Errata

Title & Document Type: 8921 Series Cell Site Test Set User's Guide (Dec94)

Manual Part Number: 08921-90022

Revision Date: December 1994

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We’ve added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
HP 8921 User's Guide

SERIAL NUMBERS
This manual applies directly to instruments with firmware versions:
A.14.00 and above.
<table>
<thead>
<tr>
<th>Document Type/Document Description</th>
<th>Document Name/HP Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Get Started-Front Panel operation, To access different screens.</td>
<td></td>
</tr>
<tr>
<td>- Configuring-Setting up the Test Set, To set the screen intensity.</td>
<td></td>
</tr>
<tr>
<td>- Operating Overview- More advanced operation, To use the analog meter format.</td>
<td></td>
</tr>
<tr>
<td>- Product Description- Screen, field, & connector descriptions.</td>
<td></td>
</tr>
<tr>
<td>- Error Messages- List of errors caused by front panel operation errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP 8921A Users Guide/08921-900022</td>
</tr>
<tr>
<td>- A simple operation example</td>
<td></td>
</tr>
<tr>
<td>- Making Measurements- Instructions for performing a measurement</td>
<td></td>
</tr>
<tr>
<td>- Troubleshooting Measurements- A "try this" approach to isolating unexpected measurement results</td>
<td></td>
</tr>
<tr>
<td>- Product Description- Screen, field, & connector descriptions</td>
<td></td>
</tr>
<tr>
<td>- HP-IB command listing for the cellular adapter</td>
<td></td>
</tr>
<tr>
<td>- Theory of Operation- Block Diagram of the cellular adapter</td>
<td></td>
</tr>
<tr>
<td>- Glossary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP 83201B Users Guide/83201-90034</td>
</tr>
<tr>
<td></td>
<td>HP 83203A Users Guide/83203-90010</td>
</tr>
<tr>
<td></td>
<td>HP 83203B Users Guide/83203-90028</td>
</tr>
<tr>
<td>Test Set Programming Guide:</td>
<td>HP 8920, HP 8921 Programmers Guide/08920-90172</td>
</tr>
<tr>
<td>- Test Set Architecture Overview</td>
<td></td>
</tr>
<tr>
<td>- IEEE 488.1 Capabilities, Remote/Local Modes</td>
<td></td>
</tr>
<tr>
<td>- HP-IB Programming Guidelines</td>
<td></td>
</tr>
<tr>
<td>- IEEE 488.2 Common Commands Syntax/Usage</td>
<td></td>
</tr>
<tr>
<td>- Status Reporting/Service Request/Passing Control</td>
<td></td>
</tr>
<tr>
<td>- IBASIC Program Development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBasic Manual:</td>
</tr>
<tr>
<td>- IBASIC Programming Structure & Flow/Subprograms & Function Errors</td>
<td>HP Instrument Basic 1.0/ E2083-90000</td>
</tr>
<tr>
<td>- IBASIC Interfacing Concepts/Entering & Outputting Data/Interface Descriptions</td>
<td></td>
</tr>
<tr>
<td>- IBASIC Detailed Keyword Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP Instrument Basic 2.0/ E2083-90005</td>
</tr>
<tr>
<td>Assembly Level Repair:</td>
<td>HP 8920, HP 8921 Assembly Level Repair/08920-90168</td>
</tr>
<tr>
<td>- Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>- Repair</td>
<td></td>
</tr>
<tr>
<td>- Calibration</td>
<td>HP 83201A Assembly Level Repair/83201-90003</td>
</tr>
<tr>
<td>- Specifications</td>
<td>HP 83201B Assembly Level Repair/83201-90018</td>
</tr>
<tr>
<td>- Service Screen</td>
<td>HP 83203A Assembly Level Repair/83203-90003</td>
</tr>
<tr>
<td>- Block Diagram</td>
<td>HP 83203B Assembly Level Repair/83203-90016</td>
</tr>
<tr>
<td>- Replaceable Parts Listing</td>
<td></td>
</tr>
<tr>
<td>- Diagnostic Descriptions</td>
<td></td>
</tr>
<tr>
<td>- Error Messages</td>
<td></td>
</tr>
</tbody>
</table>

See other side for which documents are used with which products.
Documentation for each Product

HP 8920A Products
- HP 8920 User Guide
- HP 8920, HP 8921 Programming Guide
- HP Instrument Basic 1.0
- HP 8920, HP 8921 Assembly Level Repair

HP 8920B
- HP 8920 User Guide
- HP 8920, HP 8921 Programming Guide
- HP Instrument Basic 2.0
- HP 8920, HP 8921 Assembly Level Repair

HP 8921A
- HP 8921A User Guide
- HP 8920, HP 8921 Programming Guide
- HP Instrument Basic 1.0
- HP 8920, HP 8921 Assembly Level Repair

HP 8921B, Option 600
- HP 8921A User Guide
- HP 8920, HP 8921 Programming Guide
- HP Instrument Basic 1.0
- HP 8920, HP 8921 Assembly Level Repair

HP 8920B, Option 500
- HP 8920 User Guide
- HP 8920B User Guide
- HP 8920, HP 8921 Programming Guide
- HP Instrument Basic 2.0
- HP 8920, HP 8921 Assembly Level Repair
- HP 8920B Assembly Level Repair
SAFETY CONSIDERATIONS

GENERAL
This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation.

This product is a Safety Class I instrument (provided with a protective earth terminal).

SAFETY EARTH GROUND
An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set.

CHASSIS GROUND TERMINAL
To prevent a potential shock hazard, always connect the rear-panel chassis ground terminal to earth ground when operating this instrument from a DC power source.
SAFETY SYMBOLS

⚠️ Indicates instrument damage can occur if indicated operating limits are exceeded.

⚡ Indicates hazardous voltages.

ключа Indicates earth (ground) terminal

Warning

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

Caution

The caution sign denotes a hazard. It calls attention to an operation procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

Warning

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnection the protective earth terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two conductor outlet is not sufficient protection).

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to the earth terminal of the power source.

Servicing instructions are for use by service trained personnel only. To avoid dangerous electric shock, do not perform any servicing unless qualified to do so.

Adjustments described in the manual are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

For continued protection against fire hazard, replace the line fuse(s) only with 250 V fuse(s) of the same current rating and type (for example, normal blow, time delay, etc.) Do not use repaired fuses or short circuited fuseholders.
Manufacturer's Declaration

This statement is provided to comply with the requirements of the German Sound Emission Directive, from 18 January 1991.

This product has a sound pressure emission (at the operator position) < 70 dB(A).

- Sound Pressure Lp < 70 dB(A).
- At Operator Position.
- Normal Operation.

Herstellerbescheinigung

- Schalldruckpegel Lp < 70 dB(A).
- Am Arbeitsplatz.
- Normaler Betrieb.
DECLARATION OF CONFORMITY
According to ISO/IEC Guide 22 and EN 45014

| Manufacturer's Name: | Hewlett-Packard Company |
| Manufacturer's Address: | Spokane Division
24001 E. Mission Ave.
Spokane, WA 99220, USA |

Declares that the product:

Product Name:	RF Communications Test Set
Model Number(s):	HP 8920A and 8921A
Product Options:	All

Conforms to the following product Specifications.

| Safety: | HD 401/IEC 348 |

EMC:
EN 55011 (1991) /CISPR 11 (1990): Group 1, Class A
EN 50082-1 (1992)/IEC 801-2 (1991): 4kV CD,8kV AD
/IEC 801-3 (1984): 3V/m
/IEC 801-4 (1988): 1kV Power Lines
0.5 kV Signal
Lines

Supplementary Information:
The Product herewith complies with the requirements of
the Low Voltage Directive 73/23/EEC and the EMC Directive
89/336/EEC.

Spokane, Washington 9-15-93
Vince Roland, SKD Quality Mgr

European Contact: Your local Hewlett-Packard Sales and
Service Office or Hewlett-Packard GmbH. Dept.2Q/Standards
Europe, Herrenberger StraBe 130, D-7030 Boblingen
(FAX: +49-7031-14-3143)
In This Book

The information in this manual applies to the HP 8920, 8921 family of products. The HP 8920, 8921 family products are referred to in this document as "Test Set." Model numbers are used only when information applies specifically to one model (such as HP 8920B only).

Chapter 1 - Get Started

This chapter describes the basic operation of the Test Set. It also provides a quick check that verifies that the Test Set is operating properly.

Chapter 2 - Configuring Your Test Set

This chapter describes various instrument configuration settings that affect the general operation of the instrument.

Chapter 3 - Operating Overview

This chapter contains detailed operating instructions and examples for using several instrument features.

Chapter 4 - Screen and Field Descriptions

This chapter contains reference information for each screen and its fields. Many of the descriptions contain signal flow diagrams that relate the screen's fields to the functions they perform.

Chapter 5 - Connector, Key, and Knob Descriptions

This chapter describes the purpose and use of each connector and control.

Chapter 6 - Modifications, Accessories, Manuals, Support

This chapter describes retrofit kits, accessories, manuals, and customer support available for your Test Set.

Error Messages

This section discusses error and operating messages.
1. Get Started
How Do I Access Different Screens? 1-2
Which Screen Should I Use? 1-3
What Controls the Instrument's Functions? 1-3
How Do I Change A Field's Setting? 1-4
How do I Verify that the Test Set is Operating
 Properly? 1-6
 Instrument Quick Check 1-6
 How Do I Connect My Radio? 1-7

2. Configuring Your Test Set
To Set Screen Intensity 2-1
To Set RF Voltage Interpretation (50Ω/emf) 2-2
To Set the Date and Time 2-2
To Change the Beeper Volume 2-3
To Verify or Change the Low Battery Setting 2-3

3. Operating Overview
Interaction Between Screens 3-1
Displaying Measurements 3-4
 Displaying RF Measurements 3-5
 Transmitter Frequency 3-5
 Transmitter Frequency Error 3-5
 Transmitter Power 3-5
 Displaying AF Measurements 3-6
 FM Deviation, AM Depth, AC Level 3-6
 SINAD, Distortion, SNR, AF Frequency, DC Level, DC Current 3-6
 AF Power 3-6
 To Make Beat Frequency Measurements 3-7
 To Change the Measurement's Unit-of-Measure 3-7
 To Use the Analog METER Format 3-7
Entering and Changing Numbers 3-8
 To Enter Numbers 3-8
 Number Formats 3-8
 Entering Decimal Values 3-8
 Entering Hexadecimal Values 3-8
 To Enter and Change the Unit-of-Measure 3-9
 Changing the Unit-of-Measure for Settings 3-9
 To Change the Increment/Decrement Settings 3-9
 Using the Pre-Defined Increment/Decrement Keys 3-9
 Specifying An Increment Value 3-10
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example of Setting an Increment Value</td>
<td>3-10</td>
</tr>
<tr>
<td>Printing A Screen</td>
<td>3-11</td>
</tr>
<tr>
<td>To Print A Screen's Contents</td>
<td>3-11</td>
</tr>
<tr>
<td>Using Measurement Limit Indicators</td>
<td>3-12</td>
</tr>
<tr>
<td>To Set HI and/or LO LIMIT</td>
<td>3-12</td>
</tr>
<tr>
<td>To Reset or Remove Limits</td>
<td>3-13</td>
</tr>
<tr>
<td>Example of Setting HI and LO LIMITs</td>
<td>3-13</td>
</tr>
<tr>
<td>Averaging Measurements</td>
<td>3-14</td>
</tr>
<tr>
<td>To Use Measurement Averaging</td>
<td>3-14</td>
</tr>
<tr>
<td>Example of Using Measurement Averaging</td>
<td>3-14</td>
</tr>
<tr>
<td>Setting A Measurement Reference</td>
<td>3-15</td>
</tr>
<tr>
<td>To Use the Present Value as a Reference</td>
<td>3-15</td>
</tr>
<tr>
<td>To Set a Specific Reference</td>
<td>3-15</td>
</tr>
<tr>
<td>Saving and Recalling Instrument Setups</td>
<td>3-16</td>
</tr>
<tr>
<td>To Save an Instrument Setup</td>
<td>3-16</td>
</tr>
<tr>
<td>To Recall an Instrument Setup</td>
<td>3-16</td>
</tr>
<tr>
<td>Example of Saving and Recalling a Measurement Setup</td>
<td>3-16</td>
</tr>
<tr>
<td>To Remove (Clear) an Individual SAVE Register</td>
<td>3-18</td>
</tr>
<tr>
<td>To Clear All SAVE Registers</td>
<td>3-18</td>
</tr>
<tr>
<td>Register Names</td>
<td>3-18</td>
</tr>
<tr>
<td>POWERON Settings</td>
<td>3-18</td>
</tr>
<tr>
<td>BASE Settings</td>
<td>3-19</td>
</tr>
<tr>
<td>Memory Considerations</td>
<td>3-19</td>
</tr>
<tr>
<td>Instrument Hardware Changes</td>
<td>3-19</td>
</tr>
<tr>
<td>Using USER Keys</td>
<td>3-20</td>
</tr>
<tr>
<td>To Use the Pre-Assigned Local USER Keys</td>
<td>3-20</td>
</tr>
<tr>
<td>To Assign Local USER Keys</td>
<td>3-21</td>
</tr>
<tr>
<td>Example of Assigning a Local USER Key</td>
<td>3-21</td>
</tr>
<tr>
<td>To Release Local USER Keys</td>
<td>3-21</td>
</tr>
<tr>
<td>To Assign Global USER Keys</td>
<td>3-22</td>
</tr>
<tr>
<td>Example of Assigning a Global USER Key</td>
<td>3-22</td>
</tr>
<tr>
<td>To Release Global USER Keys</td>
<td>3-22</td>
</tr>
<tr>
<td>Setting an RF Generator/Analyzer Offset</td>
<td>3-23</td>
</tr>
<tr>
<td>To Set an RF Offset</td>
<td>3-23</td>
</tr>
<tr>
<td>Example of Setting an RF Offset</td>
<td>3-23</td>
</tr>
<tr>
<td>Using Remote Control</td>
<td>3-24</td>
</tr>
<tr>
<td>Using HP-IB Control</td>
<td>3-24</td>
</tr>
<tr>
<td>Running IBASIC Programs from Memory Cards</td>
<td>3-24</td>
</tr>
<tr>
<td>Using an ASCII Terminal</td>
<td>3-24</td>
</tr>
<tr>
<td>To Configure for Serial Port Operation</td>
<td>3-24</td>
</tr>
<tr>
<td>Equivalent Front-Panel Control Characters</td>
<td>3-25</td>
</tr>
</tbody>
</table>
4. Screen and Field Descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX TEST</td>
<td>4-3</td>
</tr>
<tr>
<td>AC Level</td>
<td>4-5</td>
</tr>
<tr>
<td>AFGen1 Freq</td>
<td>4-5</td>
</tr>
<tr>
<td>AFGen2 Freq</td>
<td>4-5</td>
</tr>
<tr>
<td>AFGen1 To</td>
<td>4-6</td>
</tr>
<tr>
<td>AFGen2 To</td>
<td>4-6</td>
</tr>
<tr>
<td>Amplitude</td>
<td>4-7</td>
</tr>
<tr>
<td>Atten Hold</td>
<td>4-7</td>
</tr>
<tr>
<td>Ext Load R</td>
<td>4-8</td>
</tr>
<tr>
<td>Filter 1 and Filter 2</td>
<td>4-8</td>
</tr>
<tr>
<td>Output Port</td>
<td>4-8</td>
</tr>
<tr>
<td>RF Gen Freq</td>
<td>4-9</td>
</tr>
<tr>
<td>SINAD</td>
<td>4-9</td>
</tr>
<tr>
<td>TX TEST</td>
<td>4-11</td>
</tr>
<tr>
<td>AF Anl In</td>
<td>4-13</td>
</tr>
<tr>
<td>AF Freq</td>
<td>4-13</td>
</tr>
<tr>
<td>AFGen1 Freq</td>
<td>4-14</td>
</tr>
<tr>
<td>AFGen1 Lvl</td>
<td>4-14</td>
</tr>
<tr>
<td>De-Emphasis</td>
<td>4-14</td>
</tr>
<tr>
<td>Detector</td>
<td>4-15</td>
</tr>
<tr>
<td>Ext TX key</td>
<td>4-15</td>
</tr>
<tr>
<td>Filter 1 and Filter 2</td>
<td>4-16</td>
</tr>
<tr>
<td>FM Deviation</td>
<td>4-16</td>
</tr>
<tr>
<td>IF Filter</td>
<td>4-16</td>
</tr>
<tr>
<td>Input Port</td>
<td>4-16</td>
</tr>
<tr>
<td>Tune Freq</td>
<td>4-17</td>
</tr>
<tr>
<td>Tune Mode</td>
<td>4-17</td>
</tr>
<tr>
<td>TX Freq Error/TX Frequency</td>
<td>4-17</td>
</tr>
<tr>
<td>TX Power</td>
<td>4-18</td>
</tr>
<tr>
<td>TX Pwr Meas (HP 8920B Only)</td>
<td>4-18</td>
</tr>
<tr>
<td>TX Pwr Zero</td>
<td>4-19</td>
</tr>
<tr>
<td>DUPLEX TEST</td>
<td>4-21</td>
</tr>
<tr>
<td>AC Level</td>
<td>4-23</td>
</tr>
<tr>
<td>AF Anl In</td>
<td>4-23</td>
</tr>
<tr>
<td>AF Freq</td>
<td>4-24</td>
</tr>
<tr>
<td>AFGen1 Freq</td>
<td>4-24</td>
</tr>
<tr>
<td>AFGen1 To</td>
<td>4-24</td>
</tr>
<tr>
<td>Amplitude</td>
<td>4-25</td>
</tr>
<tr>
<td>Atten Hold</td>
<td>4-25</td>
</tr>
<tr>
<td>Audio Out</td>
<td>4-25</td>
</tr>
<tr>
<td>De-Emphasis</td>
<td>4-25</td>
</tr>
<tr>
<td>Detector</td>
<td>4-26</td>
</tr>
<tr>
<td>Ext TX key</td>
<td>4-26</td>
</tr>
<tr>
<td>FM Coupling</td>
<td>4-27</td>
</tr>
<tr>
<td>FM Deviation</td>
<td>4-27</td>
</tr>
<tr>
<td>IF Filter</td>
<td>4-27</td>
</tr>
<tr>
<td>Input Port</td>
<td>4-27</td>
</tr>
<tr>
<td>Output Port</td>
<td>4-28</td>
</tr>
<tr>
<td>RF Gen Freq</td>
<td>4-28</td>
</tr>
</tbody>
</table>
Tune Freq .. 4-28
Tune Mode .. 4-28
TX Freq Error/TX Frequency 4-29
TX Power .. 4-29
RF GENERATOR 4-31
AC Level ... 4-33
AFGen1 Freq ... 4-33
AFGen2 Freq ... 4-33
AFGen1 To .. 4-33
AFGen2 To .. 4-34
Amplitude .. 4-34
Atten Hold .. 4-34
Audio Out ... 4-35
FM Coupling .. 4-35
Mic Pre-Emp ... 4-35
Mod In To ... 4-35
Output Port .. 4-36
RF Gen Freq .. 4-36
TX Freq Error/TX Frequency 4-37
TX Power .. 4-37
RF ANALYZER ... 4-39
AC Level ... 4-41
Ext TX key .. 4-41
IF Filter .. 4-41
Input Atten .. 4-41
Input Port ... 4-42
RF Cnt Gate .. 4-42
Sensitivity .. 4-43
Squelch ... 4-43
TX Freq .. 4-44
Tune Freq ... 4-45
Tune Mode .. 4-45
TX Freq Error/TX Frequency 4-45
TX Power .. 4-46
TX Pwr Meas (HP 8920B Only) 4-46
TX Pwr Zero .. 4-47
AF ANALYZER ... 4-49
AC Level ... 4-51
AF Anl In ... 4-51
AF Cnt Gate .. 4-51
Audio In Lo .. 4-52
DC Current ... 4-52
De-Emp Gain ... 4-52
De-Emphasis ... 4-52
Detector .. 4-53
Ext Load R .. 4-54
Filter 1 and Filter 2 4-54
Gain Cntl ... 4-54
Input Gain .. 4-55
Notch Freq 4-55
Notch Gain 4-55
Pk Det To 4-55
Scope To 4-55
Settling 4-56
SINAD 4-56
Speaker ALC 4-57
Speaker Vol 4-57
TX Freq Error/ TX Frequency 4-57
TX Power 4-57
OSCILLOSCOPE 4-59
Selecting the Oscilloscope's Input 4-60
Marker Measurements 4-61
Marker: Lvl 4-61
Marker: Time 4-61
Oscilloscope Main Menu Fields 4-62
Time/div 4-62
Vert Offset 4-62
Vert/div 4-62
Oscilloscope Trigger Menu Fields 4-63
\textbf{Internal} 4-63
\textbf{Auto/Norm} 4-63
\textbf{Cont/Single} 4-63
Level (div) 4-63
Pre-Trig (Not HP 8920B) 4-64
Reset 4-64
Trig-Delay (HP 8920B Only) 4-64
Oscilloscope Marker Menu Fields 4-65
Marker To: 4-65
Position 4-65
SPECTRUM ANALYZER 4-67
Setting Resolution Bandwidth and Sweep Rate 4-68
Marker Measurements 4-69
Marker: Freq 4-69
Marker: Lvl 4-69
Spectrum Analyzer Main Menu Fields 4-70
Center Freq 4-70
Ref Level 4-70
RF In/Ant 4-70
Span 4-71
RF Generator Menu Fields: Fixed Operation 4-72
Amplitude 4-72
Output Port 4-72
RF Gen Freq 4-72
RF Generator Menu Fields: Tracking Operation 4-73
Amplitude 4-73
Offset Freq 4-73
Port/Sweep 4-74
Spectrum Analyzer Marker Menu Fields 4-75
Marker To: 4-75

Contents-5
<table>
<thead>
<tr>
<th>Position</th>
<th>4-75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum Analyzer Auxiliary Menu Fields</td>
<td>4-76</td>
</tr>
<tr>
<td>Input Atten</td>
<td>4-76</td>
</tr>
<tr>
<td>Normalize</td>
<td>4-76</td>
</tr>
<tr>
<td>No Pk/Avg</td>
<td>4-77</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>4-78</td>
</tr>
<tr>
<td>Signaling Encoder</td>
<td>4-79</td>
</tr>
<tr>
<td>Function Generator Encoder</td>
<td>4-80</td>
</tr>
<tr>
<td>AFGen2 Freq</td>
<td>4-80</td>
</tr>
<tr>
<td>AFGen2 To</td>
<td>4-80</td>
</tr>
<tr>
<td>Audio Out</td>
<td>4-81</td>
</tr>
<tr>
<td>FM Coupling</td>
<td>4-81</td>
</tr>
<tr>
<td>Sine Units</td>
<td>4-81</td>
</tr>
<tr>
<td>Waveform</td>
<td>4-81</td>
</tr>
<tr>
<td>Tone Sequence Encoder</td>
<td>4-82</td>
</tr>
<tr>
<td>AFGen2 To</td>
<td>4-82</td>
</tr>
<tr>
<td>Audio Out</td>
<td>4-82</td>
</tr>
<tr>
<td>Bursts</td>
<td>4-83</td>
</tr>
<tr>
<td>FM Coupling</td>
<td>4-83</td>
</tr>
<tr>
<td>Pre-Emp</td>
<td>4-83</td>
</tr>
<tr>
<td>Send</td>
<td>4-83</td>
</tr>
<tr>
<td>Send Mode</td>
<td>4-83</td>
</tr>
<tr>
<td>Standard</td>
<td>4-83</td>
</tr>
<tr>
<td>Stop</td>
<td>4-83</td>
</tr>
<tr>
<td>Symbol Definition</td>
<td>4-84</td>
</tr>
<tr>
<td>Symbol Sequence</td>
<td>4-84</td>
</tr>
<tr>
<td>DTMF Sequence Encoder</td>
<td>4-85</td>
</tr>
<tr>
<td>AFGen2 To</td>
<td>4-86</td>
</tr>
<tr>
<td>Audio Out</td>
<td>4-86</td>
</tr>
<tr>
<td>Bursts</td>
<td>4-86</td>
</tr>
<tr>
<td>FM Coupling</td>
<td>4-86</td>
</tr>
<tr>
<td>On Time</td>
<td>4-86</td>
</tr>
<tr>
<td>Off Time</td>
<td>4-86</td>
</tr>
<tr>
<td>Pre-Emp</td>
<td>4-87</td>
</tr>
<tr>
<td>Send</td>
<td>4-87</td>
</tr>
<tr>
<td>Send Mode</td>
<td>4-87</td>
</tr>
<tr>
<td>Standard</td>
<td>4-87</td>
</tr>
<tr>
<td>Stop</td>
<td>4-87</td>
</tr>
<tr>
<td>Symbol Frequencies (Hz)</td>
<td>4-88</td>
</tr>
<tr>
<td>Twist</td>
<td>4-88</td>
</tr>
<tr>
<td>CDCSS Encoder</td>
<td>4-89</td>
</tr>
<tr>
<td>The CDCSS Data Stream</td>
<td>4-90</td>
</tr>
<tr>
<td>AFGen2 To</td>
<td>4-91</td>
</tr>
<tr>
<td>Audio Out</td>
<td>4-91</td>
</tr>
<tr>
<td>Bursts</td>
<td>4-91</td>
</tr>
<tr>
<td>Code</td>
<td>4-91</td>
</tr>
<tr>
<td>Data Rate</td>
<td>4-91</td>
</tr>
<tr>
<td>FM Coupling</td>
<td>4-91</td>
</tr>
<tr>
<td>Polarity</td>
<td>4-92</td>
</tr>
<tr>
<td>Send</td>
<td>4-92</td>
</tr>
</tbody>
</table>
Send Mode 4-92
Standard 4-92
Stop .. 4-92
TOC Time 4-92
Digital Paging Encoder 4-93
AFGen2 To 4-93
Audio Out 4-93
Bursts 4-94
Data Rate 4-94
Error Bit 4-94
FM Coupling 4-94
Function 4-94
Msgg Length 4-94
Pager Alpha-Numeric Message 4-94
Pager Code 4-95
Pager Numeric Message 4-95
Pager Type 4-95
Polarity 4-95
Send .. 4-95
Send Mode 4-95
Standard 4-95
Stop .. 4-95
AMPS-TACS NAMPS-NTACS Encoder 4-96
Using This Information 4-96
Automated Test Software 4-96
Encoder/Decoder Interaction 4-97
Control and Voice Channel Identifiers . 4-97
Encoder Mode Differences 4-97
AFGen2 To 4-101
Audio Out 4-101
Busy/Idle (FOCC) 4-101
B/I Delay (FOCC) 4-101
Bursts 4-102
Channel 4-102
Data Level 4-102
Data Rate 4-102
DSAT (FVC) 4-102
Filler (FOCC) 4-103
FM Coupling 4-103
Message (FOCC) 4-103
Message (FVC) 4-103
Message (FVC) 4-103
Message/DST (FVC) 4-104
Polarity 4-104
SAT Freq (FVC) 4-105
SAT Level (FVC: AMPS-TACS) 4-105
Send .. 4-105
Send Filler (FOCC) 4-105
Send DSAT (FVC) 4-105
Send Mode 4-106
Standard
Stop DSAT (FVC)
Stop Filler (FOCC)
Nordic Mobile Telephone (NMT) Encoder
LTR Encoder
Radio Test Examples
Performing Channel Changes
Automated Test Software
AFGen2 To
Area 1, Area 2
Audio Out
Bursts
Data Rate
FM Coupling
Free 1, Free 2
Goto 1, Goto 2
Home 1, Home2
ID 1, ID 2
LTR message
Polarity
Send
Send Mode
Standard
Stop
EDACS Encoder
Automated Test Software
Testing EDACS Mobiles
Mobile Receiver Test Procedure
AFGen2 To
Audio Out
Control Channel, Number
Control Channel, RX Frequency
Control Channel, TX Frequency
Data Rate
FM Coupling
Group ID
Handshake
Logical ID
Polarity
RX Test
Signaling Dev
Site ID
Standard
Status
Sub-Audible Dev
Stop
Working Channel, Number
Working Channel: RX Frequency
Working Channel: TX Frequency

