung HP 972A 2-18
Wechselspannung HP 973A 2-18
Wechsel- und Gleichspannung
HP 973A 2-19
Gleichstrom 2-19
Wechselstrom 2-20
Widerstand 2-20
Durchgang 2-21
Diode ... 2-21
Kapazität 2-21
Frequenz (Volt) 2-22
Frequenz (Amps) 2-22
Temperatur 2-23
Temperatur HP 973A 2-23
dBm HP 973A 2-23
Einstellungen 6-1
Kalibrierungstabelle 6-1
Ersatzteilliste/Zubehörteile 6-4
Explosionszeichnung 6-5
Weltweite Kundendienstzentren 7-2
Sicherheitsübersicht

Die auf den nachfolgenden Seiten enthaltenen Hinweise ACHTUNG und WARNUNG müssen befolgt werden, um die Sicherheit des Bedieners zu gewährleisten und um die Funktionsfähigkeit des Multimeters zu erhalten.

Sicherheitssymbole

⚠️ Verweist den Bediener auf eine in diesem Handbuch oder einer anderen Dokumentation enthaltenen Erläuterung.

ɐ Kennzeichnet Anschlüsse, an welchen Lebensgefährliche Spannungen anliegen können.

<table>
<thead>
<tr>
<th>WARNUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ UM ELEKTRISCHE STROMSTÖSSE oder Beschädigungen am Multimeter zu vermeiden, legen Sie zwischen einem Anschluß und Masse nicht mehr als ±1000 V DC oder 1000 Vrms an. Gehe Sie vorsichtig vor, wenn Sie mit Spannungen über 60 V DC oder 42 V Peak arbeiten. Stellen Sie sicher, daß die Meßkabel nicht beschädigt sind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ MÖGLICHE STROMSCHLAGGEFAHR. Führen Sie keine Messungen durch, wenn das Gehäuse beschädigt oder die Gehäuserückwand abmontiert ist. Trennen Sie sämtliche Leitungen vom Meßobjekt, bevor Sie die Gehäuserückwand abnehmen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>~ 10 A</td>
</tr>
<tr>
<td>~ mA oder μA</td>
</tr>
<tr>
<td>Kapazität, Diodentest, Widerstand, Durchgang, Temperatur</td>
</tr>
<tr>
<td>Frequenz</td>
</tr>
<tr>
<td>~ V</td>
</tr>
</tbody>
</table>

Maximale Spannung zwischen Eingangsanschlüssen und Masse ± 1000 V (DC oder AC RMS).
Bedienung

1. Anschlüsse, Sicherheitsverschluß und Meßkabel

SICHERHEITSVERSCHLUß
Nach oben schieben, um Ver- schlüsse für das Messen von Stromstärken zu öffnen. Funktionsschalter muß auf eine Messung für Stromstärke eingestellt sein, um den Ver- schluß öffnen zu können. Verschluß schließen, um am Funktionsschalter eine andere Meßfunktion zu wählen.

ROTES MEßKABEL
Stromstärkemessungen (0 A bis 10 A) Frequenz- (Amps) Messungen

ROTES MEßKABEL
Stromstärkemessungen (0 bis 400 mA) Frequenz- (Amps) Messungen

SCHWARZES MEßKABEL
COMMON (Masse) ALLE Messarten

ROTES MEßKABEL
Für Messungen von Gleich- und Wechselspannung, Diode, Widerstand, Kapazität, Frequenz (Volt), Temperatur, Durchgang und dBm-Messungen
<table>
<thead>
<tr>
<th>Schalter-Position</th>
<th>Anzeige</th>
<th>HP 972A</th>
<th>HP 973A</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>DC-Stromstärke (10 mA bis 10 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>AC-Stromstärke (10 mA bis 10 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenz 1 (2 Hz bis 10 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>mA</td>
<td>DC-Stromstärke (10 µA bis 0,4 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>AC-Stromstärke (10 µA bis 0,4 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenz 1 (2 Hz bis 10 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>µA</td>
<td>DC-Stromstärke (0,1 µA bis 4 mA)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>AC-Stromstärke (0,1 µA bis 4 mA)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenz 1 (2 Hz bis 10 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>ᵉ⁻</td>
<td>Kapazität (10 pF bis 1000 µF)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>ᵉ⁺</td>
<td>Diodentest (0 bis 2 V)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>Ω</td>
<td>Widerstand (0,1 Ω bis 40 MΩ)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>0) Durchgang (Alarm bei < 20 Ω)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Temperatur in °F (-112° F bis 302° F)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Temperatur in °C (-60° C bis 150° C)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>mV</td>
<td>Gleichspannung (10 µV bis 400 mV)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Wechselspannung (10 µV bis 400 mV)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>dBm</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>(-59,9 bis -5,7 dBm)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Temperatur in °F (-58° F bis 1292° F)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Temperatur in °C (-50° C bis 700° C)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>≈ V</td>
<td>Gleichspannung (1 mV bis 1000 V)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Wechselspannung (1 mV bis 1000 V)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenz 1 (2 Hz bis 200 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>dBm</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>(-19,9 bis -52,2 dBm)</td>
<td>Select</td>
<td>Select</td>
</tr>
</tbody>
</table>

¹ Eingangswert der Wechselspannung wird in der Nebenanzeige dargestellt.
Bedienung

3 Funktionstaste
Ein-/Ausschalten

Automatische Ausschaltfunktion nach 30 Minuten. 30 Sekunden vor dem Ausschalten ertönt ein Alarm. Bei Eingangssignalen < 80 V oder < 400 mA erfolgt das Ausschalten. Bei Eingangssignalen > 80 V oder > 400 mA wird in Bereitschaft geschaltet, die letzte Messung wird angezeigt, der Stromverbrauch wird reduziert. Drücken Sie eine beliebige Taste, oder verändern Sie eine Funktion, um diesen Modus abzubrechen. Deaktivieren Sie diesen Modus, indem Sie die Taste \[\text{Rel}/\%\] beim Einschalten 2 Sekunden gedrückt halten.

Relative/Prozentuale Anzeige

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
<th>Hauptanzeige</th>
<th>Nebenanzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{Rel}/%]</td>
<td>Aktiviert die zuletzt angezeigte Messung als Referenz</td>
<td>Jeder gemessene Wert bezogen auf den Referenzwert (Differenz)</td>
<td>Referenzwert</td>
</tr>
<tr>
<td>[\text{Rel}/%]</td>
<td>Berechnet den prozentualen Unterschied zur Referenz</td>
<td>Jeder gemessene Wert als prozentuale Veränderung gegenüber dem Referenzwert</td>
<td>Referenzwert</td>
</tr>
<tr>
<td>[\text{Rel}/%]</td>
<td>Deaktiviert die Relativ/% -Funktion</td>
<td>Gemessene Werte</td>
<td>Bereich</td>
</tr>
</tbody>
</table>

Führen Sie unter Verwendung des 400-Ω- oder des 40-mV-Bereichs einen Nullabgleich durch; der angezeigte Wert ist kleiner als 99, indem die Meßkabel kurzgeschlossen werden und diese Taste gedrückt wird. Führen Sie im 10-nF-Kapazitätsbereich einen Nullabgleich mit nicht geschlossenen Meßkabeln durch. Schalten Sie das Gerät aus und wieder ein, um den gespeicherten Nullabgleich zu löschen.
Minimum/Maximum

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
<th>Hauptanzeige</th>
<th>Nebenanzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min/Max</td>
<td>Startet das Aufzeichnen von Minimum-</td>
<td>Jeder gemessene Wert</td>
<td>Abgelaufene Zeit</td>
</tr>
<tr>
<td></td>
<td>und Maximumwerten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min/Max</td>
<td>Zeigt den aufgezeichneten Maximumwert an</td>
<td>Maximummessung</td>
<td>Zeit des Maximumwerts</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Zeigt den aufgezeichneten Minimumwert an</td>
<td>Minimummessung</td>
<td>Zeit des Minimumwerts</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Zeigt die zuletzt aufgezeichnete Messung an</td>
<td>Aktuelle Messung</td>
<td>Abgelaufene Zeit</td>
</tr>
<tr>
<td>[H/Max]</td>
<td>Unterbricht die Aufzeichnung von Minimum-</td>
<td>'Friert' Anzeige ein</td>
<td>Gesamte abgelaufene Zeit</td>
</tr>
<tr>
<td></td>
<td>und Maximumwerten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[H/Max]</td>
<td>Setzt Aufzeichnung von Minimum- und</td>
<td>Jeder gemessene Wert</td>
<td>Abgelaufene Zeit</td>
</tr>
<tr>
<td></td>
<td>Maximumwerten fort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min/Max</td>
<td>Eine Sekunde gedrückt halten, um abzubrechen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Bei Auswahl Min/Max-Funktion sind die automatische Bereitschaftsschaltung und die automatische Bereichseinstellung deaktiviert. Der Anzeigebalken kennzeichnet und fixiert den Minimum- und Maximumwert des Anzeigebalkens.

3. Die H-Anzeigemarke wird angezeigt, wenn die Min/Max-Aufzeichnung unterbrochen wird.

Mittelwertbildung

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
<th>Hauptanzeige</th>
<th>Nebenanzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avrg</td>
<td>Zeigt den Mittelwert der letzten acht</td>
<td>Mittelwert der letzten acht</td>
<td>Bereich</td>
</tr>
<tr>
<td></td>
<td>Messungen an</td>
<td>Messungen</td>
<td></td>
</tr>
<tr>
<td>Avrg</td>
<td>Deaktiviert die Mittelwertbildung der</td>
<td>Jede Messung</td>
<td>Bereich</td>
</tr>
<tr>
<td></td>
<td>Messungen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bedienung

Hold/Auto-Hold

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
<th>Hauptanzeige</th>
<th>Nebenanzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Hält den Meßwert in der Anzeige</td>
<td>Meßwert, wenn die Taste Hold gedrückt wird</td>
<td>Eingangswert</td>
</tr>
<tr>
<td>Hold</td>
<td>Aktiviert die Funktion Auto-Hold¹</td>
<td>Meßwert, wenn ein Signalton erzielt</td>
<td>Bereich</td>
</tr>
<tr>
<td>Auto</td>
<td>Beendet die Hold-Funktion</td>
<td>Meßwert</td>
<td>Bereich</td>
</tr>
</tbody>
</table>

Meßbereich

<table>
<thead>
<tr>
<th>Taste</th>
<th>Funktion</th>
<th>Hauptanzeige</th>
<th>Nebenanzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Wechselt von automatischer zur manuellen</td>
<td>Meßwert</td>
<td>Bereich</td>
</tr>
<tr>
<td></td>
<td>Bereicheinstellung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verändert den Bereich manuell mit einem</td>
<td>Meßwert</td>
<td>Bereich</td>
</tr>
<tr>
<td></td>
<td>Tastendruck einen Schritt nach oben¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wird die Taste eine Sekunde gedrückt, so</td>
<td>Meßwert</td>
<td>Bereich</td>
</tr>
<tr>
<td></td>
<td>wird in die automatische Bereichseinstellung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zurückgewechselt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Ist der oberste Bereich erreicht, so startet die Sequenz wieder im untersten Bereich.

Auswahl

Halten Sie diese Taste gedrückt, um die Anzeige beim Einschalten zu überprüfen.

HP 973A: Beim Anziger Test schalten sich nicht alle Anzeigenelemente ein.
<table>
<thead>
<tr>
<th>Funktion</th>
<th>Relativ (^2)</th>
<th>% (Prozent)</th>
<th>Min/Max (^3)</th>
<th>Mittelwert</th>
<th>Data Hold</th>
<th>Auto-Hold</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>µA, mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>10A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>Hz(Amps) (^6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^3)</td>
<td>(\bullet)(^4)</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>(\bullet)(^1)</td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>(\Omega)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>(\Omega) (\Omega)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>°F, °C Therm (^7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>mV</td>
<td>(\bullet)(^1)</td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>dBm (^8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>°F, °C Tcp (^7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>Hz(Volt) (^6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
<tr>
<td>dBm (^8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\bullet)(^6)</td>
<td>(\bullet)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Nullabgleich, wenn die Anzeige < 99 im untersten Meßbereich darstellt.
\(^2\) Die Nebenanzeige zeigt das abgelaufene Zeit (in Minuten).
\(^3\) Die Nebenanzeige stellt den Referenzwert dar.
\(^4\) Aktualisierung der Nebenanzeige und des Anzeigebalkens über Eingangsspegel.
\(^5\) Die Nebenanzeige zeigt die Eingangs-Wechselspannung.
\(^6\) Verändert den Eingangsschwacher, Frequenz wird immer automatisch eingestellt.
Bedienung

Anzeige

Batterieanzeige
Bei aufliegenden Batterien ausstauschen.

Hauptanzeige

Audio

<table>
<thead>
<tr>
<th>Audio</th>
<th>Einschalten</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td>Der erste Signalton ertönt beim Einschalten. Der zweite Signalton ertönt beim Starten des Meßvorgangs.</td>
</tr>
<tr>
<td></td>
<td>Einzel-Signalton. Weist auf das Drücken einer zulässigen Funktionstaste hin. Weist auf einen neuen in der Min/Max-Funktion aufgezeichneten 'High'- oder 'Low'-Wert hin.</td>
</tr>
<tr>
<td> </td>
<td>Kontinuierlich wiederholende Signaltöne. Eröffnet bei Verwendung der 'Auto-Hold'-Funktion, wenn eine Messung stabil ist.</td>
</tr>
<tr>
<td> </td>
<td>Schnell wiederholende Signaltöne. Zeigt an, daß für die gewählte Funktion die falschen Eingangsanschlüsse benutzt werden. Zeigt eine Überlastung an den Meßanschlüssen an.</td>
</tr>
<tr>
<td> </td>
<td>DauerTon. Weist bei der Benutzung der Durchgangsfunktion auf einen Widerstand von < 20 Ω hin.</td>
</tr>
<tr>
<td> </td>
<td>Automatisches Abschalten/Automatische Bereitschaft. 30 Sekunden lang Doppel-Signaltöne. Langer Signalton kurz vor dem Abschalten. Wird durch das Verändern der Position des Funktionschalters oder durch das Drücken einer beliebigen Taste beendet.</td>
</tr>
</tbody>
</table>
Kalibrierung und Abgleich

Erforderliche Testeinrichtung

Die für die Kalibrierung verwendete Quelle sollte eine Ausgangsgenauigkeit aufweisen, die gleich oder besser als die in den nachfolgend aufgelisteten Spezifikationen ist.

Kalibrierungsvorgang.

Umgebungsbereich für die Kalibrierung: 23° C ± 5° C, < 80% RH
Kalibrierungintervall: 1 Jahr

1. Ziehen Sie sämtliche am Multimeter angeschlossenen Messkabel ab, und öffnen Sie das Gehäuse wie auf Seite 6-5 dargestellt.

2. Legen Sie neue Batterien ein (nachfolgend beschrieben), und montieren Sie die Gehäuseabdeckung. Schalten Sie das Multimeter ein, und lassen Sie eine 30-minütige Anlaufphase vergehen.

3. Stellen Sie die Funktion und den Bereich des Multimeters und die Kalibrierungsquelle auf die Werte ein, die bei jedem Schritt in der Kalibrierungstabelle auf Seite 6-1 angegeben sind.

4. Gegebenenfalls nehmen Sie die in der Kalibrierungstabelle angezeigten Einstellungen vor, um die Anzeige des Multimeters innerhalb der Grenzwerte einzustellen.

ACHTUNG

Austauschen der Batterien

Wechseln Sie die Batterien vor der Kalibrierung aus, wenn das Symbol in der Anzeige erscheint. Tauschen Sie beide Batterien gleichzeitig aus. Verwenden Sie qualitativ hochwertige Batterien vom Typ AA Alkaline (IEC LR6). Entnehmen Sie die Batterien aus dem Multimeter, wenn Sie dieses für längere Zeiträume aufbewahren (siehe Explosionszeichnung auf Seite 6-5).

Austauschen der Sicherung

Dem Diagramm auf Seite 6-5 können Sie die Anordnung der Sicherung entnehmen. Die Sicherungen sind in der Ersatzteilliste auf Seite 6-4 aufgelistet (siehe Anweisung zum Überprüfen der Sicherung in der nachfolgenden Tabelle "Fehlerbehebung").