Contents-8
MPT 1327 Encoder .. 4-122
Manually Testing MPT 1327 Radios 4-123
Using Automated Test Software 4-123
System Identity .. 4-124
Radio Unit Under Test 4-124
Simulated Calling Unit 4-124
Control Channel .. 4-125
Traffic Channel ... 4-125
Test Mode ... 4-125
Aloha Number .. 4-126
Address Qualifier 4-126
Undisplayed Controls 4-127
Signaling Decoder 4-137
Function Generator Decoder 4-138
Decoding Considerations 4-138
AF Ain In ... 4-139
Arm Meas .. 4-139
Frequency .. 4-139
Gate Time .. 4-139
Input Level .. 4-139
Stop Meas .. 4-140
Single/Cont ... 4-140
Trig Level ... 4-140
Tone Sequence Decoder 4-141
AF Ain In ... 4-141
Arm Meas .. 4-141
Freq .. 4-142
Freq Error ... 4-142
Gate Time .. 4-142
Input Level .. 4-142
Off Time .. 4-142
On Time .. 4-142
Single/Cont ... 4-143
Stop Meas .. 4-143
Sym .. 4-143
Trig Level ... 4-143
Dual-Tone Multi-Frequency (DTMF) Decoder 4-144
Measurement Limits 4-144
AF Ain In ... 4-145
Arm Meas .. 4-145
Gate Time .. 4-145
Input Level .. 4-145
Hi Tone ... 4-146
Lo Tone ... 4-146
Off Time .. 4-146
On Time ... 4-146
Single/Cont ... 4-146
Stop Meas .. 4-146
Sym .. 4-146
Continuous Digital Controlled Squelch System Decoder 4-147
AF Analyzer Settings .. 4-147
Interpreting Decoded Data 4-147
AF Anl In ... 4-148
Arm Meas ... 4-148
Code (oct) .. 4-148
Data (bin) ... 4-148
Data Rate ... 4-148
Input Level .. 4-149
Polarity ... 4-149
Single/Cont .. 4-149
Stop Meas ... 4-149
Trig Level ... 4-149
Digital Paging Decoder 4-150
AF Anl In ... 4-150
Arm Meas ... 4-150
Data Display ... 4-150
Data Rate ... 4-151
Display Page ... 4-151
Gate Time ... 4-151
Input Level .. 4-151
Number of Pages ... 4-151
Polarity ... 4-152
Single/Cont .. 4-152
Standard ... 4-152
Stop Meas ... 4-152
Trig Level ... 4-152
AMPS-TACS NAMPS-NTACS Decoder 4-153
Decoder Mode Differences 4-153
Interaction With the Encoder 4-154
Interpreting Decoded Data 4-156
NAMPS-NTACS Reverse Voice Channel Measurements .. 4-157
AF Anl In ... 4-158
Arm Meas ... 4-158
Channel .. 4-158
Data (hex) (AMPS-TACS) 4-158
Gate Time ... 4-158
Input Level .. 4-159
Measure (NAMPS-NTACS: RVC) 4-159
Num of Bits .. 4-159
Polarity ... 4-159
RECC Data (NAMPS-NTACS: RECC) 4-160
Single/Cont .. 4-160
Stop Meas ... 4-160
Trig Level ... 4-160
Trigger Pattern (bin) 4-161
NMT Decoder/Encoder 4-162
Operating Steps .. 4-162
Standard Equivalents 4-163
Manual Testing of NMT Radios 4-163
Automated NMT Radio Tests 4-164
Terms Used in This Section 4-164
Required Test Set Settings 4-165
Special Frame Suffixes 4-166
NMT Encoder 4-167
General Encoder Operation 4-168
Access Channel Number 4-169
Access Channel Power 4-169
Add Info 4-170
AFGen2 To 4-171
Alarm Level Low 4-171
Alarm Level High 4-171
Area # 4-171
Audio Out 4-171
BS Identity 4-172
Batt Save 4-172
Calling Channel Number 4-172
Calling Channel Power 4-173
Data Rate 4-173
DUT 4-173
FM Coupling 4-173
Meas Ch # 4-173
Meas Field Strength 4-174
Mgmt/Maint 4-174
MSN 4-174
Phi Signal 4-174
Password 4-174
Pre-Emp 4-174
SIS Challenge 4-175
SIS Response 4-175
Standard 4-175
TCI 4-176
Traffic Area - Alt 4-176
Traffic Area - Main 4-176
Traffic Channel (Alt) Number 4-176
Traffic Channel (Alt) Power 4-177
Traffic Channel (Main) Number 4-177
Traffic Channel (Main) Power 4-177
NMT Decoder 4-178
General Decoder Operation 4-178
Frame Log 4-179
AF Anl In 4-180
Exit Status 4-180
First Frame 4-180
Input Level 4-180
Load Test 4-181
Num Frames 4-181
Run Test 4-181
Single/Cont. 4-181
Stop Test 4-181
Standard 4-182
Trig Level 4-182
Creating NMT Tests 4-183
 Programming Overview 4-183
 Using Direct Command Entry 4-184
 Programming Using an External Computer 4-185
Downloading Programs 4-186
Program Command Syntax 4-187
LTR Decoder 4-190
 Decoding Mobile Radio Signaling Data 4-191
 Decoding Repeater Signaling Data 4-192
 AF A nl In 4-193
 Arm Meas 4-193
 Data 4-193
 Data Rate 4-193
 Gate Time 4-193
 Input Level 4-194
 Polarity 4-194
 Single/Cont 4-194
 Standard 4-194
 Stop Meas 4-194
 Trig Level 4-194
EDACS Decoder 4-195
 EDACS Transmitter Testing 4-196
 Transmitter Test Procedure 4-196
 AF A nl In 4-199
 Arm Meas 4-199
 Data 4-199
 Input Level 4-199
 Polarity 4-199
 Radio/Repeater 4-199
 RX Test 4-199
 Single/Cont 4-200
 Standard 4-200
 Stop Meas 4-200
MPT 1327 Decoder 4-201
 Manually Decoding MPT 1327 Signals 4-201
 Decoder Triggering 4-202
 Detecting and Querying Messages ... 4-203
RADIO INTERFACE (Option 020) 4-205
 Input Data 4-206
 Interrupt 1 4-206
 See also 4-206
 Interrupt 2 4-206
 I/O Config 4-206
 Output Data 4-207
 Parallel Data In 4-207
 Send Data 4-207
 Strobe Pol 4-207
CONFIGURE 4-209
Antenna In	4-210
Base Freq (User Defined)	4-210
Beeper	4-211
Chan Space (User Defined)	4-211
Date	4-212
Duplex Out	4-212
Firmware	4-213
(Gen)-(Anl)	4-213
(Gen)-(Anl) (User Defined)	4-213
Intensity	4-214
Low Battery	4-214
Notch Coupl	4-214
Range Hold	4-215
RF Chan Std	4-216
RF Display	4-217
RF Gen Volts	4-218
RF In/Out	4-218
RF Level Offset	4-219
RF Offset	4-219
RX/TX Cntl	4-220
Serial No.	4-220
Time	4-220
Total RAM	4-220
SERVICE	4-221
Counter Connection	4-221
Frequency	4-221
Gate Time	4-221
Latch	4-222
RAM Initialize	4-222
Value	4-222
Voltage	4-222
Voltmeter Connection	4-222
MESSAGE	4-223
TESTS Screens	4-225
Tests Subsystem Screens	4-226
TESTS Subsystem Screens	4-226
TESTS (Main Menu)	4-227
Cnfg External Devices	4-227
Continue	4-227
Description	4-227
Exec Execution Cond	4-227
Freq Channel Information	4-227
IBASIC IBASIC Cntrl	4-227
Library	4-227
Parm Test Parameters	4-227
Print Printer Setup	4-228
Proc Save/Delete Procedure	4-228
Program	4-228
Run Test	4-228
Select Procedure Filename	4-228
Select Procedure Location	4-228

Contents-13
Seqn Order of Tests .. 4-228
Spec Pass/Fail Limits .. 4-228
TESTS (Channel Information) 4-229
Delete Ch .. 4-229
Insert Ch .. 4-229
Print All ... 4-230
Main Menu ... 4-230
TESTS (Test Parameters) 4-231
Print All ... 4-231
Main Menu ... 4-231
TESTS (Order of Tests) 4-232
All Chans? .. 4-233
Delet Stp .. 4-233
Insrt Stp .. 4-233
Main Menu ... 4-233
Print All ... 4-233
Step# .. 4-233
Test Name ... 4-233
TESTS (Pass/Fail Limits) 4-234
Check .. 4-235
Lower Limit ... 4-235
Main Menu ... 4-235
Print All ... 4-235
Spec# ... 4-235
Units ... 4-235
Upper Limit ... 4-235
TESTS (Save/Delete Procedure) 4-236
Code Location ... 4-236
Enter Procedure Filename 4-236
Main Menu ... 4-237
Pass Word .. 4-237
Procedure Library ... 4-237
Select Procedure Location 4-237
TESTS (Execution Conditions) 4-238
Autostart Test Procedure on Power-Up 4-238
Continue .. 4-239
If Unit-Under-Test Fails 4-239
Main Menu ... 4-239
Output Heading ... 4-239
Output Results To ... 4-239
Output Results For .. 4-239
Run Test ... 4-240
Test Procedure Run Mode 4-240
TESTS (External Devices) 4-241
Addr .. 4-242
Calling Name ... 4-242
Delet Ins .. 4-242
External Disk Specification 4-242
Insrt Ins ... 4-242
Inst# ... 4-242
Main Menu ... 4-242

Contents-14
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4-243</td>
</tr>
<tr>
<td>Options</td>
<td>4-243</td>
</tr>
<tr>
<td>Print All</td>
<td>4-243</td>
</tr>
<tr>
<td>TESTS (Printer Setup)</td>
<td>4-244</td>
</tr>
<tr>
<td>Continue</td>
<td>4-244</td>
</tr>
<tr>
<td>FF at End</td>
<td>4-244</td>
</tr>
<tr>
<td>FF at Start</td>
<td>4-244</td>
</tr>
<tr>
<td>Lines/Page</td>
<td>4-245</td>
</tr>
<tr>
<td>Main Menu</td>
<td>4-245</td>
</tr>
<tr>
<td>Model</td>
<td>4-245</td>
</tr>
<tr>
<td>Output Heading</td>
<td>4-245</td>
</tr>
<tr>
<td>Output Results To</td>
<td>4-245</td>
</tr>
<tr>
<td>Output Results For</td>
<td>4-245</td>
</tr>
<tr>
<td>Printer Address</td>
<td>4-245</td>
</tr>
<tr>
<td>Printer Port</td>
<td>4-245</td>
</tr>
<tr>
<td>Run Test</td>
<td>4-245</td>
</tr>
<tr>
<td>TESTS (IBASIC Controller)</td>
<td>4-246</td>
</tr>
<tr>
<td>Clr Scr</td>
<td>4-247</td>
</tr>
<tr>
<td>Continue</td>
<td>4-247</td>
</tr>
<tr>
<td>Main Menu</td>
<td>4-247</td>
</tr>
<tr>
<td>Run</td>
<td>4-247</td>
</tr>
<tr>
<td>Sngl Step</td>
<td>4-247</td>
</tr>
<tr>
<td>ROM Programs</td>
<td>4-248</td>
</tr>
<tr>
<td>Using the Signal Strength Meter</td>
<td>4-248</td>
</tr>
<tr>
<td>Securing a Test Procedure</td>
<td>4-249</td>
</tr>
<tr>
<td>Clearing RAM</td>
<td>4-249</td>
</tr>
<tr>
<td>HELP</td>
<td>4-251</td>
</tr>
<tr>
<td>I/O CONFIGURE</td>
<td>4-253</td>
</tr>
<tr>
<td>Data Length</td>
<td>4-254</td>
</tr>
<tr>
<td>HP-IB Address</td>
<td>4-254</td>
</tr>
<tr>
<td>IBASIC Echo</td>
<td>4-254</td>
</tr>
<tr>
<td>Inst Echo</td>
<td>4-254</td>
</tr>
<tr>
<td>Mode</td>
<td>4-254</td>
</tr>
<tr>
<td>Parity</td>
<td>4-254</td>
</tr>
<tr>
<td>Rcv Pace</td>
<td>4-255</td>
</tr>
<tr>
<td>Save/Recall</td>
<td>4-255</td>
</tr>
<tr>
<td>Serial Baud</td>
<td>4-255</td>
</tr>
<tr>
<td>Serial In</td>
<td>4-256</td>
</tr>
<tr>
<td>Stop Length</td>
<td>4-256</td>
</tr>
<tr>
<td>Xmt Pace</td>
<td>4-256</td>
</tr>
<tr>
<td>PRINT CONFIGURE</td>
<td>4-257</td>
</tr>
<tr>
<td>Abort Print</td>
<td>4-257</td>
</tr>
<tr>
<td>FF at End</td>
<td>4-257</td>
</tr>
<tr>
<td>FF at Start</td>
<td>4-257</td>
</tr>
<tr>
<td>Lines/Page</td>
<td>4-257</td>
</tr>
<tr>
<td>Model</td>
<td>4-258</td>
</tr>
<tr>
<td>Printer Address</td>
<td>4-258</td>
</tr>
<tr>
<td>Print Data Destination</td>
<td>4-258</td>
</tr>
<tr>
<td>Printer Port</td>
<td>4-258</td>
</tr>
<tr>
<td>Print Title</td>
<td>4-258</td>
</tr>
<tr>
<td>ADJACENT CHANNEL POWER</td>
<td>4-259</td>
</tr>
</tbody>
</table>
How the Test Set Measures Adjacent Channel Power

(ACP) .. 4-260
ACP Meas 4-261
AFGen1 Freq .. 4-261
AFGen1 To .. 4-261
Carrier Ref ... 4-262
Channel BW ... 4-262
Ch Offset .. 4-263
Ext TX key ... 4-263
Input Atten .. 4-263
Input Port ... 4-264
Lower and Upper ACP [Ratio:Level] 4-264
Res BW ... 4-265
Tune Freq .. 4-265
Tune Mode .. 4-265
TX Freq Error/TX Frequency 4-265
TX Power ... 4-266
TX Pwr Meas (HP 8920B Only) 4-266
TX Pwr Zero .. 4-266

5. Connector, Key, and Knob Descriptions

Connector Descriptions 5-1
ANT IN ... 5-1
AUDIO IN .. 5-2
AUDIO MONITOR OUTPUT 5-3
AUDIO OUT .. 5-3

(Chassis Ground) 5-3
CRT VIDEO OUTPUT 5-3
DC CURRENT MEASUREMENT 5-4
DC INPUT .. 5-4
Digital Test Connections 5-5
Control I/O, CW RF OUT, DET OUT, IQ RF IN, 114.3 MHz OUT 5-5
DUPLEX OUT 5-5
EXT SCOPE TRIGGER INPUT 5-6
HEADPHONE (HP 8921A only) 5-6
HP-IB .. 5-6
MEMORY CARD Slot 5-6
MIC/ACC ... 5-7
To Use the Microphone 5-7
MODULATION INPUT 5-9
Parallel Port 5-9
RADIO INTERFACE 5-10
RF IN/OUT 5-12
SERIAL PORT 5-13
10 MHz REF INPUT 5-15
10 MHz REF OUTPUT 5-15
Key Descriptions 5-16
DATA Keys 5-16
DATA FUNCTIONS Keys 5-16

Contents-16
6. Modifications, Accessories, Manuals, Support
 Modifications .. 6-1
 Hardware Upgrades and Modifications 6-1
 Firmware Upgrades 6-3
 External Monitor 6-3
 Accessories .. 6-4
 Manuals (English and non-English) 6-5
 Radio Test Software 6-6
 Power Cables .. 6-7
 HP Support for Your Instrument 6-12
 Customer Training 6-12

Messages
 General Information About Error Messages Messages-1
 Positive Numbered Error Messages Messages-1
 IBASIC Error Messages Messages-2
 HP-IB Error Messages Messages-2
 Text Only Error Messages Messages-3
 The Message Display Messages-3
 Non-Recoverable Firmware Error Messages-4
 Text Only Error Messages Messages-5

Index
Figures

1-1. Overview of Screens ... 1-1
1-2. The “To Screen” and “More” Menus 1-2
1-3. Move the Cursor to Select Fields or Change Screens 1-3
1-4. Different Types of Fields 1-4
1-5. Connecting a Radio to the Test Set 1-7
1-6. Instrument Functional Diagram (1 of 2) 1-8
1-7. Instrument Functional Diagram (2 of 2) 1-9
3-1. Example of How Global Fields Work 3-1
3-2. Example of How Priority Fields Work 3-3
3-3. Where To Access Measurements 3-4
3-4. An Example of Pre-assigned Local User Keys 3-21
4-1. The RX Test Screen 4-3
4-2. The RX TEST Fields and Their Functions 4-4
4-3. The TX Test Screen 4-11
4-4. TX TEST Functional Block Diagram 4-12
4-5. The DUPLEX Test Screen 4-21
4-6. DUPLEX TEST Functional Block Diagram 4-22
4-7. The RF Generator Screen 4-31
4-8. RF GENERATOR Functional Block Diagram 4-32
4-9. The RF Analyzer Screen 4-39
4-10. RF ANALYZER Functional Block Diagram 4-40
4-11. The AF Analyzer Screen 4-49
4-12. AF ANALYZER Functional Block Diagram 4-50
4-13. The Oscilloscope Screen and Menus 4-59
4-14. Oscilloscope Input Indicator 4-60
4-15. Reading Measurement Results at the Oscilloscope's Markers ... 4-61
4-16. Oscilloscope Main Functions 4-62
4-17. Oscilloscope Triggering 4-63
4-18. Setting Markers on the Oscilloscope 4-65
4-19. The Spectrum Analyzer Screen and Menus 4-67
4-20. Reading Measurement Results at the Spectrum Analyzer's Markers ... 4-69
4-21. Spectrum Analyzer Main Functions 4-70
4-22. Using Spectrum Analyzer with the RF Generator 4-72
4-23. Using the Spectrum Analyzer with the Tracking Generator ... 4-73
4-24. Setting Markers on the Spectrum Analyzer 4-75
4-25. Spectrum Analyzer Auxiliary Functions 4-76
4-26. The Function Generator Encoder Mode Screen 4-80
4-27. The Tone Sequence Encoder Mode Screen 4-82
4-28. The DTMF Sequence Encoder Mode Screen 4-85
4-29. The CDCSS Encoder Mode Screen 4-89
4-30. CDCSS Data Stream Bit Assignments 4-90
4-31. The Digital Paging Encoder Mode Screen 4-93
4-32. AMPS-TACS/NAMPS-NTACS - Forward Control Channel (FOCC) .. 4-98
4-33. AMPS-TACS/NAMPS-NTACS FOCC Message and Filler Data Format .. 4-98
4-34. AMPS-TACS Forward Voice Channel (FVC) Encoder 4-99
4-35. AMPS-TACS FVC Message Data Output Format 4-99
4-36. NAMPS-NTACS Mode - Forward Voice Channel (FVC) Screen .. 4-100
4-37. NAMPS-NTACS FVC Message Data Output Format 4-100
4-38. The LTR Trunked Radio Encoder Mode Screen 4-108
4-39. How Message 1 & Message 2 Fields Are Used to Create Trunking Data .. 4-108
4-40. The EDACS Trunked Radio Encoder Mode Screen 4-114
4-41. The MPT 1327 Trunked Radio Encoder Mode Screen 4-122
4-42. Sequence of Events in Assembling a Signaling Message 4-130
4-43. Forward Control Channel in Control Mode and Not Sending .. 4-131
4-44. Forward Control Channel in Control Mode and Sending 4-133
4-45. Traffic Channel Message Generation 4-134
4-46. Forward Control Channel Message Structure 4-135
4-47. Traffic Channel Message Structure 4-135
4-48. The Tone Sequence Decoder Screen 4-138
4-49. The Tone Sequence Decoder Screen 4-141
4-50. The DTMF Decoder Screen ... 4-144
4-51. The CDCSS Sequence Decoder Screen 4-147
4-52. The Digital Paging Decoder Screen 4-150
4-53. AMPS-TACS Ctrl/Voice and NAMPS-NTACS Ctrl Channel Decoder .. 4-153
4-54. The NAMPS-NTACS Voice Channel Decoder 4-154
4-55. Decoding the Reverse Control Channel (RECC) Data 4-154
4-56. Decoding AMPS-TACS Reverse Voice Channel (RVC) Data 4-155
4-57. Decoding NAMPS-NTACS Reverse Voice Channel (RVC) Data 4-155
4-58. The NMT Encoder Screen .. 4-167
4-59. The NMT Decoder Screen ... 4-178
4-60. The LTR Trunked Radio Decoder Screen 4-190
4-61. The EDACS Trunked Radio Decoder Screen 4-195
4-62. The Radio Interface Screen ... 4-205
4-63. The Configure Screen .. 4-209
4-64. The TESTS (Main Menu) Screen 4-227
4-65. The TESTS (Channel Information) Screen 4-229
4-66. The TESTS (Test Parameters) Screen 4-231
4-67. The TESTS (Order of Tests) Screen 4-232
4-68. The TESTS (Pass/Fail Limits) Screen 4-234
4-69. The TESTS (Save/Delete Procedure) Screen 4-236
4-70. The TESTS (Execution Conditions) Screen
4-71. The TESTS (External Devices) Screen
4-72. The TESTS (Printer Setup) Screen
4-73. The TESTS (IBASIC Controller) Screen
4-74. Signal Strength Meter Screen
4-75. The I/O Configure Screen
4-76. The Printer Configuration Screen
4-77. The Adjacent Channel Power Screen
4-78. Relationship between Tune Freq, Ch Offset, and Channel BW fields
5-1. MIC/ACC Connections
5-2. RJ-11 Serial Port Connections
Tables

3-1. Priority RX TEST and TX TEST Fields 3-2
3-2. AF Measurements Selected by AF Analyzer Input
 Setting ... 3-6
3-3. Equivalent Front-Panel Control Characters 3-25
4-1. Aloha number encoding for 4-bit aloha numbers .. 4-126
4-2. Delay Parameter to Actual Response Delay 4-127
4-3. Signaling Mode Transitions Table 4-135
4-4. NMT Additional Information Bits 4-170
4-5. Valid Channel Assignments 4-172
4-6. Triggering the MPT 1327 Decoder 4-202
Get Started

This Test Set contains several radio test instruments in one package. Controls for these instruments are arranged on several screens.

Figure 1-1. Overview of Screens
How Do I Access Different Screens?

The general-purpose radio-test screens are accessed using the SCREEN CONTROL keys: RX TX DUPLEX

Screens that contain specific instrument functions, such as the RF Analyzer or Oscilloscope, are selected from the To Screen and More menus in the bottom right corner of the screen.

Use this key to perform a transmitter test or to monitor and measure an RF signal.

Use this key to perform a receiver test or to generate a modulated RF signal.

Use this key to perform DUPLEX radio tests.

Use the To Screen and More menus to access other test instrument functions.

Figure 1-2. The “To Screen” and “More” Menus

1-2 Get Started
Which Screen Should I Use?

Choosing a Screen

RX TEST Use this screen to test receivers. You can generate RF signals, and measure various receiver audio parameters (SINAD, AF Frequency, AC Level ...).

TX TEST Use this screen to test transmitters. Transmitter power, frequency, and frequency error are displayed, as well as several modulation measurements.

DUPLEX TEST Use this screen to generate and analyze RF and audio signals. All the functions required to test most duplex radios are available in this screen.

To Screen Menu Use the To Screen menu to access several other screens that generate and analyze RF and audio signals.

More Menu Use the More menu to access additional screens. All the screens are described in Chapter 4.

What Controls the Instrument’s Functions?

Each screen is divided into fields containing instrument settings or measurements. The Cursor Control knob moves the cursor to every field on the screen that can be changed. By positioning the cursor in front of a field and pushing the knob to select that field, you can alter that field’s setting.

Figure 1-3. Move the Cursor to Select Fields or Change Screens
How Do I Change A Field's Setting?

Figure 1-4. Different Types of Fields
1 - Units-of-measure can be changed to display measurements in different values or magnitudes. To change the units, position the cursor in front of the unit and press a key labeled with a different unit (such as W). If the new unit is valid, the measurement value is displayed in the new units. Refer "To Change the Measurement's Unit-of-Measure" in Chapter 3.

2 - Underlined immediate action fields provide a choice of two settings. Push the Cursor Control knob or the [ENTER] key to move the underline under the desired choice. The underlined setting is immediately activated when selected.

3 - One-of-many fields display a list of choices when selected. Select a new setting or measurement from the list. Refer to "Displaying Measurements" in Chapter 3.

4 - Numeric-entry fields contain values for settings like External Load Resistance and RF Generator Frequency. Change the value by first selecting the field and then turning the knob, or by positioning the cursor in front of the field and using the DATA keys to enter a number. Refer to "Entering and Changing Numbers" in Chapter 3.

5 - Immediate action fields perform a function when they are selected. For instance, when one of the entries in the To Screen menu is selected, the screen immediately changes to the new screen.
How do I Verify that the Test Set is Operating Properly?

If your Test Set powers-up and displays the RX TEST screen, but you suspect an instrument problem, use the Instrument Quick Check to verify operation of the basic instrument functions.

Instrument Quick Check

1. Remove any connected cables (except for AC or DC power).
2. Turn instrument power on (if it is not already on).
3. Press **Preset**.
4. Press ASSIGN (shifted function), **ENTER** to assign the pre-defined USER keys.
5. Press **DUPLEX**, **k3**, **+/—**, **4**, **6**, **ENTER** to set the RF Generator Amplitude.
6. Press **k5**, and position the cursor in front of FM Demod at top of the Choices menu.
7. Press **ENTER** to select the FM Demodulator for the AF Analyzer’s input.
8. Turn the VOLUME knob clockwise to hear a 1 kHz tone (default for AFGen1 Freq).
9. The Tx Frequency display should indicate 100.000000 MHz.
10. FM Deviation should be about 2.1 kHz (RMS).
11. SINAD should be about 40 dB.
12. Access the OSCILLOSCOPE screen using the To Screen menu.
13. Two complete sinewave cycles should be displayed.
14. Deviation should be 3 kHz peak (1.5 units above the center line).
15. Access the SPECTRUM ANALYZER (if your instrument has this option) using the To Screen menu.
16. A 100 MHz FM carrier should be displayed.
17. The signal level should be approximately 0 dBm when reading the Lv1 display. The level will vary with the marker’s position.

If no failure is indicated by this test, but you still suspect a problem, refer to the Performance Tests information in the Assembly Level Repair Manual.
How Do I Connect My Radio?

Note

The RF IN/OUT port should be used for all transmitter tests when the radio is connected directly to the Test Set. (Transmitter Power can only be measured using this port). Off-the-air measurements can be made using the highly-sensitive ANT IN port.

Caution

Overpower Damage — Refer to the Test Set’s front panel for maximum input power level. Exceeding this level can cause permanent instrument damage.

1. The MIC/ACC connector is described in chapter 5.
2. AUDIO IN LO is used with double-ended amplifiers. See chapter 4, AF ANALYZER, for details.

Figure 1-5. Connecting a Radio to the Test Set

Get Started 1-7
Figure 1-6. Instrument Functional Diagram (1 of 2)
Figure 1-7. Instrument Functional Diagram (2 of 2)
Configuring Your Test Set

The CONFIGURE and I/O CONFIGURE screens contain a number of settings that are used to alter instrument operation and hardware communication settings. The HP-IB address, screen intensity, serial communication parameters, and several other settings, are changed in these screens.

Most CONFIGURE and I/O CONFIGURE screen entries are saved when the instrument is turned off.

The following configuration information discusses general operating information for some of the fields in these screens. Refer to Chapter 4 for more information on using the rest of these screen's functions.

To Set Screen Intensity

1. Access the CONFIGURE screen.
2. Select the Intensity field.
3. Rotate the knob to change the setting (1=dim, 8=bright).
To Set RF Voltage Interpretation (50Ω/emf)

1. Access the CONFIGURE screen.
2. Position the cursor in front of the RFGen Volts field.
3. Press the Cursor Control knob or press ENTER to select 50 Ω or emf.

Voltage settings can control either:
- the voltage across a 50 Ω load, or
- the open circuit voltage (emf).

This setting affects the RF Generator and Tracking Generator amplitudes.

To Set the Date and Time

1. Access the CONFIGURE screen.
2. Select the date field and use the DATA keys to enter the date in the format shown below the field.
3. Select the time field and use the DATA keys to enter the time in the format shown below the field.

The Test Set has a built-in clock that keeps track of the date and time. It is powered by an internal battery to keep it operating when the instrument is off.
To Change the Beeper Volume

1. Access the **CONFIGURE** screen.
2. Select the **Beeper** field to display the volume choices.
3. Select the desired choice.

The beeper alerts you to important operating and measurement conditions. It beeps any time a message is displayed at the top of the screen. These messages warn you of conditions such as exceeding the RF input level or trying to set a field to an unacceptable value. Therefore, it is recommended that you do not disable the beeper.

To Verify or Change the Low Battery Setting

1. Access the **CONFIGURE** screen.
2. The current time setting is shown under the **Low Battery** field.
3. Select that field to display a list of setting choices.
 a. Select the desired time, or
 b. Select **Disable** to eliminate the Low Battery warning.

The Low Battery warning system is used to alert you when you have not used any front-panel controls within a specified amount of time. This setting is only used with DC power. It does not actually monitor the DC supply voltage. Since batteries are most often used for a DC supply, this function helps you conserve power by reminding you that the Test Set is still turned on.

When the specified time has elapsed between front-panel entries, the Beeper sounds and a message appears at the top of the screen alerting you to the condition.

This setting is saved when the instrument is turned off.
Operating Overview

The information in this section discusses some frequently used operating features of the Test Set.

From reading Chapter 1, Getting Started, you should understand:
- What “fields” and “screens” are.
- How to use the Cursor Control knob to select different fields and screens.

Interaction Between Screens

![Diagram]

Figure 3-1. Example of How Global Fields Work

Most fields operate **globally**; changing the setting in any screen automatically changes that setting in all screens where it is available. AFGen1 Freq is an example of this field type.
Priority fields give the RX TEST and TX TEST screens priority control of their settings. No matter what these fields were set to in other screens, if the RX TEST or TX TEST screen is accessed, the field changes to whatever it was last set to in these screens. The RF Generator Amplitude is an example of this field type. These fields and their preset values are listed in Table 3-1.

Using your Test Set, duplicate the steps in Figure 3-2 to demonstrate how the Priority fields operate.

Table 3-1. Priority RX TEST and TX TEST Fields

<table>
<thead>
<tr>
<th>Priority Field</th>
<th>RX TEST</th>
<th>TX TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Gen Amplitude</td>
<td>Presets to -80 dBm (changeable)</td>
<td>Always Off</td>
</tr>
<tr>
<td>AFGen1 To</td>
<td>Presets to FM (changeable)</td>
<td>Always Audio Out</td>
</tr>
<tr>
<td>AF Anl In</td>
<td>Always Audio In</td>
<td>Presets to FM Demod (changeable)</td>
</tr>
<tr>
<td>Detector</td>
<td>Always RMS</td>
<td>Presets to Pk \pm Max (changeable)</td>
</tr>
<tr>
<td>De-emphasis</td>
<td>Always Off</td>
<td>Presets to 750μs (changeable)</td>
</tr>
<tr>
<td>AF Anl Measurement</td>
<td>Presets to SINAD (changeable)</td>
<td>Presets to Audio Freq (changeable)</td>
</tr>
</tbody>
</table>
1. Access the RX TEST screen and set the Amplitude to -50 dBm.

2. Access the RF GENERATOR screen and change the Amplitude to -75 dBm.

3. Return to the RX TEST screen. Notice that the Amplitude changes back to -50 dBm.

4. Return to the RF GENERATOR screen. The Amplitude is no longer where you set it in step 2 (-75 dBm).

Since the RX TEST screen has priority control over this field, the RF GENERATOR screen's Amplitude setting changed when RX TEST was accessed.