ACHTUNG

⚠️ Um einen fortlaufenden Schutz zu gewährleisten, verwenden Sie beim Austauschen eine entsprechend korrekte Sicherung.
Fehlerbehebung

<table>
<thead>
<tr>
<th>Problem</th>
<th>Mögliche Ursache</th>
<th>Lösungsvorschlag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerät schaltet nicht ein</td>
<td>Leere Batterien</td>
<td>Batterien austauschen</td>
</tr>
<tr>
<td>Gerät schaltet nicht aus</td>
<td>Eingangs begrenzung überschritten</td>
<td>Ziehen Sie die Meßkabel ab</td>
</tr>
<tr>
<td>Blinkende Anzeige und schnelle Signaltöne</td>
<td>Eingangs begrenzung überschritten</td>
<td>Ziehen Sie die Meßkabel ab</td>
</tr>
<tr>
<td></td>
<td>Meßkabel befinden sich für die Meßfunktion im falschen Anschluß</td>
<td>Stecken Sie die Meßkabel um</td>
</tr>
<tr>
<td>Batterieanzeige ein</td>
<td>Niedrige Batteriespannung</td>
<td>Batterien austauschen</td>
</tr>
</tbody>
</table>

Reinigen

Ersatzteilliste/Zubehörteile

Siehe Tabelle auf Seite 6-5.
Technische Daten

Kalibrierungszeitraum: Mindestens einmal jährlich. Anwendungsbedingungen: 23° C ± 5° C, < 80% RH
Genauigkeit = ± (% der Anzeige + Anzahl der Ziffern).
Temperatur-Koeffizient = Genauigkeit X 0,1° C (-10° C bis 18° C; 28° C bis 55° C)

Allgemein

- Meßwertenanzeigenrate: ca. 2,3 Mal/Sekunde
- Frequenz: ca. 1 Mal/Sekunde
- Kapazität: ca. 0,03 bis 2 Mal/Sekunde
- AC + DC: ca. 0,5 bis 1 Mal/Sekunde
- Anzeigenbalkenrate: ca. 23 Mal/Sekunde
- Lebensdauer der Batterie: ca. 600 Stunden

Gleichspannung

<table>
<thead>
<tr>
<th>Meßbereich</th>
<th>Auflösung</th>
<th>Genauigkeit 972A</th>
<th>Genauigkeit 973A</th>
<th>Eingangswiderstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>± (0,3% + 5)</td>
<td>± (0,3% + 5)</td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>400 mV</td>
<td>100 μV</td>
<td></td>
<td></td>
<td>11 MΩ (nominal)</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (0,2% + 1)</td>
<td>± (0,1% + 1)</td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (0,2% + 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gegentaktunterdrückung: > 60 dB @ 50 oder 60 Hz
Effektive Gleichaktunterdrückung 1 kΩ Unsymmetrisch: > 120 dB @ 50 oder 60 Hz
Technische Daten

Wechselspannung HP 972A (arithmetischer Mittelwert, kalibriert auf Anzeige rms)

<table>
<thead>
<tr>
<th>Messbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
<th>Eingangs widerstand (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>± (1% + 10)</td>
<td>Nicht spezifiziert</td>
</tr>
<tr>
<td>400 mV</td>
<td>0,1 mV</td>
<td>± (1% + 3)</td>
<td>Nicht spezifiziert</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1% + 3)</td>
<td>± (1,5% + 3)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1% + 2)</td>
<td>± (3% + 6)</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (1% + 2)</td>
<td>(40 Hz bis 500 Hz)</td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 2)</td>
<td>(40 Hz bis 500 Hz)</td>
</tr>
</tbody>
</table>

Gleichaktunterdrückung 1 kΩ Unsymmetrie: > 60 dB DC bis 60 Hz
Ansprechzeit: max. 2 Sekunden

Wechselspannung HP 973A (Echter rms, kalibriert für Sinus)

<table>
<thead>
<tr>
<th>Messbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
<th>Eingangs widerstand (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>± (1% + 3)</td>
<td>Nicht spezifiziert</td>
</tr>
<tr>
<td>400 mV</td>
<td>0,1 mV</td>
<td>± (1% + 3)</td>
<td>Nicht spezifiziert</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (0,7% + 3)</td>
<td>± (2% + 15)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1% + 4)</td>
<td>(40 Hz bis 500 Hz)</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meßbereich:
- 40 Hz bis 1 kHz 40 mV bis 400 V Meßbereich 5% bis 100% vom Meßbereich
- 1 kHz bis 20 kHz 4 V bis 400 V Meßbereich 10% bis 100% vom Meßbereich
Ansprechzeit: < 2 Sekunden bei festem Meßbereich
Schaltfaktor: <3
Gleichaktunterdrückung (1 kHz Unsymmetrie): > 60 dB DC bis 60 Hz
Wechsel- und Gleichspannung HP 973A
(Echter rms, berechnet von acV, dcV)

<table>
<thead>
<tr>
<th>Meßbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
<th>Eingangs-impedanz (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1% + 4)</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1,5% + 6)</td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (3% + 18)</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 6)</td>
<td>Nicht spezifiziert</td>
</tr>
</tbody>
</table>

Meßbereich:
- DC, 40 Hz bis 1 kHz
- 4 V bis 400 V Meßbereich
- 1000 V Meßbereich
- DC, 1 kHz bis 20 kHz
- 4 V bis 400 V Meßbereich
- 1000 V Meßbereich

Antwortzeit: < 5 Sekunden bei festem Meßbereich

Scheitelaktor: < 3

Gleichaktunterdrückung (1 kHz Unsymmetrie): > 60 dB @ DC bis 60 Hz

Gleichstrom

<table>
<thead>
<tr>
<th>Meßbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
<th>Eingangswiderstand</th>
<th>Maximaler Eingangspegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>100 nA</td>
<td>± (0,5% + 2)</td>
<td>< 550 Ω</td>
<td>± 0,5 A (mit Sicherung)</td>
</tr>
<tr>
<td>4000 μA</td>
<td>1 μA</td>
<td>± (0,8% + 2)</td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td>± (1,0% + 2)</td>
<td>< 0,05 Ω</td>
<td>± 15 A (mit Sicherung)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technische Daten

Wechselstrom

<table>
<thead>
<tr>
<th>Meßbereich</th>
<th>Auflösung</th>
<th>Genauigkeit (40 Hz bis 2 kHz)</th>
<th>Eingangs-widerstand</th>
<th>Maximaler Eingangspegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 µA</td>
<td>100 nA</td>
<td>± (1,5% + 4)</td>
<td>< 550 Ω</td>
<td>0,5 Arms (mit Sicherung)</td>
</tr>
<tr>
<td>4000 µA</td>
<td>1 µA</td>
<td></td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 µA</td>
<td></td>
<td>< 0,05 Ω</td>
<td>15 Arms (mit Sicherung)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HP 972A mittlere Ansprechzeit
HP 973A rms Ansprechzeit, Scheitelfaktor <3, spezifiziert für 5% bis 100% des Meßbereichs

Widerstand

<table>
<thead>
<tr>
<th>Meßbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
<th>Meßstrom</th>
<th>Maximale Spannung bei unterbrochenem Stromkreis</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Ω</td>
<td>100 mΩ</td>
<td>± (0,2% + 1)</td>
<td>< 0,8 mA</td>
<td>< 3,2 V</td>
</tr>
<tr>
<td>4,0 kΩ</td>
<td>1 Ω</td>
<td>± (0,2% + 1)</td>
<td>< 80 µA</td>
<td></td>
</tr>
<tr>
<td>40 kΩ</td>
<td>10 Ω</td>
<td>± (0,2% + 1)</td>
<td>< 10 µA</td>
<td></td>
</tr>
<tr>
<td>400 kΩ</td>
<td>100 Ω</td>
<td>± (0,2% + 1)</td>
<td>< 1,1 µA</td>
<td>< 1,1 V</td>
</tr>
<tr>
<td>4,0 MΩ</td>
<td>1 kΩ</td>
<td>± (0,5% + 1)</td>
<td>< 110 nA</td>
<td></td>
</tr>
<tr>
<td>40 MΩ</td>
<td>10 kΩ</td>
<td>± (1,2% + 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Nach Nullabgleich der Eingangsleitungen. Nullabgleichsbereich bis zu 9,9 Ω.

2 - 20
Durchgang
Meßstrom: 0,8 mA nominal
Angezeigter Widerstand: 0 Ω bis 400 Ω
Alarm: Ertönt, wenn Eingangssignal < 20 Ω
Spannung bei unterbrochenem Stromkreis: < 3,2 Vpeak
Eingangsschutz: 660 Vrms (Sinus)
Auflösung: 100 mΩ

Diode
Meßstrom: ±0,5 mA nominal ⊕ 0,6 V
Angezeigte Spannung: 0 V bis 2.000 V
Genauigkeit: ± (1% + 2)
Spannung bei offenem Stromkreis: < 3,2 Vpeak
Eingangsschutz: 660 Vrms (Sinus)
Auflösung: 1 mV

Kapazität

<table>
<thead>
<tr>
<th>Meßbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nF</td>
<td>10 pF</td>
<td>± (2% + 3)</td>
</tr>
<tr>
<td>100 nF</td>
<td>100 pF</td>
<td>± (1,2% + 2)</td>
</tr>
<tr>
<td>1000 nF</td>
<td>1 nF</td>
<td>± (3% + 2)</td>
</tr>
<tr>
<td>10 μF</td>
<td>10 nF</td>
<td></td>
</tr>
<tr>
<td>100 μF</td>
<td>100 nF</td>
<td></td>
</tr>
<tr>
<td>1000 μF</td>
<td>1 μF</td>
<td></td>
</tr>
</tbody>
</table>

1 Nach Nullabgleich der Eingangskabel
Verwendete Methode: Ladung/Entladung des Testkondensators
Maximale Anzeige 1199
Technische Daten

Frequenz (Volt)

<table>
<thead>
<tr>
<th>Frequenzmessbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
<th>Eingangsspannung (rms)</th>
<th>Maximaler Eingangspegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz bis 99,99 Hz</td>
<td>0,01 Hz</td>
<td>± (0,02% + 1)</td>
<td>0,2 V bis 400 V</td>
<td>660 Vrms</td>
</tr>
<tr>
<td>90 Hz bis 999,0 Hz</td>
<td>0,1 Hz</td>
<td></td>
<td>0,4 V bis 400 V</td>
<td></td>
</tr>
<tr>
<td>900 Hz bis 9999 Hz</td>
<td>1 Hz</td>
<td></td>
<td>0,8 V bis 100 V</td>
<td></td>
</tr>
<tr>
<td>9,00 kHz bis 99,99 kHz</td>
<td>10 Hz</td>
<td></td>
<td>2 V bis 100 V</td>
<td></td>
</tr>
<tr>
<td>90 kHz bis 200 kHz</td>
<td>100 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequenz (Ampere)

<table>
<thead>
<tr>
<th>Frequenzmessbereich</th>
<th>Auflösung</th>
<th>Genauigkeit</th>
<th>Eingangsstrom (rms)</th>
<th>Maximaler Eingangspegel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz bis 99,99 Hz</td>
<td>0,01 Hz</td>
<td>± (0,02% + 1)</td>
<td>50 µA bis 10 A</td>
<td>15 A (mit Sicherung)</td>
</tr>
<tr>
<td>90 Hz bis 999,0 Hz</td>
<td>0,1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 Hz bis 9999 Hz</td>
<td>1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ansprechzeit max. 3 Sekunden bei festem Messbereich
Technische Daten

Temperatur (5 kΩ @ 25°C Thermistorfühler)

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>-80° bis 150°</td>
<td>-112° bis 302°</td>
</tr>
<tr>
<td>0,1°</td>
<td>0,2°</td>
</tr>
<tr>
<td>± 0,3° C</td>
<td>± 0,5° F</td>
</tr>
</tbody>
</table>

Die Genauigkeitsangabe berücksichtigt nicht einen Thermistor-Fehler von 5 kΩ.

Temperatur HP 973A (Typ K Thermofühler)

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50° bis 700°</td>
<td>-58° bis 1292°</td>
</tr>
<tr>
<td>1°</td>
<td>1°</td>
</tr>
<tr>
<td>± (2% + 2°)</td>
<td>± (2% + 4°)</td>
</tr>
</tbody>
</table>

Die Genauigkeitsangabe berücksichtigt keinen Fehler des Thermofühler Typ K.

dBm HP 973A (600 Ω, 1 mW Referenz)

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Eingangspegel</th>
<th>Eingangsspannung</th>
<th>Genauigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40 Hz bis 1 kHz</td>
<td>1 kHz bis 5 kHz</td>
</tr>
<tr>
<td>ACmV</td>
<td>-51,8 dBm bis -5,7 dBm</td>
<td>2,0 mV bis 400 mV</td>
<td>± 0,3 dBm</td>
</tr>
<tr>
<td></td>
<td>-11,8 dBm bis -5,7 dBm</td>
<td>0,2 V bis 0,4 V</td>
<td>± 0,2 dBm</td>
</tr>
<tr>
<td></td>
<td>-5,7 dBm bis 53,3 dBm</td>
<td>0,4 V bis 360 V</td>
<td>± 0,2 dBm</td>
</tr>
<tr>
<td></td>
<td>53,3 dBm bis 62,2 dBm</td>
<td>360 V bis 1000 V</td>
<td>± 0,2 dBm</td>
</tr>
</tbody>
</table>

| AC V | | 40 Hz bis 500 Hz | |
| | 53,3 dBm bis 62,2 dBm | 360 V bis 1000 V | |
Garantie/Maintenance

Garantie limitée à 3 ans

Ce que couvre la garantie
Le multimètre HP 972A ou HP 973A est garanti par Hewlett-Packard pièces et main-d’œuvre contre tout vice de fabrication, pendant une durée de trois ans à compter de la date d’achat. En cas de revente de l’appareil à un tiers, ou de cession à titre gratuit, la garantie est transférée automatiquement au nouveau propriétaire, et elle reste effective pendant la période de trois ans définie lors de l’achat. Pendant cette période, Hewlett-Packard choisira, à sa discrétion, soit de réparer, soit de remplacer gratuitement l’appareil défectueux ; pour cela, l’utilisateur devra envoyer l’appareil à un centre de maintenance agréé Hewlett-Packard en payant les frais d’expédition.

Ce qui n’est pas couvert
La garantie qui précède ne pourra s’appliquer aux défauts résultant d’une utilisation incorrecte, ou d’une maintenance ou d’une modification qui n’a pas été effectuée par un centre de maintenance agréé Hewlett-Packard.

Aucune autre garantie expresse n’est accordée. Le seul recours de l’acheteur est la réparation ou le remplacement du produit. TOUTE AUTRE GARANTIE IMPLICITE LIÉE AU CARACTÈRE COMMERCIALISABLE DU PRODUIT OU À SON ADAPTATION À UN USAGE PARTICULIER EST LIMITEE À LA DUREE DE TROIS ANS DEFINIE PAR ECRI dans CETTE GARANTIE. Certains états, certaines provinces et certains pays n’admettent pas le principe d’exclusion ou de limitation de responsabilité pour les dommages directs, indirects, spéciaux, secondaires ou consécutifs, aussi l’acheteur peut-il ne pas être concerné par la limitation et l’exclusion définies ci-dessus.

La garantie donne à l’acheteur des droits particuliers : selon le pays dans lequel il réside, il pourra également bénéficier d’autres droits.

Maintenance

Hewlett-Packard possède des centres de maintenance dans de nombreux pays, qui assurent à tout moment la réparation des produits, que ceux-ci soient ou non sous garantie. Les réparations sont payantes après expiration de la garantie. Dans les 30 jours qui suivent l’achat, la réparation et le remplacement sont du ressort du service commercial. Après 30 jours, l’acheteur devra s’adresser au centre de maintenance agréé le plus proche.

Les produits Hewlett-Packard sont généralement réparés et réexpédiés dans les cinq (5) jours ouvrables qui suivent leur réception par le centre de maintenance. Il s’agit d’une durée moyenne qui peut varier selon la période de l’année et la charge de travail du centre. La durée totale pendant laquelle l’acheteur reste privé de son appareil dépend largement de la durée d’expédition de celui-ci.
Table des matières

Garantie/Maintenance .. 3-2
Garantie limitée à 3 ans .. 3-2
Maintenance.. 3-2
Consignes de sécurité... 3-4
Symboles de sécurité... 3-4
Fonctionnement.. 3-6
Les bornes, le volet et les fils de test.......................... 3-6
Commutateur de fonctions 3-7
Touches de fonction.. 3-8
Touches de fonction et tableau de commutation des fonctions .. 3-11
Affichage ... 3-12
Signaux sonores... 3-12
Étalonnage et réglage.. 3-13
Équipement de test requis....................................... 3-13
Procédure d'étalonnage ... 3-13
Entretien.. 3-13
Remplacement des piles... 3-13
Remplacement des fusibles...................................... 3-14
Dépannage... 3-14
Nettoyage.. 3-14
Pièces détachées/Accessoires 3-14
Caractéristiques.. 3-15
Généralités... 3-15
Tension CC... 3-15
Tension CA HP 972A.. 3-16
Tension CA HP 973A.. 3-16
Tension CA + CC HP 973A...................................... 3-17
Courant CC... 3-17
Courant CA... 3-18
Résistance.. 3-18
Continuité... 3-18
J ponction de diode... 3-18
Capacité... 3-19
Fréquence (volts).. 3-19
Fréquence (ampères)... 3-19
Température... 3-20
Température HP 973A.. 3-20
dBm HP 973A... 3-20
Adjustments ... 6-1
Calibration Table.. 6-1
Replaceable Parts/Accessories................................. 6-4
Disassembly... 6-5

3-3
Consignes de sécurité

Les remarques précédées des mentions ATTENTION ou AVERTISSEMENT, apparaissant dans les pages de ce document, doivent être respectées pour assurer la sécurité de l'utilisateur et conserver le multimètre en parfait état de fonctionnement.

Symboles de sécurité

⚠️ Signifie que l'utilisateur doit se reporter à certaines informations figurant dans ce manuel ou dans un autre document.

⚡ Signale la présence de tensions dangereuses en certains points de l'appareil.

<table>
<thead>
<tr>
<th>AVERTISSEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POUR PREVENIR TOUT RISQUE D'ÉLECTROCUTION et éviter d'endommager l'appareil, n'appliquez jamais de tensions supérieures à ±1 000 Vcc ou 1 000 Veff, entre une borne quelconque de l'appareil et la terre. Prenez des précautions lorsque vous travaillez avec des tensions supérieures à 60 Vcc ou 42 Vcètre. Assurez-vous du bon état des fils de test.</td>
</tr>
<tr>
<td>AVERTISSEMENT</td>
</tr>
<tr>
<td>RISQUE D'ÉLECTROCUTION. N'effectuez aucune mesure si le boîtier est endommagé ou si le capot arrière a été retiré. Débranchez toutes les entrées avant de retirer le capot.</td>
</tr>
<tr>
<td>AVERTISSEMENT</td>
</tr>
<tr>
<td>RISQUE D'ÉLECTROCUTION ou D'INCENDIE. N'exposez pas ce multimètre à la pluie ou à une humidité excessive. Ne l'utilisez pas en présence de gaz ou de vapeurs inflammables.</td>
</tr>
<tr>
<td>AVERTISSEMENT</td>
</tr>
<tr>
<td>RISQUE D'ÉLECTROCUTION. L'étalonnage et les tests de fonctionnement ne doivent être effectués que par du personnel qualifié. N'effectuez pas ce type de procédure si vous n'êtes pas qualifié pour le faire.</td>
</tr>
</tbody>
</table>
ATTENTION

Pour éviter d’endommager le multimètre avec des entrées supérieures à 250 Vcc ou Vca, débranchez les fils de test avant de changer de fonction. Ne dépassez pas les limites maximales autorisées, indiquées ci-dessous.