Figure 3-2. Example of How Priority Fields Work
Displaying Measurements

Figure 3-3. Where To Access Measurements
Displaying RF Measurements

Transmitter Frequency

TX Frequency is displayed when Tune Mode is set to Auto. (Refer to item (1) in figure 3—3.)

Transmitter Frequency Error

TX Freq Error is displayed when Tune Mode is set to Manual. (Refer to item (1) in figure 3—3.)

Transmitter Power

TX Power is only measured and displayed here when the Input Port is set to RF In. (Refer to item (2) in figure 3—3). If Ant (Antenna) is selected, the measurement is replaced by four dashes (- - - -).

You can measure low power levels on the Antenna port using the Spectrum Analyzer (optional on some Test Set models).

Refer to the TX Pwr Zero and TX Pwr Meas field descriptions for the TX TEST screen in chapter 4 for more information on measuring transmitter power.

Caution

Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the overpower circuit is triggered, remove the signal from the Antenna port and turn the Test Set off and on to reset it.
Displaying AF Measurements

FM Deviation, AM Depth, AC Level

The AF Anl In setting determines the AF Analyzer’s input and the measurement displayed in the top right corner of the measurement area. These measurements are available in the TX TEST, DUPLEX TEST, RF GENERATOR, RF ANALYZER, and AF ANALYZER screens. (Refer to item (3) in figure 3—3.)

Table 3-2.
AF Measurements Selected by AF Analyzer Input Setting

<table>
<thead>
<tr>
<th>Measurement</th>
<th>AF Anl In Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM Deviation</td>
<td>FM Demod, FM Mod</td>
</tr>
<tr>
<td>AM Depth</td>
<td>AM Demod, AM Mod</td>
</tr>
<tr>
<td>AC Level¹</td>
<td>SSB Demod, Audio In, Radio Int, Ext Mod, Mic Mod, Audio Out</td>
</tr>
</tbody>
</table>

¹ AC Level is also measured in the RX TEST screen, but always uses the AUDIO IN connector as the input. (Refer to item (5) in figure 3—3.)

SINAD, Distortion, SNR, AF Frequency, DC Level, DC Current

Selecting the currently-displayed measurement causes the To Screen menu to be replaced by a list of measurement choices. Select the new choice to replace the old measurement. These measurements are available in the RX TEST, TX TEST, DUPLEX TEST, RF GENERATOR, RF ANALYZER, and AF ANALYZER screens. (Refer to item (4) in figure 3—3.)

The Distortion measurement is only for a 1 kHz tone.

The SINAD measurement is normally shown using an analog-type meter and small digits, but can be changed to display in large digits only. (See “To Use the Analog METER Format”).

DC Current can only be measured using the optional rear-panel DC CURRENT MEASUREMENT connections.

Selecting SNR (Signal/Noise Ratio) turns off the other audio measurement. Refer to the field description in Chapter 4 for more information on making this measurement.

AF Power

AF Power is measured in the RX TEST screen by specifying the external load resistance, Ext Load R, and changing the unit of measure for the AC Level measurement to W (Watts), mW, or dBm. (The milliwatt (mW) unit is selected by pressing (SHIFT), (ENTER).) Refer to item (5) in figure 3—3.
To Make Beat Frequency Measurements

To set up the DUPLEX TEST screen for beat frequency oscillator measurements, set the "AF An1 In" field to "SSB Demod" and manually adjust the "Tune Freq" field to the desired carrier frequency.

To Change the Measurement’s Unit-of-Measure

1. Position the cursor in front of the present unit-of-measurement.
2. Press the key labeled with the desired unit.

All measurements allow you to change the associated unit-of-measure. For instance; the TX Power measurement is usually displayed in Watts, but can be changed to display in mW, dBm, V, mV, or dBμV.

Select mW by pressing [SHIFT] [ENTER].

For example; to display transmitter power in units of dBm instead of Watts:

1. Move the cursor in front of the unit-of-measure for the TX Power measurement (W).
2. Press [dBm]. The measurement value is changed immediately to display in dBm.

To Use the Analog METER Format

1. Position the cursor in front of the unit-of-measure for the measurement you want to display.
2. Press [SHIFT], METER to display the Meters menu in the lower-right corner of the screen.
3. Select On/Off to display the meter.
4. Repeat steps 1 and 2 to enter each meter end point and the meter intervals.
5. Repeat steps 1, 2, and 3 to cancel the METER function.

The METER function displays an equivalent analog display. (This is the SINAD measurement’s default state when the instrument is turned on or Preset). As the measurement is displayed graphically on the Meter, the value is also displayed in small digits below the Meter.

You can specify the high and low end points and display interval, or you can use the default Meter settings.

This function is only available for measurements displayed using the large digits, such as the measurements displayed in the RX TEST and TX TEST screens.
Entering and Changing Numbers

Values for numeric entry fields can be entered and changed using various methods, depending on your testing needs. The unit-of-measure for some of these fields can also be changed (such as changing the RF Generator Amplitude units from dBm to μV).

To Enter Numbers

1. Position the cursor in front of the numeric entry field to be changed.
2. Either:
 a. enter the number and unit-of-measure directly using the keypad, or
 b. press the Cursor Control knob or ENTER to highlight the field, and use the knob, or
 c. use the [] [] keys to increment or decrement the present value.

Number Formats

Numbers are entered using the decimal or hexadecimal system. The acceptable entries for each system are as follows:

- Decimal: 0-9, ., +/-, and EEX.
- Hexadecimal: 0-9 and A-F.

Entering Decimal Values

Decimal values are used for most numeric entry fields, such as the RF Gen Freq setting.

The [] key is used for entering negative numbers. For example; when entering the RF Generator Amplitude you can enter this sequence to set the value to -47 dBm:

```
+/  |  7  | dBm
```

EEX can be used when entering exponential notation. For example; to enter 1.25 x 10^5 kHz you could use the sequence:

```
| 1  | 2  | 5  | EEX | 2  | kHz
```

Entering Hexadecimal Values

Hexadecimal (Hex) values are used for entering some signaling parameters in the ENCODER, such as AMPS Filler data, and for specifying remote communications parameters, such as the RADIO INTERFACE Output Data. No unit-of-measure is associated with these values.

Hexadecimal values are either entered from the keypad (A-F are SHIFTed functions), or by using the Choices menu displayed when certain fields are selected (such as the AMPS Filler).
To Enter and Change the Unit-of-Measure

When a number is entered, the unit-of-measure is either specified or implied.

When the unit is implied, the current unit is used. For example; if the present RF Freq is 250 MHz, and you want to change it to 225 MHz, you would enter this sequence:

2 2 5 [ENTER]

When the unit is specified, the units change to whatever you specify. For example; if the present RF Gen Freq is set to 250 MHz, and you want to change it to 455 kHz, you would enter this sequence:

4 5 5 [kHz]

Changing the Unit-of-Measure for Settings

To change the present unit-of-measure, position the cursor in front of the field and press the key labeled with the desired unit. For example, position the cursor in front of the RF Gen Freq field and push [GHz] or [kHz] to display the setting in either of these units.

To Change the Increment/Decrement Settings

1. Move the cursor to the numeric entry field to be changed.

2. To change the current increment/decrement setting by a factor of 10, use the [INCR ÷10] or [INCR X10] keys.

3. To set a specific increment/decrement value, press [INCR SET], and enter the desired value.

4. Use the [+] and [-] keys or cursor knob to change the field's value by the increment value you set.

Using the Pre-Defined Increment/Decrement Keys

The [INCR ÷10] and [INCR X10] keys change the increment/decrement value by a factor of 10.

For example; if the Tune Freq presently changes by 10 MHz for every click of the knob or push of the [+] or [-] keys, pushing [INCR X10] once changes the increment value to 100 MHz.
Specifying An Increment Value

The \texttt{INC} key is used to assign a specific increment value. The increment value may use different units than the field you are incrementing/decrementing. For instance; if the RF Generator Amplitude setting is displayed in dBmV, you could increment in units of dB or mV.

To change the increment value;

- Move the cursor to the field to be changed.
- Press \texttt{INC SET}, and then enter the desired increment value and unit-of-measure.

Example of Setting an Increment Value

This example changes the \texttt{Tune Freq} in increments of 15 MHz.

1. Access the \texttt{TX TEST} screen and position the cursor in front of the \texttt{Tune Freq} field.
2. Press \texttt{[1] [0] [0], MHz} to set the frequency at 100 MHz.
3. Press \texttt{INC SET}, \texttt{[1] [5], MHz}.
4. Turn the Cursor Control knob. The field’s value changes by 15 MHz for each knob click.
Printing A Screen

To Print A Screen’s Contents

1. Connect a printer to the appropriate rear-panel connector.

2. Access the PRINT CONFIGURE screen from the More menu and set the Printer Port field to the appropriate type of printer connection.
 - If HP-IB is selected, enter the HP-IB Printer Address of the printer.

3. Select the type of printer you are using in the Model field. If your printer is not listed, configure your printer to emulate one that is listed.

4. Enter a Print Title using the knob, if desired. This text will appear at the top of your printout.

5. Display the screen you want to print and press (SHIFT). PRINT.

To interrupt printing, select the Abort Print field on the PRINT CONFIGURE screen.
Using Measurement Limit Indicators

The LO LIMIT and HI LIMIT functions are used to define a measurement “window” to alert you to measurements that are outside these limits. When limits are assigned, Lo and/or Hi appear by the measurement.

A measurement that goes above or below the defined limits causes three things to happen:

1. A message appears at the top of the screen indicating a limit was exceeded.
2. The Lo or Hi indicator by the measurement flashes.
3. The Beeper beeps if it is has been enabled in the CONFIGURATION screen.

Limits are helpful when you can’t watch the Test Set display while you are making an adjustment on the equipment you are testing or repairing. They are also a convenient way of alerting you to long-term measurement drift without having to observe the screen.

To Set A HI and/or LO LIMIT

1. Position the cursor in front of the unit-of-measure for the measurement you are setting limits for.
2. Press [SHIFT], LO LIMIT, and enter the measurements low limit value and unit-of-measure.¹
3. Press [SHIFT], HI LIMIT, and enter the measurements high limit value and unit-of-measure.¹

¹ The fundamental unit for the LIMITs does not have to be the same as the measurement’s units. For instance; when measuring AC Level in Volts, you can set HI and LO LIMITs in units of dBm if desired.
To Reset or Remove Limits

To reset a limit that has been exceeded:

1. Position the cursor in front of the unit-of-measure for the measurement you assigned the limit to.

2. Press \texttt{SHIFT}, LO LIMIT (or HI LIMIT), \texttt{ENTER}; or press \texttt{MEAS RESET}.

To remove a limit you have set:

1. Position the cursor in front of the unit-of-measure for the measurement you assigned the limit to.

2. Press \texttt{SHIFT}, LO LIMIT (or HI LIMIT), \texttt{ON/OFF}.

Example of Setting HI and LO LIMITs

This example sets limits for the \texttt{TX Freq Error} measurement. Limits are being set to indicate if a 100 MHz carrier varies more than \pm 10 kHz.

1. Position the cursor in front of the unit-of-measure for the \texttt{TX FREQ ERROR} measurement (the default is \texttt{kHz}).

2. Press \texttt{SHIFT}, LO LIMIT, \texttt{0} \texttt{1} \texttt{0}, \texttt{kHz}.

3. Press \texttt{SHIFT}, HI LIMIT, \texttt{1} \texttt{0}, \texttt{kHz}.
Averaging Measurements

The AVG (average) function allows you to display the average value of a number of measurements. You enter the number of measurement samples used to calculate and display the measurement average. This dampens the effects of rapidly changing measurements, providing a more usable measurement display.

To Use Measurement Averaging

1. Position the cursor in front of the measurement’s unit-of-measure.
2. Press (SHIFT), AVG. The default number of average samples is displayed below the measurement.
 a. Enter the desired number of measurement samples to be used for calculating the average, or
 b. Press (ON/OFF) to use the currently-displayed number of samples.
3. To turn Averaging off, position the cursor in front of the unit-of-measure and press (SHIFT), AVG, (ON/OFF).

When the Averaging function is first enabled, a numeric average is calculated and displayed each time a measurement is made. This continues until the specified number of samples is reached. From that point on, the Averaging function performs an exponential filtering operation that mimics an RC filter.

Because of the exponential response, any large measurement changes result in a displayed value that ramps up or down to the actual measured value.

Pressing (MEAS RESET) clears the measurement history for all measurements and starts the averaging process over.

For more information on the theory of this filtering technique, refer to the April 1986 issue of the HP Journal, page 24.

Example of Using Measurement Averaging

This example enables the SINAD measurement to be averaged using 25 samples.

1. Press (PRESET) and wait for the instrument to display the RX TEST screen.
2. Position the cursor in front of the unit-of-measure for the SINAD measurement (default is dB).
3. Press (SHIFT), AVG, 2 5, ENTER. Avg appears below the displayed measurement value to indicate that averaging is being used.
Setting A Measurement Reference

The REF SET function establishes a measurement reference point. This allows you to make a direct comparison between two measurement results, or between a measurement standard and the actual measurement results.

Referenced measurements are displayed in one of two ways, depending on the type of measurement:

Displayed value = Measurement − Reference. The difference between the measured value and the reference value is displayed in the same unit-of-measure.

or

Displayed value = Measurement ÷ Reference. A ratio of the measured value to the reference value is displayed in dB.

To Use the Present Value as a Reference

1. Position the cursor in front of the unit-of-measure for the measurement you want to set the reference for.
2. Press \textbf{SHIFT}, REF SET, \textbf{ENTER}.
3. \texttt{Ref} appears below the measurement.

The measurement displayed is now referenced to the measurement value present when the reference was set.

To Set a Specific Reference

1. Position the cursor in front of the unit-of-measure for the measurement you want to set the reference for.
2. Press \textbf{SHIFT}, REF SET.
3. Enter the Reference value.
4. \texttt{Ref} appears below the measurement value to indicate a reference has been set.

The measurement displayed is now referenced to the value you entered.
Saving and Recalling Instrument Setups

The (SAVE) and (RECALL) functions allow you to store different instrument setups and retrieve them later, eliminating the task of re-configuring the Test Set.

The number of available SAVE registers depends on how many changes were made to the BASE instrument setup for each save. (See "BASE Settings"). The smaller the number of changes, the greater the number of SAVE registers that can be used (typically over 200).

SAVE/RECALL register settings can be saved to several types of mass storage. This allows you to "back up" the settings in case you need to clear them from memory (see "Memory Considerations") for running large programs, or when a firmware upgrade is performed. Refer to the Save/Recall field description for the I/O CONFIGURE screen in chapter 4.

To Save an Instrument Setup

1. Use the More menu to access the I/O CONFIGURE screen and select the media to store the settings to using the Save/Recall field. (The default is internal memory.)
2. Make any changes to the instrument that you want to SAVE in a register.
3. Press [SHIFT], SAVE.
4. Use the DATA keys or the Save menu at the bottom right of the screen to enter the SAVE register name.

To Recall an Instrument Setup

1. Use the More menu to access the I/O CONFIGURE screen and select the media to recall settings from using the Save/Recall field. (The default is internal memory.)
2. Press [RECALL].
3. Use the knob to select the desired setup to be recalled from the Recall menu at the bottom right of the screen.

Example of Saving and Recalling a Measurement Setup

This example SAVES changes made to the RX TEST screen, and then RECALLS them. The register is saved to wherever the Save/Recall field is set to (Internal memory - unless you have changed it).

1. Access the RX TEST screen and set the RF Gen Freq to 500 MHz.
2. Set Amplitude to -35 dBm.
3. Press [SHIFT], SAVE. A prompt appears at the top of the screen asking you to enter a name.
4. Using the DATA keys, press 1 2 3, ENTER to assign a name to these changes.
5. Press **Preset** and wait for the instrument to return to normal operation.

6. If not already displayed, access the **RX TEST** screen. Notice that the RF **Gen Freq** and **Amplitude** settings are reset to their preset values.

7. Press **Recall**, 1 2 3, **ENTER**. The RF **Gen Freq** and **Amplitude** are changed to the settings you saved in register 123 (500 MHz and -35 dBm).
To Remove (Clear) an Individual SAVE Register

1. Specify where the register is stored using the Save/Recall field on the I/O CONFIGURE screen.

2. Press [RECALL].

3. Use the knob to position the cursor in front of the register to be removed from the Recall menu at the bottom right of the screen. The register name and percentage of SAVE memory occupied by that register are indicated at the very top of the screen.

4. Press [ON/OFF]. A prompt appears, asking if you want to delete the SAVE register.

5. Press [YES].

To Clear All SAVE Registers

- Press [RECALL].
- Use the knob to position the cursor in front of the *Clr All* entry in the Recall menu at the bottom right of the screen.
- Press the knob or [ENTER]. A prompt appears at the top of the screen to verify that you want to clear all registers.
- Press [YES].

Register Names
You can use any number, letter, or combination of numbers and letters as a name for storing instrument settings. For instance, if you want to save a setup for testing a “Vulcan7” radio, you can save the setting as “VULCAN7”.

Two register names are reserved for special purposes: POWERON and BASE.

POWERON Settings
When the Test Set is turned on, it uses a set of instrument setup parameters specified at the time of manufacture. You can have the instrument power up in a different state by making the desired changes to the original settings, and then saving them using the name POWERON.

The next time the instrument is turned on, the instrument returns to the state present when you saved the POWERON setting. For instance, if the OSCILLOSCOPE screen was displayed when POWERON was saved, it is the screen that is displayed when you turn the instrument on.

3-18 Operating Overview
BASE Settings

The BASE register contains any field settings the user has SAVEd that are different from the instrument PRESET state. It establishes a reference point for all future SAVEs. (If a BASE is not SAVEd, the PRESET state is used as the reference.)

When you SAVE an instrument setup, the new setup is compared to the BASE settings, and any differences are stored under the register name you supply. Because only differences are stored, a much larger number of instrument setups can be saved than if the contents of every field was saved.

When you RECALL an instrument setting, every field is reset to the BASE settings. The SAVED settings are then used to re-establish the desired instrument setup.

You can define your own BASE setting. If your desired settings are very different from the PRESET values, you may want to change the BASE register. This will decrease the amount of memory used to SAVE each setup, and allow you to SAVE many more setups.

Caution

Since each SAVE/RECALL register only contains the differences between the setup being saved and the present BASE register settings, changing the BASE results in all other saved setups being ERASED from memory (including the POWERON setting if one has been saved).

Unless you consistently change the same fields to the same value each time you use the instrument, you should probably not create your own BASE settings.

Memory Considerations

When the Save/Recall field of the I/O CONFIGURE screen is set to Internal, programs are saved to the same non-volatile RAM used to create RAM Disk(s) and run IBASIC programs. By saving a large number of instrument setups, you reduce the amount of RAM available to run programs. If you get a “memory overflow” message while trying to load a program, you must clear one or more SAVE/RECALL registers to free RAM space. When using an HP 8920A, you may have to install option 005 - 512 kByte RAM expansion, to have enough memory to run your application (the other Test Sets include this as standard memory).

Instrument Hardware Changes

Recalling a SAVEd register that uses a hardware option that has been removed (such as an audio filter) results in unspecified operation. Re-install the needed option before attempting to RECALL the associated register(s).
User keys instantly access instrument settings without using the knob. You can use USER keys to move quickly between fields on the same screen, and to access field settings that are not normally available on the screen you are using.

Local USER keys are used to move between settings on the screen that is displayed. When the USER key is pressed, the cursor instantly moves to, and selects, the assigned field; eliminating the need to turn and push the knob. Five Local USER keys are available for each screen: k1, k2, k3, k4, and k5.

Five factory-assigned Local USER keys are available in each screen; however, using these keys removes any other Local USER keys you may have already set up.

Global USER keys are used to access settings that are not available on the current screen. Three Global USER keys are available: k1', k2', and k3'. (These are SHIFTed functions of the Local USER keys.)

When defining USER keys, the ASSIGN function is used to create key definitions; the RELEASE function removes the definitions. Re-ASSIGNing a USER key to a different field setting automatically Releases it from the setting it was previously associated with.

To Use the Pre-Assigned Local USER Keys

1. Press [SHIFT], ASSIGN, [ENTER]. The numbers 1 through 5 appear in front of various fields. (See Figure 3-4.)

2. Press the different Local USER keys (k1 to k5) and notice how the cursor immediately moves to the corresponding field.

3. To stop using the default Local USER keys, press [SHIFT], RELEASE, [ENTER].
Figure 3-4. An Example of Pre-Assigned Local User Keys

To Assign Local USER Keys

1. Move the cursor to the field you want to assign a local USER key to.

2. Press (SHIFT), ASSIGN, and a local USER key (k1-k5). The USER key number appears in front of the field you assigned it to.

Example of Assigning a Local USER Key

Use this example to assign Local USER key [k1] to the Filter 1 field in the RX TEST screen.

1. Access the RX TEST screen and position the cursor in front of the Filter 1 field.

2. Press (SHIFT), ASSIGN, [k1]. A small 1 appears next to the field indicating that USER key [k1] has been assigned to it.

3. Move the cursor to any other field on the screen and press [k1]. The cursor immediately returns to the Filter 1 field. The field is also highlighted to change the entry using the CURSOR CONTROL knob or arrow keys, [1] [0].

To Release Local USER Keys

1. Display the screen containing the USER key assignment to be removed.

2. Press (SHIFT), RELEASE, and the USER key (k1-k5).
To Assign Global USER Keys

1. Move the cursor to the field you want to assign a global USER key to.

2. Press (SHIFT), ASSIGN, (SHIFT), and a global USER key (k1' - k3'). Unlike a Local USER key, the USER key number does not appear in front of the field you assigned a Global USER key to. A prompt appears at the top of the screen confirming the key assignment.

Example of Assigning a Global USER Key

Use this example to assign Global USER key k1' to the AF Anl In field, and then access this field in the OSCILLOSCOPE screen.

1. Access the AF ANALYZER screen and position the cursor in front of the AF Anl In field.

2. Press (SHIFT), ASSIGN.

3. Press (SHIFT), k1'. Notice the prompt Global User key 1 assigned. at the top of the screen.

4. Access the OSCILLOSCOPE screen.

5. Press (SHIFT), k1'.

AF Anl Input FM Demod is displayed at the top of the screen (assuming the present input is set to FM Demod). To change the input, use the arrow keys, (or ,), or press (ENTER) to access the Choices menu.

A field that is accessed using a Global USER key is only displayed at the top of the screen while it is being accessed. Moving the cursor to any other field in the screen causes the USER key field to disappear until it is accessed again.

To Release Global USER Keys

1. Move the cursor to the field with the Global USER key assigned to it.

2. Press (SHIFT), RELEASE, (SHIFT), and the USER key to be Released (k1' - k3').
Setting an RF Generator/Analyzer Offset

You can set a fixed frequency offset between the RF Generator and the RF Analyzer. This feature is convenient for testing radios with a fixed transmit/receive frequency offset.

To Set an RF Offset

1. Access the CONFIGURE screen.

2. Position the cursor in front of the RF Offset field, and press the Cursor Control knob, or press [ENTER] to turn the offset On or Off.

3. Select the (Gen)-(Anl) field and enter the frequency offset value.

Example of Setting an RF Offset

1. Access the CONFIGURE screen.

2. Set the RF Offset to **On**.

3. Enter an offset frequency ((Gen)-(Anl)) of 10 MHz.

4. Access the DUPLEX screen.

5. Set the Tune Mode to **Manual**. 1

6. Select the RF Gen Freq field, and rotate the Cursor Control knob to vary the RF Generator frequency.

7. Notice that the Tune Freq value changes to maintain the 10 MHz difference between the generator and the analyzer.

1 Manual tuning is used in this example to prevent possible unexpected Tune Frequency changes during the procedure.
Using Remote Control

The Test Set can be remotely controlled several ways:

- Using HP-IB control from a computer/controller.
- Using IBASIC programs on memory cards.
- Using an ASCII terminal connected to the Serial Port.

Using HP-IB Control

The Programmer’s Guide contains information on writing HP-IB control programs for the Test Set. Programming examples and a syntax listing provide general HP-IB operation guidelines.

Running IBASIC Programs from Memory Cards

The documentation shipped with HP 11807 software packages explains how to run those programs from memory cards. Refer to the *HP 8820A,B HP-IB Programmer’s Guide* (PN 08920-90172) for detailed information on using memory cards with your own IBASIC programs.

Using an ASCII Terminal

Connecting an ASCII terminal to the Serial Port allows you to remotely operate the Test Set by entering characters that represent each front-panel control.

Before you can use this feature, you must first set the required serial port settings in the *I/O CONFIGURE* screen, and make any hardware connections.

The Serial Port connections are described in Chapter 5.

To Configure for Serial Port Operation

1. Access the *I/O CONFIGURE* screen.
2. Set the Serial In field to *Inst*.
3. Set the IBASIC Echo field to *On*.
4. Set the *Inst Echo* field to *On*.
5. Set the remaining serial communications fields according to your terminal/computer’s serial communication requirements. These fields include:
 a. Serial Baud
 b. Parity
 c. Data Length
 d. Stop Length
 e. Rcv Pace
 f. Xmt Pace
6. The Test Set now responds to the equivalent characters sent to it by the terminal/computer.
Equivalent Front-Panel Control Characters

The following table lists the terminal/computer keystrokes that equate to front-panel controls. Each equivalent character must be preceded by the **Escape** key.

For example, to remotely access the **CONFIGURE** screen, you type **Esc, C** on your terminal/computer. (Be sure to use upper-case C for this example.)

Table 3-3. Equivalent Front-Panel Control Characters

<table>
<thead>
<tr>
<th>Function</th>
<th>Equiv. ESC Character</th>
<th>Function</th>
<th>Equiv. ESC Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCEL</td>
<td>!</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>PERCENT MHZ_V</td>
<td>(</td>
<td>EEX</td>
<td>Z</td>
</tr>
<tr>
<td>S_KHZ_MV</td>
<td>)</td>
<td>YES_ON_OFF</td>
<td>[</td>
</tr>
<tr>
<td>BACKSPACE</td>
<td>-</td>
<td>NO_PPM_W</td>
<td>]</td>
</tr>
<tr>
<td>ENTER</td>
<td>.</td>
<td>RX</td>
<td>a</td>
</tr>
<tr>
<td>RELEASE</td>
<td>0</td>
<td>TX</td>
<td>b</td>
</tr>
<tr>
<td>K1</td>
<td>1</td>
<td>DUPLEX</td>
<td>c</td>
</tr>
<tr>
<td>K2</td>
<td>2</td>
<td>PREV</td>
<td>d</td>
</tr>
<tr>
<td>K3</td>
<td>3</td>
<td>TESTS_MAIN</td>
<td>e</td>
</tr>
<tr>
<td>K4</td>
<td>4</td>
<td>LOCAL</td>
<td>f</td>
</tr>
<tr>
<td>K5</td>
<td>5</td>
<td>RECALL</td>
<td>g</td>
</tr>
<tr>
<td>K1_PRIME</td>
<td>6</td>
<td>MEAS_RESET</td>
<td>h</td>
</tr>
<tr>
<td>K2_PRIME</td>
<td>7</td>
<td>PRESET</td>
<td>j</td>
</tr>
<tr>
<td>K3_PRIME</td>
<td>8</td>
<td>INCR_DIV_10</td>
<td>j</td>
</tr>
<tr>
<td>ASSIGN</td>
<td>9</td>
<td>INCR_SET</td>
<td>k</td>
</tr>
<tr>
<td>KNOB_TURN_CCW</td>
<td><</td>
<td>INCR_TIMES_10</td>
<td>l</td>
</tr>
<tr>
<td>KNOB_TURN_CW</td>
<td>></td>
<td>DOWN</td>
<td>m</td>
</tr>
<tr>
<td>MSSG</td>
<td>A</td>
<td>UP</td>
<td>n</td>
</tr>
<tr>
<td>HELP</td>
<td>B</td>
<td>SEVEN</td>
<td>o</td>
</tr>
<tr>
<td>CONFIG</td>
<td>C</td>
<td>EIGHT</td>
<td>p</td>
</tr>
<tr>
<td>HOLD</td>
<td>D</td>
<td>NINE</td>
<td>q</td>
</tr>
<tr>
<td>PRINT</td>
<td>E</td>
<td>FOUR</td>
<td>r</td>
</tr>
<tr>
<td>ADRS</td>
<td>F</td>
<td>FIVE</td>
<td>s</td>
</tr>
<tr>
<td>SAVE</td>
<td>G</td>
<td>SIX</td>
<td>t</td>
</tr>
<tr>
<td>REF_SET</td>
<td>J</td>
<td>ONE</td>
<td>u</td>
</tr>
<tr>
<td>METER</td>
<td>K</td>
<td>TWO</td>
<td>v</td>
</tr>
<tr>
<td>AVG</td>
<td>L</td>
<td>THREE</td>
<td>w</td>
</tr>
<tr>
<td>LO_LIMIT</td>
<td>M</td>
<td>ZERO</td>
<td>x</td>
</tr>
<tr>
<td>HI_LIMIT</td>
<td>N</td>
<td>POINT</td>
<td>y</td>
</tr>
<tr>
<td>E</td>
<td>R</td>
<td>PLUS_MINUS</td>
<td>z</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>OHM_PCT_DEL_DBV</td>
<td>{</td>
</tr>
<tr>
<td>B</td>
<td>U</td>
<td>DB_GHZ_DBM</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>V</td>
<td>MS_HZ_UV</td>
<td>}</td>
</tr>
<tr>
<td>D</td>
<td>W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternate sequences for 5 commonly-used functions are also available. Hold down the Cntl (control) key and select the corresponding key for the desired function. (Example: Cntl/H moves the cursor to the left one space.)

ENTER - J or M
CANCEL - C
BACKSPACE - H
KNOB_TURN_CW - R
KNOB_TURN_CCW - L
Screen and Field Descriptions

This chapter provides reference information for each Test Set screen and its fields.

Signal flow diagrams associate the fields with what they do in the instrument (where applicable).

Additional information for the fields is listed after the diagrams.

Note

Since most of the measurements displayed are dependent on different field settings, the settings and values shown in the diagrams use the Test Set's PRESET conditions.
```
Figure 4-1. The RX Test Screen

<table>
<thead>
<tr>
<th>SINAC</th>
<th>dB</th>
<th>AC Level</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.11</td>
<td>24</td>
<td>0.00009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF Gen Freq</th>
<th>RGen1 Freq</th>
<th>AFG2 Freq</th>
<th>Filter 1</th>
<th>To Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.000000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>500Hz HPF</td>
<td>RF GEN</td>
</tr>
<tr>
<td>80.0</td>
<td>1.0000</td>
<td></td>
<td></td>
<td>RF ANL</td>
</tr>
<tr>
<td>0</td>
<td>AFG1 To FM</td>
<td>AFG2 To FM</td>
<td>Filter 2</td>
<td>SCPE</td>
</tr>
<tr>
<td>3.00</td>
<td>0</td>
<td>Off</td>
<td>100Hz LPF</td>
<td>SPEC ANL</td>
</tr>
<tr>
<td>kHz</td>
<td>kHz</td>
<td></td>
<td></td>
<td>ENCODER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DECODER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RADIO INT</td>
</tr>
</tbody>
</table>

Output Port | Ext Load R |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF GEN</td>
<td>8.00 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On/Off</th>
<th>AFG1 To FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attenu Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF GEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.0 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF ANL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEC ANL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00 kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENCODER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DECODER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RADIO INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
</tr>
</tbody>
</table>

More
```
Figure 4-2. The RX TEST Fields and Their Functions
RX Test Screen

AC Level
This measurement displays either RMS potential (voltage) or audio power (Watts or dBm).

Operating Considerations
When the unit-of-measure is changed to measure AF power, the External Load Resistance must be specified. (Refer to the Ext Load R field description.)

The input for this measurement on this screen is always the AUDIO IN connectors.

See Also
"Entering and Changing Numbers" in Chapter 3.

AFGen1 Freq
Audio Frequency Generator 1 Frequency sets the frequency for the first audio frequency sinewave generator.

AFGen2 Freq
Audio Frequency Generator 2 Frequency sets the frequency for the second audio frequency sinewave generator. It can also be used to set the Function Generator frequency when the signaling Encoder is used.

This field is also used to control the Send/Stop functions for some Encoder modes. For example, when sending a tone sequence, this field is used to Send and Stop the sequence. The field name changes to AFGen2 when this type of operation is used.

This field is removed from this screen when NMT encoding or decoding is used. (NMT programs can only be run from the NMT Decoder screen.)

See Also
ENCODER screen signaling modes.
RX Test Screen

AFGen1 To

Audio Frequency Generator 1 To is used to set two values:

- The upper field determines whether the AF signal modulates the RF Generator or is output through the AUDIO OUT connector.
- The lower field sets the amplitude (including off). The AUDIO OUT level is set either in volts RMS (across a low-impedance output) or dBm, mW or W across a 600Ω load. Note: mW is selected by pressing \texttt{SHIFT} \texttt{ENTER}.

Operating Considerations

The upper field is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also

"Interaction Between Screens" in Chapter 3.

AFGen2 To

Audio Frequency Generator 2 To is used to set two values:

- The upper field determines whether the AF signal modulates the RF Generator, or is output through the AUDIO OUT connector.
- The lower field sets the amplitude (including off). The AUDIO OUT level is always in volts RMS for standard sinewave operation across a low-impedance output.

If the Signaling option is installed, the sinewave can be set in units of RMS or Peak. This is done in the \texttt{Sine Units} field for the Function Generator. When non-sinewave waveforms are used, or if the upper field is set to AM or FM, the level is always expressed as a peak value.

See Also

ENCODER, Function Generator screen description.
RX Test Screen

Amplitude

RF Generator Amplitude adjusts the amplitude of the RF Generator.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

If a microphone is connected, and the Amplitude is off, keying the microphone causes the Amplitude to turn on to its previous level until the microphone is no longer keyed.

See Also

Atten Hold field description
“Interaction Between Screens” in Chapter 3
“MIC/ACC” in Chapter 5

Atten Hold

Attenuator Hold prevents the fixed RF output attenuators from switching in and out, eliminating the brief loss of the output signal as the level is changed. This function is helpful when making squelch measurements.

Operating Considerations

When this function is set to on, the RF output level is restricted to a range of 15 dB around the present Amplitude setting. Attempting to set an amplitude outside the allowed range results in an error message and beep (if the Beeper is on). RF output level accuracy is uncalibrated outside the allowed range.
RX Test Screen

Ext Load R
External Load Resistance is used to calculate and display AF power dissipated in an external load resistance. Power is calculated using the voltage measured at the AUDIO IN connections and the resistance value you enter into this field.

See Also

AC Level field description

Filter 1 and Filter 2
Filters 1 and 2 select a variety of standard and optional filters. Selecting either field lists the choices available for that field.

See Also

AF ANALYZER screen description.

Output Port
RF Generator Output Port selects the desired port.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Caution

Applying reverse RF power to the DUPLEX OUT connector can damage the instrument. (A message is displayed when an over-power conditions occurs.) Whenever possible, use the RF IN/OUT connector when testing transceivers to prevent damage from accidental transmitter keying.

If a reverse power condition triggers the internal protection circuit, remove the reverse power signal and press [MEAS RESET] or turn the Test Set off and on to reset it.
RF Gen Freq

RF Generator Frequency sets the generator’s frequency.

This measurement field is used to select and display any one of the following measurements:

- SINAD
- Distortion
- SNR (Signal to Noise Ratio)
- AF Frequency
- DC Level

Current - DC only (HP 8920A requires Current Measurement option)

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

SNR Operation:

- Selecting SNR turns off the other audio measurement.
- The RF Generator and AFGen1 must be set up to provide the radio’s carrier. (AFGen1 is automatically turned on and off repeatedly during this measurement.)
- AFGen2 must be turned off.
- The radio’s receiver’s audio output must be connected to the AUDIO IN port (set the AF An1 In field to [Audio In]).

See Also

“Interaction Between Screens” in Chapter 3
“Displaying Measurements” in Chapter 3
4-10 Screen and Field Descriptions
<table>
<thead>
<tr>
<th>TX TEST</th>
<th>TX TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Frequency</td>
<td>FM Deviation</td>
</tr>
<tr>
<td>150.084243 MHz</td>
<td>132.2 kHz</td>
</tr>
<tr>
<td>TX Power</td>
<td>7.27240 kHz</td>
</tr>
<tr>
<td>-0.00002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tune Mode</th>
<th>Input Port</th>
<th>AF An1 In</th>
<th>RFGen1 Freq</th>
<th>To Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto/Manual</td>
<td>FF In/Ant</td>
<td>FM Unmod</td>
<td>1.00000 MHz</td>
<td>RF GEN</td>
</tr>
<tr>
<td>Tune Freq</td>
<td>IF Filter</td>
<td>Filter 1</td>
<td>AFRL</td>
<td>RF ABL</td>
</tr>
<tr>
<td>150.000000 MHz</td>
<td>65 kHz</td>
<td>50Hz HPF</td>
<td>AFNL</td>
<td></td>
</tr>
<tr>
<td>TX Pur Zero</td>
<td>Filter 2</td>
<td>Mod HPF</td>
<td>SCOPE</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>Ext TX Key</td>
<td>De-Ephasis</td>
<td>SPEC AIL</td>
<td></td>
</tr>
<tr>
<td>TX Pur Meas</td>
<td>On/Off</td>
<td>P3O us/Off</td>
<td>ENCODER</td>
<td></td>
</tr>
<tr>
<td>Ext</td>
<td>DetCTOR</td>
<td>Pvs/Max</td>
<td>AERODOR</td>
<td></td>
</tr>
<tr>
<td>FF</td>
<td>More</td>
<td>More</td>
<td>RADIO INT</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-3. The TX Test Screen
Figure 4-4. TX TEST Functional Block Diagram
TX Test Screen

AF Anl In
Audio Frequency Analyzer Input selects the input for the analyzer. When selected, this field displays a list of choices.
Signals can be analyzed from three different types of inputs:
- The output of the AM, FM, or SSB demodulators.
- The AUDIO IN, RADIO INTERFACE, MODULATION INPUT, MIC/ACC, and AUDIO OUT connectors.
- The signal present at the AM or FM modulators for the RF Generator.

Operating Considerations
Changing this field alters the upper AF measurement to the appropriate measurement type.
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also
"Interaction Between Screens" in Chapter 3
"Displaying Measurements" in Chapter 3

AF Freq
This is the default measurement for this measurement field. Selecting this field displays the following measurement choices:
- SINAD
- Distortion
- SNR (Signal to Noise Ratio)
- AF Frequency
- DC Level
- Current - DC only (requires Current Measurement option)

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

SNR Operation
- Selecting SNR turns off the other audio measurement.
- The RF Generator and AFGen1 must be set up to provide the radio's carrier. (AFGen1 is automatically turned on and off repeatedly during this measurement.)
- AFGen2 must be turned off.
- The radio's receiver's audio output must be connected to the AUDIO IN port (set the AF Anl In field to Audio In).

See Also
"Interaction Between Screens" in Chapter 3
"Displaying Measurements" in Chapter 3
TX Test Screen

AFGen1 Freq Audio Frequency Generator 1 Frequency sets the frequency for the first audio frequency sinewave generator.

AFGen1 Lvl Audio Frequency Generator 1 Level sets the level out the AUDIO OUT connector in volts RMS (across a low-impedance output), or in mW, W, or dBm across a 600Ω load. Note: mW is selected by pressing [SHIFT], [ENTER].

Operating Considerations
In the TX screen, the signal is always output through the AUDIO OUT connector.

De-Emphasis
This setting selects or bypasses the 750 µs de-emphasis networks in the audio analyzer and speaker circuitry.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also
“Interaction Between Screens” in Chapter 3
TX Test Screen

Detector

This setting selects the type of detector used when measuring and displaying AF signal levels.

Detector Types

- **RMS** displays the RMS value of signals.
- **RMS*SQRT2** displays the RMS value of a signal multiplied by $\sqrt{2}$.
- **Pk+** displays the positive peak value.
- **Pk−** displays the negative peak value.
- **Pk±/2** adds the positive and negative peak values and divides the sum by 2.
- **Pk±Max** compares the positive and negative peaks and displays the greater value (polarity is not indicated).
- **Pk+ Hold** displays and holds the positive peak value until the measurement is reset. To reset, press [MEAS RESET], or select a different detector, or re-select the same detector.
- **Pk− Hold** displays and holds the negative peak value until the measurement is reset. To reset, press [MEAS RESET], select a different detector, or re-select the same detector.
- **Pk±/2 Hold** divides the sum of the positive and negative peak values by 2, and displays the value until the measurement is reset. To reset, press [MEAS RESET], select a different detector, or re-select the same detector.
- **Pk±Mx Hold** compares the positive and negative peaks and displays the greater value until the measurement is reset. To reset, press [MEAS RESET], select a different detector, or re-select the same detector.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also

"Interaction Between Screens" in Chapter 3

Ext TX key

This field controls a switch at the MIC/ACC connector. Its intended use is to "key" an external transmitter.

See Also

Figure 5-1
TX Test Screen

Filter 1 and Filter 2
Filters 1 and 2 select a variety of standard and optional filters. Selecting either field lists the choices available for that field.

See Also
AF ANALYZER screen description

FM Deviation
This is the default measurement for this field. The type of measurement listed here is dependent on the AF Anl In settings.

See Also
AF Anl In field description
“Displaying Measurements” in Chapter 3.

IF Filter
This field selects the desired IF Filter bandwidth for modulated signals being analyzed.

Input Port
This field selects the RF IN/OUT or ANT IN port for making RF measurements. The RF IN/OUT port must be used for making TX Power measurements on this screen.

Operating Considerations
Maximum signal levels at each port are printed on the front panel.

If the RF power at the RF IN/OUT port exceeds allowable limits, a loud warning signal sounds and a message appears at the top of the screen. If this occurs, disconnect the RF power, press MEAS RESET, and allow the Test Set to cool off for ≈2 minutes before making any other measurements on this port.

The ANT IN (Antenna Input) connector provides a highly-sensitive input for very low level signals (such as “off the air” measurements). You cannot measure TX (RF) Power on this screen using the Antenna port. However, low-level RF power at the Antenna port can be measured using the optional Spectrum Analyzer.

Caution
Connecting a signal of >200 mW to the Antenna port can cause instrument damage.

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press MEAS RESET or turn the Test Set off and on to reset it.
TX Test Screen

Tune Freq
RF Analyzer Tune Frequency sets the center frequency for the RF signal to be analyzed.

Operating Considerations

If the Tune Mode is set to Auto, the frequency is set by the Test Set by finding the strongest RF signal above -36 dBm within the full bandwidth of the RF Analyzer.

If the Tune Mode is set to Manual, the operator must enter the desired frequency.

See Also

Tune Mode field description

Tune Mode
This field selects Automatic or Manual tuning of the RF Analyzer.

- **Auto** tuning causes the RF Analyzer to find the signal with the greatest amplitude >-36dBm, and set the Tune Frequency for that signal.

- **Manual** tuning requires the operator to set the Tune Frequency for the RF signal to be analyzed.

Operating Considerations

Changing the Tune Mode also changes the RF frequency display. Automatic tuning enables the TX Frequency measurement. Manual tuning enables the TX Freq Error measurement.

After auto-tuning to the desired signal, select Manual tuning to prevent the Tune Freq from changing when the signal is no longer applied.

TX Freq Error/TX Frequency

This measurement area is used to display Transmitter Frequency Error or Transmitter Frequency.

See Also

Tune Mode field description
TX Test Screen

TX Power

Transmitter Power measures RF power at the RF IN/OUT port.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Only the RF IN/OUT port can be used for measuring TX Power on this screen. When the Input Port is set to Ant, four dashes (- - -) appear in place of digits for this measurement.

Use the Spectrum Analyzer to measure low-level RF power (<200 mW) at the Antenna port.

Caution

Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press **MEAS RESET** or turn the Test Set off and on to reset it.

See Also

Input Port field description (Operating Considerations)

TX Pwr Meas and TX Pwr Zero field descriptions for the TX TEST and RF ANALYZER screens.

TX Pwr Meas (HP 8920B Only)

The Transmitter Power Measurement field specifies how transmitter power measurements are made:

- **Peak** can be used to measure AM, FM, and un-modulated (CW) signals.

- **Sample** can be used to measure FM or CW signals with increased measurement speed. This method can only be used with signals having no amplitude modulation component.

Operating Considerations If you change this field, zero the power measurement (using the TX Pwr Zero field) before measuring power.
TX Test Screen

TX Pwr Zero

The Transmitter Power Zero function establishes a 0.0000 W reference for measuring RF power at the RF IN/OUT port.

Caution

RF power must not be applied while zeroing.

Operating Considerations

When power is applied to the RF IN/OUT connector, the temperature of the internal circuitry increases. This can cause changes in the TX Power measurement when low power levels are measured immediately following high-power measurements.

When alternately making high and low power measurements, always zero the power meter immediately before making the low-power measurements; this provides the best measurement accuracy.
TX Test Screen
Duplex Test Screen

Duplex Test

<table>
<thead>
<tr>
<th>TX Frequency</th>
<th>FM Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.081717</td>
<td>132.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TX Power</th>
<th>AF Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.00001</td>
<td>7.34438</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tune Mode</th>
<th>RF Gen Freq</th>
<th>RF Genl Freq</th>
<th>AF Anl In</th>
<th>To Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq/Manual</td>
<td>100.000000</td>
<td>1.00000</td>
<td>FM Bemod</td>
<td>RF GEN</td>
</tr>
<tr>
<td>Tune Freq</td>
<td>Off</td>
<td>Audio Out 50.0</td>
<td>Filter 1</td>
<td>RF ANL</td>
</tr>
<tr>
<td>150.000000</td>
<td>15 kHz</td>
<td>AF Genl To</td>
<td>Filter 2</td>
<td>RF ANL</td>
</tr>
<tr>
<td>Input Port</td>
<td>Off</td>
<td>AF Couplings N</td>
<td>50/150 MHz</td>
<td>SCOPE</td>
</tr>
<tr>
<td>IF Filter</td>
<td>Off</td>
<td>Audio Out</td>
<td>150/150 MHz</td>
<td>SPEC ANL</td>
</tr>
<tr>
<td>Ext TX Key</td>
<td>Off</td>
<td>DC/DC</td>
<td>Audio Out</td>
<td>ENCODER</td>
</tr>
<tr>
<td>Un/Off</td>
<td>On/Off</td>
<td>AF Genl</td>
<td>DC/DC</td>
<td>DECODER</td>
</tr>
<tr>
<td>Output Port</td>
<td>15 kHz</td>
<td>AF Genl In</td>
<td>DC/DC</td>
<td>RADIO INIT</td>
</tr>
</tbody>
</table>

Figure 4-5. The Duplex Test Screen
Figure 4-6. DUPLEX TEST Functional Block Diagram
Duplex Test Screen

AC Level
This is the default measurement for this field. The type of measurement shown is dependent on the AF Anl In settings.

See Also
AF Anl In field description
“Displaying Measurements” in Chapter 3

AF Anl In
Audio Frequency Analyzer Input selects the input for the analyzer. When selected, this field displays a list of choices.

Signals can be analyzed from three different types of inputs:
- The output of the AM, FM, or SSB demodulators.
- The AUDIO IN, RADIO INTERFACE, MODULATION INPUT, MIC/ACC, and AUDIO OUT connectors.
- The signal present at the AM or FM modulators for the RF Generator.

Operating Considerations
Changing this field causes the upper AF measurement to change.

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also
FM Deviation field description
“Interaction Between Screens” in Chapter 3
“Displaying Measurements” in Chapter 3
Duplex Test Screen

This is the default measurement for this field. Selecting this field displays the following measurement choices:

- SINAD
- Distortion
- SNR (Signal to Noise Ratio)
- AF Frequency
- DC Level
- Current - DC only

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

SNR Operation

- Selecting SNR turns off the other audio measurement.
- The RF Generator and AFGen1 must be set up to provide the radio's carrier. (AFGen1 is automatically turned on and off repeatedly during this measurement.)
- AFGen2 must be turned off.
- The radio's receiver's audio output must be connected to the AUDIO IN port (set the AF An1 In field to Audio In). See Also

 "Interaction Between Screens" in Chapter 3
 "Displaying Measurements" in Chapter 3

AFGen1 Freq

Audio Frequency Generator 1 Frequency sets the frequency for the first audio frequency sinewave generator.

AFGen1 To

Audio Frequency Generator 1 To is used to set two values:

- The upper field determines whether the AF signal modulates the RF Generator, or is output through the AUDIO OUT connector.
- The lower field sets the amplitude (including off). The AUDIO OUT level is always in volts RMS.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also

"Interaction Between Screens" in Chapter 3
Amplitude

RF Generator Amplitude adjusts the amplitude of the RF Generator.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

If a microphone is connected, and the Amplitude is **off**, keying the microphone causes the Amplitude to turn on to its previous level until the microphone is no longer keyed.

See Also

Atten Hold field description

"Interaction Between Screens" in Chapter 3

"MIC/ACC" in Chapter 5

Atten Hold

Attenuator Hold prevents the fixed RF output attenuators from switching in and out, eliminating the loss of the output signal as the level is changed. This function is helpful when making squelch measurements.

Operating Considerations

When this function is set to **On**, the RF output level is restricted to a range of 15 dB around the present *Amplitude* setting. Attempting to set an amplitude outside the allowed range results in an error message and beep (if the Beeper is on). RF output level accuracy is greatly degraded outside the allowed range.

Audio Out

Audio Out Coupling selects AC or DC coupling to the AUDIO OUT connector.

De-Emphasis

This setting selects or bypasses the 750 μs de-emphasis networks in the audio analyzer and internal speaker circuitry.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also

"Interaction Between Screens" in Chapter 3
Duplex Test Screen

Detector

This setting selects the type of detector used when measuring and displaying AF signal levels.

Detector Types

- **RMS** displays the RMS value of signals.
- **RMS*SQRT2** displays the RMS value of a signal multiplied by $\sqrt{2}$.
- **Pk+** displays the positive peak value.
- **Pk−** displays the negative peak value.
- **Pk±/2** adds the positive and negative peak values, and divides the sum by 2.
- **Pk±Max** compares the positive and negative peaks and displays the greater value (polarity is not indicated).
- **Pk+ Hold** displays and holds the positive peak value until the measurement is reset. To reset, press **MEAS RESET**, select a different detector, or re-select the same detector.
- **Pk− Hold** displays and holds the negative peak value until the measurement is reset. To reset, press **MEAS RESET**, select a different detector, or re-select the same detector.
- **Pk±/2 Hold** divides the sum of the positive and negative peak values by 2, and displays the value until the measurement is reset. To reset, press **MEAS RESET**, select a different detector, or re-select the same detector.
- **Pk±Mx Hold** compares the positive and negative peaks and displays the greater value until the measurement is reset. To reset, press **MEAS RESET**, select a different detector, or re-select the same detector.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also

"Interaction Between Screens" in Chapter 3

Ext TX key

This field controls a switch at the MIC/ACC connector. Its intended use is to "key" an external transmitter.

See Also

"MIC/ACC" in Chapter 5
Duplex Test Screen

FM Coupling
This field selects AC or DC coupling between the RF Generator's frequency modulator and the rear-panel MODULATION INPUT connector. This field also alters the FM modulator to allow DCFM from internal and external modulation sources.

FM Deviation
This is the default measurement for this field. The type of measurement listed here is dependent on the AF An1 In settings.

See Also
AF An1 In field description
"Displaying Measurements" in Chapter 3

IF Filter
This field selects the desired IF Filter bandwidth for modulated signals being analyzed.

Input Port
This field selects the RF IN/OUT or ANT IN connector for making RF measurements. The RF IN/OUT port must be used for making Tx Power measurements on this screen.

Operating Considerations
Maximum signal levels at each port are printed on the front panel.

If the RF power at the RF IN/OUT port exceeds allowable limits, a loud warning signal sounds and a message appears at the top of the screen. If this occurs, disconnect the RF power, press [MEAS RESET], and allow the Test Set to cool off for ≈2 minutes before making any other measurements on this port.

The ANT IN (Antenna Input) connector provides a highly-sensitive input for very low level signals (such as "off the air" measurements). You cannot measure TX (RF) Power on this screen using the Antenna port. However, low-level RF power at the Antenna port can be measured using the Spectrum Analyzer.

Caution
Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press [MEAS RESET] or turn the Test Set off and on to reset it.
Duplex Test Screen

Output Port

RF Generator Output Port selects the desired port.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Caution

Applying reverse RF power to the DUPLEX OUT connector can damage the instrument. (A message is displayed when an over-power conditions occurs.) Whenever possible, use the RF IN/OUT connector when testing transceivers to prevent damage from accidental transmitter keying.

If a reverse power condition triggers the internal protection circuit, remove the reverse power signal and press MEAS RESET or turn the Test Set off and on to reset it.

RF Gen Freq

RF Generator Frequency sets the generator’s frequency.

Tune Freq

RF Analyzer Tune Frequency sets the center frequency for the RF signal to be analyzed.

Operating Considerations

If the Tune Mode field is set to Auto, the frequency is set by the instrument.

If the Tune Mode is set to Manual, the operator must enter the desired frequency.

See Also

Tune Mode field description

Tune Mode

This field selects Automatic or Manual tuning of the RF Analyzer.

Auto tuning causes the RF Analyzer to find the signal with the greatest amplitude above -36dBm, and set the Tune Frequency for that signal.

Manual tuning requires the operator to set the Tune Frequency for the RF signal to be analyzed.

Operating Considerations

Changing the Tune Mode also changes the RF frequency display. Automatic tuning enables the TX Frequency measurement. Manual tuning enables the TX Freq Error measurement.

After auto-tuning to the desired signal, select Manual tuning to prevent the Tune Freq from changing when the signal is no longer applied.
TX Freq Error/TX Frequency

This measurement displays Transmitter Frequency Error or absolute Transmitter Frequency, depending on the Tune Mode setting.

See Also
Tune Mode field description

TX Power

Transmitter Power measures RF power at the RF IN/OUT port.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Only the RF IN/OUT port can be used for measuring TX Power on this screen. When the Input Port is set to Ant, four dashes (- - - -) appear in place of digits for this measurement.

Use the Spectrum Analyzer to measure low-level RF power (≤200 mW) at the Antenna port.

Caution

Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press MEAS RESET or turn the Test Set off and on to reset it.

See Also

Input Port field description (Operating Considerations)
TX Pur Meas and TX Pur Zero field descriptions for the TX TEST and RF ANALYZER screens.
Figure 4-7. The RF Generator Screen
RF Generator Screen

Figure 4-8. RF GENERATOR Functional Block Diagram
RF Generator Screen

AC Level
This is the default measurement for this field. The type of measurement shown is dependent on what the AF An1 In field is set to in other screens.

See Also
AF An1 In field description for the TX TEST, DUPLEX TEST, or AF ANALYZER screen, “Displaying Measurements” in Chapter 3

AFGen1 Freq
Audio Frequency Generator 1 Frequency sets the frequency for the first audio frequency sinewave generator.

AFGen2 Freq
Audio Frequency Generator 2 Frequency sets the frequency for the second audio frequency sinewave generator. It can also be used to set the Function Generator frequency when the signaling Encoder is used.

This field is also used to control the Send/Stop functions for some Encoder modes. For example, when sending a tone sequence, this field is used to Send and Stop the sequence. The field name changes to AFGen2 when this type of operation is used.

This field is removed from this screen when NMT encoding or decoding is used. (NMT programs can only be run from the NMT Decoder screen.)

See Also
ENCODER screen signaling modes.

AFGen1 To
Audio Frequency Generator 1 To is used to set two values:

- The upper field determines whether the AF signal modulates the RF Generator, or is output through the AUDIO OUT connector.
- The lower field sets the amplitude (including Off). The AUDIO OUT level is always in volts RMS across a low-impedance output.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also
“Interaction Between Screens” in Chapter 3
RF Generator Screen

AFGen2 To
Audio Frequency Generator 2 To is used to set two values:

- The upper field determines whether the AF signal modulates the RF Generator, or is output through the AUDIO OUT connector.
- The lower field sets the amplitude (including **off**). The AUDIO OUT level is always in volts RMS for standard **sinewave** operation across a low-impedance output.

If the Signaling option is installed, the sinewave can be set in units of RMS or Peak. This is done in the **Sine Units** field for the Function Generator. When non-sinewave waveforms are used, or if the upper field is set to AM or FM, the level is always expressed as a peak value.

See Also
ENCODER, Function Generator screen description.

Amplitude
RF Generator Amplitude adjusts the amplitude of the RF Generator.

Operating Considerations

This is a priority control field. Accessing the **RX TEST** or **TX TEST** screen overrides any changes made to this field in other screens.

If a microphone is connected, and the Amplitude is **off**, keying the microphone causes the Amplitude to turn on to its previous level until the microphone is no longer keyed.

See Also
“Interaction Between Screens” in Chapter 3

Atten Hold
Attenuator Hold prevents the fixed RF output attenuators from switching in and out, eliminating the loss of the output signal as the level is changed. This function is helpful when making squelch measurements.

Operating Considerations

When this function is set to **on**, the RF output level is restricted to a range above and below the present Amplitude setting. Attempting to set an amplitude outside the allowed range results in an error message and beep (if the Beeper is on). RF output level accuracy is greatly degraded outside the allowed range.
RF Generator Screen

Audio Out

Audio Out Coupling selects AC or DC coupling to the AUDIO OUT connector.

FM Coupling

These fields provide two functions:

- The upper field specifies AC or DC coupling between the MODULATION INPUT connector and the RF Generator's FM modulator. This field also alters the FM modulator to allow DCFM from internal and external modulation sources.
- Selecting the lower field causes the instrument to offset any DC bias that may exist when DC coupling is selected.

Mic Pre-Emp

Microphone Pre-Emphasis determines whether the modulating signal from the MIC/ACC connector goes through or bypasses the 750 \(\mu \)s pre-emphasis network. Two fields are used:

- The upper field is used to specify whether you want the instrument to automatically turn pre-emphasis On during FM operation and off for other modulations (Auto), or leave the pre-emphasis switching to the user's operation (Hold).
- The lower field tells you whether pre-emphasis is On or Off (when Auto operation is selected), or allows you to manually turn pre-emphasis On or Off (if Hold is selected).

Mod In To

MODULATION INPUT To defines how an external modulation source is used with the RF Generator. Two fields are used:

- The upper field determines whether the rear-panel MODULATION INPUT signal is set for AM or FM modulation of the RF GENERATOR.
- The lower field sets the modulation sensitivity. For instance, if FM (\(V_{pk} \)) is selected for the upper field, and you set the lower field to 1.0000 kHz, the RF GENERATOR will deviate 1 kHz for every 1 Volt peak at the MODULATION INPUT connector.

In addition, the peak deviation produced by MIC signals will be approximately 1 kHz.
RF Generator Screen

Output Port

RF Generator Output Port selects the desired port.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Caution

Applying reverse RF power to the DUPLEX OUT connector can damage the instrument. (A message is displayed when an over-power conditions occurs.) Whenever possible, use the RF IN/OUT connector when testing transceivers to prevent damage from accidental transmitter keying.

If a reverse power condition triggers the internal protection circuit, remove the reverse power signal and press MEAS RESET or turn the Test Set off and on to reset it.

RF Gen Freq

RF Generator Frequency sets the generator’s frequency.

This is the default measurement for this field. Selecting this field displays the following measurement choices:

SINAD
Distortion
SNR (Signal to Noise Ratio)
AF Frequency
DC Level
Current - DC only (requires Current Measurement option)

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

SNR Operation

- Selecting SNR turns off the other audio measurement.
- The RF Generator and AFGen1 must be set up to provide the radio’s carrier. (AFGen1 is automatically turned on and off repeatedly during this measurement.)
- AFGen2 must be turned off.
- The radio’s receiver’s audio output must be connected to the AUDIO IN port (set the AF Anl In field to Audio In).