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Entrée maximale</th>
</tr>
</thead>
<tbody>
<tr>
<td>♂ ♂ ♂ 10 A</td>
<td>± 15 A (cc ou ca eff.)</td>
</tr>
<tr>
<td>♂ ♂ ♂ mA ou µA</td>
<td>± 500 mA (cc ou ca eff.)</td>
</tr>
<tr>
<td>Test de jonction, résistance,</td>
<td>660 Veff. (sinusoidal)</td>
</tr>
<tr>
<td>continuité, température</td>
<td></td>
</tr>
<tr>
<td>Fréquence</td>
<td>650 Veff. (5 Hz à 10 kHz)</td>
</tr>
<tr>
<td></td>
<td>100 Veff. (10 kHz à 100 kHz)</td>
</tr>
<tr>
<td>♂ ♂ ♂ V</td>
<td>± 1 000 Vcc ou Veff. (sinusoidal)</td>
</tr>
</tbody>
</table>

La tension d’entrée maximale entre les bornes d’entrée et la terre est de ± 1 000 V (cc ou ca eff.).
Fonctionnement

1. Les bornes, le volet et les fils de test

VOLET DE SECURITE
Pour les mesures de courant, ouvrez le volet en le faisant glisser vers l'arrière. Pour que l'ouverture soit possible, le commutateur de fonctions doit être dans l'une des positions de mesure de courant.
Si vous voulez choisir une autre fonction de mesure avec le commutateur, refermez le volet.

FIL ROUGE
Mesures de courant (0 A à 10 A)
Mesures de fréquence (ampères)

FIL ROUGE
Mesures de tension CC et CA, de jonction de diode, de capacité, de résistance, de fréquence (volts), de température, de continuité et de dBm

FIL NOIR
MASSE
TOUTES les mesures
<table>
<thead>
<tr>
<th>Position commutateur</th>
<th>Affichage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>Courant CC (10 mA à 10 A)</td>
</tr>
<tr>
<td>mA</td>
<td>Courant CC (10 μA à 0,4 A)</td>
</tr>
<tr>
<td>μA</td>
<td>Courant CC (0,1 μA à 4 mA)</td>
</tr>
<tr>
<td>(\pm)</td>
<td>Capacité (10 pF à 1000 μF)</td>
</tr>
<tr>
<td>(\leq)</td>
<td>Résistance (0,1 Ω à 40 MΩ)</td>
</tr>
<tr>
<td>mV</td>
<td>Volts CC (10 μV à 400 mV)</td>
</tr>
<tr>
<td>(\equiv)</td>
<td>Volts CC (1 mV à 1 000 V)</td>
</tr>
<tr>
<td>(\sim)</td>
<td>Volts CA (jusqu'à 1 000 V)</td>
</tr>
</tbody>
</table>

\(^1\) L'afficheur secondaire affiche la valeur d'entrée CA.
Fonctionnement

3 Touches de fonction

Alimentation

Mise hors tension automatique au bout de 30 minutes. Emission d'un signal sonore 30 secondes avant la mise hors tension. Mise hors tension si l'entrée est < 80 V ou < 400 mA. Économie d'énergie si l'entrée est > 80 V ou > 400 mA, affichage de la dernière mesure, réduction de la consommation. Pour annuler la fonction, appuyez sur n'importe quelle touche ou changez de fonction. Pour la désactiver, maintenez la touche Auto enfoncée pendant 2 secondes au moment de la mise sous tension de l'appareil.

<table>
<thead>
<tr>
<th>Touche</th>
<th>Effet</th>
<th>Afficheur principal</th>
<th>Afficheur secondaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel/X</td>
<td>Prend pour référence la dernière mesure affichée.</td>
<td>Chaque mesure s'effectue par rapport à la valeur de référence (différence).</td>
<td>Valeur de référence</td>
</tr>
<tr>
<td>Rel/X</td>
<td>Calcule la variation en pourcentage par rapport à la référence.</td>
<td>Chaque mesure est la variation en pourcentage par rapport à la référence.</td>
<td>Valeur de référence</td>
</tr>
<tr>
<td>Rel/X</td>
<td>Annule la fonction Relative%.</td>
<td>Valeur mesurée</td>
<td>Plage</td>
</tr>
</tbody>
</table>

Effectuez un réglage du zéro lorsque vous utilisez la plage 400 Ω ou la plage 40 mV et lorsque la valeur affichée est inférieure à 99, en court-circuitant les fils de test et en appuyant sur cette touche. Effectuez un réglage du zéro sur la plage de capacité 10 nF avec les fils en circuit ouvert. Pour effacer le zéro enregistré, mettez l'appareil hors tension, puis de nouveau sous tension.
Minimum/Maximum

<table>
<thead>
<tr>
<th>Touche</th>
<th>Effet</th>
<th>Afficheur principal</th>
<th>Afficheur secondaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min/Max</td>
<td>Commence l’enregistrement des valeurs minimale et maximale.</td>
<td>Chaque valeur mesurée</td>
<td>Temps écoulé</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Affiche le maximum enregistré.</td>
<td>Mesure du maximum</td>
<td>Temps du maximum</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Affiche le minimum enregistré.</td>
<td>Mesure du minimum</td>
<td>Temps du minimum</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Affiche la dernière mesure enregistrée.</td>
<td>Dernière mesure</td>
<td>Temps écoulé</td>
</tr>
<tr>
<td>[H]</td>
<td>Interrompt temporairement l’enregistrement des valeurs minimale et maximale.</td>
<td>Maintient l’affichage.</td>
<td>Temps total écoulé</td>
</tr>
<tr>
<td>[H]</td>
<td>Reprend l’enregistrement des valeurs minimale et maximale.</td>
<td>Chaque valeur mesurée</td>
<td>Temps écoulé</td>
</tr>
<tr>
<td>[H]</td>
<td>Appuyez pendant 1 seconde pour annuler.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. La mise hors tension automatique et le réglage de plage automatique sont désactivés lorsque Min/Max est sélectionné. L’indicateur à barres affiche les valeurs minimale et maximale de l’indicateur et les conserve.

2. Le temps est enregistré et affiché en minutes, jusqu’au maximum possible enregistrable qui est de 1 999 minutes. L’enregistrement s’arrête lorsque ce maximum est atteint.

3. L’indicateur H est affiché lorsque l’enregistrement Min/Max est interrompu temporairement.

Moyenne

<table>
<thead>
<tr>
<th>Touche</th>
<th>Effet</th>
<th>Afficheur principal</th>
<th>Afficheur secondaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>La valeur affichée est la moyenne des huit dernières mesures.</td>
<td>Valeur moyenne des huit dernières mesures</td>
<td>Plage</td>
</tr>
<tr>
<td>Average</td>
<td>Désactive le calcul de moyenne des mesures.</td>
<td>Chaque mesure</td>
<td>Plage</td>
</tr>
</tbody>
</table>

3-9
Fonctionnement

Maintien/Auto-maintien

<table>
<thead>
<tr>
<th>Touche</th>
<th>Effet</th>
<th>Afficheur principal</th>
<th>Afficheur secondaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Maintient la valeur de la mesure sur l'afficheur.</td>
<td>Valeur de mesure lorsque la touche est enfoncée.</td>
<td>Valeur d'entrée</td>
</tr>
<tr>
<td>Auto</td>
<td>Active la fonction d'auto-maintien. ¹</td>
<td>Valeur d'entrée</td>
<td>Plage</td>
</tr>
<tr>
<td>Auto</td>
<td>Annule la fonction de maintien.</td>
<td>Valeur de mesure</td>
<td>Plage</td>
</tr>
</tbody>
</table>

¹ Fonctionnement en auto-maintien. Lorsque la mesure devient stable, le multimètre émet un signal sonore et conserve la mesure stabilisée. Si l'on retire la sonde du circuit de mesure, l'appareil affiche la dernière mesure stabilisée et la maintient.

Plage

<table>
<thead>
<tr>
<th>Touche</th>
<th>Effet</th>
<th>Afficheur principal</th>
<th>Afficheur secondaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Passe du réglage de plage auto. au réglage manuel.</td>
<td>Valeur mesurée</td>
<td>Plage</td>
</tr>
<tr>
<td>Range</td>
<td>Passe à la plage manuelle supérieure SUIVANTE chaque fois que l'on appuie sur la touche.</td>
<td>Valeur mesurée</td>
<td>Plage</td>
</tr>
<tr>
<td>Range</td>
<td>Revient au réglage automatique de plage lorsque l'on appuie 1 seconde sur la touche.</td>
<td>Valeur mesurée</td>
<td>Plage</td>
</tr>
</tbody>
</table>

¹ Lorsque la plage la plus haute est atteinte, la séquence recommence à la plage la plus basse.

 Sélection

Cette touche permet d'accéder aux fonctions marquées en bleu sur le multimètre. Voir le tableau de la page 3-7.

Pour tester l'afficheur, maintenez cette touche enfoncée au moment de la mise sous tension de l'appareil.

HP 973A : tous les indicateurs ne sont pas allumés pendant ce test.
Touches de fonction et tableau de commutation des fonctions

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Relative</th>
<th>% (Pourcentage)</th>
<th>Min/Max</th>
<th>Moyenne</th>
<th>Maintien</th>
<th>Auto-maintien</th>
<th>Plage</th>
</tr>
</thead>
<tbody>
<tr>
<td>--- μA, mA</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>--- 10A</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hz (ampères)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>±</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>+</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>−</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Ω</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>◊</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>°C, °C Therm</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>±mV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>−mV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>dBm</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>°F, °C Th.couple</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>±V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>−V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hz (volts)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>dBm</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

1. Réglage du zéro si valeur affichée < 99 sur la plus petite plage.
2. L'afficheur secondaire affiche la valeur de référence.
3. L'afficheur secondaire affiche la tension d'entrée CA.
4. Modification de l'atténuation d'entrée, la fréquence est toujours en plage auto.
5. L'afficheur secondaire affiche le temps écoulé (en minutes).
6. L'afficheur secondaire et l'indicateur à barres sont rafraîchis en même temps que la valeur d'entrée.
7. L'indicateur à barres ne s'affiche pas.
Fonctionnement

4 Affichage

Indicateur de piles faibles
Remplacez les piles lorsqu’il apparaît.

Afficheur principal
(Les indicateurs sont représentés à l’intérieur de la couverture.) Le nombre de chiffres est fixé par plage et par fonction. Affichage de "O.L." en cas de surcharge.
Clignotement de tout l’afficheur:
- en cas de surtension;
- pendant la vérification du fusible de mesure de courant.

Afficheur secondaire
Affiche:
- la plage (avec la plupart des fonctions);
- la valeur d’entrée CA (fréquence);
- la valeur de référence (Relative/%) ;
- la durée écoulée (Min/Max).

Indicateur à barres
Actif pour toutes les fonctions, sauf:
capacité, température, CA + CC et dBm

Signaux sonores

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✨🍺✨</td>
<td>Mise sous tension : premier signal sonore à la mise sous tension ; deuxième signal lorsque l’appareil commence à mesurer.</td>
</tr>
<tr>
<td>🅿️🍺_LSB</td>
<td>Un signal sonore : retentit chaque fois que l’on appuie sur une touche de fonction autorisée ; retentit à l’enregistrement d’une nouvelle valeur supérieure ou inférieure en Min/Max.</td>
</tr>
<tr>
<td>🅫🍺_LSB</td>
<td>Signaux sonores se répétant régulièrement : retentissant lorsqu’une mesure est stable en Auto-maintien.</td>
</tr>
<tr>
<td>🅫🍺_LSB</td>
<td>Signaux sonores rapprochés : retentissent lorsque l’on utilise des bornes d’entrée incorrectes pour la fonction choisie ; retentissent en cas de surcharge sur les bornes de mesure.</td>
</tr>
<tr>
<td>🅲🍺_LSB</td>
<td>Tonalité continue : retentit lorsque l’on mesure une résistance < 20 Ω avec la fonction continuité.</td>
</tr>
<tr>
<td>🅲🍺_LSB</td>
<td>Mise hors tension auto/Economie d’énergie auto : doubles signaux sonores pendant 30 secondes ; long signal juste avant la mise hors tension. Annulez en changeant la position du commutateur ou en appuyant sur une touche quelconque.</td>
</tr>
</tbody>
</table>

3-12
Étalonnage et réglage

Équipement de test requis

La précision de la source utilisée pour l'étalonnage doit être au moins aussi bonne que celle indiquée dans les caractéristiques de l'appareil.

Procédure d'étalonnage

Conditions ambiantes pour l'étalonnage : 23 °C ± 5 °C, < 80 % HR
Périodicité de l'étalonnage : 1 an

1 Débranchez toutes les entrées du multimètre et ouvrez le boîtier comme indiqué à la page 6-5.
2 Installez des piles neuves (dont le type est indiqué ci-dessous) et refermez le capot. Mettez le multimètre sous tension et laissez-le chauffer pendant 30 minutes. Ouvrez le boîtier.
3 Réglez la fonction et la plage du multimètre, et la source aux valeurs spécifiées pour chaque étape de l'étalonnage dans le tableau de la page 6-1.
4 Si nécessaire, effectuez les réglages indiqués dans le tableau d'étalonnage, afin d'amener la valeur affichée dans les limites adéquates.

ATTENTION

Des tensions dangereuses sont présentes pendant la procédure d'étalonnage. L'étalonnage ne doit être effectué que par des techniciens qualifiés. Utilisez un outil de réglage isolant.

Entretien

Remplacement des piles

Remplacement des fusibles

Leur emplacement est représenté sur le schéma de la page 6-5. La liste des pièces détaillées de la page 6-4 indique le type de fusible à utiliser. Pour vérifier les fusibles, procédez comme indiqué dans le tableau Dépannage ci-dessous.

ATTENTION

Pour assurer une sécurité permanente, n'utilisez que des fusibles de calibre approprié.

Dépannage

<table>
<thead>
<tr>
<th>Problème</th>
<th>Cause possible</th>
<th>Action suggérée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pas de mise sous tension</td>
<td>Piles mortes</td>
<td>Remplacez les piles.</td>
</tr>
<tr>
<td>Pas de mise hors tension</td>
<td>Limite d'entrée dépassée</td>
<td>Retirez les fils et appuyez sur une touche.</td>
</tr>
<tr>
<td>Clignotement de l'afficheur et signaux sonores rapprochés</td>
<td>Limite d'entrée dépassée</td>
<td>Retirez les fils et appuyez sur une touche.</td>
</tr>
<tr>
<td>Indicateur de pile allumé</td>
<td>Tension des piles faible</td>
<td>Remplacez les piles.</td>
</tr>
<tr>
<td>Pas de mesure de courant 10 A ou mA µA</td>
<td>Fusible d'entrée fondu</td>
<td>Vérifiez le fusible. Branchez le fil entre l'entrée V et la borne 10A ou mA µA. L'appareil émet des signaux sonores rapprochés si le fusible est correct. Remplacez le fusible s'il n'y a pas de signal sonore.</td>
</tr>
</tbody>
</table>

Nettoyage

Essuyez l'instrument avec un chiffon doux imbibé d'eau savonneuse. Ne pas le tremper dans l'eau.

Ne pas utiliser de produits chimiques ou de solvants.

Pièces détachées/Accessoires

Voir tableau de la page 6-5.
Caractéristiques

Périodicité de l'étalonnage : un an minimum. Ces caractéristiques sont définies à 23 °C ± 5 °C, < 80 % HR.
Précision = ± (% de la mesure + nombre de chiffres)
Coefficient de température = Précision x 0,1/°C (-10 °C à 18 °C ; 26 °C à 55 °C)

Généralités

Vitesse d'affichage des mesures :
VCCA, VCC, diode, continuité :
Fréquence
Capacité
CA + C C

Vitesse d'affichage de l'indicateur à barres :
Durée de vie de la pile :

environ 2,3 fois/seconde
environ 1 fois/seconde
environ 0,03 à 2 fois/seconde
environ 0,5 à 1 fois/seconde
environ 23 fois/seconde
environ 600 heures

Tension CC

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>972A</th>
<th>973A</th>
<th>Résistance d'entrée</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>± (0,3 % + 5)</td>
<td>± (0,3 % + 5)</td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>400 mV</td>
<td>100 μV</td>
<td>± (0,2 % + 1)</td>
<td>± (0,1 % + 1)</td>
<td>11 MΩ (nominal)</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td></td>
<td></td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 000 V</td>
<td>1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taux de réjection en mode normal : > 60 dB à 50 ou 60 Hz
Taux de réjection en mode commun effectif (avec déséquilibre de 1 kΩ) : > 120 dB à 50 ou 60 Hz
Caractéristiques

Tension CA HP 972A (réponse à la moyenne, étalonné pour afficher en Veff.)