See Also

“Interaction Between Screens” in Chapter 3
“Displaying Measurements” in Chapter 3

4-36 Screen and Field Descriptions
RF Generator Screen

TX Freq Error/TX Frequency

This measurement displays Transmitter Frequency Error or absolute Transmitter Frequency.

See Also

Tune Mode field description for the DUPLEX TEST, TX TEST, or AF ANALYZER screens.

"Displaying Measurements" in Chapter 3

TX Power

Transmitter Power measures RF power at the RF IN/OUT port.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Only the RF IN/OUT port can be used for measuring TX Power on this screen. When the Input Port\(^1\) is set to Ant\(\), four dashes (- - - -) appear in place of digits for this measurement.

Use the optional Spectrum Analyzer to measure low-level RF power (\(\leq 200\) mW) at the Antenna port.

\(^1\)The Input Port field is accessed on the TX TEST, DUPLEX TEST, and RF ANALYZER screens.

Caution

Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press MEAS RESET or turn the Test Set off and on to reset it.

See Also

TX Pwr Meas and TX Pwr Zero field descriptions for the TX TEST or RF ANALYZER screen.
RF Analyzer Screen

RF Analyzer

<table>
<thead>
<tr>
<th>TX Frequency</th>
<th>FM Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.084820</td>
<td>128.3</td>
</tr>
<tr>
<td>TX Power</td>
<td>7.38903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tune Mode</th>
<th>Input Port</th>
<th>IF Filter</th>
<th>Ext TX Key</th>
<th>To Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto/Manual</td>
<td>RF In/Ant</td>
<td>10 kHz</td>
<td>Off</td>
<td>RF, WGN, RX, HNL, RF, ANL, SCOPE, SPEC, HNL, ENCODER, DECODER, RADIO INT</td>
</tr>
<tr>
<td>Tune Freq</td>
<td>Input Attenu</td>
<td>Squelch</td>
<td>TX Pur Zero</td>
<td>More</td>
</tr>
<tr>
<td>150.000000 MHz</td>
<td>Auto/Manual</td>
<td>Pot</td>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>RF Cnt Gate</td>
<td>TX Pur Meas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>50.0</td>
<td>PEAK/SAMP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-9. The RF Analyzer Screen
RF Analyzer Screen

Measurements Display Area

TX Freq Error
TX Frequency
AC Level
TX Power
SINAD
SNR
Dimm
AF Freq
DC Level
Current

TX Power Measurement Reference

Input Port
Auto / Hold

Input Attenuation

EXT Key

MIC/ACC

IF Filter

230 kHz

RF Stages

RF

LO

CLK

Frequency Counter

To RF Freq Counter

Squelch

Pot
def.

AF Signal Analyzer

Figure 4-10. RF ANALYZER Functional Block Diagram
RF Analyzer Screen

AC Level

This is the default measurement for this field. The type of measurement listed here is dependent on the AF Anl In settings.

See Also

AF Anl In field description in the TX TEST, DUPLEX TEST, or AF ANALYZER screens.
“Displaying Measurements” in Chapter 3

Ext TX key

This field controls a switch at the MIC/ACC connector. Its intended use is to “key” an external transmitter.

See Also

“MIC/ACC” in Chapter 5

IF Filter

This field selects the desired IF Filter bandwidth for modulated signals being analyzed.

Input Atten

Input Attenuation sets the amount of input attenuation for the RF IN/OUT and ANT IN connectors. This function controls two settings:

- The upper field determines if you want the instrument to set the attenuation automatically (*Auto*), or if you want to set the value manually (*Hold*).
- The lower field displays the present attenuation value, and is used to set the desired attenuation level when the upper area is set to *Hold*.

Note

Oscilloscope and Decoder Interference: After a signal is input, the RF autoranging function (*Auto*) takes a small amount of time to determine the required input attenuator setting. If your transmitter begins sending encoded information the instant it transmits, the initial encoded information may not be decoded during the autoranging process. The same situation can arise when trying to display the first part of the demodulated signal on the Oscilloscope.

When decoding a signaling sequence using the Decoder, or when trying to capture the initial modulation waveform of a signal on the Oscilloscope, set the upper field to *Hold* and set the lower field to an appropriate level for the signal being decoded (start with 40 dB).
RF Analyzer Screen

Input Port

This field selects the RF IN/OUT or ANT IN port for making RF measurements. The RF IN/OUT port must be used for making TX Power measurements on this screen.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

If the RF power at the RF IN/OUT port exceeds allowable limits, a loud warning signal sounds and a message appears at the top of the screen. If this occurs, disconnect the RF power, press [MEAS RESET], and allow the Test Set to cool off for approximately 2 minutes before making any other measurements on this port.

The ANT IN (Antenna Input) connector provides a highly-sensitive input for very low level signals (such as “off the air” measurements). You cannot measure TX (RF) Power on this screen using the Antenna port. However, low-level RF power at the Antenna port can be measured using the optional Spectrum Analyzer.

Caution

Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press [MEAS RESET] or turn the Test Set off and on to reset it.

RF Cnt Gate

RF Counter Gate specifies how long the RF counter samples the signal before displaying the frequency. Specifying a shorter gate time may enable you to see frequency fluctuations that might not be seen using a longer gate time.
RF Analyzer Screen

Sensitivity

RF Analyzer Sensitivity adds about 6 dB of sensitivity for the ANT IN port when High is selected.

Operating Considerations

Selecting High sensitivity may cause Spectrum Analyzer measurements to be uncalibrated when the ANT IN port is used (a message appears when this occurs).

High-level AM measurements may be distorted when High sensitivity is used with the ANT IN port.

Squelch

This setting determines the squelch operation when demodulating FM, AM or SSB signals. Three settings are available:

- **Pot** uses the front-panel SQUELCH knob for squelch level adjustment.
- **Open** disables squelch operation.
- **Fixed** sets the squelch to a fixed level, disabling the front-panel SQUELCH knob control.

Operating Considerations

Most measurement processes on this screen are not displayed if the incoming signal falls below the squelch level (with the exception of Tx Power). The measurements are replaced by four dashes (---) to indicate they have been ‘squelched’.

The Decoder and Oscilloscope measurements are also disabled when the signal has been squelched.

Spectrum Analyzer measurements are not affected by the squelch setting (although squelch still affects whether the demodulated signal can be heard while viewing the RF signal).

Trying to read a squelched measurement using HP-IB will cause your program to halt until the squelch is either turned down, a measurement is made, or until a program time-out aborts the measurement process.
RF Analyzer Screen

This is the default measurement for this field. Selecting this field displays the following measurement choices:

- SINAD
- Distortion
- SNR (Signal to Noise Ratio)
- AF Frequency
- DC Level

Current - DC only (requires Current Measurement option)

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

SNR Operation

- Selecting SNR turns off the other audio measurement.
- The RF Generator and AFGen1 must be set up to provide the radio’s carrier. (AFGen1 is automatically turned on and off repeatedly during this measurement.)
- AFGen2 must be turned off.
- The radio’s receiver’s audio output must be connected to the AUDIO IN port (set the AF An1 In field to Audio In).

See Also

"Interaction Between Screens” in Chapter 3
"Displaying Measurements” in Chapter 3
RF Analyzer Screen

Tune Freq

RF Analyzer Tune Frequency sets the center frequency for the RF signal to be analyzed.

See Also

Tune Mode field description

Tune Mode

This field selects Automatic or Manual tuning of the RF Analyzer. Auto tuning causes the RF Analyzer to find the signal with the greatest amplitude >-36 dBm, and set the Tune Frequency for that signal.

Manual tuning requires the operator to set the Tune Frequency for the RF signal to be analyzed.

Operating Considerations

Changing the Tune Mode also changes the RF frequency display. Automatic tuning enables the TX Frequency measurement. Manual tuning enables the TX Freq Error measurement.

After auto-tuning to the desired signal, select Manual tuning to prevent the Tune Freq from changing when the signal is no longer applied.

TX Freq Error/TX Frequency

This measurement area is used to display Transmitter Frequency Error or Transmitter Frequency.

See Also

Tune Mode field description
RF Analyzer Screen

TX Power

Transmitter Power measures RF power at the RF IN/OUT port.

Operating Considerations

Maximum signal levels at each port are printed on the front panel. Only the RF IN/OUT port can be used for measuring TX Power on this screen. When the Input Port is set to **Ant**, four dashes (- - - -) appear in place of digits for this measurement.

Use the optional Spectrum Analyzer to measure low-level RF power (≤200 mW) at the Antenna port.

Caution

Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press **MEAS RESET** or turn the Test Set off and on to reset it.

See Also

Input Port field description (Operating Considerations)

TX Pwr Meas and TX Pwr Zero field descriptions for the TX TEST and RF ANALYZER screens.

TX Pwr Meas (HP 8920B Only)

The Transmitter Power Measurement field specifies how transmitter power measurements are made:

- **Peak** can be used to measure AM, FM, and un-modulated (CW) signals.
- **Sample** can be used to measure FM or CW signals with increased measurement speed. This method can only be used with signals having no amplitude modulation component.

Operating Considerations If you change this field, zero the power measurement (using the TX Pwr Zero field) before measuring power.
RF Analyzer Screen

TX Pwr Zero

The **Transmitter Power Zero** function establishes a 0.0000 W reference for measuring RF power at the RF IN/OUT port.

Caution

RF power must not be applied while zeroing.

Operating Considerations

When power is applied to the RF IN/OUT connector, the temperature of the internal circuitry increases. This can cause changes in the **TX Power** measurement when low power levels are measured immediately following high power measurements.

When alternately making high and low power measurements, always zero the power meter immediately before making the low power measurements to provide the best measurement accuracy.
RF Analyzer Screen
Figure 4-11. The AF Analyzer Screen
Figure 4-12. AF ANALYZER Functional Block Diagram

The Settling, Gain Cntl, and Ext Load R fields are not shown.

Variable Frequency Notch if purchased.

4-50 Screen and Field Descriptions
AF Analyzer Screen

AC Level This is the default measurement for this field. The type of measurement listed here is dependent on the AF Anl In settings. Changing the unit-of-measure to W provides AF Power measurements.

See Also
AF Anl In field description
Ext Load R field description
“Displaying Measurements” in Chapter 3

AF Anl In Audio Frequency Analyzer Input selects the input for the analyzer. When selected, this field displays a list of choices.

Signals can be analyzed from three different types of inputs:

- The output of the AM, FM, or SSB demodulators.
- The AUDIO IN, RADIO INTERFACE, MODULATION INPUT, MIC/ACC, and AUDIO OUT connectors.
- The signal present at the AM or FM modulators for the RF Generator.

Operating Considerations
Changing this field causes the upper AF measurement to change to display the appropriate measurement type.

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also
“Interaction Between Screens” in Chapter 3
“Displaying Measurements” in Chapter 3

AF Cnt Gate Audio Frequency Counter Gate specifies how long the AF counter samples the signal before displaying the frequency. Specifying a shorter gate time may enable you to see frequency fluctuations that might not be seen using a longer gate time.
AF Analyzer Screen

Audio In Lo

AUDIO IN LO sets the AUDIO IN LO connector’s state.

- **Gnd**: causes the center pin of the connector to be connected directly to chassis ground.
- **Float**: isolates the center pin of the connector from ground, providing a floating input to the AF Analyzer.
- **600 Ω to HI**: establishes a 600Ω impedance between the center pins of the AUDIO IN LO and AUDIO IN HI connectors. Also, the **Ext Load R** field is removed, since the load is now fixed to 600Ω.

DC Current

DC Current Measurement Zero removes any measurement offset present before making a DC Current measurement (requires instrument option 003). The measurement is zeroed by positioning the cursor in front of **Zero**, and pressing **Enter** or the Cursor Control knob.

Note

The current source must be disconnected before zeroing for accurate operation.

See Also

“SINAD, Distortion, SNR, AF Frequency, DC Level, DC Current” in Chapter 3
“Displaying Measurements” in Chapter 3
Chapter 5

De-Emp Gain

De-Emphasis Gain displays and selects the desired AF analyzer de-emphasis amplifier gain.

See Also

Gain Cntl field description

De-Emphasis

This setting selects or bypasses the 750 μs de-emphasis networks in the audio analyzer and speaker circuitry.

Operating Considerations

This is a priority control field. Accessing the **RX TEST** or **TX TEST** screen overrides any changes made to this field in other screens.

See Also

“Interaction Between Screens” in Chapter 3

4-52 Screen and Field Descriptions
Detector

This setting selects the type of detector used when measuring and displaying AF signal levels.

Detector Types

- **RMS** displays the RMS value of signals.
- **RMS*SQRT2** displays the RMS value of a signal multiplied by \(\sqrt{2} \).
- **Pk+** displays the positive peak value.
- **Pk−** displays the negative peak value.
- **Pk±/2** adds the positive and negative peak values, and divides the sum by 2.
- **Pk±Max** compares the positive and negative peaks and displays the greater value (polarity is not indicated).
- **Pk+ Hold** displays and holds the positive peak value until the measurement is reset. To reset, press [MEAS RESET], select a different detector, or re-select the same detector.
- **Pk− Hold** displays and holds the negative peak value until the measurement is reset. To reset, press [MEAS RESET], select a different detector, or re-select the same detector.
- **Pk±/2 Hold** divides the sum of the positive and negative peak values by 2, and displays the value until the measurement is reset. To reset, press [MEAS RESET], select a different detector, or re-select the same detector.
- **Pk±Mx Hold** compares the positive and negative peaks and displays the greater value until the measurement is reset. To reset, press [MEAS RESET], select a different detector, or re-select the same detector.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also

"Interaction Between Screens" in Chapter 3
AF Analyzer Screen

Ext Load R

External Load Resistance is used to calculate and display AF power. Power is calculated using the voltage measured at the AUDIO IN connections and the resistance value you enter into this field.

Operating Considerations

This field is not displayed when the Audio In Lo field is set to 600 To Hi; the load resistance is internally fixed to 600Ω.

See Also

AC Level field description
Audio In Lo field description

Filter 1 and Filter 2

Filters 1 and 2 select a variety of standard and optional filters. Selecting either field lists the choices available for that field.

Gain Cntl

AF Analyzer Gain Control specifies whether the AF Analyzer gain settings are controlled automatically by AF autoranging (Auto), or by manual control (Hold).

The following settings are affected by AF autoranging:

- Input Gain
- De-Emp Gain
- Notch Gain

Operating Considerations

The normal mode of operation for this field is Auto, allowing the instrument to adjust the AF gain settings for optimum measurement accuracy.

This field can be set to Hold to disable the auto-ranging routines to increase measurement speed. However, this requires you to select the desired gain settings manually for each measurement.

Note

Decoder and Oscilloscope Interference: The AF autoranging function (Auto) takes a small amount of time to determine the attenuation settings for the AF Analyzer. If you are decoding an encoded signal, and your transmitter begins sending encoded information the instant it transmits, the initial encoded information may not be decoded during the autoranging process.

Use the Auto setting to establish the initial gain settings while the encoded signal is first being decoded, and then select Hold during the decoding process to retain the gain settings. The decoder should capture all encoded information the next time you transmit the signal.

4-54 Screen and Field Descriptions
AF Analyzer Screen

Input Gain This field displays and selects the desired AF Analyzer input amplifier gain. (Refer to the Gain Cnt1 field information.)

Notch Freq This field is used to enter the center frequency for the Variable Frequency Notch Filter (optional on the HP 8920A and HP 8921A). It is typically used for Distortion and SINAD measurements at frequencies below or above the standard 1 kHz notch filter. This field is not displayed if your Test Set does not have this feature.

Operating Considerations

When the Notch Coupl field on the CONFIGURE screen is set to AFGen1, this filter and the AFGen1 Freq field match their settings. A warning message is then displayed if you attempt to set the AFGen1 Freq value outside the 300 Hz to 10 kHz range of this filter. When the Notch Coupl field is set to None, this filter and AFGen1 Freq operate independently.

Notch Gain This field displays and selects the desired AF Analyzer notch filter amplifier gain. This amplifier is only used for making SINAD and distortion measurements. (Refer to the Gain Cnt1 field information.)

Pk Det To Peak Detector To selects the signal source for the peak detectors. This allows you to bypass certain sections of the AF analyzer's circuitry when making AC level measurements.

See Also
AF Analyzer function diagram at the start of this section.

Scope To Oscilloscope To selects the signal source for the Oscilloscope. This allows you to bypass certain sections of the AF analyzer's circuitry when viewing and measuring a signal. It also allows you to select measurement paths that include additional gain stages, improving the oscilloscope's resolution when measuring low-level signals.

See Also
AF Analyzer function diagram at the start of this section.
AF Analyzer Screen

Settling
This field selects the settling time for making AF measurements.
Lower frequency signals require additional settling time (Slow).
Higher frequency measurements require less settling time (Fast).

Operating Considerations
Use Slow for \(\leq 200\) Hz signals.
Use Fast for \(>200\) Hz signals.

If the signal being measured is a composite of different frequencies above and below 200 Hz, you may have to select the appropriate filtering to analyze the desired signal component.

SINAD
This measurement field is used to select and display any one of the following measurements:

- SINAD
- Distortion
- SNR (Signal to Noise Ratio)
- AF Frequency
- DC Level

Current - DC only (requires Current Measurement option)

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

SNR Operation
- Selecting SNR turns off the other audio measurement.
- The RF Generator and AFGen1 must be set up to provide the radio's carrier. (AFGen1 is automatically turned on and off repeatedly during this measurement.)
- AFGen2 must be turned off.
- The radio's receiver's audio output must be connected to the AUDIO IN port (set the AF Anl In field to Audio In).

See Also
"Interaction Between Screens" in Chapter 3
AF Analyzer Screen

Speaker ALC Speaker Automatic Level Control enables/disables the ALC function for the instrument’s internal speaker. When **On** is selected, the speaker volume is independent of the signal level being measured. When **Off** is selected, the speaker volume is dependent on the signal level being measured.

Speaker Vol Speaker Volume enables/disables the instrument’s internal speaker. When **Pot** is selected, the VOLUME control knob operates normally. When **Off** is selected, the speaker is disconnected.

TX Freq Error/ TX Frequency
This measurement area is used to display Transmitter Frequency Error or Transmitter Frequency. The type of measurement displayed depends on the Tune Mode setting in the TX TEST, DUPLEX TEST, or RF ANALYZER screen.

See Also
“Displaying Measurements” in Chapter 3

TX Power Transmitter Power measures RF power at the RF IN/OUT port.

Operating Considerations
Maximum signal levels at each port are printed on the front panel.

Only the RF IN/OUT port can be used for measuring TX Power on this screen. When the Input Port is set to **Ant**, four dashes (---) appear in place of digits for this measurement.

Use the optional Spectrum Analyzer to measure low-level RF power (≤200 mW) at the Antenna port.

Caution
Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press **MEAS RESET** or turn the Test Set off and on to reset it.

See Also
Input Port field description (Operating Considerations)
TX Pwr Meas and TX Pwr Zero field descriptions for the TX TEST or RF ANALYZER screens.
Figure 4-13. The Oscilloscope Screen and Menus

The OSCILLOSCOPE screen’s controls are arranged by menu. The menus are accessed using the Controls field. The field descriptions are grouped by menu names.

Assigning global USER keys to the most-used functions on the menus allows you to access the functions without having to change menus during operation.
Oscilloscope Screen

Selecting the Oscilloscope's Input

The oscilloscope's input is determined by the AF Anl In field setting in the AF ANALYZER, TX TEST, or DUPLEX TEST screens.

Figure 4-14. Oscilloscope Input Indicator

Using the Scope To Field

The Scope To field in the AF ANALYZER screen allows you to look at the signal at different stages in the AF Analyzer process. (Refer to the AF ANALYZER screen description to understand the different Scope To choices.)

Except for the Input setting, all the choices are capacitively coupled. If the signal to be measured is ≤1 Hz, use the Input setting to provide the needed DC coupling.
Oscilloscope Screen

Marker Measurements

Marker: Lvl
This measurement field displays the signal level of the current marker position.

Operating Considerations
The unit-of-measure for this field is dependent on the source of the signal being measured. For instance, when measuring a signal from the AUDIO IN connector, the amplitude is measured in Volts. When looking at a signal from the FM Demodulator, the amplitude is given in units of kHz.

When the Vert Offset field is $\neq 0.00$, the displayed marker level is referenced to the center line generated by the vertical offset feature, not the center line of the screen.

The REF SET function can be used with this measurement to display levels relative to a specific value. (See “Setting A Measurement Reference” in Chapter 3.)

Marker: Time
This measurement displays the time elapsed from the Trigger point to the current Marker position.

The REF SET function can be used with this measurement to display time relative to a specific position. (See “Setting A Measurement Reference” in Chapter 3.)
Oscilloscope Screen

Oscilloscope Main Menu Fields

![Oscilloscope Main Menu](image)

Figure 4-16. Oscilloscope Main Functions

Time/div

This field selects the horizontal sweep time per division.

Operating Considerations

The Time/div is selected from a list of choices.

Vert Offset

Vertical Offset moves the displayed signal above or below the oscilloscope's fixed centerline.

Operating Considerations

A centerline is displayed for the signal when an offset is used.

When the vertical offset is $\neq 0.00$, the marker level is referenced to the center line generated by the vertical offset feature, not the center line of the screen.

Vert/div

Vertical Sensitivity sets the vertical amplitude per division.

Operating Considerations

The value for this field is selected from a list of choices.

Depending on the AF Analyzer's AF An1 In setting, the units for this field may be in Volts, kHz, or Percent (AM). For example; if the AF An1 In field is set to **FM Demod**, the amplitude is displayed in kHz/div.
Oscilloscope Screen

Oscilloscope Trigger Menu Fields

This field selects the trigger source.

- **Internal** uses the signal being displayed for triggering.
- **External** uses the rear-panel EXT SCOPE TRIGGER INPUT for triggering. This is a TTL level trigger ($\approx 2.5 \text{ V}$).
- **ENCODER** uses the optional signaling encoder for triggering. The Encoder must be sending its signal to trigger the oscilloscope.

This field specifies how the trigger level is set.

- **Auto** automatically triggers if a triggering signal is not detected within $\approx 50 \text{ ms}$ of the last trigger.
- **Norm** requires a specific triggering signal before triggering.

Operating Considerations

Automatic triggering should be used for signals $>20 \text{ Hz}$. Normal triggering should be used for signals $\leq 20 \text{ Hz}$.

Also, when measuring $\leq 1 \text{ Hz}$ signals, you should set the Scope To field in the AF ANALYZER screen to Input to provide DC coupling to the oscilloscope’s input.

This field specifies whether the oscilloscope is continuously triggered (Cont), or if it is only triggered each time Reset is selected (Single).

This control is divided into two fields:

The upper field (0:00) sets the Internal trigger level as a function of vertical divisions. The trigger level is indicated by small pointers that appear on each side of the screen (only used for Internal triggering).

- **Pos/Neg**: The lower field specifies whether triggering happens when the waveform being measured is positive-going (Pos), or negative-going (Neg).
Oscilloscope Screen

Pre-Trig (Not HP 8920B)
This field specifies the number of horizontal divisions displayed previous to the trigger point. It allows you to see what the signal looked like before the trigger point.

When Pre-Triggering is used, the trigger point is indicated by small pointers that appear at the top and bottom of the screen.

Reset
(See Cont/Single).

Trig-Delay (HP 8920B Only)
The Trigger Delay is used to specify the time relationship between the trigger and displayed signal.

- **Positive** values delay the measurement trigger by a specific period. The delayed trigger point is the left edge of the screen.
- **Negative** values perform a pre-trigger function, displaying a section of the waveform before the trigger point. The trigger point is indicated by small pointers that appear at the top and bottom of the screen.

Operating Considerations

Negative Values
The maximum negative delay cannot exceed ten divisions of the current Time/Div setting. For example, if the Time/Div field is set to 1 ms, the maximum allowed negative delay is \(-10\) ms. Larger negative numbers cause an *Excessive negative Trig-Delay will be truncated* message.

Positive Values
For Time/Div settings of 50 \(\mu s/\text{Div}\) and smaller, the maximum delay is 400 ms.

For Time/Div settings of 100 \(\mu s/\text{Div}\) and larger, the maximum delay is 3200 ms.

Resolution
For delays of 400 ms and less, the resolution is 6.4 \(\mu s\). For delays greater than 400 ms, the resolution is 51.2 \(\mu s\). All entries are rounded to the nearest multiple of 6.4 \(\mu s\) or 51.2 \(\mu s\) (depending on the delay value).
Oscilloscope Screen

Oscilloscope Marker Menu Fields

![Marker Menu Fields Diagram]

Figure 4-18. Setting Markers on the Oscilloscope

How The Oscilloscope Displays Measurements

The digital oscilloscope screen is 417 pixels wide. Several measurement samples may be taken for each pixel as a signal is processed (at 100 ns/sample). The number of samples depends on the sweep speed (Time/div), and can vary from several thousand to one sample per pixel. The level displayed for each pixel is the average level of the sample(s) taken for each pixel.

Marker To:

Peaks+
Selecting this field causes the marker to move to the maximum value of the average level measured on the display.

Peaks-
Selecting this field causes the marker to move to the minimum value of the average level measured on the display.

Because these functions look at the average value for each displayed pixel, the marker may not appear directly on the displayed peak of a noisy signal.

Position
This field indicates the number of scale divisions from the left side of the screen to the marker.

Use the DATA keys or Cursor Control knob to move the marker to any point on the displayed signal.
Figure 4-19. The Spectrum Analyzer Screen and Menus
Spectrum Analyzer Screen

The SPECTRUM ANALYZER screen's controls are arranged in four menus. The menus are accessed using the Controls field. The field descriptions are grouped by menu names.

Assigning global USER keys to the most-used functions on the menus allows you to access the functions without having to change menus during operation.

Automatic Calibration

During operation, the Spectrum Analyzer pauses for ≈2 seconds every 5 minutes to recalibrate itself. This does not affect the accuracy of displayed measurements, but does cause a brief interruption of the displayed information during the process.

Setting Resolution Bandwidth and Sweep Rate

The Resolution Bandwidth and Sweep Rate are determined by the Span setting, and cannot be set independently.

These settings are listed in the following table.

<table>
<thead>
<tr>
<th>Span</th>
<th>Resolution BW (kHz)</th>
<th>Sweep Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td><50 kHz</td>
<td>0.3</td>
<td>28.6 kHz/second</td>
</tr>
<tr>
<td><200 kHz</td>
<td>1.0</td>
<td>329.0 kHz/second</td>
</tr>
<tr>
<td><1.5 MHz</td>
<td>3.0</td>
<td>3.0 MHz/second</td>
</tr>
<tr>
<td><3 MHz</td>
<td>30.0</td>
<td>21.4 MHz/second</td>
</tr>
<tr>
<td><18 MHz</td>
<td>30.0</td>
<td>36.3 MHz/second</td>
</tr>
<tr>
<td><200 MHz</td>
<td>300.0</td>
<td>257.0 MHz/second</td>
</tr>
<tr>
<td>1 GHz</td>
<td>300.0</td>
<td>1.0 GHz/second</td>
</tr>
</tbody>
</table>
Marker Measurements

Figure 4-20. Reading Measurement Results at the Spectrum Analyzer's Markers

Marker: Freq
Marker Frequency displays the frequency at the marker’s present position.

Marker: Lvl
Marker Level displays the amplitude at the marker’s present position.

Operating Considerations

The Marker Level can be displayed in various units of measure.

See Also

“To Change the Measurement’s Unit-of-Measure” in Chapter 3
Spectrum Analyzer Screen

Spectrum Analyzer Main Menu Fields

<table>
<thead>
<tr>
<th>Controls</th>
<th>Center Freq</th>
<th>Ref Level</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500000000 Hz</td>
<td>2000000000 Hz</td>
<td>200000000 Hz</td>
</tr>
</tbody>
</table>

Figure 4-21. Spectrum Analyzer Main Functions

Center Freq

This field sets the tune frequency for the center of the screen.

Operating Considerations

This field also changes the frequency of the Tracking Generator and the RF Analyzer's center frequency when it is used.

Ref Level

Reference Level sets the amplitude reference level for the top line of the display. All signals displayed are referenced to this line.

Operating Considerations

The unit-of-measure for the reference can be changed as needed. For instance, 0 dBm, 0.224 V, 107.0 dBµV, and 0.00100 W can all be used to represent the same level.

RF In/Ant

This field selects the input port for the analyzer.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Caution

Disconnecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press **MEAS RESET** or turn the Test Set off and on to reset it.

Using the ANT IN port with the Sensitivity field is set to High can result in uncalibrated operation (a message appears on the screen when this happens). The purpose for the high sensitivity setting is to allow you to look and listen to very low level signals when absolute accuracy is not essential.

See Also

Sensitivity field description
Spectrum Analyzer Screen

Span
Sets the span of frequencies to be displayed on the screen.

Operating Considerations
When the Tracking Generator is used, the Span also defines the frequency sweep range.

Spans >1.5 MHz disable the AF Analyzer when the analyzer’s AF Anl In field is set to FM Demod, AM Demod, or SSB Demod. This disables all the AF Analyzer’s measurement and output functions. When the AF Analyzer’s AF Anl In field is set to any of the other available inputs, such as Audio In or Ext Mod, the speaker and AUDIO MONITOR OUTPUT are not affected when the Spectrum Analyzer’s Span is changed.
Spectrum Analyzer Screen

RF Generator Menu Fields: Fixed Operation

![Screen Shot]

Figure 4-22. Using Spectrum Analyzer with the RF Generator

Amplitude
This field sets the amplitude of the RF Generator.

Operating Considerations
This is a priority control field. Accessing the RX TEST screen overrides the Amplitude setting on this screen.

If a microphone is connected, and the Amplitude is **Off**, keying the microphone causes the Amplitude to turn on to its previous level until the microphone is no longer keyed.

See Also
“Interaction Between Screens” in Chapter 3

Output Port
This field selects the output port for the RF Generator.

Operating Considerations
Maximum signal levels at each port are printed on the front panel.

Caution
Applying reverse RF power to the DUPLEX OUT connector can damage the instrument. (A message is displayed when an over-power conditions occurs.) Whenever possible, use the RF IN/OUT connector when testing transceivers to prevent damage from accidental transmitter keying.

If a reverse power condition triggers the internal protection circuit, remove the reverse power signal and press **MEAS RESET** or turn the Test Set off and on to reset it.

RF Gen Freq
This field sets the RF Generator Frequency.

4-72 Screen and Field Descriptions
RF Generator Menu Fields: Tracking Operation

Figure 4-23. Using the Spectrum Analyzer with the Tracking Generator

The Tracking Generator performs a frequency sweep operation. The start and stop frequencies are determined by the Main Menu Span setting. This allows you to characterize devices (such as filter networks) over a wide span of frequencies.

An RF offset can be set between the Tracking Generator and the Center Frequency of the Spectrum Analyzer. This allows you to look at a signal that is related to a source whose frequency is outside of the displayed span.

Amplitude

This field sets the amplitude of the Tracking Generator.

Operating Considerations

This field operates independently of the RF Generator Amplitude settings in other screens.

If a microphone is connected, and the Amplitude is Off, keying the microphone causes the Amplitude to turn on to its previous level until the microphone is no longer keyed.

Offset Freq

RF Generator Frequency Offset sets the difference between the instantaneous frequencies of the Tracking Generator and the Center Frequency of the Spectrum Analyzer.

Operating Considerations

The offset can be a positive or negative value. When set to zero, the Tracking Generator produces a sweeping signal that matches the Spectrum Analyzer tune frequency.
Spectrum Analyzer Screen

Port/Sweep

This control performs two functions:

- The upper field specifies the output port of the Tracking Generator.

- The lower field specifies whether the Tracking Generator sweeps from low-to-high frequencies (Norm), or from high-to-low frequencies (Invert). (The Spectrum Analyzer always sweeps from low to high frequencies.) The swept frequency range is determined by the Span setting in the Spectrum Analyzer’s Main Menu.

Operating Considerations

When using the Tracking Generator, if the output port is set RF Out, or the Main Menu Input Port is set to RF In, internal instrument coupling can occur. For the best isolation between the Tracking Generator and the Spectrum Analyzer, use Dupl for the output, and Ant for the input.

For measurements on high-power devices, such as amplifiers, use the RF IN/OUT port for the input.
Spectrum Analyzer Screen

Spectrum Analyzer Marker Menu Fields

Marker To:

- **Peak** moves the marker to the highest peak, and enters the location in the Position field.

- **Next Peak** moves the marker to the next peak to the right, and enters the location in the Position field.

- **Center Freq** changes the Center Frequency value to match the current position of the marker.

- **Ref Level** changes the Reference Level setting to match the current position of the marker.

Position This field sets the marker position, referenced to the left side of the screen.
Spectrum Analyzer Screen

Spectrum Analyzer Auxiliary Menu Fields

Input Attenuation sets the amount of input attenuation for the RF IN/OUT and ANT IN ports. This field performs two functions:

- The upper field determines if the instrument sets the attenuation (Auto), or if you want to set the value (Hold).
- The lower field displays the present attenuation value and is used to set the desired attenuation level when the upper area is set to Hold.

Operating Considerations

Maximum signal levels at each port are printed on the front panel.

Setting the upper field to Hold prevents the RF Auto-ranging process from interrupting Spectrum Analyzer operation when a signal if first measured. This can be helpful when you need to see the signal the instant the source is input, but requires you to set the needed amount of input attenuation.

Normalize

This area performs three display operations:

- Save B saves the currently-displayed trace for the A-B operation.
- A-only provides a continuously-updated display (the “normal” mode of operation).
- A-B displays the difference between the trace saved using Save B and the currently-displayed trace. The comparison can yield either losses or gains in amplitude.

Operating Considerations

The A-B function works correctly only if the Center Frequency and Span settings are the same for both signals.

The Ref Level can be changed to move the trace below the top line of the display if the A-B function results in a gain.

The Hold key can be used to “freeze” the display at any time. This allows you to view a trace before performing the Save or A-B functions.
Spectrum Analyzer Screen

No Pk/Avg

This field performs two functions:

Peak Hold (Pk Hold) prevents the Spectrum Analyzer from erasing the previous trace each time it sweeps. This causes the traces to 'build-up' on the screen until **Off**, **No Pk/Avg**, or **MEAS RESET** is selected. This allows the capture of transient signals that are not displayed long enough to view during normal operation.

Video Averaging (Avg 1-100) enables the Spectrum Analyzer to display a trace representing the average of several measurements. The number of samples used for measurement averaging range from 1 to 100 (see below).

- **No Pk/Avg**: Peak Hold and Video Average OFF
- **Pk Hold**: Peak Hold ON
- **Avg [n]**: Video Averaging over [n] measurements, where n = 1/2/3/4/5/10/20/50/100
- **Off**: Peak Hold and Video Average OFF

1 **No Pk/Avg** and **Off** function identically. **Off** is provided to maintain backwards compatibility with earlier firmware and software.

Operating Considerations

After capturing the desired signal, you can use the HOLD function (SHIFT PREV) to prevent additional signals from 'building-up' on the display.

The **Peak Hold** function is available with firmware revision A.06.01 or later. The **Video Averaging** function is available with firmware revision A.10.04 or later. The firmware revision is displayed on the CONFIGURE screen.

To upgrade your instrument, order firmware upgrade kit P/N 08920-61058.
Spectrum Analyzer Screen

Sensitivity

This area performs two functions:

- The upper field selects \textit{Normal} or \textit{High} sensitivity for the RF input. The \textit{High} setting adds about 6 dB of sensitivity to the ANT IN port for looking at very low level signals. However, this setting can cause measurements to be uncalibrated (indicated by a message on the screen). \textit{High} sensitivity can also cause high-level AM signals to be distorted.

- The lower field selects the vertical resolution of the display. You can choose from 1 dB, 2 dB, or 10 dB per graticule.1

1 This function is not available on Test Sets with firmware revisions prior to version A.06.01 (the firmware revision is displayed in the upper-right corner of the \texttt{CONFIGURE} screen).

To upgrade the existing Spectrum Analyzer in an earlier instrument, order the following items:

Firmware upgrade: PN 08920-61058
Hardware upgrade: PN 08920-61826
Signaling Encoder

The Encoder (AF Generator 2) uses several screens to generate various signaling formats. These screens are accessed by selecting ENCODER from the To Screen menu, and then selecting the Mode field.

The screen and field descriptions for each Encoder screen are listed in the following order:

- Function Generator
- Tone Sequence
- DTMF (Dual-Tone Multi-Frequency) Sequence
- CDCSS (Continuous Digital Controlled Squelch System)
- Digital Paging
- AMPS/NAMPS-TACS/NTACS
- NMT (Nordic Mobile Telephone)
- LTR (Logic Trunked Radio: Registered trademark of EF Johnson Company)
- EDACS (Enhanced Digital Access Communication System)
- MPT 1327 Trunked Radio

Note

Turn AFGen1 Off: When the Test Set is turned on, AFGen1 defaults to 3 kHz FM at a 1 kHz rate. This can interfere with many Encoder signaling formats also being used as an FM source. Therefore, we recommend you turn AFGen1 off on the **RX TEST, DUPLEX TEST, or RF GENERATOR** screen before using the Encoder.
Function Generator Encoder

The Function Generator provides single-tone audio frequency signals of various waveforms, amplitudes, and frequencies. It can be used to modulate the RF Generator, or it can be output through the front-panel AUDIO OUT connector.

AFGen2 Freq

Audio Frequency Generator 2 Frequency sets the tone frequency for the Function Generator.

AFGen2 To

Audio Frequency Generator 2 To contains two fields:

- The upper field determines whether the Function Generator modulates the RF Generator, or is output through AUDIO OUT.
- The lower field sets the amplitude (including Off).

Operating Considerations

When the Waveform field is set to **Sine**, and the signal is output to **Audio Out**, the amplitude can be set in units of RMS or Peak voltage. This is done in the Sine Units field that appears when **Audio Out** is selected. In all other cases, the amplitude is always set in Peak voltage.

Figure 4-26. The Function Generator Encoder Mode Screen
Function Generator Encoder Mode

Audio Out

Audio Out Coupling selects AC or DC coupling of the Function Generator to the AUDIO OUT connector when the upper AFGen2 To field is set to Audio Out.

FM Coupling

This field alters the FM modulator to allow DCFM from internal and external modulation sources. This field also selects AC or DC coupling between the RF Generator’s frequency modulator and the rear-panel MODULATION INPUT connector.

Sine Units

This field specifies whether the signal’s output is in units of RMS or Peak. This field is only present when the AFGen2 To field is set to Audio Out.

Waveform

This field selects the desired waveform for AF Generator 2. The available waveforms are:

- \(\sim \) - sine wave
- \(\square \) - square wave
- \(\triangle \) - triangle wave
- \(\uparrow \) - ramp (positive-going and negative-going)
- \(\equiv \) - DC±
- Universal Noise
- Gaussian Noise

Screen and Field Descriptions 4-81
The Tone Sequence Generator outputs sequences of tones of variable frequency, amplitude, and duration. It can be used to modulate the RF Generator, or can be output through the front-panel AUDIO OUT connector.

<table>
<thead>
<tr>
<th>Symbol Sequence</th>
<th>Symbol Definition</th>
<th>Send Mode</th>
<th>Status:</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On/Off</td>
<td>Syn Freq</td>
<td>Burst</td>
<td>Idle</td>
<td></td>
</tr>
<tr>
<td>Num Time</td>
<td>Hz</td>
<td>Bursts</td>
<td>Tone</td>
<td></td>
</tr>
<tr>
<td>ns</td>
<td></td>
<td>E</td>
<td>Set</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>000.0</td>
<td>0</td>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>001.0</td>
<td>2</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>002.0</td>
<td>3</td>
<td>Lin</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>003.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>004.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>005.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>006.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>007.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>008.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>009.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>010.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>011.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>012.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>013.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>014.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>015.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>016.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-27. The Tone Sequence Encoder Mode Screen

AFGen2 To

Audio Frequency Generator 2 To contains two fields:

- The upper field determines whether the tone sequence modulates the RF Generator, or is output through the front-panel AUDIO OUT connector.
- The lower field sets the amplitude (including Off).

Audio Out

Audio Out Coupling selects AC or DC coupling of the Tone Sequence Generator to the AUDIO OUT connector when the upper AFGen2 To field is set to Audio Out.
Tone Sequence Encoder Mode

Bursts
This field defines the number of sequences output each time `Send` is selected. This function works only when the `Send Mode` field is set to `Burst`.

FM Coupling
This field alters the FM modulator to allow DCFM from internal and external modulation sources. This field also selects AC or DC coupling between the RF Generator's frequency modulator and the rear-panel MODULATION INPUT connector.

Pre-Emp
This field determines whether the encoder signal passes through or bypasses 750 μs pre-emphasis.

`Send`
Selecting this field causes the tone sequence to be output.

Send Mode
This field selects the output format used when `Send` is selected to output a sequence.
- **Single** outputs the entire sequence once.
- **Burst** outputs the sequence the number of times specified in the `Bursts` field.
- **Cont** causes the sequence to be output continuously until `Stop` is selected.
- **Step** allows you to output the sequence one tone at a time by pressing `Send` for each tone.

Standard
This field selects the Tone Sequence standard for your radio.

Stop
Selecting this field stops the sequence being output.
Tone Sequence Encoder Mode

Symbol Definition

This table specifies three types of information:

- **Sym** - Symbol Numbers indicate the hexadecimal number that represents each tone when creating a tone sequence. These numbers cannot be changed.

- **Freq Hz** lists the tone frequency associated with each Symbol Number. The frequency values are preset for the Standard you are using. You can change the values using the DATA keys.

- **Amptd %** lists the relative amplitude for each tone. Amplitude is based on a percentage of the level shown in the AFGen2 To field.

Symbol Sequence

This area performs two functions:

- The **Symbol Sequence** field at the top of the screen is used to enter and edit the tone sequence. The sequence uses the Symbol Numbers (Sym) listed in the **Symbol Definition** table. A total of 16 symbols can be entered.

- Below the **Symbol Sequence** is the **Sequence On/Off Times table.** This table contains three entries.

 - **Seq Num** identifies which position in the **Symbol Sequence** is affected by the On and Off times listed.

 - **On Time** specifies the length of time a tone is output during the sequence.

 - **Off Time** specifies the length of time a tone is off before the next tone in the sequence is output.

Operating Considerations

The Symbol Numbers can be entered directly, using the DATA keys, or by using the **Choices** menu that appears when this field is selected. The **Choices** menu is also used to edit an existing sequence.

The On and Off Times are changed using the DATA keys.
DTMF Sequence Encoder

The DTMF Sequence Generator creates Dual-Tone Multi-Frequency tone sequences of variable frequency, amplitude, and duration. It can be used to modulate the RF Generator, or can be output through the front-panel AUDIO OUT connector.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>SIGNALING ENCODER (RF GENERATOR 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twist</td>
<td>On Time</td>
</tr>
<tr>
<td>Symbol Freq. (Hz):</td>
<td>Off Time</td>
</tr>
<tr>
<td>697.0</td>
<td>Send Mode</td>
</tr>
<tr>
<td>770.0</td>
<td>Burst</td>
</tr>
<tr>
<td>852.0</td>
<td>End</td>
</tr>
<tr>
<td>941.0</td>
<td>Stop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>Idle</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>DTMF</td>
<td>Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Frequency (Hz)</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>697.0</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>770.0</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>852.0</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>941.0</td>
<td>D</td>
</tr>
</tbody>
</table>

Figure 4-28. The DTMF Sequence Encoder Mode Screen
DTMF Sequence Encoder Mode

AFGen2 To

Audio Frequency Generator 2 To contains two fields:

- The upper field determines whether the DTMF sequence modulates the RF Generator, or is output through the front-panel AUDIO OUT connector.
- The lower field sets the amplitude (including Off).

The output level is the peak value for each tone pair, regardless of the Twist and Pre-Emp settings.

See Also

Twist field description

Audio Out

Audio Out Coupling selects AC or DC coupling of the DTMF Sequence Generator to the AUDIO OUT connector when the upper AFGen2 To field is set to Audio Out.

Bursts

This field defines the number of sequences output each time Send is selected. This function only works when the Send Mode field is set to Burst.

FM Coupling

This field alters the FM modulator to allow DCFM from internal and external modulation sources. This field also selects AC or DC coupling between the RF Generator's frequency modulator and the rear-panel MODULATION INPUT connector.

On Time

This field sets the length of time each DTMF tone is On during the sequence.

Off Time

This field sets the length of time each DTMF tones is Off during the sequence.
DTMF Sequence Encoder Mode

Pre-Emp This field determines whether the encoder signal passes through or bypasses 750 μs pre-emphasis. Pre-emphasis may be required when testing some FM receivers.

See Also

Twist field description

Send Selecting this field causes the DTMF sequence to be output.

Send Mode This field selects the format used when Send is selected to output a sequence.

- **Single** outputs the entire sequence once.
- **Burst** outputs the sequence the number of times specified in the **Bursts** field.
- **Cont** causes the sequence to be output continuously until **Stop** is selected.
- **Step** allows you to output the tones in a sequence one at a time by pressing **Send** for each tone.

Standard This field selects the DTMF standard used for your radio.

Stop Selecting this field stops the sequence being output.
DTMF Sequence Encoder Mode

Symbol Frequencies (Hz)

The 8 column/row frequencies are automatically entered by the Standard field setting. You can change the frequency values using the DATA keys.

Twist

Twist is the ratio of amplitudes (in dB) between the high frequency and low frequency tone in each DTMF pair. A positive value indicates a higher amplitude for the high frequency tones. A negative value indicates a higher amplitude for the low frequency tones.

The amplitude of the combined tones is set in the AFGen2 To field.

Twist and Pre-Emphasis Interaction

Twist and Pre-Emphasis affect the relative levels of the high and low tones within each symbol (tone pair). If pre-emphasis is off, twist sets the difference in deviation (in dB) between the high and low tones. If twist is off, pre-emphasis places a 6 dB per octave difference in deviation between the high and low tones. If both twist and pre-emphasis are on, the two effects are summed.

For most conditions, set Twist to 2.5 dB, Pre-Emp on, and 60% rated deviation (3 kHz for a typical 5 kHz deviation rated receiver).

Examples of Twist and Pre-Emphasis Interaction

Example 1: 3 kHz deviation, Twist = 0 dB, Pre-Emphasis off. The level of each low tone and high tone individually generate 1.5 kHz deviation. The tones are summed to produce 3 kHz deviation.

Example 2: 3 kHz deviation, Twist = 2.5 dB, Pre-Emphasis off. The high tone has 2.5 dB (a factor of 1.334) more deviation than the low tone. The two tones are summed to produce 3 kHz peak deviation. Therefore, the low tone deviation is 1286 Hz and the high tone deviation is 1714 Hz.

Example 3: 3 kHz deviation, Twist = 0 dB, Pre-Emphasis on. There is a 6 dB per octave difference between the high and low tones. For example, if sending a '1', which has a low tone of 697 Hz and a high tone of 1209 Hz, the high tone has a deviation of 1209/697 = 1.735 times the low tone's deviation. The high tone's deviation is then 20 \times \log(1209/697) = 4.78 \text{ dB} higher than the low tone. Since their sum must equal 3 kHz, the low tone deviation is 1097 Hz, and the high tone deviation is 1903 Hz.

Example 4: 3 kHz deviation, Twist = 2.5 dB, Pre-Emphasis on. If sending a '1' (697 Hz low tone and 1209 Hz high tone), the high tone deviation is 1.334 (see example 2) \times 1.735 (see example 3) \approx 2.314 times the low tone deviation. Since the peak deviation of their sum is 3 kHz, the low tone deviation is 905.5 Hz and the high tone deviation is 2094.5 Hz.
The Continuous Digital Controlled Squelch System (CDCSS) encoder generates signals to test radios that use a digitally-encoded signal to turn squelch on and off. The encoder can be used to modulate the RF Generator, or it can be output through the front-panel AUDIO OUT connector.

![Figure 4-29. The CDCSS Encoder Mode Screen](cdcssen.tif)
CDCSS Encoder Mode

The CDCSS Data Stream

Data is Shifted-Out This Direction

01101111010100001100011

Error Detection Code Fixed 3-Digit Code You
Computed by HP 8920A Octal 4 Enter

Figure 4-30. CDCSS Data Stream Bit Assignments

The CDCSS encoder creates a 23-bit digital data stream and Turn Off Code (TOC). The data stream consists of three parts:

- A 3-digit (9 bit) octal code you supply that corresponds to your radios digital squelch code number.
- A fixed octal 4 (coded 100).
- A mathematically-derived 11-bit error detection code.

The data stream is output serially, beginning with the Error Detection Code.

The Turn Off Code

The Turn Off Code is a tone burst that is output after the data stream has been output the desired number of times, or after a series of bursts has been interrupted using the Stop field.
CDCSS Encoder Mode

AFGen2 To
Audio Frequency Generator 2 To contains two fields:
- The upper field determines whether the CDCSS Encoder modulates the RF Generator, or is output through AUDIO OUT.
- The lower field sets the amplitude (including Off).

Audio Out
Audio Out Coupling selects AC or DC coupling of the encoder to the AUDIO OUT connector when the upper AFGen2 To field is set to Audio Out.

Operating Considerations
The CDCSS encoder creates data streams using squarewaves. For optimum waveform quality, set this field to DC when using the AUDIO OUT connector. This is especially beneficial at low Data Rates.

Bursts
This field defines the number of data streams output each time Send is selected. This function works only when the Send Mode field is set to Burst.

Code
This field defines the 3 digit octal code used to identify the radio being accessed.

Data Rate
This field specifies how fast the data stream is output in bits-per-second.

This setting is also used to determine the Turn Off Code frequency (TOC frequency Hz = Data Rate in bps). Example: 1000 bps = 1 kHz

Operating Considerations
This field is also used by the CDCSS SIGNALING DECODER screen to approximate the data rate for the signal being decoded.

FM Coupling
This field alters the FM modulator to allow DCFM from internal and external modulation sources. This field also selects AC or DC coupling between the RF Generator's frequency modulator and the rear-panel MODULATION INPUT connector.

Operating Considerations
This field should be set to DC whenever the AFGen2 To field is set to FM; this provides better modulation response at low data rates.
CDCSS Encoder Mode

Polarity
This setting determines the relationship between the data stream logic levels and the effect on the modulated signal.

This function is helpful to restore the proper data polarity when the transmitter, repeater, or receiver used in your communications system has an odd number of inversions; causing the received data to be inverted when decoded. (This is common when a signal is translated to a lower frequency using an LO whose frequency is higher than the signal’s frequency; or when inverting amplifiers are used.)

Normal Operation
When this field is set to Norm, a logical high (1) causes the output level of the AF Generator to be more positive. A logical low (0) causes the level to become negative by the same amount.

Inverted Operation
When this field is set to Invert, a logical high (1) causes the output level of the AF Generator to be more negative. A logical low (0) causes the level to become positive by the same amount.

Send
Selecting this field causes the data stream to be output.

Send Mode
This field selects the output format used when Send is selected to output a sequence.

- **Single** outputs the entire sequence once.
- **Burst** outputs the sequence the number of times specified in the **Bursts** field.
- **Cont** causes the sequence to be output continuously until **Stop** is selected.

Standard
This field selects the digitally-coded squelch standard for your radio.

Stop
Selecting this field stops the data stream being output when the Send Mode is set to Cont or Burst. After this field is selected, the current repetition of the data stream is finished, and the Turn Off Code is output.

TOC Time
Turn Off Code Time defines the length of time the Turn Off Code is output.

Operating Considerations
This code is always the last information output before the encoder Status indicator changes from **Sending to Idle**; whether several bursts or only one data stream is sent. If no TOC is desired, set this field to 0.0000.
The Digital Paging Encoder outputs signals to test pagers using a variety of digital access formats and frequencies. The signal can be used to modulate the RF Generator, or can be output through the front-panel AUDIO OUT connector. FM is typically selected, using the RX TEST screen to set up the RF Generator to generate the encoded carrier.

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Send Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>300.0 bps</td>
<td>Single</td>
</tr>
<tr>
<td>Function</td>
<td>Bursts</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pager Type</td>
<td>AFGen2 To</td>
</tr>
<tr>
<td>Tone-Only</td>
<td>FM</td>
</tr>
<tr>
<td>Pager Code</td>
<td>Audio Out</td>
</tr>
<tr>
<td>100000</td>
<td>DC/DC</td>
</tr>
<tr>
<td>Error Bit</td>
<td>FM Coupling</td>
</tr>
<tr>
<td>0</td>
<td>Polarity</td>
</tr>
<tr>
<td></td>
<td>More / Invert</td>
</tr>
<tr>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td></td>
<td>Idle</td>
</tr>
<tr>
<td></td>
<td>RX Test</td>
</tr>
<tr>
<td></td>
<td>Status</td>
</tr>
<tr>
<td></td>
<td>SOTHE Page</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>GSC</td>
</tr>
<tr>
<td></td>
<td>To Screen</td>
</tr>
<tr>
<td></td>
<td>RF GEN</td>
</tr>
<tr>
<td></td>
<td>RF ANL</td>
</tr>
<tr>
<td></td>
<td>RF ANL</td>
</tr>
<tr>
<td></td>
<td>SCOPE</td>
</tr>
<tr>
<td></td>
<td>SPEC ANL</td>
</tr>
<tr>
<td></td>
<td>ENCODER</td>
</tr>
<tr>
<td></td>
<td>DECODER</td>
</tr>
<tr>
<td></td>
<td>AUDIO INT</td>
</tr>
<tr>
<td></td>
<td>More</td>
</tr>
</tbody>
</table>

Figure 4-31. The Digital Paging Encoder Mode Screen

AFGen2 To

Audio Frequency Generator 2 To contains two fields:

- The upper field determines whether the Digital Paging encoder modulates the RF Generator, or is output through AUDIO OUT.
- The lower field sets the amplitude (including Off).

Audio Out

Audio Out Coupling selects AC or DC coupling of the encoder to the AUDIO OUT connector when the upper AFGen2 To field is set to Audio Out.

Operating Considerations

This field should be set to DC for best results when using the AUDIO OUT connector and low Data Rates.
Digital Paging Encoder Mode

Bursts This field defines the number of digital data streams output each time Send is selected. This function works only when the Send Mode field is set to Burst.

Data Rate This field specifies how fast the data stream is output in bits-per-second. Common data rates; POCSAG 512, 1200: GSC (GOLAY) 300, 600.

Error Bit This field enables you to cause an error for a specific bit in the encoded message stream.

FM Coupling This field alters the FM modulator to allow DCFM from internal and external modulation sources. This field also selects AC or DC coupling between the RF Generator’s frequency modulator and the rear-panel MODULATION INPUT connector.

Operating Considerations This field should be set to DC whenever the AFGen2 To field is set to FM: this provides better modulation response at low data rates.

Function This setting specifies which of the four types of messages to send. The pager’s response is determined by the Pager Type field setting and the pager’s configuration.

For example, when testing a POCSAG pager set for Tone-Only operation, functions 00 through 11 typically correspond to the pager beeping one to four times. If the pager is set for Alpha-Numeric operation, the functions correspond to a combination of the number of beeps and the type of message displayed by the pager.

Mssg Length The Message Length field specifies the number of characters output from the Pager Numeric/Alpha-Numeric field.

This field is only displayed when the Pager Type is set to Numeric or Alpha-Num.

Pager Alpha-Numeric Message This field specifies the message you are sending to an alpha-numeric format pager.

This field is only displayed when the Pager Type is set to Numeric or Alpha-Num.
Digital Paging Encoder Mode

Pager Code
This field is used to identify the individual code number (address) of the pager you are testing.

Pager Numeric Message
This field specifies the message you are sending to a numeric format pager.
This field is only displayed when the Pager Type is set to Numeric or Alpha-Num.

Pager Type
This field specifies the way your pager responds to a received signal: Tone-Only (beeps), Numeric (displays numbers), or Alpha-Numeric (displays numbers and other characters).

Polarity
This setting determines the relationship between the data stream logic levels and the effect on the modulated signal.

Normal Operation
When this field is set to Norm, a logical high (1) causes the output level of the AF Generator to be more positive (causing a positive frequency deviation when FM is used). A logical low (0) causes the level to become negative by the same amount (resulting in negative FM deviation).

Inverted Operation
When this field is set to Invert, a logical high (1) causes the output level of the AF Generator to be more negative (causing a negative FM deviation). A logical low (0) causes the level to become positive by the same amount (resulting in positive FM deviation).

Send
Selecting this field causes the entire data stream to be output (including the preamble, address, and message).

Send Mode
This field selects the output format used when Send is selected to output a sequence.
- Single outputs the entire sequence once.
- Burst outputs the sequence the number of times specified in the Bursts field.
- Cont causes the sequence to be output continuously until Stop is selected.

Standard
This field selects the digital paging standard for the pager being tested: POCSAG or GSC (Golay Sequential Code).

Stop
Selecting this field stops the data stream being output.
AMPS-TACS NAMPS-NTACS Encoder

AMPS = Advanced Mobile Phone Service.
NAMPS = Narrowband Advanced Mobile Phone Service.
TACS = Total Access Communications Systems.
JTACS = Total Access Communications System for Japan.
NTACS = Narrowband Total Access Communications Systems
(NTACS is an extension of JTACS).

Using This Information

This screen is used to create various types of cellular telephone
data streams. Selecting the Standards field displays a list of the
supported signaling formats.

The theory and applications of cellular telephone systems are beyond
the scope of this manual. The field descriptions describe their basic
functions, and are not intended to be used as tutorial information.

If additional information is needed, refer to the many technical
manuals available on the subject of cellular telephones.

Automated Test Software

Hewlett-Packard offers pre-written software packages to test your
cellular phone in a fraction of the time normally required for
manual testing. You can choose any combination of tests, from full
parametric testing, to a single test. The software is shipped on a
memory card that inserts directly into your Test Set, and comes with
complete documentation and a blank SRAM memory card for storing
your test procedures and test data.
AMPS-TACS NAMPS-NTACS Encoder Mode

Encoder/Decoder Interaction

The AMPS-TACS/NAMPS-NTACS Encoder acts like a base station transmitter, creating Forward Control and Voice channel information (FOCC/FVC). The AMPS-NAMPS-TACS/NTACS Decoder acts like a base station receiver, analyzing Reverse Control and Voice channel signals (RECC/RVC).

The Decoder uses the Encoder's Data Rate setting to specify how fast the incoming message is being sent. Therefore, when using the Decoder, you must first specify the Data Rate in the Encoder.

Control and Voice Channel Identifiers

The Control and Voice channel fields are available in separate menus. The Channel field is used to select the Control (FOCC) or Voice (FVC) menu.

Fields available only in the Forward Control Channel menu have “(FOCC)” printed in the field title.

Fields available only in the Forward Voice Channel menu have “(FVC)” printed in the field title.

Encoder Mode Differences

The AMPS/TACS and NAMPS/NTACS Encoder modes use the same Forward Control Channel (FOCC) settings and output format. However, the Forward Voice Channel (FVC) information is different. Fields that are only used for either standard are noted in their descriptions.
AMPS-TACS NAMPS-NTACS Encoder Mode

Figure 4-32. AMPS-TACS/NAMPS-NTACS - Forward Control Channel (FOCC)

The data you enter here...........

FOCC

Stream A Stream B
Filler Filler
Message Message

To T T
(2 Bits)

Information (20 Bits)
Party (12 Bits)

Contents of the Message or Filler Field

WORD A

WORD B

...........is output in this sequence.

10 Bits 11 Bits 40 Bits 40 Bits 40 Bits

DOTTING WORD SYNC REPEAT 1 OF WORD A REPEAT 1 OF WORD B REPEAT 2 OF WORD A

= Busy/Idle Bits

40 Bits 40 Bits 40 Bits 10 Bits

REPEAT 4 OF WORD B REPEAT 5 OF WORD A REPEAT 5 OF WORD B DOTTING

Figure 4-33. AMPS-TACS/NAMPS-NTACS FOCC Message and Filler Data Format

4-98 Screen and Field Descriptions
AMPS-TACS NAMPS-NTACS Encoder Mode

Figure 4-34. AMPS-TACS Forward Voice Channel (FVC) Encoder

The data you enter here...