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>Précision 40 Hz à 50 Hz</th>
<th>50 Hz à 1 kHz</th>
<th>1 kHz à 5 kHz</th>
<th>5 kHz à 20 kHz</th>
<th>Impédance d'entrée (nominale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 µV</td>
<td>± (1 % + 10)</td>
<td></td>
<td></td>
<td>Non spécifiée</td>
<td>10 MΩ < 70 pF</td>
</tr>
<tr>
<td>400 mV</td>
<td>0,1 mV</td>
<td>± (1 % + 3)</td>
<td>± (1,5 % + 3)</td>
<td>± (3 % + 6)</td>
<td>Non spécifiée</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1 % + 3)</td>
<td>± (0,5 % + 2)</td>
<td></td>
<td>Non spécifiée</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1 % + 2)</td>
<td>± (0,5 % + 2)</td>
<td>± (3 % + 6)</td>
<td>Non spécifiée</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (1 % + 2)</td>
<td>± (0,5 % + 2)</td>
<td>± (3 % + 6)</td>
<td>Non spécifiée</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>1 000 V</td>
<td>1 V</td>
<td>± (1 % + 2) (40 Hz à 500 Hz)</td>
<td></td>
<td></td>
<td>Non spécifiée</td>
<td>10 MΩ < 50 pF</td>
</tr>
</tbody>
</table>

Taux de réjection en mode commun (avec déséquilibre 1 kΩ) : > 60 dB de CC à 60 Hz
Temps de réponse : 2 secondes maximum

Tension CA HP 973A (Veff. vrai, étalonné pour les signaux sinusoidaux)

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>Précision 40 Hz à 50 Hz</th>
<th>50 Hz à 1 kHz</th>
<th>1 kHz à 5 kHz</th>
<th>5 kHz à 20 kHz</th>
<th>Impédance d'entrée (nominale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 µV</td>
<td>± (1 % + 3)</td>
<td>± (1 % + 3)</td>
<td>Non spécifiée</td>
<td>10 MΩ < 70 pF</td>
<td></td>
</tr>
<tr>
<td>400 mV</td>
<td>0,1 mV</td>
<td>± (1 % + 3)</td>
<td>± (1,2 % + 4)</td>
<td>± (2 % + 15)</td>
<td>11 MΩ < 50 pF</td>
<td></td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (0,7 % + 3)</td>
<td>± (1,2 % + 4)</td>
<td>± (2 % + 15)</td>
<td>10 MΩ < 50 pF</td>
<td></td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1 % + 4)</td>
<td>± (1,2 % + 4)</td>
<td>± (2 % + 15)</td>
<td>Non spécifiée</td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (1 % + 4) (40 Hz à 500 Hz)</td>
<td></td>
<td></td>
<td>Non spécifiée</td>
<td></td>
</tr>
<tr>
<td>1 000 V</td>
<td>1 V</td>
<td>± (1 % + 4) (40 Hz à 500 Hz)</td>
<td></td>
<td></td>
<td>Non spécifiée</td>
<td></td>
</tr>
</tbody>
</table>

Plage de mesure :
- 40 Hz à 1 kHz
- 1 kHz à 20 kHz

Temps de réponse : < 2 secondes sur plage fixe
Facteur de crête : < 3
Taux de réjection en mode commun (avec déséquilibre de 1 kΩ) : > 60 dB de CC à 60 Hz
Caractéristiques

Tension CA + CC HP 973A (Veff. vrai, calculé à partir de Vca et Vcc)

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>Précision</th>
<th>Impédance d'entrée (nominale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1 % + 4)</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1,5 % + 6)</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (3 % + 18)</td>
<td></td>
</tr>
<tr>
<td>1 000 V</td>
<td>1 V</td>
<td>± (1 % + 6)</td>
<td></td>
</tr>
</tbody>
</table>

Plage de mesure :
- CC, 40 Hz à 1 kHz Plage 4 V à 400 V 5 % à 100 % de la plage
- CC, 1 kHz à 20 kHz Plage 1 000 V 200 V à 1 000 V
- Plage 4 V à 400 V 10 % à 100 % de la plage

Temps de réponse : < 5 secondes sur plage fixe
Facteur de crête : < 3
Taux de réjection en mode commun (avec déséquilibre 1 kΩ) : > 60 dB de CC à 60 Hz

Courant CC

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>Précision</th>
<th>Résistance d'entrée</th>
<th>Entrée maximale</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>100 nA</td>
<td>± (0,5 % + 2)</td>
<td>< 550 Ω</td>
<td>± 0,5 A (fusible)</td>
</tr>
<tr>
<td>4 000 μA</td>
<td>1 μA</td>
<td>± (0,8 % + 2)</td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td>± (1,0 % + 2)</td>
<td>< 0,05 Ω</td>
<td>± 15 A (fusible)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Caractéristiques

Courant CA

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>Précision (40 Hz à 2 kHz)</th>
<th>Résistance d'entrée</th>
<th>Entrée maximale</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>100 nA</td>
<td>± (1,5 % + 4)</td>
<td>< 550 Ω</td>
<td>0,5 Aeff. (fusible)</td>
</tr>
<tr>
<td>4 000 μA</td>
<td>1 μA</td>
<td></td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td></td>
<td>< 0,05 Ω</td>
<td>15 Aeff. (fusible)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HP 972A : réponse à la moyenne
HP 973A : réponse eff., facteur de crête < 3, spécifiée entre 5% et 100% de la plage

Résistance

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>Précision</th>
<th>Courant de test</th>
<th>Tension max. de circuit ouvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Ω</td>
<td>100 mΩ</td>
<td>± (0,2 % + 1)</td>
<td>< 0,8 mA</td>
<td>< 3,2 V</td>
</tr>
<tr>
<td>4,0 kΩ</td>
<td>1 Ω</td>
<td>± (0,2 % + 1)</td>
<td>< 80 μA</td>
<td></td>
</tr>
<tr>
<td>40 kΩ</td>
<td>10 Ω</td>
<td>± (0,2 % + 1)</td>
<td>< 10 μA</td>
<td></td>
</tr>
<tr>
<td>400 kΩ</td>
<td>100 Ω</td>
<td>± (0,2 % + 1)</td>
<td>< 1,1 μA</td>
<td></td>
</tr>
<tr>
<td>4,0 MΩ</td>
<td>1 kΩ</td>
<td>± (0,5 % + 1)</td>
<td>110 nA</td>
<td>< 1,1 V</td>
</tr>
<tr>
<td>40 MΩ</td>
<td>10 kΩ</td>
<td>± (1,2 % + 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Après réglage du zéro des fils d’entrée. La plage de réglage du zéro va jusqu’à 9,9 Ω.

Continuité

Courant de mesure : 0,8 mA nominal
Résistance affichée : 0 Ω à 400 Ω
Signal sonore : émission sur entrée < 20 Ω

Jonoction de diode

Courant de mesure : +0,5 mA nominal à 0,6 V
Tension affichée : 0 V à 2,000 V
Précision : ± (1 % + 2)

Tension de circuit ouvert : < 3,2 Vcrête
Protection d’entrée : 660 Velf. (sinusoidal)
Résolution : 100 mΩ

Tension de circuit ouvert : < 3,2 Vcrête
Protection d’entrée : 660 Velf. (sinusoidal)
Résolution : 1 mV
Capacité

<table>
<thead>
<tr>
<th>Plage</th>
<th>Résolution</th>
<th>Précision</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nF</td>
<td>10 µF</td>
<td>± (2 % + 3)</td>
</tr>
<tr>
<td>100 nF</td>
<td>100 µF</td>
<td>± (1.2 % + 2)</td>
</tr>
<tr>
<td>1 000 nF</td>
<td>1 µF</td>
<td>± (3 % + 2)</td>
</tr>
</tbody>
</table>

Après réglage du zéro des fils d’entrée
Méthode utilisée : Charge et décharge du condensateur sous test
Affichage maximum 1199

Fréquence (volts)

<table>
<thead>
<tr>
<th>Plage de fréquence</th>
<th>Résolution</th>
<th>Précision</th>
<th>Tension d’entrée (eff.)</th>
<th>Entrée maximale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz à 99.99 Hz</td>
<td>0.01 Hz</td>
<td>± (0,02 % + 1)</td>
<td>0,2 V à 400 V</td>
<td>660 Veff.</td>
</tr>
<tr>
<td>90 Hz à 999,0 Hz</td>
<td>0,1 Hz</td>
<td></td>
<td>0,4 V à 400 V</td>
<td></td>
</tr>
<tr>
<td>900 Hz à 9 999 Hz</td>
<td>1 Hz</td>
<td></td>
<td>0,8 V à 100 V</td>
<td></td>
</tr>
<tr>
<td>9,00 kHz à 99,99 kHz</td>
<td>10 Hz</td>
<td></td>
<td>2 V à 100 V</td>
<td></td>
</tr>
<tr>
<td>90 kHz à 200 kHz</td>
<td>100 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fréquence (ampères)

<table>
<thead>
<tr>
<th>Plage de fréquence</th>
<th>Résolution</th>
<th>Précision</th>
<th>Courant d’entrée (eff.)</th>
<th>Entrée maximale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz à 99,99 Hz</td>
<td>0,01 Hz</td>
<td>± (0,02 % + 1)</td>
<td>50 µA à 10 A</td>
<td>15 A (fusible)</td>
</tr>
<tr>
<td>90 Hz à 999,0 Hz</td>
<td>0,1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 Hz à 9 999 Hz</td>
<td>1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temps de réponse max. 3 secondes sur plage fixe
Caractéristiques

Température (Sonde à thermistance 5 kΩ à 25 °C)

<table>
<thead>
<tr>
<th>Plage de mesure</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Précision</td>
<td>± 0,3°</td>
<td>≈ 0,5°</td>
</tr>
</tbody>
</table>

1 La précision ne tient pas compte de l'incertitude sur la thermistance 5 kΩ.

Température HP 973A (Sonde à thermocouple de type K)

<table>
<thead>
<tr>
<th>Plage de mesure</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Précision</td>
<td>0,1°</td>
<td>0,2°</td>
</tr>
</tbody>
</table>

1 La précision ne tient pas compte de l'incertitude sur le thermocouple de type K.

dBm HP 973A (référence 600 Ω, 1 mW)

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Entrée dBm</th>
<th>Tension d'entrée</th>
<th>Précision 40 Hz à 1 kHz</th>
<th>Précision 1 kHz à 5 kHz</th>
<th>Précision 5 kHz à 20 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA mV</td>
<td>-51,8 dBm à -5,7 dBm</td>
<td>2,0 mV à 400 mV</td>
<td>± 0,3 dBm</td>
<td>Non spécifié</td>
<td></td>
</tr>
<tr>
<td>CA V</td>
<td>-11,8 dBm à -5,7 dBm</td>
<td>0,2 V à 0,4 V</td>
<td>± 0,2 dBm</td>
<td>± 0,2 dBm</td>
<td>± 0,7 dBm</td>
</tr>
<tr>
<td></td>
<td>-5,7 dBm à 53,3 dBm</td>
<td>0,4 V à 360 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53,3 dBm à 62,2 dBm</td>
<td>360 V à 1 000 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Garantía/Servicio

Garantía limitada de 3 años
Qué cubre la garantía - Hewlett-Packard garantiza el multímetro HP 972A o HP 973A contra defectos materiales y de fabricación durante tres años a partir de la fecha de compra original. Si se vende el equipo o se regala a otro usuario, la garantía se transferirá automáticamente al nuevo propietario y permanecerá en vigor durante el periodo original de tres años. Durante el periodo de garantía, Hewlett-Packard se compromete a reparar o sustituir gratuitamente, a su entera discreción, cualquier producto que resulte ser defectuoso, siempre que se devuelva el producto franqueado a un centro de servicio Hewlett-Packard.

Qué está excluido de la garantía - Esta garantía no será aplicable si el producto sufre daños ocasionados por accidente o un uso indebido, o como resultado de un servicio o de modificaciones no realizadas por un centro autorizado de servicio Hewlett-Packard.
No se ofrece ninguna otra garantía expresa. El recurso exclusivo del cliente consiste en la reparación o sustitución del producto. Cualquier otra garantía implícita de comerciabilidad o idoneidad queda limitada a los tres años de duración de esta garantía escrita. Algunos estados, provincias o países prohíben la exclusión o limitación de daños fortuitos o consecuentes, por lo que la anterior limitación no podrá ser aplicable a su caso concreto.
La garantía le confiere derechos concretos, y puede ser titular de otros derechos que varían de un estado, provincia o país a otro.

Servicio
Hewlett-Packard mantiene centros de servicio en numerosos países. Podrá solicitar la reparación de su equipo en un centro de servicio Hewlett-Packard cuando precise servicio, independientemente de que el equipo esté o no cubierto por la garantía. Se aplicará la tarifa oportuna a las reparaciones realizadas una vez concluido el periodo de garantía. La reparación o sustitución durante los primeros 30 días a partir de la fecha de compra del equipo correrá a cargo del canal de ventas. Transcurridos estos 30 días, póngase en contacto con la oficina de servicio más próxima.

Los productos Hewlett-Packard normalmente se reparan y devuelven al cliente en el plazo de cinco (5) días hábiles a partir de su recepción en un centro de servicio. Se trata de un plazo medio, y puede variar dependiendo de la época del año y de la carga de trabajo del centro de servicio. El tiempo total que permanezca sin su equipo dependerá en gran parte del tiempo de envío.
Multímetros HP 972A y 973A

Contenido

Garantía/Servicio .. 4-2
Garantía limitada de 3 años 4-2
Servicio ... 4-2

Resumen de medidas de seguridad 4-4
Símbolos de seguridad 4-4

Funcionamiento .. 4-6
Terminales obturador y cables de prueba 4-6
Conmutador de función 4-7
Tecas de función ... 4-8
Tecas de función y matriz de conmutación de funciones 4-11
Pantalla ... 4-12
Audio ... 4-12

Calibración y ajuste 4-13
Equipo de prueba necesario 4-13
Procedimiento de calibración 4-13

Mantenimiento .. 4-14
Cambio de pilas ... 4-14
Cambio de fusibles .. 4-14
Diagnóstico de problemas 4-14
Limpieza ... 4-15
Piezas sustituibles/accesorios 4-15

Especificaciones .. 4-16
Generales ... 4-16
Tensión de c.c. ... 4-16
Tensión de c.a. HP 972A 4-17
Tensión de c.a. HP973A 4-17
Tensión de c.a. + c.c. HP 973A 4-18
Intensidad de c.c. ... 4-18
Intensidad de c.a. ... 4-19
Resistencia .. 4-19
Continuidad ... 4-19
Diodo ... 4-19
Capacitancia ... 4-20
Frecuencia (voltios) 4-20
Frecuencia (amperios) 4-20
Temperatura ... 4-21
Temperatura HP 973A 4-21
dBm HP 973A ... 4-21

Adjustements ... 6-1
Calibration Table ... 6-1
Replaceable Parts/Accessories 6-4
Disassembly ... 6-5
Worldwide Service Centers 7-2

4 - 3
Resumen de medidas de seguridad

Deben observarse las PRECAUCIONES y los AVISOS que aparecen en las siguientes páginas para garantizar la seguridad del operador y mantener el multímetro en perfecto estado de funcionamiento.

Símbolos de seguridad

⚠️ Indica que el operador debe consultar una explicación contenida en este manual o en otra documentación.

⚠️ Indica terminales en los que pueden existir tensiones peligrosas.

<table>
<thead>
<tr>
<th>AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ PARA EVITAR EL PELIGRO DE DESCARGAS ELECTRICAS o daños al multímetro, no aplique más de ±1000 Vcc o 1000 Vrms entre un terminal cualquiera y masa. Preste atención cuando trabaje con tensiones superiores a 60 Vcc o 42 Vpico. Compruebe que los cables de prueba se encuentran en perfecto estado.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ POSIBLE DESCARGA ELECTRICA. No realice medidas si el exterior del equipo presenta daños o si la cubierta posterior está retirada. Retire todas las entradas eléctricas antes de retirar la cubierta posterior.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ POSIBLE DESCARGA ELECTRICA o RIESGO DE INCENDIO. No permita que el multímetro quede expuesto a la lluvia o la humedad. No utilice el multímetro en presencia de gases o vapores inflamables.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ POSIBLE DESCARGA ELECTRICA. La calibración y las pruebas de funcionamiento deben encomendarse exclusivamente al personal técnico cualificado. No intente calibrar el instrumento o realizar los procedimientos de prueba a menos que esté cualificado para hacerlo.</td>
</tr>
</tbody>
</table>
PRECAUCION

Para evitar dañar el multímetro con entradas superiores a 250 Vcc o Vca, desconecte los cables de prueba antes de cambiar de función. No supere los límites máximos de entrada mostrados a continuación.

<table>
<thead>
<tr>
<th>Función</th>
<th>Entrada máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>--- ~ 10 A</td>
<td>± 15 A (c.c. o c.a. rms)</td>
</tr>
<tr>
<td>--- ~ mA o μA</td>
<td>± 500 mA (c.c. o c.a. rms)</td>
</tr>
<tr>
<td>Capacitancia, Prueba de diodo, Resistencia, Continuidad, Temperatura</td>
<td>660 Vrms (onda sinusoidal)</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>660 V rms 2 Hz a 10 kHz</td>
</tr>
<tr>
<td></td>
<td>100 V rms 10 kHz a 200 kHz</td>
</tr>
<tr>
<td>--- ~ V</td>
<td>± 1000 Vcc o Vrms (onda sinusoidal)</td>
</tr>
</tbody>
</table>

Tensión máxima entre los terminales de entrada y masa ± 1000 V (c.c. o c.a. rms).
Funcionamiento

1. Terminales, obturador y cables de prueba

CIERRE DE SEGURIDAD
Deslice hacia arriba para abrir y conectar la entrada para medir la intensidad. El conmutador de función debe estar en una de las posiciones de medida de intensidad para poder abrir el cierre. Ciérrelo para cambiar el conmutador de función a cualquier otra función de medida.

CABLE ROJO
- Medidas de intensidad (0 A a 10 A)
- Medidas de frecuencia (Amps)

CABLE NEGRO
COMÚN A TODAS las medidas

CABLE ROJO
- Medidas de intensidad (0 A a 400 mA)
- Medidas de frecuencia (Amps)

CABLE ROJO
Medidas de tensión de c.c. y c.a., diodo, resistencia, frecuencia, temperatura, continuidad y dBm.
Conmutador de función

<table>
<thead>
<tr>
<th>Posición conmutador</th>
<th>Pantalla</th>
<th>Funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 A</td>
<td>Intensidad de c.c. (10 mA a 10 A)</td>
<td>Intensidad de c.a. (10 mA a 10 A)</td>
</tr>
<tr>
<td>mA</td>
<td>Intensidad de c.c. (10 µA a 0,4 A)</td>
<td>Intensidad de c.a. (10 µA a 0,4 A)</td>
</tr>
<tr>
<td>µA</td>
<td>Intensidad de c.c. (0,1 µA a 4 mA)</td>
<td>Intensidad de c.a. (0,1 µA a 4 mA)</td>
</tr>
<tr>
<td>Ω</td>
<td>Resistencia (0,1 Ω a 40 MΩ)</td>
<td>Prueba de diodo (0 a 2 V)</td>
</tr>
<tr>
<td>V</td>
<td>Voltios de c.c. (1 mV a 1000 V)</td>
<td>Voltios de c.c. + c.a. (a 1000 V)</td>
</tr>
<tr>
<td>V</td>
<td>Voltios de c.a. (a 1000 V)</td>
<td>Voltios de c.c. + c.a. (a 1000 V)</td>
</tr>
</tbody>
</table>

¹ El valor de entrada de c.a. aparece en la pantalla secundaria
Funcionamiento

3 Teclas de función

Encendido

Apagado automático al cabo de 30 minutos. La alarma se activa 30 segundos antes del apagado. Apagado si la entrada < 80 V o < 400 mA. Ahorro de energía si la entrada > 80 V o > 400 mA. Última medida mostrada, se reduce el consumo de energía. Pulse una tecla cualquiera o cambie de función para cancelar. Para invalidar esta prestación, mantenga pulsada la tecla (Res/X) durante 2 segundos mientras aplica energía.