FVC
Message

\[T_1 \quad T_2 \]
(2 Bits)

\[\text{Information} \]
(26 Bits)

\[\text{Parity} \]
(12 Bits)

\[\text{Contents of the Message Field} \]

Message Word

is output in this sequence.

<table>
<thead>
<tr>
<th>101 Bits</th>
<th>11 Bits</th>
<th>40 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
<th>40 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTTING</td>
<td>W.S.</td>
<td>REPEAT 1 OF WORD</td>
<td>DOTTING</td>
<td>W.S.</td>
<td>REPEAT 2 OF WORD</td>
</tr>
</tbody>
</table>

W.S. = Word Sync

<table>
<thead>
<tr>
<th>37 Bits</th>
<th>11 Bits</th>
<th>40 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
<th>40 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
<th>40 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTTING</td>
<td>W.S.</td>
<td>REPEAT 9 OF WORD</td>
<td>DOTTING</td>
<td>W.S.</td>
<td>REPEAT 10 OF WORD</td>
<td>DOTTING</td>
<td>W.S.</td>
<td>REPEAT 11 OF WORD</td>
</tr>
</tbody>
</table>

Figure 4-35. AMPS-TACS FVC Message Data Output Format
Figure 4-36. NAMPS-NTACS Mode - Forward Voice Channel (FVC) Screen

Figure 4-37. NAMPS-NTACS FVC Message Data Output Format
AMPS-TACS NAMPS-NTACS Encoder Mode

AFGen2 To Audio Frequency Generator 2 To determines whether the data stream modulates the RF Generator, or is output through the AUDIO OUT connector.

Audio Out Audio Out Coupling selects AC or DC coupling of the AF Generator to the AUDIO OUT connector when AFGen2 To is set to Audio Out.

Busy/Idle (FOCC) This field selects the Busy/Idle status information to be included in the signaling sequence.

- **Idle** sets the Busy/Idle bits of the Forward Control Channel information to indicate an Idle state.
- **Busy** sets the Busy/Idle bits of the Forward Control Channel information to indicate a Busy state.
- **WS Delay** - Word Sync Delay prevents a Busy/Idle change until the Word Sync information has been received and a defined number of delay bits has been counted. The delay bit value is set in the B/I Delay field.
- **1stBitDly** - First Bit Delay causes the Busy/Idle Bit to be set after a bit has been received and a defined number of delay bits has been counted. The delay bit value is set in the B/I Delay field.

B/I Delay (FOCC) Busy/Idle Delay determines the number of bits that are counted before a Busy/Idle bit changes from the Idle state to the Busy state. This function is used with the WS Delay and 1stBitDly settings in the Busy/Idle field.
AMPS-TACS NAMPS-NTACS Encoder Mode

Bursts
This field defines the number of times the Message data is output when Send is selected. This function only works when the Send Mode field is set to Burst.

Channel
This field selects the Forward Control Channel (FOCC) or Forward Voice Control (FVC) menus.

Data Level
This setting determines the signal level change that occurs when a logical high (1) or low (0) is output. The unit-of-measure used depends on the AFGen2 To setting. The direction of the output level change depends on the Polarity setting.

Data Rate
This setting determines the rate that the FOCC and FVC information are output.

Operating Considerations

This field specifies the data rate for the signal being decoded, and must be set before using the AMPS-TACS/NAMPS-NTACS Decoder.

DSAT (FVC)
This field is available only in NAMP-NTAC mode.

This field is used to specify the 24-bit Digital Supervisory Audio Tone (DSAT) sequence. The seven standard sequences are: 2556CB, 255B2B, 256A9B, 25AD4D, 26AB2B, 26B2AD, and 2969AB. (These codes are the inverse of the seven DST codes.)

DSAT is output continuously when Send DSAT is selected, and is only stopped when Stop DSAT is selected. If Message or DST information is sent using Send, the DSAT signal is temporarily interrupted until that information has been sent. (The Status: field in the upper-right corner of the screen indicates what type of data is being sent.)
AMPS-TACS NAMPS-NTACS Encoder Mode

Filler (FOCC)

Each Filler field contains 7 hexadecimal characters representing the 2 Type bits and 26 Information bits of the Control Filler/Message word. The Dotting, Word Sync, and Parity bits are generated automatically.

Operating Considerations

The Control Filler is sent continuously when Send Filler is selected, or after a Control Message has been sent using Send. The Control Message is stopped whenever Stop Filler, Filler, Channel, Data Rate, Polarity, or AFGen2 To is selected.

Both Filler fields must be full (seven digits) for the Forward Control Channel information to be structured correctly. Do not leave any blank spaces.

FM Coupling

This field alters the FM modulator to allow DCFM from internal and external modulation sources. This field also selects AC or DC coupling between the RF Generator's frequency modulator and the rear-panel MODULATION INPUT connector.

Message (FOCC)

Message Streams A and B specify various Forward Control Channel parameters.

Operating Considerations

Like the Filler information, the Message information can only be input in full (seven digit) lines. Also, Message Streams A and B must have the same number of lines in them.

Message (FVC)

This description applies to the AMPS-TACS mode.

The 7 hexadecimal characters of the FVC Message field represent the 2 Type bits and 26 Information bits in the FVC message Word.

The generation of Dotting, Word Sync, Parity, and the 11 repetitions of these parameters in the FVC Message Stream is done automatically.

Operating Considerations

The entire field must contain data, no blank spaces are allowed. SAT is turned off while the FVC message stream is being sent.

Message (FVC)

This description applies to the NAMP-NTAC mode.

The 7 hexadecimal characters (28 bits) of this FVC Message are combined with 12 Parity bits calculated by the Encoder to output a 40-character data stream. This information is output when the Message/DST field is set to 'Message', and Send is selected.

Operating Considerations
AMPS-TACS NAMPS-NTACS Encoder Mode

The entire field must contain data, no blank spaces are allowed. DSAT is turned off while the FVC Message Stream is being sent.

Message/DST (FVC)

This field is available only in NAMP-NTAC mode.

This field determines what type of data is sent when Send is selected:

1. Selecting Message causes the contents of the Message field to be output.
2. Selecting DST causes the Digital Signaling Tone sequence to be output. The sequence sent is the inverse of the sequence entered in the DSAT field, and is automatically determined by the Encoder.

The DST values are: DAA934, DAA64D4, DA9564, DA52B2, D954D4, D94D52, and D69654.

Polarity

This setting determines the relationship between the signaling logic levels and the effect on the modulated signal.

Normal Operation

When this field is set to Norm, a logical high (1) causes the output level of the AF Generator to be more positive. The peak level is listed in the Data Level field. A logical low (0) causes the level to become negative by the same amount.

Inverted Operation

When this field is set to Invert, a logical high (1) causes the output level of the AF Generator to be more negative. The peak level is listed in the Data Level field. A logical low (0) causes the level to become positive by the same amount.
AMPS-TACS NAMPS-NTACS Encoder Mode

SAT Freq (FVC)
This field is available only in AMPS-TACS mode. This field sets the **Supervisory Audio Tone Frequency**. This signal is sent continuously whenever the FVC is selected, except while the Message is being sent.

SAT Level (FVC: AMPS-TACS)
This field sets the **Supervisory Audio Tone Level**. The unit-of-measure depends on the AFGen2 To setting.

Operating Considerations
SAT is turned off while the FVC Message Stream is being sent.

Send
Selecting this field causes the FVC or FOCC Message to be output.

Operating Considerations
When sending an FOCC message stream, the contents of the Filler are continuously output after the message data has been sent. **Stop Filler** is used to stop the output.

Send Filler (FOCC)
Selecting this field causes the contents of the Filler fields for Stream A and Stream B to be output. The fillers continue to be output until **Stop Filler** is selected.

Send DSAT (FVC)
This field is available only in NAMP-NTAC mode. Selecting this field causes the contents (24 bits) of the DSAT field to be continuously output until **Stop DSAT** is selected. If a Message or DST (Digital Signaling Tone) is sent by selecting **Send**, the DSAT (Digital Supervisory Audio Tone) data is output continuously after the Message is output.
AMPS-TACS NAMPS-NTACS Encoder Mode

Send Mode
This field selects the mode used when **Send** is selected to output the Message.
- Single outputs the entire message once.
- Burst outputs the Message the number of times specified in the Bursts field.
- Cont causes the message to be output continuously until **Stop** is selected.
- Step is not used in the AMPS-TACS mode.

Standard
This field selects the signaling standard used for your radio. The standard values used for each signaling format are automatically filled-in when the Standard is selected.

Stop
Selecting this field stops the Message being output.

Stop DSAT (FVC)
This field is available only in NAMP-NTAC mode.
Selecting this field stops the Digital Supervisory Audio Tone (DSAT) being output.

Stop Filler (FOCC)
Selecting this field stops the Filler information from being output after **Send Filler** or **Send** is used.
Nordic Mobile Telephone (NMT) Encoder

The Nordic Mobile Telephone (NMT) encoder generates signals to test radios for several NMT standards.

The operation of the NMT encoder is strongly dependent on functions used in the NMT Decoder screen. Therefore, operating and reference information for the Encoder screen is discussed in the NMT Decoder section of this chapter.
This Encoder mode is used to test trunked mobile radios that use the EF Johnson LTR® (Logic Trunked Radio) format. Two different trunking messages can be used (Message1 and Message 2) to allow you to change radio operation while the encoder is running.

Figure 4-38. The LTR Trunked Radio Encoder Mode Screen

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>SEND Mode</th>
<th>Status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.297 kbps</td>
<td>Burst</td>
<td>Idle</td>
</tr>
<tr>
<td>Area 1</td>
<td>Area 2</td>
<td>LTR</td>
</tr>
<tr>
<td>Goto 1</td>
<td>Goto 2</td>
<td>Mode</td>
</tr>
<tr>
<td>Home 1</td>
<td>Home 2</td>
<td>Standard</td>
</tr>
<tr>
<td>ID 1</td>
<td>ID 2</td>
<td>LTR</td>
</tr>
<tr>
<td>Free 1</td>
<td>Free 2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

LTR message

Message 1: Message 2

Figure 4-39. How Message 1 & Message 2 Fields Are Used to Create Trunking Data

<table>
<thead>
<tr>
<th>9 bits</th>
<th>1 bit</th>
<th>5 bits</th>
<th>5 bits</th>
<th>8 bits</th>
<th>5 bits</th>
<th>7 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC</td>
<td>AREA</td>
<td>GO-TO REPEATER</td>
<td>HOME CHANNEL OF CALLED RADIO</td>
<td>ID CODE OF CALLED RADIO</td>
<td>FREE REPEATER</td>
<td>ERROR CHECK BITS</td>
</tr>
</tbody>
</table>

Area 1: Goto 1 Home 1 ID 1 Free 1
Area 2: Goto 2 Home 2 ID 2 Free 2

4-108 Screen and Field Descriptions
LTR Encoder Mode

Radio Test Examples

The following procedures establish a receiver or transmitter trunked channel on the Home channel.

To Test Your Receiver

To establish a trunked receiver channel on the Home channel:

1. Connect the RF IN/OUT port of the Test Set to your radio's antenna port.
2. If you want to make audio measurements, connect your radio's speaker output to the Test Set's AUDIO IN port(s), and turn the Test Set's VOLUME up about half way.
3. Turn your radio's volume up about half way.
4. Turn your radio on, and select the channel to test.
5. Press [Preset] (to establish a known instrument state for this procedure).
6. Access the Duplex Test screen.
7. Set the Tune Mode field to Manual.
8. Set the RF Gen Freq field to the receive frequency for the selected channel. (Note that the PRESET function caused the Amplitude to be set to -80 dBm, and AFGen1 is set to 1 kHz FM with 3 kHz deviation. These settings should work with your radio to produce the audio tone.)
9. Access the Encoder screen, and select the LTR mode.
10. Enter your Area Number (0 or 1) in the Area 1 field.
11. Enter the Home Channel number in these fields: Goto 1, Home 1, and Free 1. (For example, if your radio's Home Channel is 2, enter 2 in all three fields.)
12. Enter the Receive ID number for your radio in the ID 1 field.
13. Set the Send Mode field to Cont.
14. Set the AFGen2 To field to FM, 1 kHz.
15. Set the FM Coupling field to DC.
16. Select Send to continuously output the encoded signal.

You should hear the 1 kHz tone from your radio and/or the Test Set's speaker, indicating that the trunked channel has been established.

If you connected the radio's speaker to the AUDIO IN port(s), access the Duplex Test screen to display the AC Level and SINAD measurements.

To make a 12 dB SINAD measurement -

1. Set Filter 1 to 300Hz HPF and Filter 2 to 3kHz LPF.
2. Decrease the Amplitude until ≈12 dB SINAD is displayed.
3. Use the AVG (average) function to stabilize the measurement by positioning the cursor in front of the SINAD dB field and pressing [Shift], [Avg], [Enter].
LTR Encoder Mode

To Test Your Transmitter

To establish a trunked transmit channel on the Home channel:

1. Connect the RF IN/OUT port of the Test Set to your radio’s antenna port.
2. Turn your radio on, and select the channel to test.
3. Press **Preset** (to establish a known instrument state for this procedure).
4. Access the **Duplex Test** screen.
5. Set the **Tune Mode** field to **Manual**.
6. Enter the Home channel transmit frequency in the **Tune Freq** field.
7. Enter the Home channel receive frequency in the **RF Gen Freq** field.
8. Set **AFGen1 To** to **Off**.
9. Set the **AF An1 In** field to **FM Demod**.
10. Access the **Encoder** screen, and select the LTR mode.
11. Set up Message 1 with idle message data -
 a. Enter your Area Number (0 or 1) in the **Area 1** field.
 b. Enter the Home Channel number in these fields: **Goto 1, Home 1**, and **Free 1**.
 c. Enter **255** in the **ID 1** field to establish an idle channel.
12. Set up Message 2 with transmit message data -
 a. Enter your Area Number (0 or 1) in the **Area 2** field.
 b. Enter the Home Channel number in these fields: **Goto 2, Home 2**, and **Free 2**.
 c. Enter the Transmit ID number for your radio in the **ID 2** field.
13. Set the **Send Mode** field to **Cont**.
14. Set the **AFGen2 To** field to **FM 1 kHz**.
15. Set the **FM Coupling** field to **DC**.
16. Set the **LTR Message** field to **Message1**.
17. Select **Send** to continuously output idle message.
18. Key the transmitter.
19. Select **Message2** in the **LTR Message** field to tell your radio to transmit. If the transmitter fails to establish a transmit channel before time-out occurs, try again using these steps:
 a. De-key the transmitter
 b. Select Message 1
 c. Key the transmitter
 d. Select Message 2

Once a transmit channel is established, turn the Test Set's VOLUME up and speak into your radio's microphone. You should hear your voice out of the Test Set’s speaker. Access the **Duplex Test** screen to display the transmitter’s Power and Frequency Error.
LTR Encoder Mode

Performing Channel Changes

Testing the mobile's ability to change to other receive channels when commanded requires rapid RF Generator frequency changes. After the idle message on the Home Channel has been established (using Message 1), a message is sent to change channels (Message 2). The mobile must see the LTR-encoded carrier at the new channel frequency within a few seconds to establish the new channel. You can change the RF Generator frequency using a global USER key assigned to that field; having previously entered an increment value equal the required channel offset. This procedure must be done very quickly to work.

The best way to perform a channel change is to use an HP-IB or IBASIC program to change the RF Generator frequency to the new channel frequency immediately after the appropriate message has been output.

Automated Test Software

Hewlett-Packard offers pre-written software packages to test your LTR-format trunked radio in a fraction of the time normally required for manual testing. You can choose any combination of tests, from full transmitter and receiver testing, to a single test. The software is shipped on a memory card that inserts directly into your Test Set, and comes with complete documentation and a blank SRAM memory card for storing your test procedures and test data.
LTR Encoder Mode

AFGen2 To Audio Frequency Generator 2 To contains two fields:

- The upper field determines whether the LTR Encoder modulates the RF Generator, or is output through AUDIO OUT. (Normally set to FM for LTR signaling.)
- The lower field sets the amplitude (including Off). (Typically set to 1 kHz for LTR signaling.)

Area 1, Area 2 Enter the trunked system Area Number (0 or 1) programmed into your radio.

Audio Out Audio Out Coupling selects AC or DC coupling of the LTR Encoder to the AUDIO OUT connector when the upper AFGen2 To field is set to Audio Out.

Bursts This field defines the number of times Message 1 or Message 2 is output each time Send is selected. This function works only when the Send Mode field is set to Burst.

Data Rate Enter the LTR signaling data rate used for your radio. The standard, and default value, is 297.6 bits-per-second.

FM Coupling This field alters the FM modulator to allow DCFM from the LTR Encoder modulation source. This field should be set to DC when testing trunked radios.

This field also selects AC or DC coupling between the RF Generator’s frequency modulator and the rear-panel MODULATION INPUT connector.

Free 1, Free 2 Enter the repeater number to transmit to when the radio is keyed. In the previous example, the Home Channel was used. When channel switching is performed, you would specify any of the other repeaters in the system.

Goto 1, Goto 2 Enter the repeater number to receive when the Message is sent.

Home 1, Home2 Enter the Home repeater number programmed into your radio.
LTR Encoder Mode

ID 1, ID 2
Enter the Transmit or Receive ID number programmed into your radio.

LTR message
This field selects which message (Message1 or Message2) is output when **Send** is selected. The underlined message is output.

Polarity
This setting determines the relationship between the LTR Encoder data stream logic levels and the effect on the modulated signal.

When this field is set to **Invert**, a logical high (1) causes the output level of the AF Generator to be more **negative**. A logical low (0) causes the level to become positive by the same amount.

Send
Selecting this field causes the LTR Encoder to start modulating the RF Generator.

Send Mode
This field selects the output format used when **Send** is selected to output a sequence. **Cont** is typically used for LTR radio testing.

- **Single** outputs Message 1 or Message 2 once.
- **Burst** outputs the message the number of times specified in the **Bursts** field.
- **Cont** causes the message to be repeated continuously until **Stop** is selected.
- **Step** is not used with this Encoder mode.

Standard
This field selects the trunked radio standard for your radio (as new standards are added).

Stop
Selecting this field stops the message being output when the **Send Mode** is set to **Cont** or **Burst**. After this field is selected, the current repetition of the message is finished.
This encoder simulates an Ericsson GE EDACS® (Enhanced Digital Access Communications System) repeater site to test trunked mobile radios using that format.

Figure 4-40. The EDACS Trunked Radio Encoder Mode Screen
EDACS Encoder Mode

Automated Test Software

Hewlett-Packard offers pre-written software packages to fully test your EDACS radio in a fraction of the time normally required for complete manual testing. Under software control, you can perform receiver and transmitter tests on several channels in succession very quickly.

You can choose any combination of tests, from full transmitter and receiver testing, to a single test. The software is shipped on a memory card that inserts directly into your Test Set, and comes with complete documentation and a blank SRAM memory card for storing your test procedures and test data.

Testing EDACS Mobiles

When the mobile is turned on, it automatically tunes to its pre-programmed Control Channel frequency. The Test Set generates the Control Channel carrier and Site ID data using the RF Generator and the EDACS Encoder settings. (The RF carrier level for the Control Channel and Working Channel is adjusted using the Amplitude field on the DUPLEX TEST screen.) Once the mobile is receiving the Control Channel, the encoder can send a digital message to the mobile to go to a designated Working Channel for making receiver tests (this is called a 'handshake').

Testing the Mobile's Receiver

If the Working Channel's RF carrier level is high enough, the mobile's receiver un-squelches to allow the modulating signal (speech or a test tone) to be heard from your mobile's speaker.

If the audio output (speaker) connection of your mobile is connected to the AUDIO IN connectors of the Test Set, you can then make receiver audio quality measurements; such as distortion at 1 kHz and SINAD.

Testing the Mobile's Transmitter

The EDACS Encoder's information is used to help the EDACS Decoder receive and decode transmitted data from the mobile. After entering all of the information in the EDACS Encoder screen, the EDACS Decoder screen is accessed to get the mobile transmitting and to decode the digital data. With the transmitter keyed, you can access the TX TEST or DUPLEX TEST screen to measure TX Power and TX Frequency or TX Freq Error. You can also decode and display the transmitted data using the EDACS Decoder. (Refer to the EDACS Decoder section for more information on EDACS Transmitter Testing.)
EDACS Encoder Mode

Mobile Receiver Test Procedure

The following procedure establishes a Control Channel connection between the Test Set and your mobile, and then performs a handshake to pass the mobile to a Working Channel. Receiver measurements can then be made.

Note

Each EDACS radio is pre-programmed to access a specific Control Channel and one or more Working Channels. Other identification information is also pre-programmed into the mobile (such as the Logical ID and Group ID numbers). You cannot test an EDACS mobile without entering these values into the Encoder.

Press [PReset] on the Test Set before continuing.

Connect the Mobile to the Test Set

1. Connect the mobile's antenna port to the Test Set's RF IN/OUT port.

2. Connect the mobile's audio output to the AUDIO IN HI port of the Test Set. (The AUDIO IN LO port is typically only used when the mobile's antenna port shield is not at the same potential as the audio output shield. See the AF ANALYZER screen, Audio In Lo field description.)

3. Turn the mobile on.

Get the Mobile Up on the Control Channel

1. Turn AF Generator 1 [Off] (to disable the default 3 kHz FM deviation). To do this, position the cursor in front of the 3.00 value in the AFGen1 To field on the RF Gen or Duplex screen and press [ON/OFF].

2. Select the [ENCODER] function from the To Screen menu.

3. Select the EDACS Mode to display the EDACS Encoder.

4. Select the standard used by the radio (4800 or 9600 bps).

5. Enter the Control Channel settings.
 a. The Number is the system Control Channel number programmed into your mobile.
 b. The RX Frequency is the Control Channel receive frequency for your mobile.
 c. The TX Frequency is the Control Channel transmit frequency for your mobile.
EDACS Encoder Mode

6. Enter the Working Channel settings.
 a. The Number is the Working Channel number (programmed into your mobile) that you want the mobile to be sent to.
 b. The RX Frequency is the mobile’s receive frequency for the selected Working Channel.
 c. The TX Frequency is the mobile’s transmit frequency for the selected Working Channel.

7. Enter the Logical ID number.

8. Enter the Group ID number.

9. Enter the Site ID number.

10. Select the Send field (under RX Test). The Status field should now indicate Control.

The Test Set should now be sending Control Channel Site ID information to the mobile, and the mobile should indicate that it is receiving the Control Channel data.

11. Select the Handshake field. This tells the mobile and RF Generator to go to the Working Channel frequencies. The mobile should now indicate that it is “busy”, and is tuned to a Working Channel (this is a “receiver handshake”). The Status field should now indicate Working.

Make Receiver Measurements

1. Press RX to access the RX TEST screen.

2. Turn AF Generator 1 On. (Position the cursor in front of the Off entry in the lower part of the AFGen1 To field, and press ON/Off.) The entry should now read 3.00. The Working Channel is now being modulated at a 1 kHz rate (AFGen1 Freq) with 3 kHz deviation (AFGen1 To) in addition to the subaudible EDACS signaling from the Encoder (AFGen2).

3. Set the volume control on your mobile to about half of full scale. (You may or may not hear the 1 kHz tone from your radio’s speaker, depending on how the external speaker connection affects the speaker.)

4. Turn the VOLUME up the Test Set. You should be able to hear the 1 kHz tone.

Your mobile’s SINAD is displayed, as well as the AC Level of the audio output. You can now change the RF Generator’s Amplitude setting to check sensitivity, or select the SINAD measurement to list and access other available audio measurements.
EDACS Encoder Mode

AFGen2 To
The Audio Frequency Generator 2 To field is used to specify where the encoder's data is sent:

- **FM** is used to frequency modulate the RF Generator. This is the normally-used setting. (Refer to the FM Coupling field description.)
- **AM** is used to amplitude modulate the RF Generator (not generally used for EDACS signaling).
- **Audio Out** routes the data to the front panel AUDIO OUT connector. The signal could then be used as an external modulation source. (Refer to the Audio Out field description.)

Operating Considerations
The encoder’s digital signal level is adjusted using the Signaling Dev and Sub-Audible Dev fields. Changing the AFGen2 To setting automatically alters the unit-of-measure for both of these fields (kHz, %, or mV).

Audio Out
The Audio Out Coupling field selects AC or DC coupling of the encoder to the AUDIO OUT connector. Because the EDACS Encoder sends low speed data, this field should be set to DC when the AUDIO OUT port is used. The AFGen2 To field must be set to Audio Out to use this function.

Control Channel, Number
This field is used to specify the Control Channel number for the EDACS system. (Typically 1 to 25.)

Control Channel, RX Frequency
This field is used to specify the Control Channel receive frequency for the mobile.

Control Channel, TX Frequency
This field is used to specify the Control Channel transmit frequency for the mobile.

Data Rate
This field sets the data rate (in bits-per-second) for the high speed signaling. The value can be changed using the keypad, or by selecting a value from the Standard field. However, the 9600 bps rate is the EDACS default, and should not be changed under most circumstances. (4800 is used for narrowband 900 MHz systems in the U.S.)
EDACS Encoder Mode

FM Coupling
This field is used to select AC or DC coupling of the encoder to the RF Generator when the AFGen2 To field is set to FM. Because the EDACS Encoder sends low speed data, this field should be set to DC.

Group ID
This field is used to specify the Group ID number for the trunked radio group your radio is set up to access.

Handshake
This field is used to get the mobile up on a Working Channel after it has accessed the Control Channel.

When start is selected, the encoder sends a digital message over the Control Channel to tell the mobile to go to the specified Working Channel (called a "channel assignment"). Immediately after the message is sent, the RF Generator and RF Analyzer frequencies are automatically changed to match the same Working Channel settings.

Operating Considerations
The Control Channel message must be transmitting before a handshake can be initiated. The Status: field indicates Control when the Control Channel is transmitting, and changes to Working when the Working Channel is being sent.

Logical ID
This field is used to specify the ID number of the calling radio. It should be set to the Logical ID of the radio being tested when performing transmitter tests. Generally, when performing receiver tests, it must be set to a Logical ID different from that of the radio being tested.

Polarity
This setting determines how the encoder's digital data modulates RF Generator. This field is usually set to Norm. Invert is used for narrowband systems. This field is automatically set to the correct polarity by the Standard field.

When this field is set to Invert, a logical high (1) causes the output level of the encoder to be negative. A logical low (0) causes the level to become positive. When using FM, the RF Generator would then produce a negative frequency deviation for a positive-going digital transition - the opposite of the normal mode of operation.

This field is automatically set to the correct polarity by the Standard field.
EDACS Encoder Mode

RX Test When [Send] is selected, the Control Channel message is output at the RX Frequency specified in the Control Channel settings. The Status: field changes from Idle to Control, and the RF Analyzer is tuned to the Control Channel TX Frequency.

See Also
Handshake field description

Signaling Dev This field is used to specify the high-speed data level. The unit of measure used depends on the AFGen2 To setting.
- When AFGen2 To is set to FM, the displayed units are kHz or Hz. This is the normally-used setting for testing EDACS radios.
- When AFGen2 To is set to AM, the displayed unit is %.
- When AFGen2 To is set to Audio Out, the displayed units are μV, mV, or V.

See Also
AFGen2 To field description

Site ID This field is used to specify the ID number of the repeater site being simulated by the encoder.

Standard This field specifies the signaling standard used by the radio: 4800 bps (narrowband) or 9600 bps (wideband). In addition to telling the Encoder and Decoder which system is being used, this field presets the values of certain fields as shown in the following table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9600</td>
</tr>
<tr>
<td>Data Rate</td>
<td>9600.0</td>
</tr>
<tr>
<td>Signaling Dev</td>
<td>3.00</td>
</tr>
<tr>
<td>Sub-Audible Dev</td>
<td>750</td>
</tr>
<tr>
<td>(Encoder) Polarity</td>
<td>Norm</td>
</tr>
</tbody>
</table>

Status This field indicates what the encoder is doing.
- **Idle** is displayed when no data is being sent.
- **Control** is displayed when Control Channel data is being output.
- **Working** is displayed when a handshake has been performed and Working Channel data is being sent.
EDACS Encoder Mode

Sub-Audible Dev
This field is used to specify the low speed data level. The unit of measure used depends on the AFGen2 To setting.

- When AFGen2 To is set to FM, the displayed units are kHz or Hz. This is the normally-used setting for testing EDACS radios.
- When AFGen2 To is set to AM, the displayed unit is %.
- When AFGen2 To is set to AudioOut, the displayed units are μV, mV, or V.

See Also
AFGen2 To field description

Stop
This field is used to stop the Control Channel or Working Channel data from being output. The carrier continues to be output, but without the digital modulation.

Working Channel, Number
This field is used to specify the Working Channel number for the EDACS system. (Typically 1 to 25.)

Working Channel: RX Frequency
This field is used to specify the Working channel receive frequency for the mobile.

Working Channel: TX Frequency
This field is used to specify the Working Channel transmit frequency for the mobile.
This encoder is used to test trunked mobile radios that use the MPT 1327 standard. It is primarily intended to be controlled using IBASIC programs running on the Test Set's IBASIC controller or on an external controller.

Signing Encoder (AF Generator 2)

<table>
<thead>
<tr>
<th>System Identity:</th>
<th>0000-0000000</th>
<th>Send Mode</th>
<th>Idle</th>
<th>Status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix/Ident</td>
<td></td>
<td>Burst</td>
<td>2</td>
<td>Mode</td>
</tr>
<tr>
<td>Radio Unit Under Test:</td>
<td>000 / 0002</td>
<td>Send</td>
<td></td>
<td>MPT1327</td>
</tr>
<tr>
<td>Simulated Calling Unit:</td>
<td>000 / 0002</td>
<td>Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Channel:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Channel:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Control and traffic channel numbers entered above are the values used by MPT1327 signaling and may be offset from the equivalent RF channel numbers.