Relativo/Porcentaje

<table>
<thead>
<tr>
<th>Pulsar</th>
<th>Acción</th>
<th>Pantalla principal</th>
<th>Pantalla secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res/X</td>
<td>Convierte la última medida mostrada en la referencia</td>
<td>Cada valor medido en relación con el valor de referencia (diferencia)</td>
<td>Valor de referencia</td>
</tr>
<tr>
<td>Res/X</td>
<td>Calcula el cambio porcentual con respecto a la referencia</td>
<td>Cada valor medido como un cambio porcentual del valor de referencia</td>
<td>Valor de referencia</td>
</tr>
<tr>
<td>Res/X</td>
<td>Cancela la función Relativo/%</td>
<td>Valor medido</td>
<td>Rango</td>
</tr>
</tbody>
</table>

Realice un ajuste de puesta a cero cuando utilice el rango de 400 Ω o el rango de 40 mV y el valor mostrado sea inferior a 99, poniendo en cortocircuito los cables de prueba y pulsando esta tecla. Realice un ajuste de puesta a cero en el rango de capacitancia de 10 nF con los cables abiertos. Apague y encienda el equipo para borrar el ajuste almacenado de puesta a cero.
Funcionamiento

<table>
<thead>
<tr>
<th>Pulsar</th>
<th>Acción</th>
<th>Pantalla principal</th>
<th>Pantalla secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min/Max</td>
<td>Se inicia la grabación de los valores mínimo y máximo</td>
<td>Cada valor medido</td>
<td>Tiempo transcurrido</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Se muestra el valor máximo grabado</td>
<td>Medida máxima</td>
<td>Duración del valor máximo</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Se muestra el valor mínimo grabado</td>
<td>Medida mínima</td>
<td>Duración del valor mínimo</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Se muestra la última medida grabada</td>
<td>Medida más reciente</td>
<td>Tiempo transcurrido</td>
</tr>
<tr>
<td>M/Auto</td>
<td>Se realiza una pausa en la grabación de los valores mínimo y máximo</td>
<td>Conserva la pantalla</td>
<td>Tiempo total transcurrido</td>
</tr>
<tr>
<td>M/Auto</td>
<td>Se reanuda la grabación de los valores mínimo y máximo</td>
<td>Cada valor medido</td>
<td>Tiempo transcurrido</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Mantener pulsada durante 1 segundo para cancelar</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. El apagado automático y la referencia automática se desactivan cuando se selecciona Min/Máx. El gráfico de barras indicará y conservará los valores mínimo y máximo del gráfico de barras.

2. La duración se graba y se muestra en minutos hasta el tiempo máximo de grabación de 1999 minutos. La grabación se detendrá al alcanzarse el tiempo máximo.

3. El indicador H aparece cuando se graba Min/Máx.

Media

<table>
<thead>
<tr>
<th>Pulsar</th>
<th>Acción</th>
<th>Pantalla principal</th>
<th>Pantalla secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>Convierte la medida mostrada en la media de las ocho últimas medidas</td>
<td>Valor medio de las ocho últimas medidas</td>
<td>Rango</td>
</tr>
<tr>
<td>Average</td>
<td>Desactiva el promediado de las medidas</td>
<td>Cada medida</td>
<td>Rango</td>
</tr>
</tbody>
</table>

4 - 9
Funcionamiento

Conservación/Conservación automática

<table>
<thead>
<tr>
<th>Pulsar</th>
<th>Acción</th>
<th>Pantalla principal</th>
<th>Pantalla secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conserva el valor de la medida en la pantalla</td>
<td>Valor de la medida cuando se pulsó la tecla de conservación</td>
<td>Valor de entrada</td>
</tr>
<tr>
<td></td>
<td>Accede a la función de conservación automática</td>
<td>Valor de la medida cuando el multimetro emite una señal acústica</td>
<td>Rango</td>
</tr>
<tr>
<td></td>
<td>Cancela la función de conservación</td>
<td>Valor de la medida</td>
<td>Rango</td>
</tr>
</tbody>
</table>

1 Funcionamiento con conservación automática. Cuando se establece la medida, el multimetro emitirá una señal acústica y guardará la lectura estable. Al retirar la sonda del circuito de medición se mostrará y conservará la última lectura estable.

Rango

<table>
<thead>
<tr>
<th>Pulsar</th>
<th>Acción</th>
<th>Pantalla principal</th>
<th>Pantalla secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cambia de referencia automática a referencia manual</td>
<td>Valor de la medida</td>
<td>Rango</td>
</tr>
<tr>
<td></td>
<td>Cambia el rango manual en sentido ascendente una vez cada vez que se pulse la tecla ^1</td>
<td>Valor de la medida</td>
<td>Rango</td>
</tr>
<tr>
<td></td>
<td>Vuelve a activar la referencia automática cuando se mantiene pulsada la tecla durante 1 segundo</td>
<td>Valor de la medida</td>
<td>Rango</td>
</tr>
</tbody>
</table>

1 Cuando se alcanza el rango superior, la secuencia se repite en el rango inferior.

Seleccionar

- Pulse esta tecla para utilizar las funciones indicadas en amarillo en el multimetro. Consulte la tabla de la página 1-7.

Para someter a prueba la pantalla, mantenga pulsada esta tecla cuando encienda el multimetro.

HP 9753A: No todos los indicadores se encienden durante la comprobación de la pantalla.

4 - 10
<table>
<thead>
<tr>
<th>Función</th>
<th>Relativo (^1)</th>
<th>% (Porcentaje)</th>
<th>Mín/Máx (^2)</th>
<th>Media</th>
<th>Conservación de datos</th>
<th>Conservación automática</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>μA, mA</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>10 A</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hz (amperios) (^6)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>±</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>°C</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Ω</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>mV</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>dBm (^3)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>°C Term (^7)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>V</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hz (voltios) (^6)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

\(^1\) Ajustar a cero cuando la pantalla muestre < 99 en el rango menor.
\(^2\) La pantalla secundaria muestra el valor de referencia.
\(^3\) La pantalla secundaria muestra la tensión de entrada de c.a.
\(^4\) Cambia el atenuador de entrada, la frecuencia es siempre la referencia automática.

\(^5\) La pantalla secundaria muestra el tiempo transcurrido (en minutos).
\(^6\) La pantalla secundaria y el gráfico de barras se actualizan con el valor de entrada.
\(^7\) El gráfico de barras no está disponible.
Funcionamiento

Pantalla

Indicador de pila semidescargada
Cambio las pilas cuando aparezca el símbolo

Pantalla principal
(Representación aproximada)
El número de dígitos depende del rango y función.
Se muestra O.L. cuando hay sobrecarga.
Parpadea si:
- Hay sobretensión
- Durante la comprobación del fusible

Pantalla secundaria
Se usa para:
- Rango (en casi todas las funciones)
- Valor de c.a. a la entrada (frecuencia)
- Valor de Referencia (Relativo/ %)
- Tiempo transcurrido (Min/Máx)

Gráfico de barras
Activado en todas las funciones excepto:
- Capacitancia
- Temperatura
- c.a. + c.c., dBm

Audio

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Encendido</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La primera señal acústica se emite al encender el multímetro.</td>
</tr>
<tr>
<td></td>
<td>La segunda señal acústica se emite cuando se empieza a realizar medidas.</td>
</tr>
<tr>
<td></td>
<td>Una señal acústica</td>
</tr>
<tr>
<td></td>
<td>Indica que se ha pulsado una tecla de función válida.</td>
</tr>
<tr>
<td></td>
<td>Indica un nuevo valor Alto o Bajo grabado cuando se utiliza la función Min/Máx.</td>
</tr>
<tr>
<td></td>
<td>Señales acústicas que se repita constantemente</td>
</tr>
<tr>
<td></td>
<td>Indica cuándo es continua la medida al utilizar la función de conservación automática.</td>
</tr>
<tr>
<td></td>
<td>Señales acústicas que se repiten rápidamente</td>
</tr>
<tr>
<td></td>
<td>Indica que se han utilizado terminales de entrada incorrectos.</td>
</tr>
<tr>
<td></td>
<td>Indica una condición de sobrecarga en los terminales de medida.</td>
</tr>
<tr>
<td></td>
<td>Tono continuo</td>
</tr>
<tr>
<td></td>
<td>Indica una resistencia de < 20 Ω cuando se utiliza la función de continuidad.</td>
</tr>
<tr>
<td></td>
<td>Apagado automático/Ahorro automático de energía</td>
</tr>
<tr>
<td></td>
<td>Pares de señales acústicas durante 30 segundos.</td>
</tr>
<tr>
<td></td>
<td>Una señal acústica larga justo antes de apagarse el multímetro.</td>
</tr>
<tr>
<td></td>
<td>Se cancela cambiando la posición del conmutador de función o pulsando una tecla cualquiera.</td>
</tr>
</tbody>
</table>
Calibración y ajuste

Equipo de prueba necesario
La precisión de salida de la fuente utilizada para realizar la calibración debe ser igual o superior a la mostrada en las especificaciones.

Procedimiento de calibración
Rango ambiental para la calibración: 23 °C ± 5 °C, < 80% HR
Intervalo entre calibraciones: 1 año

1. Desconecte todas las entradas del multimetro y abra el equipo de la manera mostrada en la página 6-5.
2. Instale pilas nuevas (procedimiento descrito a continuación) y cierre la cubierta. Encienda el multimetro y deja que se caliente durante 30 minutos. Abra el multimetro.
3. Ajuste la función y el rango del multimetro y la salida de la fuente a los valores especificados en cada paso de la tabla de calibración que aparece en la página 6-1.
4. Cuando sea aplicable, realice los ajustes indicados en la tabla de calibración de forma que la pantalla del multimetro se encuentre dentro de los límites establecidos.

PRECAUCIÓN

⚠ Durante el procedimiento de calibración hay presentes en el equipo tensiones peligrosas. La calibración únicamente debe realizarla un técnico de servicio cualificado. Utilice una herramienta de ajuste no conductora.
Mantenimiento

Cambio de las pilas
Cambie las pilas cuando aparezca el símbolo en la pantalla o antes de la calibración. Cambie ambas pilas al mismo tiempo. Utilice pilas alcalinas tipo AA (IEC LR6) de alta calidad. Extraiga las pilas si no piensa utilizar el multímetro durante un período prolongado. Consulte el dibujo mostrado en la página 6-5.

Cambio de fusibles
En el diagrama de la página 6-5 se muestra la posición de los fusibles. Los fusibles aparecen enumerados en la lista de piezas sustituibles de la página 6-4.

PRECAUCIÓN
Para asegurar una protección continuada, utilice siempre fusibles del mismo amperaje cuando deba cambiarlos.

<table>
<thead>
<tr>
<th>Problema</th>
<th>Posible causa</th>
<th>Medida recomendada</th>
</tr>
</thead>
<tbody>
<tr>
<td>La unidad no se apaga</td>
<td>Se ha superado el límite de</td>
<td>Retire los cables de prueba y pulse una tecla cualquiera</td>
</tr>
<tr>
<td></td>
<td>entrada</td>
<td>para reiniciar el equipo</td>
</tr>
<tr>
<td>Destella la pantalla y se emiten señales acústicas rápidas</td>
<td>Se ha superado el límite de</td>
<td>Retire los cables de prueba y pulse una tecla cualquiera</td>
</tr>
<tr>
<td></td>
<td>entrada</td>
<td>para reiniciar el equipo</td>
</tr>
<tr>
<td></td>
<td>Los cables de prueba se han</td>
<td>Cambie los cables de prueba o la posición del conmutador</td>
</tr>
<tr>
<td></td>
<td>conectado a un terminal incorrecto</td>
<td>de función</td>
</tr>
<tr>
<td></td>
<td>para la función de medida</td>
<td></td>
</tr>
<tr>
<td>Indicador de pila encendido</td>
<td>Tensión baja de pilas</td>
<td>Cambie las pilas</td>
</tr>
<tr>
<td>Incapaz de medir la intensidad 10 A o mA μA</td>
<td>Fusible de protección de entrada fundido</td>
<td>Compruebe el fusible. Conecte un cable de prueba entre el terminal de entrada V y un terminal de 10 A o 10 mA μA. La unidad emitirá señales acústicas rápidas si el fusible se encuentra en buen estado. Si no se emiten señales acústicas</td>
</tr>
</tbody>
</table>
Limpieza
Limpie el instrumento con un paño suave humedecido en agua y jabón. No introduzca el multímetro en el agua. No utilice disolventes o productos de limpieza.

Piezas sustituibles/accesorios
Consulte la tabla que aparece en la página 6-5.
Especificaciones

Periodo de calibración: un año mínimo. Las especificaciones son aplicables a 23 °C ± 5 °C, < 80% HR
Precisión = ±(% de la lectura + número de dígitos)
Coeficiente de temperatura = Precisión X 0,1/°C (-10 °C a 18 °C; 28 °C a 55 °C)

Generales

Tasa de lectura de pantalla: Vca, Vcc, Diodo, Continuidad: Aproximadamente 2,3/segundo
Frecuencia: Aproximadamente 1/segundo
Capacitancia: Aproximadamente 0,03 a 2/segundo
CA + CCA: Aproximadamente 0,5 a 1/segundo

Tasa de lectura de gráfico de barras: Aproximadamente 23/segundo
Duración de las pilas: Aproximadamente 600 horas

Tensión de c.c.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>972A</th>
<th>973A</th>
<th>Resistencia de entrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>± (0,3% + 5)</td>
<td>± (0,3% + 5)</td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>400 mV</td>
<td>100 μV</td>
<td>± (0,2% + 1)</td>
<td>± (0,1% + 1)</td>
<td>11 MΩ (nominal)</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (0,2% + 1)</td>
<td>± (0,1% + 1)</td>
<td>10 MΩ (nominal)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relación de rechazo en modalidad normal: > 60 dB @ 50 ó 60 Hz
Relación de rechazo en modalidad común efectiva (1 kΩ de desequilibrio): > 120 dB @ 50 ó 60 Hz
Tensión de c.a. HP 972A (instrumento indicador del valor medio de una cantidad variable, calibrado para mostrar rms)

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Precisión</th>
<th>Impedancia de entrada (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>≤ (1% + 10)</td>
<td>No especificado</td>
</tr>
<tr>
<td>400 mV</td>
<td>0,1 mV</td>
<td>≤ (1% + 9)</td>
<td>No especificado</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>≤ (1% + 3)</td>
<td>≤ (1,5% + 3)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>(1% + 2)</td>
<td>≤ (3% + 6)</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>(0,5% + 2)</td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>(1% + 2)</td>
<td>(40 Hz a 500 Hz)</td>
</tr>
</tbody>
</table>

Relación de rechazo en modalidad común (1 kΩ de desequilibrio): > 60 dB Θ c.c. a 60 Hz
Tiempo de respuesta: 2 segundos máximo

Tensión de c.a. HP 973A (Verdadero rms, calibrado para onda sinusoidal)

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Precisión</th>
<th>Impedancia de entrada (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td>≤ (1% + 3)</td>
<td>No especificado</td>
</tr>
<tr>
<td>400 mV</td>
<td>0,1 mV</td>
<td>≤ (1% + 3)</td>
<td>No especificado</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>≤ (0,7% + 3)</td>
<td>≤ (1,2% + 4)</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>(2% + 15)</td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>(1% + 4)</td>
<td>(40 Hz a 500 Hz)</td>
</tr>
</tbody>
</table>

Rango de medida:
- 40 Hz a 1 kHz: Rango de 40 mV a 400 V
- 1 kHz a 20 kHz: Rango de 1000 V

Tiempo de respuesta: <2 segundos en rango fijo
Factor de amplitud: <3
Relación de rechazo en modalidad común (1 kΩ de desequilibrio): > 60 dB Θ c.c. a 60 Hz
Especificaciones

Tensión de c.a. + c.c. HP 973A (Verdadero rms, calculado a partir de VCA, VCC)

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Precisión c.c., 40 Hz a 1 kHz</th>
<th>Precisión c.c., 1 kHz a 5 kHz</th>
<th>Precisión c.c., 5 kHz a 20 kHz</th>
<th>Impedancia de entrada (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1% + 4)</td>
<td>± (1,5% + 6)</td>
<td>± (3% + 18)</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 6)</td>
<td></td>
<td>No especificado</td>
<td></td>
</tr>
</tbody>
</table>

Rango de medida:
- c.c., 40 Hz a 1 kHz
- c.c., 1 kHz a 20 kHz
- Rango de 4 V a 400 V
- Rango de 1000 V
- Rango de 4 V a 400 V

Tiempo de respuesta: < 5 segundos en rango liso
Factor de amplitud: <3
Relación de realce en modalidad común (1 kΩ de desequilibrio): > 60 dB @ c.c. a 60 Hz

Intensidad de c.c.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Precisión</th>
<th>Resistencia de entrada</th>
<th>Entrada máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>100 nA</td>
<td>± (0,5% + 2)</td>
<td>< 550 Ω</td>
<td>± 0,5 A (protegido con fusible)</td>
</tr>
<tr>
<td>4000 μA</td>
<td>1 μA</td>
<td>± (0,8% + 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td></td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td>± (1,0% + 2)</td>
<td></td>
<td>± 15 A (protegido con fusible)</td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td>< 0,05 Ω</td>
<td></td>
</tr>
</tbody>
</table>
Especificaciones

Intensidad de c.a.

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Precisión (40 Hz a 2 kHz)</th>
<th>Resistencia de entrada</th>
<th>Entrada máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 μA</td>
<td>100 nA</td>
<td>± (1,5% + 4)</td>
<td>< 550 Ω</td>
<td>0,5 Arms (protegido con fusible)</td>
</tr>
<tr>
<td>4000 μA</td>
<td>1 μA</td>
<td></td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 μA</td>
<td></td>
<td>< 0,05 Ω</td>
<td>15 Arms (protegido con fusible)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HP 972A con indicación del valor medio de una cantidad variable
HP 973A rms con indicación del valor medio de una cantidad variable, factor de amplitud <3, especificado para 5 al 100% del rango

Resistencia

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Precisión</th>
<th>Intensidad de prueba</th>
<th>Tensión máxima de circuito abierto</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Ω</td>
<td>100 mΩ</td>
<td>± (0,2% + 1)</td>
<td>< 0,8 mA</td>
<td>< 3,2 V</td>
</tr>
<tr>
<td>4,0 kΩ</td>
<td>1 Ω</td>
<td>± (0,2% + 1)</td>
<td>< 80 μA</td>
<td>< 1,1 V</td>
</tr>
<tr>
<td>40 kΩ</td>
<td>10 Ω</td>
<td></td>
<td>< 10 μA</td>
<td></td>
</tr>
<tr>
<td>400 kΩ</td>
<td>100 Ω</td>
<td>± (0,5% + 1)</td>
<td>110 nA</td>
<td></td>
</tr>
<tr>
<td>4,0 MΩ</td>
<td>1 kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 MΩ</td>
<td>10 kΩ</td>
<td>± (1,2% + 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Después del ajuste de puesta a cero de los cables de entrada. Rango de ajuste de puesta a cero hasta 9,9 Ω

Continuidad

Intensidad de medida: 0,8 mA nominal
Resistencia mostrada: 0 Ω a 400 Ω
Alarma: Tono cuando la entrada < 20 Ω

Tensión de circuito abierto: < 3,2 Vpk
Protección de entrada: 660 Vrms (onda sinusoidal)
Resolución: 100 μΩ

Diodo

Intensidad de medida: ±0,5 mA nominal @ 0,6 V
Tensión mostrada: 0 V a 2,000 V
Precisión: ± (1% + 2)

Tensión de circuito abierto: < 3,2 Vpk
Protección de entrada: 660 Vrms (onda sinusoidal)
Resolución: 1 mV
Especificaciones

Capacitancia

<table>
<thead>
<tr>
<th>Rango</th>
<th>Resolución</th>
<th>Precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nF</td>
<td>10 pF</td>
<td>± (2% + 3)</td>
</tr>
<tr>
<td>100 nF</td>
<td>100 pF</td>
<td></td>
</tr>
<tr>
<td>1000 nF</td>
<td>1 nF</td>
<td>± (1,2% + 2)</td>
</tr>
<tr>
<td>10 µF</td>
<td>10 nF</td>
<td></td>
</tr>
<tr>
<td>100 µF</td>
<td>100 nF</td>
<td>± (3% + 2)</td>
</tr>
<tr>
<td>1000 µF</td>
<td>1 µF</td>
<td></td>
</tr>
</tbody>
</table>

1 Después del ajuste de puesta a cero de los cables de entrada

Método utilizado: Carga/descarga del condensador sometido a prueba

Visualización máxima 1199

Frecuencia (voltios)

<table>
<thead>
<tr>
<th>Gama de frecuencias</th>
<th>Resolución</th>
<th>Precisión</th>
<th>Tensión de entrada (rms)</th>
<th>Entrada máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz a 99,99 Hz</td>
<td>0,01 Hz</td>
<td>± (0,02% + 1)</td>
<td>0,2 V a 400 V</td>
<td>660 Vrms</td>
</tr>
<tr>
<td>90 Hz a 999,0 Hz</td>
<td>0,1 Hz</td>
<td></td>
<td>0,4 V a 400 V</td>
<td></td>
</tr>
<tr>
<td>900 Hz a 9999 Hz</td>
<td>1 Hz</td>
<td></td>
<td>0,8 V a 100 V</td>
<td></td>
</tr>
<tr>
<td>9,00 kHz a 99,99 kHz</td>
<td>10 Hz</td>
<td></td>
<td>2 V a 100 V</td>
<td></td>
</tr>
<tr>
<td>90 kHz a 200 kHz</td>
<td>100 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frecuencia (amperios)

<table>
<thead>
<tr>
<th>Gama de frecuencias</th>
<th>Resolución</th>
<th>Precisión</th>
<th>Intensidad de entrada (rms)</th>
<th>Entrada máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz a 99,99 Hz</td>
<td>0,01 Hz</td>
<td>± (0,02% + 1)</td>
<td>50 Ω1μA a 10 A</td>
<td>15 A (protegido con fusible)</td>
</tr>
<tr>
<td>90 Hz a 999,0 Hz</td>
<td>0,1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 Hz a 9999 Hz</td>
<td>1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tiempo de respuesta 3 segundos máximo en rango fijo
Temperatura (5 kΩ @ 25° C Sonda de termistor)

<table>
<thead>
<tr>
<th>Rango de medida</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-80° a 150°</td>
<td>-112° a 302°</td>
</tr>
<tr>
<td>Resolución</td>
<td>0,1°</td>
<td>0,2°</td>
</tr>
<tr>
<td>Precisión ¹</td>
<td>± 0,3° C</td>
<td>± 0,5° F</td>
</tr>
</tbody>
</table>

¹ La precisión no incluye un error de termistor de 5 kΩ

Temperatura HP 973A (sonda termopar tipo K)

<table>
<thead>
<tr>
<th>Rango de medida</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-50° a 700°</td>
<td>-58° a 1292°</td>
</tr>
<tr>
<td>Resolución</td>
<td>1°</td>
<td>1°</td>
</tr>
<tr>
<td>Precisión ¹</td>
<td>± (2% + 2,01°)</td>
<td>± (2% + 4°)</td>
</tr>
</tbody>
</table>

¹ La precisión no incluye el error de la sonda termopar tipo K

dBm HP 973A (600 Ω, 1 mW de referencia)

<table>
<thead>
<tr>
<th>Función</th>
<th>dBm de entrada</th>
<th>Tensión de entrada</th>
<th>40 Hz a 1 kHz</th>
<th>1 kHz a 5 kHz</th>
<th>5 kHz a 20 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>mVca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-51,8 dBm a -5,7 dBm</td>
<td>2,0 mV a 400 mV</td>
<td>± 0,3 dBm</td>
<td>No especificado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11,8 dBm a -5,7 dBm</td>
<td>0,2 V a 0,4 V</td>
<td>± 0,2 dBm</td>
<td></td>
<td>± 0,2 dBm</td>
<td>± 0,7 dBm</td>
</tr>
<tr>
<td>-5,7 dBm a 53,3 dBm</td>
<td>0,4 V a 360 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53,3 dBm a 62,2 dBm</td>
<td>360 V a 1000 V</td>
<td>± 0,2 dBm</td>
<td>No especificado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Función</th>
<th>dBm de entrada</th>
<th>Tensión de entrada</th>
<th>40 Hz a 1 kHz</th>
<th>1 kHz a 5 kHz</th>
<th>5 kHz a 20 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-51,8 dBm a -5,7 dBm</td>
<td>2,0 mV a 400 mV</td>
<td>± 0,3 dBm</td>
<td>No especificado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11,8 dBm a -5,7 dBm</td>
<td>0,2 V a 0,4 V</td>
<td>± 0,2 dBm</td>
<td></td>
<td>± 0,2 dBm</td>
<td>± 0,7 dBm</td>
</tr>
<tr>
<td>-5,7 dBm a 53,3 dBm</td>
<td>0,4 V a 360 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53,3 dBm a 62,2 dBm</td>
<td>360 V a 1000 V</td>
<td>± 0,2 dBm</td>
<td>No especificado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Garanzia e assistenza

Garanzia limitata di 3 anni

Copertura della garanzia
Il multimetro HP 972A o 973A è garantito da Hewlett-Packard contro difetti di materiali e di lavorazione per tre anni dalla data del primo acquisto. Nel caso che l'apparecchio sia rivenduto o regalato, la garanzia viene automaticamente trasmessa al nuovo proprietario e resta valida per il periodo originale di tre anni. Durante il periodo di garanzia HP riparerà o, a sua discrezione, sostituirà senza costi il prodotto risultato difettoso dopo che il proprietario avrà inviato (con trasporto pre-pagato) il prodotto a un centro di assistenza Hewlett-Packard.

Esclusioni della garanzia
Questa garanzia non si applica nel caso che il prodotto abbia subito danni a causa di uso improprio o errato, o a causa di riparazioni o modifiche eseguite da persone non appartenenti a un centro di assistenza Hewlett-Packard autorizzato.

Non viene fornita nessun'altra garanzia esplicita. La riparazione o sostituzione del prodotto è l'unico rimedio previsto per il proprietario. QUALUNQUE ALTRA GARANZIA IMPLICITA DI COMMERCIALITÀ ED IDONEITÀ PER FINI SPECIFICI È LIMITATA AI TRE ANNI DI DURATA DI QUESTA GARANZIA. In alcuni stati, regioni o province non sono ammesse esclusioni o limitazioni per danni accidentali o conseguenti; in tali casi le esclusioni o limitazioni di cui sopra non sono applicabili.

La garanzia conferisce ai proprietari dei prodotti diritti legali specifici, ai quali si possono aggiungere altri diritti variabili da stato a stato, da regione a regione o da provincia a provincia.

Assistenza
Hewlett-Packard mantiene i propri centri di assistenza in diversi paesi del mondo. In caso di necessità, questo prodotto può essere riparato in qualsiasi centro di assistenza Hewlett-Packard, sia o no il prodotto in garanzia. Le riparazioni effettuate dopo il periodo di garanzia sono a pagamento. Le riparazione o le sostituzioni effettuate entro i primi 3 giorni dopo la data di acquisto sono effettuate dalla rete di vendita. Dopo i primi 3 giorni, rivolgersi al più vicino centro di assistenza HP.

I prodotti Hewlett-Packard vengono normalmente riparati e rispediti al cliente entro 5 (cinque) giorni lavorativi dalla data di ricevimento presso HP per qualsiasi centro di assistenza HP. Questo tempo di intervento è un tempo medio, che può variare in funzione del periodo dell'anno e del carico di lavoro del centro di assistenza. Il tempo totale di indisponibilità del prodotto da parte del cliente dipende principalmente dal tempo di spedizione.
Multimetri HP 972A e 973A

Indice
Garanzia e assistenza ... 5-2
Garanzia limitata di 3 anni 5-2
Assistenza .. 5-2
Informazioni sulla sicurezza 5-5
Simboli di sicurezza .. 5-5
Funzionamento .. 5-7
Terminali, otturatore e conduttori di prova 5-7
Selettore di funzione ... 5-7
Tasti funzione .. 5-9
Tabella dei tasti funzione e del selettore di funzione 5-13
Visore ... 5-13
Audio ... 5-13
Calibrazione e regolazione 5-14
Equipaggiamento di prova richiesto 5-14
Procedura di calibrazione 5-14
Manutenzione ... 5-14
Sostituzione delle batterie 5-14
Sostituzione dei fusibili .. 5-15
Problemi e rimedi .. 5-15
Pulizia ... 5-16
Parti di ricambio e accessori 5-16
Specifiche .. 5-17
Dati generali ... 5-17
Tensione CC ... 5-17
Tensione CA - HP 972A ... 5-18
Tensione CA - HP 973A ... 5-18
Tensione CA + CC - HP 973A 5-19
Corrente CC ... 5-19
Corrente CA ... 5-20
Resistenza .. 5-20
Continuità .. 5-20
Diodi ... 5-21
Capacità ... 5-21
Frequenza (Volt) ... 5-21
Frequenza (Ampère) .. 5-22
Temperatura ... 5-22
Temperatura - HP 973A ... 5-22
dBm - HP 973A ... 5-23
Adjustments ... 6-1
Calibration Table .. 6-1
Replaceable Parts/Accessories 6-4
Disassembly ... 6-5
Worldwide Service Centers 7-2

5-3
Informazioni sulla sicurezza

E' obbligatorio rispettare le indicazioni di ATTENZIONE e AVVERTENZA che compaiono nelle pagine seguenti per garantire la sicurezza dell'operatore e per mantenere le condizioni operative previste per il multimetro.

Simboli di sicurezza

⚠ Indica che l'operatore deve consultare una spiegazione contenuta in questo manuale o in altra documentazione.

⚡ Indica un terminale nel quale può essere presente una tensione pericolosa.

ATTENZIONE

⚠ **PER EVITARE SCOSSE ELETTRICHE o danni al multimetro, non applicare tensioni superiori a:**

± 1000 V CC o 1000 V rms tra un terminale e la terra. Operare con attenzione in presenza di tensioni superiori a 60 V CC o 42 V di picco. Assicurarsi che i conduttori di prova siano in buone condizioni.

ATTENZIONE

⚠ **PERICOLO DI SCOSSE ELETTRICHE. Non eseguire mai misure se l’involucro dello strumento è danneggiato o il coperchio posteriore è stato rimosso. Eliminare tutti gli ingressi elettrici prima di rimuovere il coperchio posteriore.**

ATTENZIONE

⚠ **PERICOLO DI SCOSSE ELETTRICHE O INCENDI. Non esporre il multimetro alla pioggia o all’umidità. Non usare il multimetro in presenza di gas o fumi infiammabili.**
ATTENZIONE

PERICOLO DI SCOSSE ELETTRICHE. Le procedure di calibrazione e di controllo delle prestazioni devono essere eseguite esclusivamente da personale qualificato. Non provare mai ad eseguire procedure di calibrazione o di controllo delle prestazioni se non si è qualificati per farlo.

PERICOLO

Per evitare danni al multimetro in presenza di tensioni di ingresso superiori a 250 V CC o 250 V CA, staccare i connettori di prova prima di cambiare funzione. Non superare mai i limiti massimi di ingresso indicati di seguito.

<table>
<thead>
<tr>
<th>Funzione</th>
<th>Ingresso massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 A</td>
<td>± 15 A (CC o CA rms)</td>
</tr>
<tr>
<td>mA or μA</td>
<td>± 500 mA (CC o CA rms)</td>
</tr>
<tr>
<td>Capacità, test diodi, resistenza, continuità, temperatura</td>
<td>660 V rms (onda sinusoidale)</td>
</tr>
<tr>
<td>Frequenza</td>
<td>660 V rms (2 Hz — 10 kHz)</td>
</tr>
<tr>
<td></td>
<td>100 V rms (10 kHz — 200 kHz)</td>
</tr>
<tr>
<td>V</td>
<td>± 1000 V CC o V rms (onda sinusoidale)</td>
</tr>
</tbody>
</table>

Tensione massima tra terminale di ingresso e terra: ± 1000 V (CC o CA rms).
Funzionamento

1 Terminali, otturatore e conduttori di prova

OTTURATORE DI SICUREZZA
Spingere in alto per aprire l'otturatore per gli ingressi della misura di corrente. Per aprire l'otturatore, il selettore di funzione deve trovarsi in una delle posizioni della misura corrente.
Chiusura l'otturatore prima di spostare il selettore di funzione su un'altra funzione di misura.

CAVO ROSSO
Misura di corrente (0 A – 10 A)
Misure di frequenza (Ampère)

CAVO ROSSO
Misura di corrente (0 – 400 mA)
Misure di frequenza (Ampère)

CAVO NERO
COMUNE
TUTTE le misure

CAVO ROSSO
Misure di tensione CC e CA, diodi, resistenza, capacità, frequenza (Volt), temperatura continuità e dBm
Selettore di funzione

HP 972A

<table>
<thead>
<tr>
<th>Posiz. selett.</th>
<th>Indicazione</th>
<th>Selettore</th>
<th>Selettore</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>Corrente CC (10 mA — 10 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Corrente CA (10 mA — 10 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenza (2 Hz — 10 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>mA</td>
<td>Corrente CC (10 μA — 0.4 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Corrente CA (10 μA — 0.4 A)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenza (2 Hz — 10 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>μA</td>
<td>Corrente CC (0.1 μA — 4 mA)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Corrente CA (0.1 μA — 4 mA)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenza (2 Hz — 10 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>-+</td>
<td>Capacità (10 pF — 1000 μF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Test diodi (0 — 2 V)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Test diodi autom. (0 — ± 2 V)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>Ω</td>
<td>Resistenza (0.1 Ω — 40 MΩ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuità (allarme < 20 Ω)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura in °F (-112° — 302°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura in °C (-80° — 150°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mV</td>
<td>Volt CC (10 μV — 400 mV)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Volt CA (10 μV — 400 mV)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>dBm (69.9 dBm — 57.7 dBm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura in °F (-58° — 1292°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperatura in °C (-50° — 700°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= V</td>
<td>Volt CC (1 mV — 1000 V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volt CC + CA (a 1000 V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~ V</td>
<td>Volt CA (fino a 1000 V)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>Frequenza (2 Hz — 200 kHz)</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td></td>
<td>dBm (19.9 dBm — 62.2 dBm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Il valore dell’ingresso CA è indicato nel visore secondario.
Funzionamento

3 Tasti funzione

Power

Spegnimento automatico o messa in attesa automatica dopo 30 minuti. 30 secondi prima dello spegnimento suona un allarme. **Spegnimento** se l’ingresso è < 80 V o < 400 mA. **Messa in attesa** se l’ingresso è > 80 V o > 400 mA, con visualizzazione dell’ultima misura e riduzione del consumo.

Per cancellare questo stato, premere un tasto qualsiasi o cambiare funzione. Per annullarlo, tenere premuto il tasto [Auto] per 2 secondi durante l’accensione.

<table>
<thead>
<tr>
<th>Rel/%</th>
<th>Azione</th>
<th>Visore principale</th>
<th>Visore secondario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L’ultima misura visualizzata usa come misura di riferimento</td>
<td>Ogni valore misurato, riferito al valore di riferimento (differenza)</td>
<td>Valore di riferimento</td>
</tr>
<tr>
<td></td>
<td>Calcola la variazione percentuale rispetto al valore di riferimento</td>
<td>Ogni valore misurato emette in percentuale del valore di riferimento</td>
<td>Valore di riferimento</td>
</tr>
<tr>
<td></td>
<td>Cancella la funzione Rel/%</td>
<td>Valore misurato</td>
<td>Intervallo</td>
</tr>
</tbody>
</table>

Mettendo in corto i connettori di prova e premendo questo tasto, esegue una **regolazione dello zero** quando si usa l’intervallo 400 Ω o l’intervallo 40 mV con valore visualizzato minore di 99. Con i connettori aperti, esegue una regolazione dello zero nell’intervallo di capacità 10 nF. Spegnere e riaccendere lo strumento per cancellare la regolazione dello zero.
Funzionamento

<table>
<thead>
<tr>
<th>Min/Max</th>
<th>Azione</th>
<th>Visore principale</th>
<th>Visore secondario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min/Max</td>
<td>Inizia la registrazione dei valori minimo e massimo</td>
<td>Ogni valore misurato</td>
<td>Tempo trascorso</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Visualizza il valore massimo registrato</td>
<td>Misura del massimo</td>
<td>Tempo del massimo</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Visualizza il valore minimo registrato</td>
<td>Misura del minimo</td>
<td>Tempo del minimo</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Visualizza l’ultima misura registrata</td>
<td>Ultima misura</td>
<td>Tempo trascorso</td>
</tr>
<tr>
<td>ON/OFF</td>
<td>Sospende la registrazione dei valori minimo e massimo</td>
<td>Blocca l’indicazione</td>
<td>Tempo totale trascorso</td>
</tr>
<tr>
<td>ON/OFF</td>
<td>Riprende la registrazione dei valori minimo e massimo</td>
<td>Ogni valore misurato</td>
<td>Tempo trascorso</td>
</tr>
<tr>
<td>Min/Max</td>
<td>Premere e tenere premuto per 1 secondo per cancellare</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1 Selezionando Min/Max, si disattivano i modi di spegnimento automatico e di intervallo automatico. Il grafico a barre indica e mantiene i valori minimo e massimo del grafico a barre.

2 Il tempo viene registrato e visualizzato in minuti, fino al massimo valore di registrazione di 1999 minuti. Il tempo non fa trascorrere il tempio massimo, la registrazione si interrompe.

3 Durante la pausa della registrazione dei valori minimo e massimo, compare l’indicatore H.

Average

<table>
<thead>
<tr>
<th>Premere</th>
<th>Azione</th>
<th>Visore principale</th>
<th>Visore secondario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>Visualizza la misura media delle ultime otto misure</td>
<td>Valore medio delle ultime otto misure</td>
<td>Intervallo</td>
</tr>
<tr>
<td>Average</td>
<td>Disattiva la media delle misure</td>
<td>Ogni misura</td>
<td>Intervallo</td>
</tr>
</tbody>
</table>

5-9
Funzionamento

H/AutoH

<table>
<thead>
<tr>
<th>Premere</th>
<th>Azione</th>
<th>Visore principale</th>
<th>Visore secondario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Mantieni sul visore il valore di misura</td>
<td>Tenendo premuto: valore di misura</td>
<td>Valore di ingresso</td>
</tr>
<tr>
<td>Auto</td>
<td>Attiva la funzione AutoH ¹</td>
<td>Valore di misura quando si sente il bip</td>
<td>Intervallo</td>
</tr>
<tr>
<td>Auto</td>
<td>Canceilla la funzione H</td>
<td>Valore di misura</td>
<td>Intervallo</td>
</tr>
</tbody>
</table>

¹ Funzionamento in modo AutoH. Quando la misura diventa stabile, il multimetro fa un bip e salva la lettura stabile. Togliendo la sonda dal circuito di misura, visualizza e mantiene l'ultima lettura stabile.

Range

<table>
<thead>
<tr>
<th>Premere</th>
<th>Azione</th>
<th>Visore principale</th>
<th>Visore secondario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Passa dal modo intervallo automatico al modo intervallo manuale</td>
<td>Valore di misura</td>
<td>Intervallo</td>
</tr>
<tr>
<td>Range</td>
<td>Ad ogni pressione del tasto, passa all'intervallo manuale superiore ¹</td>
<td>Valore di misura</td>
<td>Intervallo</td>
</tr>
<tr>
<td>Range</td>
<td>Tenendo premuto il tasto per 1 secondo, torna al modo intervallo automatico</td>
<td>Valore di misura</td>
<td>Intervallo</td>
</tr>
</tbody>
</table>

¹ Raggiunto l'intervallo superiore, la sequenza ricomincia dall'intervallo minore.

Select

Premere questo tasto per usare le funzioni indicate in giallo sul multimetro. Vedi tabella a pagina 5-8.

Tenere premuto questo tasto all'accensione per eseguire un test del visore.

HP 973A: Non tutti gli indicatori sono accesi durante il test del visore.
Tabella dei tasti funzione e del selettore di funzione

<table>
<thead>
<tr>
<th>Funzione</th>
<th>Rel</th>
<th>% (percent.)</th>
<th>Min/Max</th>
<th>Average</th>
<th>H (mantiene i dati)</th>
<th>AutoH (H autom.)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>µA, mA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10A</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Hz(Amps)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>3</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>4</td>
</tr>
<tr>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>±</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>Ω</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>ohm</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>°F, °C Therm</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>mV</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>dBM</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>°F, °C Tcp</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Hz(Volts)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6</td>
</tr>
<tr>
<td>dBM</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Regolazione dello zero quando il visore indica -55 nell'intervallo più basso.
2. Il visore secondario indica il valore di ingresso.
3. Il visore secondario indica la tensione di ingresso CA.
4. Cambia l'attivazione dell'ingresso; la frequenza è sempre nel modo intervallo automatico.
5. Il visore secondario indica il numero di calcoli di serie.
6. Il visore secondario è visibile solo se la barra è stata impostata con il valore d'ingresso.
7. Il visore a barre non disponibile.
Funzionamento

4 Visore

Indicatore di batterie scariche
Quando si accende, sostituire la batteria

Visore principale
(Legenda degli indicatori nel coperchio anteriore)
Il numero di cifre è dato da intervallo e funzione. Indica OL quando c'è una condizione di sovraccarico.
Tutto il visore lampeggia in caso di sovratensione all'ingresso; oppure controllo fusibili in corso

Visore secondario
Indica:
Intervallo (per la maggior parte delle funzioni)
Valore ingresso CA (frequenza)
Valore di riferimento (Rel/%) Grafico a barre
E' attivo con tutte le funzioni, tranne:
Capacità, temperatura,
CA + CC e dBm

Audio

<table>
<thead>
<tr>
<th>BEEP</th>
<th>1</th>
<th>BEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accensione</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Primo bip all'accensione.
| Secondo bip quando si iniziano le misure. |

<table>
<thead>
<tr>
<th>BEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singolo bip</td>
</tr>
<tr>
<td>E' stato premuto un tasto funzione valido. Indica la registrazione di un nuovo valore Alto o Basso quando si usa la funzione Min/Max.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEEP</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bip lungo ripetuto</td>
<td></td>
</tr>
<tr>
<td>La misura è stabile quando si usa la funzione AutoH.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bip corto ripetuto</td>
</tr>
<tr>
<td>Il terminale di ingresso usato non è ammesso dalla funzione selezionata. Indica una condizione di sovraccarico ai terminali di misura.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tono continuo</td>
</tr>
<tr>
<td>Indica una resistenza < 20 Ω quando si usa la funzione di Continuità.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BEEP</th>
<th>BEEP</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spennamento automatico / Messa in attesa automatica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coppie di bip per 30 secondi. Un bip lungo subito prima dello spegnimento. Per cancellare, cambiare la posizione del selettore di funzione o premere un altro tasto.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-12
Calibrazione e regolazione

Equipaggiamento di prova richiesto

La sorgente usata per la calibrazione deve avere una precisione di uscita uguale o migliore di quella indicata nelle specifiche.

Procedura di calibrazione

Condizioni ambientali per la calibrazione: 23° C ± 5° C, < 80% umidità relativa
Intervallo di calibrazione: 1 anno

1 Staccare dal multimetro tutti gli ingressi e aprire l’involucro, come mostrato a pagina 6-5.

2 Installare le batterie nuove (vedi oltre) e chiudere il coperchio. Accendere il multimetro e lasciarlo preriscaldare per 30 minuti. Aprire l’involucro.

3 Impostare la funzione e l’intervallo del multimetro e l’uscita della sorgente sui valori specificati per ogni fase nella tabella di calibrazione a pagina 6-2.

4 Se necessario, eseguire le regolazioni indicate nella tabella di calibrazione per far rientrare nei limiti previsti le indicazioni del visore del multimetro.

AVVERTENZA

La procedura di calibrazione comporta la presenza di tensioni pericolose e deve essere eseguita solo da tecnici di assistenza qualificati. Per le regolazioni, usare uno strumento isolato.

Manutenzione

Sostituzione delle batterie

Sostituire le batterie quando compare il simbolo di batteria nel visore e prima di ogni calibrazione. Usare batterie alcaline di qualità tipo AA (IEC LR6). Togliere le batterie se il multimetro deve essere lasciato inattivo per lunghi periodi di tempo. Consultare il disegno per lo smontaggio indicato a pagina 6-5.
Manutenzione

Sostituzione dei fusibili

La posizione dei fusibili è indicata nella figura di pagina 6-5. I tipi di fusibile sono indicati nell'elenco delle parti di ricambio a pagina 6-4. Consultare la procedura di controllo dei fusibili riportata di seguito nella tabella "Problemi e rimedi".

<table>
<thead>
<tr>
<th>Problema</th>
<th>Causa possibile</th>
<th>Azione suggerita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo strumento non si accende</td>
<td>Batterie esaurite</td>
<td>Sostituire le batterie.</td>
</tr>
<tr>
<td>Lo strumento non si spegne</td>
<td>Superamento dei limiti in ingresso</td>
<td>Staccare i conduttori di prova e premere un tasto per azzerare.</td>
</tr>
<tr>
<td>Il visore lampeggia</td>
<td>Superamento dei limiti in ingresso</td>
<td>Staccare i conduttori di prova e premere un tasto per azzerare.</td>
</tr>
<tr>
<td>Bip rapidi in sequenza</td>
<td>Conduktor di prova innestati nel terminale sbagliato per la funzione di misura selezionata</td>
<td>Cambiare i conduttori di prova o la posizione del selettore di funzione</td>
</tr>
<tr>
<td>Spia batterie accesa</td>
<td>Tensione batterie insufficiente</td>
<td>Sostituire le batterie.</td>
</tr>
<tr>
<td>Impossibile misurare la corrente 10 A o mA μA</td>
<td>Fusibile di protezione in ingresso bruciato</td>
<td>Controllare il fusibile. Collegare il conduttore di prova tra il terminale di ingresso V e il terminale 10 A o mA μA. Se il fusibile è buono, lo strumento emette una serie di bip corti. Se non si sentono i bip, sostituire il fusibile.</td>
</tr>
</tbody>
</table>

AVVERTENZA

Per assicurare la continuità della protezione, usare esclusivamente fusibili del tipo specificato.
Pulizia

Pulire lo strumento con un panno morbido imbevuto di acqua e sapone. Non immergere lo strumento in acqua. Non usare detergenti chimici o solventi.

Parti di ricambio e accessori

Vedi schema di smontaggio a pagina 6-5.
Specifiche

Periodo di calibrazione: massimo 1 anno. Le specifiche si riferiscono a 23° C ± 5° C, < 80% umidità relativa
Precisone = 3 (% della lettura + numero di cifre)
Coefficiente di temperatura = precisione x 0.1° C (-10° C — 18° C; 28° C — 55° C)

Dati generali

Velocità di lettura del visore:	Circa 2.3 lettura/s
V CA, V CC, diodi, continuità:	Circa 1 lettura/s
Frequenza	Circa da 0.03 a 2 lettura/s
Capacità	Circa da 0.5 a 1 lettura/s
CA + CC	Circa 23 lettura/s
Velocità di lettura del grafico a barre:	Circa 600 h
Durata della batteria:	Circa 500 h

Tensione CC

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluzione</th>
<th>972A</th>
<th>973A</th>
<th>Resistenza in ingresso</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>± (0.3% + 5)</td>
<td>± (0.3% + 5)</td>
<td>10 MΩ (nominale)</td>
</tr>
<tr>
<td>40 mV</td>
<td>10 μV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 mV</td>
<td>100 μV</td>
<td>± (0.2% + 1)</td>
<td>± (0.1% + 1)</td>
<td>11 MΩ (nominale)</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rapporto di reiezione in modo normale: > 60 dB a 50 Hz o 60 Hz.
Rapporto di reiezione effettivo in modo comune con sbilanciamento di 1 kΩ: > 120 dB a 50 Hz o 60 Hz.
Specifiche

Tensione CA - HP 972A (risposta media, calibrato per indicare valori rms)

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluz.</th>
<th>40 Hz — 50 Hz</th>
<th>50 Hz — 1 kHz</th>
<th>1 kHz — 5 kHz</th>
<th>5 kHz — 20 kHz</th>
<th>Impedenza in ingresso (nominale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 µV</td>
<td>± (1% + 10)</td>
<td>Non specificato</td>
<td></td>
<td></td>
<td>10 MΩ < 70 pF</td>
</tr>
<tr>
<td>400 mV</td>
<td>0.1 mV</td>
<td>± (1% + 3)</td>
<td>Non specificato</td>
<td></td>
<td></td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1% + 3)</td>
<td></td>
<td>± (1.5% + 3)</td>
<td>± (3% + 6)</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1% + 2)</td>
<td>± (0.5% + 2)</td>
<td>± (1.5% + 3)</td>
<td>± (3% + 6)</td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td></td>
<td></td>
<td>± (1% + 2) (40 Hz — 500 Hz)</td>
<td>Non specificato</td>
<td></td>
</tr>
</tbody>
</table>

Rapporto di reiezione in modo comune con sbilanciamento di 1 kΩ: > 60 dB da CC a 60 Hz.
Tempo di risposta: 2 secondi al massimo.

Tensione CA - HP 973A (rms effettivo, calibrato per onde sinusoidali)

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluz.</th>
<th>40 Hz — 50 Hz</th>
<th>50 Hz — 1 kHz</th>
<th>1 kHz — 5 kHz</th>
<th>5 kHz — 20 kHz</th>
<th>Impedenza in ingresso (nominale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 mV</td>
<td>10 µV</td>
<td>± (1% + 3)</td>
<td>Non specificato</td>
<td></td>
<td></td>
<td>10 MΩ < 70 pF</td>
</tr>
<tr>
<td>400 mV</td>
<td>0.1 mV</td>
<td></td>
<td></td>
<td>± (0.7% + 3)</td>
<td>± (1.2% + 4)</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td></td>
<td></td>
<td>± (1.2% + 4)</td>
<td>± (2% + 15)</td>
<td></td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 2) (40 Hz — 500 Hz)</td>
<td>Non specificato</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervallo di misura:
- 40 Hz — 1 kHz
- 1 kHz — 20 kHz

Impedenza in ingresso:
- 40 Hz — 400 V: 5% — 100% dell'intervallo
- 1000 V: 100 V — 1000 V
- 1 kHz — 400 V: 10% — 100% dell'intervallo

Tempo di risposta: <2 secondi con intervallo fisso.
Fattore di cresta: <3.
Rapporto di reiezione in modo comune con sbilanciamento di 1 kΩ: > 60 dB da CC a 60 Hz.
Specifiche

Tensione CA + CC - HP 973A (rms effettivo, calcolata da V, CA, V CC)

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluzione</th>
<th>Precisione</th>
<th>Impedenza in ingresso (nominale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 V</td>
<td>1 mV</td>
<td>± (1% + 4)</td>
<td>Non specificato</td>
</tr>
<tr>
<td>40 V</td>
<td>10 mV</td>
<td>± (1.5% + 6)</td>
<td>11 MΩ < 50 pF</td>
</tr>
<tr>
<td>400 V</td>
<td>100 mV</td>
<td>± (3% + 18)</td>
<td>10 MΩ < 50 pF</td>
</tr>
<tr>
<td>1000 V</td>
<td>1 V</td>
<td>± (1% + 6)</td>
<td>CC — 500 Hz</td>
</tr>
</tbody>
</table>

Intervallo di misura:
- CC, 40 Hz — 1 kHz: Intervallo 4 V — 400 V
- CC, 1 kHz — 20 kHz: Intervallo 1000 V — 100 V — 1000 V — 10 V — 1000 V

Tempo di risposta: <2 secondi con intervallo fisso.
Fattore di cresta: <3.
Rapporto di reiezione in modo comune con sbilanciamento di 1 kΩ: > 60 dB da CC a 60 Hz.

Corrente CC

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluzione</th>
<th>Precisione</th>
<th>Resistenza in ingresso</th>
<th>Ingresso massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 µA</td>
<td>100 nA</td>
<td>± (0.5% + 2)</td>
<td>< 550 Ω</td>
<td>± 0.5 A (con fusibile)</td>
</tr>
<tr>
<td>4000 µA</td>
<td>1 µA</td>
<td>± (0.8% + 2)</td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 µA</td>
<td>± (1.0% + 2)</td>
<td>< 0.05 Ω</td>
<td>± 15 A (con fusibile)</td>
</tr>
</tbody>
</table>
Specifiche

Corrente CA

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluzione</th>
<th>Precisione (40 Hz — 2 kHz)</th>
<th>Resistenza in ingresso</th>
<th>Ingresso massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 µA</td>
<td>100 nA</td>
<td>± (1.5% + 4)</td>
<td>< 550 Ω</td>
<td>0.5 A rms (con fusibile)</td>
</tr>
<tr>
<td>4000 µA</td>
<td>1 µA</td>
<td></td>
<td>< 8 Ω</td>
<td></td>
</tr>
<tr>
<td>40 mA</td>
<td>10 µA</td>
<td></td>
<td>< 0.05 Ω</td>
<td>15 A rms (con fusibile)</td>
</tr>
<tr>
<td>400 mA</td>
<td>100 µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>10 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HP 972A con risposta media, HP 973A con risposta rms, fattore di cresta <3, specificato per 5% — 100% dell'intervallo.

Resistenza

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluzione</th>
<th>Precisione</th>
<th>Corrente di prova</th>
<th>Tensione massima a circuito aperto</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Ω</td>
<td>100 mΩ</td>
<td>± (0.2% + 1)</td>
<td>< 0.8 mA</td>
<td>< 3.2 V</td>
</tr>
<tr>
<td>4.0 kΩ</td>
<td>1 Ω</td>
<td>± (0.2% + 1)</td>
<td>< 80 µA</td>
<td></td>
</tr>
<tr>
<td>40 kΩ</td>
<td>10 Ω</td>
<td>± (0.2% + 1)</td>
<td>< 10 µA</td>
<td></td>
</tr>
<tr>
<td>400 kΩ</td>
<td>100 Ω</td>
<td>± (0.5% + 1)</td>
<td>< 1.1 µA</td>
<td></td>
</tr>
<tr>
<td>4.0 MΩ</td>
<td>1 kΩ</td>
<td>± (0.5% + 1)</td>
<td>110 nA</td>
<td></td>
</tr>
<tr>
<td>40 MΩ</td>
<td>10 kΩ</td>
<td>± (1.2% + 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^1 Dopo la regolazione dello zero dei conduttori di ingresso, intervallo di regolazione dello zero fino a 9.9 Ω.

Continuità

- Corrente di misura: 0.8 mA nominale
- Tensione a circuito aperto: < 3.2 V di picco
- Resistenza indicata: 0 Ω — 400 Ω
- Protezione all'ingresso: 680 V rms (onda sinusoidale)
- Allarme: tono per segnali di ingresso < 20 Ω
- Risoluzione: 100 mΩ
Specifiche

Diodi
Corrente di misura: 0,5 mA nominale a 0,6 V
Tensione indicata: 0 V — 2.000 V
Precisione: ± (1% + 2)
Tensione a circuito aperto: < 3,2 V di picco
Protezione all’ingresso: 660 V rms (onda sinusoidale)
Risoluzione: 1 mV

Capacità

<table>
<thead>
<tr>
<th>Intervallo</th>
<th>Risoluzione</th>
<th>Precisione</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 nF</td>
<td>10 µF</td>
<td>± (2% + 3)</td>
</tr>
<tr>
<td>100 nF</td>
<td>100 µF</td>
<td>± (1,2% + 2)</td>
</tr>
<tr>
<td>1000 nF</td>
<td>1 nF</td>
<td>± (1,2% + 2)</td>
</tr>
<tr>
<td>10 µF</td>
<td>10 nF</td>
<td>± (3% + 2)</td>
</tr>
<tr>
<td>100 µF</td>
<td>100 nF</td>
<td>± (3% + 2)</td>
</tr>
<tr>
<td>1000 µF</td>
<td>1 µF</td>
<td>± (3% + 2)</td>
</tr>
</tbody>
</table>

1 Dopo la regolazione dello zero dei conduttori di ingresso.
Metodo usato: carica/scarica del condensatore sotto test.
Massimo valore indicato: 1199.

Frequenza (Volt)

<table>
<thead>
<tr>
<th>Intervallo di frequenza</th>
<th>Risoluzione</th>
<th>Precisione</th>
<th>Tensione di ingresso (rms)</th>
<th>Ingresso massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz — 99,99 Hz</td>
<td>0,01 Hz</td>
<td>± (0,02% + 1)</td>
<td>0,2 V — 400 V</td>
<td>660 V rms</td>
</tr>
<tr>
<td>90 Hz — 999,9 Hz</td>
<td>0,1 Hz</td>
<td>± (0,02% + 1)</td>
<td>0,4 V — 400 V</td>
<td></td>
</tr>
<tr>
<td>900 Hz — 9999 Hz</td>
<td>1 Hz</td>
<td>± (0,02% + 1)</td>
<td>0,8 V — 100 V</td>
<td></td>
</tr>
<tr>
<td>9,00 kHz — 99,99 kHz</td>
<td>10 Hz</td>
<td>± (0,02% + 1)</td>
<td>2 V — 100 V</td>
<td>100 V rms</td>
</tr>
<tr>
<td>90 kHz — 200 kHz</td>
<td>100 Hz</td>
<td>± (0,02% + 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequenza (Ampère)

<table>
<thead>
<tr>
<th>Intervallo di frequenza</th>
<th>Risoluzione</th>
<th>Precisione</th>
<th>Tensione di ingresso (rms)</th>
<th>Ingresso massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Hz — 99.99 Hz</td>
<td>0.01 Hz</td>
<td>± (0.02% + 1)</td>
<td>50 μA — 10 A</td>
<td>15 A (con fusibile)</td>
</tr>
<tr>
<td>90 Hz — 999.0 Hz</td>
<td>0.1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>990 Hz— 9999 Hz</td>
<td>1 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tempo di risposta: 3 s massimo con intervallo fisso.

Temperatura (sonda termistore da 5 kΩ a 25°C)

<table>
<thead>
<tr>
<th></th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervallo di misura</td>
<td>-80° — 150°</td>
<td>-112° — 302°</td>
</tr>
<tr>
<td>Risoluzione</td>
<td>0.1°</td>
<td>0.2°</td>
</tr>
<tr>
<td>Precisione ¹</td>
<td>± 0.3° C</td>
<td>± 0.5° F</td>
</tr>
</tbody>
</table>

¹ La precisione non comprende l'errore di 5 kΩ del termistore.

Temperatura - HP 973A (sonda termocoppia tipo K)

<table>
<thead>
<tr>
<th></th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervallo di misura</td>
<td>-50° — 700°</td>
<td>-58° — 1292°</td>
</tr>
<tr>
<td>Risoluzione</td>
<td>1°</td>
<td>1°</td>
</tr>
<tr>
<td>Precisione ¹</td>
<td>± (2% + 2°)</td>
<td>± (2% + 4°)</td>
</tr>
</tbody>
</table>

¹ La precisione non comprende l'errore della termocoppia K.
dBm - HP 973A (600 Ω, 1 mW di riferimento)

<table>
<thead>
<tr>
<th>Funzione</th>
<th>dBm ingresso</th>
<th>Tensione in ingresso</th>
<th>40 Hz — 1 kHz</th>
<th>1 kHz — 5 kHz</th>
<th>5 kHz — 20 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA mV</td>
<td>-51.8 dBm — -5.7 dBm 2.0 mV — 400 mV</td>
<td>± 0.3 dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA V</td>
<td>-11.8 dBm — -5.7 dBm 0.2 V — 0.4 V</td>
<td>± 0.2 dBm</td>
<td></td>
<td>± 0.2 dBm</td>
<td>± 0.7 dBm</td>
</tr>
<tr>
<td></td>
<td>-5.7 dBm — 53.3 dBm 0.4 V — 360 V</td>
<td></td>
<td>± 0.2 dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.3 dBm — 62.2 dBm 360 V — 1000 V</td>
<td></td>
<td>Non specificato</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-22
Adjustments

![Diagram of adjustments](image)

Calibration Table

CAUTION

Dangerous voltages are present during the calibration procedure. Calibration should only be performed by qualified service technicians. Use a non-conductive tool.

<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Range</th>
<th>Input Signal</th>
<th>Adjustment (limits)</th>
<th>Tolerance (counts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mV</td>
<td>400 mV</td>
<td>Short</td>
<td>—</td>
<td>±1 ±1</td>
</tr>
<tr>
<td>2</td>
<td>mV</td>
<td>380.0 mV</td>
<td>1 (±1)</td>
<td>±8 ±4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mV</td>
<td>40 mV</td>
<td>36.00 mV</td>
<td>2 (±1)</td>
<td>±18 ±16</td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>400 V</td>
<td>380.0 V</td>
<td>3 (±1)</td>
<td>±8 ±4</td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td>4 V</td>
<td>3.800 V</td>
<td>4 (±1)</td>
<td>±8 ±4</td>
</tr>
<tr>
<td>6</td>
<td>V</td>
<td>40 V</td>
<td>38.00 V</td>
<td>5 (±1)</td>
<td>±8 ±4</td>
</tr>
</tbody>
</table>
Calibration Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Range</th>
<th>Input Signal</th>
<th>Adjustment (limits)</th>
<th>Tolerance (counts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>= V</td>
<td>1000 V</td>
<td>1000 V</td>
<td>—</td>
<td>±3</td>
</tr>
<tr>
<td>8</td>
<td>~ V</td>
<td>400 V</td>
<td>380.0 V @ 100 Hz</td>
<td>6A or 6B (±2)</td>
<td>±21 ±29</td>
</tr>
<tr>
<td>9</td>
<td>~ V</td>
<td>3 V</td>
<td>380.0 V @ 5 kHz</td>
<td>C1 (±3)</td>
<td>±60 ±49</td>
</tr>
<tr>
<td>10</td>
<td>~ V</td>
<td>4 V</td>
<td>380.0 V @ 20 kHz</td>
<td>—</td>
<td>±120 ±81</td>
</tr>
<tr>
<td>11</td>
<td>~ V</td>
<td>40 V</td>
<td>3800 V @ 5 kHz</td>
<td>C2 (±3)</td>
<td>±60 ±49</td>
</tr>
<tr>
<td>12</td>
<td>~ V</td>
<td>3.8 V</td>
<td>3800 V @ 100 Hz</td>
<td>—</td>
<td>±120 ±81</td>
</tr>
<tr>
<td>13</td>
<td>~ V</td>
<td>38 V</td>
<td>3800 V @ 20 kHz</td>
<td>—</td>
<td>±120 ±81</td>
</tr>
<tr>
<td>14</td>
<td>~ mV</td>
<td>40 mV</td>
<td>38.00 mV @ 100 Hz</td>
<td>7 (±2)</td>
<td>±48 ±41</td>
</tr>
<tr>
<td>15</td>
<td>~ V</td>
<td>400 mV</td>
<td>380.00 mV @ 100 Hz</td>
<td>—</td>
<td>±41 ±41</td>
</tr>
<tr>
<td>16</td>
<td>~ V</td>
<td>1000 V</td>
<td>1000 V @ 100 Hz</td>
<td>—</td>
<td>±12 ±14</td>
</tr>
<tr>
<td>17</td>
<td>~ μA</td>
<td>400 μA</td>
<td>380.0 μA</td>
<td>—</td>
<td>±21 ±21</td>
</tr>
<tr>
<td>18</td>
<td>~ μA</td>
<td>4000 μA</td>
<td>3800 μA</td>
<td>—</td>
<td>±32 ±32</td>
</tr>
<tr>
<td>19</td>
<td>~ mA</td>
<td>40 mA</td>
<td>38.00 mA</td>
<td>—</td>
<td>±32 ±32</td>
</tr>
<tr>
<td>20</td>
<td>~ μA</td>
<td>400 mA</td>
<td>380.0 mA</td>
<td>—</td>
<td>±40 ±40</td>
</tr>
<tr>
<td>21</td>
<td>~ μA</td>
<td>10 A</td>
<td>10.00 A</td>
<td>8 (±2)</td>
<td>±12 ±12</td>
</tr>
<tr>
<td>22</td>
<td>~ μA</td>
<td>400 μA</td>
<td>380.0 μA @ 100 Hz</td>
<td>—</td>
<td>±61 ±61</td>
</tr>
<tr>
<td>23</td>
<td>~ μA</td>
<td>3800 μA</td>
<td>3800 μA @ 2 kHz</td>
<td>—</td>
<td>±61 ±61</td>
</tr>
<tr>
<td>24</td>
<td>~ μA</td>
<td>3800 μA</td>
<td>3800 μA @ 100 Hz</td>
<td>—</td>
<td>±61 ±61</td>
</tr>
<tr>
<td>Step</td>
<td>Function</td>
<td>Range</td>
<td>Input Signal</td>
<td>Adjustment (limits)</td>
<td>Tolerance (counts)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>972A</td>
</tr>
<tr>
<td>29</td>
<td>~ mA</td>
<td>40 mA</td>
<td>38.00 mA @ 100 Hz</td>
<td>—</td>
<td>±61</td>
</tr>
<tr>
<td>30</td>
<td>~ mA</td>
<td>38.00 mA @ 2 kHz</td>
<td>—</td>
<td>±61</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>~ 400 mA</td>
<td>380.0 mA @ 100 Hz</td>
<td>—</td>
<td>±61</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>~ 400 mA</td>
<td>380.0 mA @ 2 kHz</td>
<td>—</td>
<td>±61</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>~ 10 A</td>
<td>10 A</td>
<td>10.00 A @ 100 Hz</td>
<td>—</td>
<td>±19</td>
</tr>
<tr>
<td>34</td>
<td>~ 10 A</td>
<td>10 A</td>
<td>10.00 A @ 2 kHz</td>
<td>—</td>
<td>±19</td>
</tr>
<tr>
<td>35</td>
<td>~ 400 Ω</td>
<td>Short</td>
<td>zero adjust</td>
<td>—</td>
<td>±1</td>
</tr>
<tr>
<td>36</td>
<td>~ 400 Ω</td>
<td>380.0 Ω</td>
<td>—</td>
<td>±8</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>~ 4 kΩ</td>
<td>3.800 kΩ</td>
<td>—</td>
<td>±8</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>~ 40 kΩ</td>
<td>38.00 kΩ</td>
<td>—</td>
<td>±8</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>~ 400 kΩ</td>
<td>380.0 kΩ</td>
<td>—</td>
<td>±8</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>~ 4 Ω</td>
<td>3.800 MΩ</td>
<td>—</td>
<td>±20</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>~ 40 Ω</td>
<td>38.00 MΩ</td>
<td>—</td>
<td>±40</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>~ 400 Ω</td>
<td>0 Ω to 100 Ω</td>
<td>—</td>
<td>Tone below approx 20 Ω</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>~ 2 V</td>
<td>1.000 V</td>
<td>—</td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>~ 100 μF</td>
<td>90.0 μF</td>
<td>9 (±2)</td>
<td>±29</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>~ 10 μF</td>
<td>9.00 μF</td>
<td>10 (±2)</td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>~ 10 nF</td>
<td>Open</td>
<td>zero adjust</td>
<td>±1</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>~ 100 nF</td>
<td>90.0 nF</td>
<td>11 (±2)</td>
<td>±21</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>~ 10 nF</td>
<td>9.00 nF</td>
<td>—</td>
<td>±21</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>~ 1000 nF</td>
<td>900 nF</td>
<td>—</td>
<td>±12</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>~ 1000 μF</td>
<td>900 μF</td>
<td>—</td>
<td>±29</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>~ Hz (V)</td>
<td>4 V</td>
<td>9000 Hz @ 1 Vrms</td>
<td>—</td>
<td>±2</td>
</tr>
<tr>
<td>52</td>
<td>~ Hz (A)</td>
<td>400 μA</td>
<td>9000 Hz @ 100 μA</td>
<td>—</td>
<td>±2</td>
</tr>
</tbody>
</table>

1 Perform zero adjustment using key.
Replaceable Parts/Accessories

Refer to the disassembly diagram on page 6-5.

<table>
<thead>
<tr>
<th>Call out</th>
<th>Description</th>
<th>HP Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Fuse, 500 mA, 250 V fast blow Littlefuse 216-500</td>
<td>2110-0940</td>
</tr>
<tr>
<td>F2</td>
<td>Fuse, 15 A, 600 V fast blow Littlefuse KLK15</td>
<td>2110-0941</td>
</tr>
<tr>
<td>MP1</td>
<td>Top case assembly</td>
<td>00972-64401 00973-64401</td>
</tr>
<tr>
<td>MP2</td>
<td>Dust/moisture seal</td>
<td>00971-64403</td>
</tr>
<tr>
<td>MP3</td>
<td>Bottom case assembly (includes stand)</td>
<td>00972-64402</td>
</tr>
<tr>
<td></td>
<td>Replacement Test Leads, 2 pair</td>
<td>E2305A</td>
</tr>
<tr>
<td></td>
<td>Temperature probe, 5 KΩ Thermistor</td>
<td>E2308A</td>
</tr>
<tr>
<td></td>
<td>Surface temperature sensor, Thermistor ±0.1°C to 100°C 12 lead, requires dual banana plug</td>
<td>E40653B</td>
</tr>
<tr>
<td></td>
<td>Temperature probe, K type thermocouple for 973A only</td>
<td>E2307A</td>
</tr>
<tr>
<td></td>
<td>Rubber Boot</td>
<td>00971-86001</td>
</tr>
<tr>
<td></td>
<td>Soft Case (fits meter without rubber boot)</td>
<td>E2304A</td>
</tr>
</tbody>
</table>
Disassembly

WARNING
Always disconnect the test leads before opening the case.

MP3

MP2

1.5V (AA/R6/LR6) x2

F1

F2

MP1
DECLARATION OF CONFORMITY
according to ISO / IEC Guide 22 and EN 45014

Manufacturer’s Name: Hewlett-Packard Company, Personal Measurements Operation
Manufacturer’s Address: 815 14th Street S.W., Loveland, Colorado 80537 U.S.A.

declares, that the products
Product Name: Handheld Multimeter
Model Number: HP 971A, HP 972A, HP 973A, HP 974A
Product Options: None

conforms to the following Product Specifications:

CSA C22.2 #1010.1 (1992)
UL 1244

EMC: CISPR 11:1990 / EN55011 (1991); Group 1, Class A
IEC801-2:1991 / EN50082-1 (1992); 4 kV CD, 8 kV AD
IEC 801-3:1984 / EN50082-1 (1992); 3 V/m
IEC 801-4:1988 / EN50082-1 (1992); 0.5 kV Signal Lines

Loveland, Colorado April 1, 1994
Jim White, QA Manager

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department ZQ / Standards Europe, Herrenberger Straße 130, D-71034 Böblingen (FAX: +49-7031-143143).