<table>
<thead>
<tr>
<th>Test Mode:</th>
<th>Off</th>
<th>Audio Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloha Number:</td>
<td>5</td>
<td>DC/DC</td>
</tr>
<tr>
<td>Address Qualifier:</td>
<td>D*</td>
<td>Pre-Coupling</td>
</tr>
<tr>
<td>(for ALH and MOVE messages)</td>
<td></td>
<td>Un/DL</td>
</tr>
</tbody>
</table>

Figure 4-41. The MPT 1327 Trunked Radio Encoder Mode Screen

4-122 Screen and Field Descriptions
MPT 1327 Encoder Mode

Manually Testing MPT 1327 Radios

MPT 1327 signals contain complex groupings of digital data that vary in format and function, depending on a number of system operating parameters.

To be able to test MPT 1327 radios using this screen, you must be familiar with the theory, applications, and specifications of the MPT 1327 system. You must also be familiar with IBASIC programming, since some of the required signaling commands are not available on the Encoder screen; they must be sent using IBASIC commands. (See Undisplayed Controls later in this section.)

The large volume of information required to explain the MPT 1327 system is beyond the scope of this manual. Documents explaining the structure and specifications of this system should be obtained from the radio communications regulatory agency of the appropriate country.

Using Automated Test Software

The HP 11807A Option 012 MPT 1327 Trunked Radio Tests software provides comprehensive automated tests of MPT 1327 radios. All Test Set RF, AF, and Encoder/Decoder controls are automatically set, requiring minimal operator inputs.

You can choose any combination of tests, from full transmitter and receiver testing, to a single test. The software is shipped on a memory card that inserts directly into your Test Set, and comes with complete documentation and a blank SRAM memory card for storing your test procedures and test data.
MPT 1327 Encoder Mode

System Identity

The System Identity uses two areas to enter the system identity number as either a decimal or hexadecimal value. When a value is entered in either field, the corresponding value is automatically entered in the other field.

The first field is a four digit hexadecimal integer with leading zeros (H indicates the hexadecimal number base). It has the range 0 through 7FFF₁₆ and its default is 0000₁₆.

The second field is a five digit decimal integer with leading zeros. It has the range 0 through 32767 and its default is 00000.

It is essential that the 15-bit system identity transmitted by the Test Set matches the system identity programmed into the RU (Radio Unit). If there is not a match, the RU will not recognize the forward control channel and no communication will be possible.

Radio Unit Under Test

The Radio Unit Under Test function uses two input fields; a 7-bit Prefix field and a 13-bit Ident field. This allows you to enter the prefix and identity of your RU (Radio Unit).

Each RU has a unique prefix/ident value, used to address messages to that RU only. An RU can also have a number of “group” prefix/ident values that it and several other RUs respond to.

The prefix is a three digit decimal integer with leading zeros. It has the range 0 through 127 and its default is 000.

The ident is a four digit decimal integer with leading zeros. It has the range 0 through 8191 and its default is 0001.

Simulated Calling Unit

The Simulated Calling Unit function uses two input fields; a 7-bit Prefix field and a 13-bit Ident field. This allows you to enter the prefix and identity of the calling unit.

To test an RU (Radio Unit) the Test Set simulates a Trunking System Controller (TSC). In some tests the Test Set simulates calls from a third party. For this purpose it is necessary to specify the simulated calling unit’s number.

The simulated calling party could be any radio or line unit. It could also be one of the special Idents indicating, for example, a system wide call or a call from a PABX or PSTN gateway.

The prefix is a three digit decimal integer with leading zeros. It has the range 0 through 127 and its default value is 000.

The ident is a four digit decimal integer with leading zeros. It has the range 0 through 8191 and its default value is 0002.
MPT 1327 Encoder Mode

Control Channel
The Control Channel field allows you to enter the Control Channel number.

RUs (Radio Units) are programmed to look for Control Channel signaling on a restricted set of radio channels, known as the hunt group. It is essential that the channel number on which the Test Set transmits the control channel signaling matches one of the channels in the RU's hunt group. If there is not a match no communication will be possible.

The control channel is a four digit decimal integer without leading zeros. It has the range 0 through 1023 and its default value is 1.

Traffic Channel
The Traffic Channel field allows you to enter the traffic channel number. The traffic channel is a four digit decimal integer without leading zeros. It has the range 0 through 1023 and its default value is 1.

Test Mode
The Test Mode field is used to select how the encoder is used for tests:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>In this mode the signaling hardware is disabled and does not transmit data.</td>
</tr>
<tr>
<td>Control</td>
<td>In this mode the signaling hardware is enabled and is re-transmitting a basic control channel structure as defined by the content of the filler buffer. (Refer to “Forward Control Channel, Message and Filler Buffers” for an explanation of the filler buffer). One or more timeslots in the filler pattern can be overlayed by messages from the control message buffer under control of the Send field.</td>
</tr>
<tr>
<td>Traffic</td>
<td>In this mode the signaling hardware is enabled. The filler pattern is not transmitted. Single or multi-timeslot messages can be transmitted from the traffic message buffer under the control of the Send field.</td>
</tr>
<tr>
<td>1200Hz</td>
<td>In this mode the signaling hardware is enabled and transmits a continuous 1200 Hz tone (equivalent to an FFSK transmission of continuous ones).</td>
</tr>
<tr>
<td>1800Hz</td>
<td>In this mode the signaling hardware is enabled and transmits a continuous 1800 Hz tone (equivalent to an FFSK transmission of continuous zeros).</td>
</tr>
<tr>
<td>Dotting</td>
<td>In this mode the signaling hardware is enabled and transmits alternating 1200 Hz and 1800 Hz tones (equivalent to an FFSK transmission of alternating ones and zeros).</td>
</tr>
</tbody>
</table>
MPT 1327 Encoder Mode

Aloha Number

The Aloha Number field allows you to enter the aloha number. The aloha number defines the number of timeslots in the random access frames on the forward control channel. The value entered in this field is translated to a frame length according to Table 4-1.

The aloha number is a two digit decimal integer without leading zeros. It has a range 0 through 15 and its default value is 5.

Table 4-1. Aloha number encoding for 4-bit aloha numbers

<table>
<thead>
<tr>
<th>Aloha Number</th>
<th>Frame length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not a frame marker</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aloha Number</th>
<th>Frame length</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
</tr>
</tbody>
</table>

Address Qualifier

The Address Qualifier field allows you to enter the address qualifier. The address qualifier is a bit mask. It indicates the number of bits in the ident field which have to be compared by an RU when it is deciding whether the ALH or MOVE message is addressed to that RU (Radio Unit).

The address qualifier is a two digit decimal integer without leading zeros. It has the range 0 through 20 and its default value is 0. A value of:

- 0 corresponds to no bits being compared (all RUs receive the ALH or MOVE message).
- 20 corresponds to all bits being compared (the ALH or MOVE being addressed to one specific RU).
- M between 0 and 20, sub-divide the RU population into 2^M subsets.
MPT 1327 Encoder Mode

Undisplayed Controls

Some MPT 1327 controls are not displayed on the encoder screen; they are only accessed using IBASIC commands over HP-IB.

These controls include the Delay parameter, the SYNC and SYNT synchronization codewords, and the Message and Filler buffers.

The controls listed in the remainder of this section are not displayed on the MPT 1327 Encoder screen.

Delay Parameter for Repeat Transmissions

This control is only available using IBASIC commands; it is not displayed on the MPT 1327 Encoder screen.

In the aloha message there is a bit field which indicates to the RU (Radio Unit) how long it should wait for a response from the TSC. If the RU does not receive a response within this period it should re-issue the request. This is generally set to a fixed value, determined by the protocol speed and the responsiveness of IBASIC. In some circumstances it may be useful to change this value.

<table>
<thead>
<tr>
<th>Delay Parameter</th>
<th>Response delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

The delay parameter has a range 0 through 7, with a default value of 7.

This control is listed as RDELAY in the HP-IB Syntax Diagrams in the Programmer’s Guide.
MPT 1327 Encoder Mode

Forward Control Channel Message and Filler Buffers

This control is only available using IBASIC commands; it is not displayed on the MPT 1327 Encoder screen.

The encoder screen Test Mode field selects the type of signal being transmitted by the signaling hardware (as explained in the previous section, “The Test Mode”). The most important modes are the Control and Traffic modes.

In the Control mode the Test Set continuously generates a slotted aloha forward control channel, as defined and controlled from IBASIC. In Traffic mode the Test Set generates individual messages, as defined and controlled from IBASIC.

These modes are central to testing MPT 1327 RUs. An RU must acquire and validate a control channel. It must also be instructed, by control channel signaling, to proceed to a traffic channel before any RF or audio measurements can be performed.

During testing it is necessary to generate the forward control channel continuously. Initially, for the RU to acquire and validate the control channel, for exchanging the necessary call setup signaling. Thereafter, for the RU to remain locked onto the control channel, awaiting exchange of further signaling. This also prevents the RU from re-entering control channel acquisition procedures.

The exception to this is when the RU under test is participating in a test call on a traffic channel. It is not necessary to maintain the control channel signaling during test calls as there is only one RU in the test environment and it is on a traffic channel.

As there is only one RU, the control channel signaling comprises a fixed slotted aloha sequence with occasional variations to send specific messages (such as requests for registration (RQR), broadcast messages (BCAST), ahoy messages (AHY)).

The filler buffer contains the repeating pattern of the forward control channel. It also contains a message buffer from which selected timeslots in the filler buffer can be replaced on a one-off or repeating basis.
Forward Control Channel Message and Filler Buffers (cont'd)

The control channel filler buffer comprises 32 individual timeslots. It is accessed only via the HP-IB with the command:

\[\text{ENCoder}: \text{MPT1327}: \text{FILLer}: \text{DATA} \ n, \text{string} \]

Where:

- \(n \) is the location selector and has the range 1 through 32.
- \(\text{string} \) is a string containing a signaling language command defining the content of one timeslot. Some signaling language commands also define data codewords and therefore translate to data for two or three timeslots. The signaling language commands take the form of an assembly language, the syntax of which is defined in appendix A.

\[\text{Note} \]

In MPT 1327 an address codeword can be followed by up to four data codewords. A data codeword occupies half of one timeslot. The signaling language definition restricts the firmware to accept only two or four data codewords. An odd number of data codewords must be added to occupy a whole number of timeslots. For messages with an odd number of data codewords the padding word must be generated by IBASIC.

An example of the format is given in the sequence of commands below. It defines a two timeslot random access frame with a broadcast message, transmitted on channel 212 of system 4901_{16}.

\[
\begin{align*}
\text{ENC: MPT1327: FILL: DATA 1, 'ALH 0, ALLI, 212, 0, 0, 2'} \\
\text{ENC: MPT1327: FILL: DATA 2, 'ALH 0, ALLI, 212, 0, 0, 0'} \\
\text{ENC: MPT1327: FILL: DATA 3, 'BCAST, #H4901, 0, 0'}
\end{align*}
\]

The signaling commands from such strings are assembled into 48-bit address and data codeword message values.

For an address codeword message, the timeslot (128-bits) consists of a 64-bit Control Channel System Codeword (CCSC), followed by the address message, followed by a 16-bit parity word.

Data codeword messages are taken in pairs. Each has its own 16-bit parity word. The firmware is never supplied with an odd number of codewords. The resulting pair of 64-bit words is concatenated to again give 128-bits.

The resulting 128-bits are stored in the addressed location of the filler buffer. Figure 4-42, shows a signaling instruction being processed, and should clarify this explanation.
Figure 4-42. Sequence of Events in Assembling a Signaling Message
Forward Control Channel Message and Filler Buffers (cont'd)

If the signaling command has the data codeword extension, DCW2 or DCW4, subsequent timeslot locations are overwritten with the data codewords. If this results in a write to a timeslot greater than 32, the write will wrap back to timeslot one.

A new filler pattern typically comprises several commands to be written. Since each is written individually, the following update command is also needed to transfer data into the working filler buffer:

ENCoder:MPT1327:FILLer:UPDATE

To complete the command set for managing the filler buffer, the individual timeslot locations of the filler buffer are cleared by the command:

ENCoder:MPT1327:FILLer:CLEAR n

Where \(n \) selects the timeslot to be cleared and has the range 1 through 32.

The whole buffer is cleared by the command:

ENCoder:MPT1327:FILLer:RESET

When the Test Mode field is in Control mode the signaling firmware/hardware will cycle through the defined part of the filler buffer transmitting each 128-bit timeslot in turn. This is shown in Figure 4-43. Figure 4-43 also shows the control message buffer for comparison with Figure 4-44.

![Diagram of Forward Control Channel with Fillers](image)

Figure 4-43. Forward Control Channel in Control Mode and Not Sending

The IBASIC test program occasionally alters the content of the forward control channel temporarily (for example to send an ACKI in response to an RQS). The message buffer enables IBASIC to do this, without having to reload the filler buffer.
Forward Control Channel Message and Filler Buffers (cont'd)

The control channel message buffer (like the filler buffer), comprises of 32 locations, corresponding to the 32 timeslot capacity of the filler buffer. These are accessed via the HP-IB with the command:

`ENCoder:MPT1327:MESSage:CONTrol:DATA n,string`

Where:
- n is the location selector and has the range 1 through 32.
- $string$ is a string containing a signaling command. The signaling command is assembled as for the filler buffer and written into the selected location. If the signaling command has one of the data codeword extensions (DCW2 or DCW4), subsequent timeslot locations are overwritten with the data codewords.

The control channel message buffer is activated by the HP-IB command:

`ENCoder:SEND`

If the encoder is configured for single operation the message buffer contents will be sent once.

If the encoder is configured for Burst or Continuous operation the control channel message buffer can be de-activated by the HP-IB command:

`ENCoder:STOP`

The ENC:STOP/ENC:SEND command sequence is also an UPDATE command. New timeslot contents written using ENC:MPT1327:MESS:CON:DATA are buffered until the STOP/SEND sequence causes the control message buffer to be updated.

Note

The encoder sending status can be monitored to establish when a message has been sent by looking at bit-8 “Encoder sending Aux Information” in the Hardware Status Register #1. For further information on the Hardware Status Register refer to the Programmer’s Guide.

When the Test Mode field is in Control mode and the control message buffer is activated by ENC:SEND, the signaling firmware/hardware cycles through the defined part of the filler buffer. It transmits each 128-bit filler buffer timeslot in turn. This happens except where there is a message defined in the corresponding timeslot of the control message buffer. In this case the contents of the control message buffer are transmitted, as shown in Figure 4-44.
Figure 4-44 shows that messages defined in contiguous timeslots, following the last timeslot defined in the filler message, are transmitted between each repeat of the filler pattern.

This can be used, for example, to insert a registration frame (ALHR) between the normal filler frames.

The individual timeslot locations of the message buffer can be cleared by the command:

ENCoder:MPT1327:MESSAGE:CONTROL:CLEAR n

where n is the timeslot to be cleared and has the range 1 through 32.

In addition the whole message buffer can be cleared by the command:

ENCoder:MPT1327:MESSAGE:CONTROL:RESET

Traffic Channel Message Buffer

This control is only available using IBASIC commands; it is not displayed on the MPT 1327 Encoder screen.

When the RU under test moves to a traffic channel, the IBASIC test program needs to stop the transmission of the control channel signaling temporarily but still be able to send individual messages. (For example, to send a CLEAR message.)
Forward Control Channel Message and Filler Buffers (cont'd)

When Test Mode is set to Traffic, the control channel filler and message buffers are disabled, and a traffic channel message buffer is enabled. A message is sent from the traffic channel message buffer on demand by use of ENC:SEND. Only messages in message buffer timeslot one and any contiguous timeslots are sent. Refer to Figure 4-45.

Figure 4-45. Traffic Channel Message Generation
Control and Traffic Channel Message Structures

This control is only available using IBASIC commands; it is not displayed on the MPT 1327 Encoder screen.

In both Control and Traffic mode the signaling transmissions commence with the standard link establishment time (LET), preamble and SYNC or SYNT pattern, and are terminated with a "hang-over" bit as shown in Figure 4-46 and Figure 4-47.

![Figure 4-46. Forward Control Channel Message Structure](image)

![Figure 4-47. Traffic Channel Message Structure](image)

Table 4-3 describes the signaling encoder as it is changed between the various test modes. Particular reference is made to how the control and traffic channel message structures are started and stopped.

<table>
<thead>
<tr>
<th>To From</th>
<th>Off</th>
<th>Control</th>
<th>Traffic</th>
<th>1200Hz</th>
<th>1800Hz</th>
<th>Dotting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>—</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Control</td>
<td>F</td>
<td>—</td>
<td>H then B</td>
<td>F then C</td>
<td>F then D</td>
<td>F then E</td>
</tr>
<tr>
<td>Traffic</td>
<td>G</td>
<td>I then A</td>
<td>—</td>
<td>G then C</td>
<td>G then D</td>
<td>G then E</td>
</tr>
<tr>
<td>1200Hz</td>
<td>J</td>
<td>J then A</td>
<td>J then B</td>
<td>—</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>1800Hz</td>
<td>K</td>
<td>K then A</td>
<td>K then B</td>
<td>M</td>
<td>—</td>
<td>O</td>
</tr>
<tr>
<td>Dotting</td>
<td>L</td>
<td>L then A</td>
<td>L then B</td>
<td>M</td>
<td>N</td>
<td>—</td>
</tr>
</tbody>
</table>
Control and Traffic Channel Message Structures (cont'd)

A. Start the control channel with a 6-bit LET, PREAMBLE, SYNC. For the first address codeword (before the repeating SYS, CCS, PREAMBLE, PARITY, CODEWORD, PARITY structure), the codeword comes from the second half of the filler (or message) buffer timeslot 1.

B. Start the traffic channel with a LET, PREAMBLE, SYNT. Again the first codeword is taken from the timeslot 1 entry.

C. Turn on 1200 Hz sine wave starting at 0° phase.

D. Turn on 1800 Hz sine wave starting at 0° phase.

E. Turn on "dotting" with a '1' symbol. The starting phase may be 0° or 180°.

F. Continue to generate the control channel until the end of the filler buffer (and message buffer if messages are present) then produce a hang-over bit and stop. The hang-over bit repeats the last bit of the transmission.

G. Continue to generate the traffic channel until the message is completed then produce a hang-over bit and stop. The hang-over bit is followed by one "off" bit before the next sequence begins.

H. Stop control channel generation after the next bit.

I. Stop traffic channel generation after the next bit.

J. Turn off 1200 Hz sine wave on completion of the next symbol.

K. Turn off 1800 Hz sine wave on completion of the next symbol.

L. Turn off "dotting" on completion of the next '1010' symbol. Dotting is sent as the sequence '1010' rather than '10'. This makes the trace on the internal scope stable when triggered by the encoder since every second '1' starts on the opposite phase.

M. Make a phase continuous transition to 1200 Hz on completion of the next symbol.

N. Make a phase continuous transition to 1800 Hz on completion of the next symbol.

O. Make a phase continuous transition to "dotting" (starting with a '1' symbol) on completion of the next '1010' sequence.
The Decoder analyzes different data-encoded signaling formats. The format is selected in the **Mode** field in any of the Decoder's screens. A list of standards for each format is displayed by selecting the **Standard** field in any screen. A separate Screen and Field Description is given for each screen. The descriptions are listed in the following order:

- Function Generator
- Tone Sequence
- DTMF (Dual-Tone Multi-Frequency) Sequence
- CDCSS (Continuous Digital Controlled Squelch System)
- Digital Paging
- AMPS-TACS/NAMPS-NTACS
- NMT (Nordic Mobile Telephone)
- LTR (Logic Trunked Radio: Registered Trademark of EF Johnson Company)
- EDACS (Enhanced Digital Access Communications System)
- MPT 1327

The Decoder's Signal Source

The Decoder *always* gets its signal immediately after the de-emphasis network of the AF Analyzer. De-emphasis can be turned on or off on the **AF ANALYZER** screen, or can be controlled while using the decoder by assigning a global USER key to the **De-Emphasis** field. Refer to the **AF ANALYZER** screen's fields and functions diagram.

Decoder Frequency Measurements

The Decoder uses a different timebase for frequency counting than the AF Analyzer. Therefore, their measurements may be different when measuring the same signal (by a very small amount).
Function Generator Decoder

The function Generator Decoder is an Audio Frequency counter that counts the same types of AC waveforms available for the Function Generator Encoder.

```
SIGNALING DECODER

<table>
<thead>
<tr>
<th>Frequency</th>
<th>EFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS</td>
<td></td>
</tr>
</tbody>
</table>

| Status:  |
| Idle     |
| Mode     |
| Func Gen |

| Gate Time |
| 50.0 ms   |

| AF Anl In |
| Audio In  |

| Input Level |
| 1V         |
|            |

| Trim Level |
| 383 mV     |

| To Screen |
| RF GEN    |
| RF ANL    |
| AF ANL    |
| SCOPE     |
| SPEC ANL  |
| ENCODER   |
| DECODER   |
| RADIO INT |
| More      |
```

Figure 4-48. The Tone Sequence Decoder Screen

Decoding Considerations

Frequency measurements are affected by the Filter1, Filter2, Settling, and De-Emphasis settings in the AF ANALYZER screen.

Four dashes are displayed

```
(----)
```

if the incoming signal is out of range, or if the Gate Time is too long for the frequency being measured.
Function Generator Decoder Screen

AF Anl In
Audio Frequency Analyzer Input selects the source of the signal to be analyzed.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in this screen.

See Also
"Interaction Between Screens" in Chapter 3

Arm Meas
Arm Measurement prepares the decoder to be triggered by an incoming signal when making Single measurements.

Frequency
This measurement displays the decoded signal's frequency.

Gate Time
This field specifies the minimum time the Decoder analyzes a signal after it has been triggered.

Input Level
This field specifies the signal level that you input (after de-emphasis if it is turned on). The higher the level of signal expected by the analyzer, the higher the Trigger Level is set.

Operating Considerations
The unit-of-measure is determined by the AF Anl In setting.

The input level should be set high enough to prevent false triggering, but low enough to allow triggering for fluctuating signal levels.

If de-emphasis is used (by setting the AF Analyzer's De-Emphasis field to 750 μs), the Input Level should be set to about 1/5 of the measured signal's level. For example, a 1 kHz 1 Vpeak sinewave into the AF Analyzer input requires an Input Level of ≈ 0.212 V to trigger correctly.
Function Generator Decoder Screen

Stop Meas.
Selecting this field stops the analyzer when making single measurements.

Single/Cont.
This field specifies how you want the analyzer to be armed:

- **Single** is used to analyze and display the decoded information once each time **Arm Meas.** is selected.

- **Cont** is used to automatically re-arm the analyzer and display the measurements on a continual basis until **Single** is selected.

Trig Level
The **Trigger Level** indicates the minimum signal level required to begin a measurement that has been “armed”. The level is adjusted by changing the **Input Level** field setting.
Tone Sequence Decoder

The Tone Sequence Decoder analyzes sequential tone signals and displays the associated parameters.

Figure 4-49. The Tone Sequence Decoder Screen.

AF Anl In Audio Frequency Analyzer Input selects the source of the signal to be analyzed.

Operating Considerations

This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in this screen.

Arm Meas. Arm Measurement prepares the decoder to be triggered by an incoming signal when **Single** is selected.
Tone Sequence Decoder Screen

Freq This measurement column lists the tone frequency for each Symbol received in the tone sequence.

Freq Error This measurement column lists the frequency difference between the tone frequency specified for each symbol in the Tone Sequence ENCODER screen and the frequency measured for each symbol in the Tone Sequence DECODER screen.

Operating Considerations
The DECODER and ENCODER Standard fields are interactive. The standard you choose in either field is automatically selected for the other.

Gate Time This field specifies how long the Decoder analyzes a signal after it has been triggered.

Input Level This field specifies the tone “On” signal level that you input (after de-emphasis if used). The higher the level of signal expected by the analyzer, the higher the Trigger Level is set.

Operating Considerations
The unit-of-measure is determined by the AF Anl In setting.
The input level should be set high enough to prevent false triggering, but low enough to allow triggering for every desired tone received.

If de-emphasis is used (by setting the AF Analyzer's De-Emphasis field to 750 μs), the Input Level should be set to about 1/5 of the measured signal's level. For example, a 1 kHz 1 Vpeak sinewave into the AF Analyzer input requires an Input Level of ≈.212 V to trigger correctly.

Off Time This measurement column lists the length of time each tone was Off prior to the next tone being received.

On Time This measurement column lists the length of time each tone was On.
Tone Sequence Decoder Screen

This field specifies how you want the analyzer to be armed:

- **Single** is used to analyze and display the decoded information once each time **Arm Meas** is selected.

- **Cont** is used to automatically re-arm the analyzer and display the measurements on a continual basis until **Single** is selected.

Stop Meas

Selecting this field stops the analyzer when making single measurements.

Sym

The **Symbol** column corresponds to the Tone Sequence Encoder's symbols assigned for each tone. As each tone is analyzed, the symbol that represents each tone is listed in this column.

Operating Considerations

The symbol assigned to a received tone is based on the closest symbol frequency to that tone. If the frequency of the received tone is exactly half-way between two symbol frequencies, the symbol associated with the higher of the two frequencies is displayed.

Trig Level

The **Trigger Level** indicates the minimum signal level required to begin a measurement that has been "armed". The level is adjusted by changing the **Input Level** field setting.
Dual-Tone Multi-Frequency (DTMF) Decoder

The DTMF Sequence Decoder analyzes Dual-Tone Multi-Frequency tone sequences and displays the associated parameters.

Measurement Limits

Lo Tone: 680 - 960 Hz
Hi Tone: 1190 - 1660 Hz

Actual limits are typically slightly wider than this. However, the crossover point between Hi and Lo tone decoding is \(\approx 1.1 \text{ kHz} \). If incoming tones approach this point, unreliable measurements may be displayed (frequency measurement errors and spurious off times).
DTMF Decoder Screen

AF Anl In Audio Frequency Analyzer Input selects the source of the signal to be analyzed.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in this screen.

Arm Measure Arm Measurement prepares the decoder to be triggered by an incoming signal when making Single measurements.

Gate Time This field specifies how long the Decoder analyzes a signal after it has been triggered.

Input Level This field specifies the signal level that you input (after de-emphasis if used). The higher the level of signal expected by the analyzer, the higher the trigger level is set.

Operating Considerations
The unit-of-measure is determined by the AF Anl In setting.
The input level should be set high enough to prevent false triggering, but low enough to allow triggering for fluctuating signal levels.

De-Emphasis Effects
De-Emphasis is a single-pole low-pass filter with a 212.2 Hz corner frequency. It is enabled/disabled using the De-Emphasis field on the AF ANALYZER screen. (Refer to the AF Analyzer’s functional diagram.) The Input Level is the expected level at the output of the de-emphasis network.

Assuming a mean DTMF frequency of ≈1 kHz, decoding with de-emphasis on (set to $750 \mu s$) requires the Input Level to be set to $212/1000 = 0.212$ times the peak deviation, or about 1/5 the incoming level of the tone.

Examples of Input Level Settings

Example 1: Peak Deviation 3 kHz, De-Emphasis off.
Set the Input Level to 3 kHz.

Example 2: Peak Deviation 3 kHz, De-Emphasis 750 μs.
Set the Input Level to $3 \times 0.212 = 636$ Hz.
DTMF Decoder Screen

Hi Tone
This measurement field lists the frequency or frequency error for the high frequency tone in each tone pair. The measurement type is selected by selecting the `Freq` field to display a list of measurement choices.

Operating Considerations
Frequency Error is calculated by comparing the DTMF Encoder’s frequency settings for each tone pair with the decoded frequencies.

Lo Tone
This measurement field lists the frequency or frequency error for the low frequency tone in each tone pair. The measurement type is selected by selecting the `Freq` field to display a list of measurement choices.

Operating Considerations
Frequency Error is calculated by comparing the DTMF Encoder’s frequency settings for each tone pair with the decoded frequencies.

Off Time
This measurement column lists the length of time each tone pair was Off prior to the next tone being received.

On Time
This measurement column lists the length of time each tone pair was On.

Single/Cont
This field specifies how you want the analyzer to be armed:

- **Single** is used to analyze and display the decoded information once each time `Arm Meas` is selected.

- **Cont** is used to automatically re-arm the analyzer and display the measurements on a continual basis until `Single` is selected.

Stop Meas
Selecting this field stops the analyzer when making single measurements.

Sym
The **Symbol** column corresponds to the DTMF Encoder’s symbols assigned for each tone pair. As each tone pair is analyzed, the corresponding symbol is listed in this column.

Operating Considerations
The symbol assigned is based on the closest symbol frequencies to that tone pair.
Continuous Digital Controlled Squelch System Decoder

The Continuous Digital Controlled Squelch System (CDCSS) Decoder analyzes digital data streams used to turn squelch on and off on digitally-controlled-squelch radios.

Figure 4-51. The CDCSS Sequence Decoder Screen.

AF Analyzer Settings

For proper CDCSS decoder operation, make the following **AF Analyzer** screen settings:

- **Filter 1 to** \(<20\text{Hz} \) **HPF** (Required)
- **Filter 2 to** \(3\text{kHz} \) **LPF** (Recommended)
- **Settling to** Slow (Recommended)

Interpreting Decoded Data

Because CDCSS uses a continuously-repeating data stream, and there is no framing information to tell the receiver when the code word is going to be sent, the decoded data can result in several possible code combinations. This is why more than one code word may be listed in the **Codes (oct)** column after decoding.
CDCSS Decoder Screen

AF Anl In Audio Frequency Analyzer Input selects the source of the signal to be analyzed.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in this screen.

See Also
"Interaction Between Screens" in Chapter 3

Arm Meas. Arm Measurement prepares the decoder to be triggered by an incoming signal when Single is selected.

Code (oct)
This measurement field lists all of the code word combinations from the received data stream.

The top entry in this column is always one of the 83 standard (primary) industry codes or NPC (No Primary Code). All other possible code combinations are listed in numerical order after this entry.

If a Turn Off Code (TOC) is measured for a full sampling period, TOC is displayed with no other codes listed.

Data (bin)
This measurement field displays a 23-bit segment of the data stream being received.

After 23 bits have been received, the decoder shifts the bit sequence 23 times until all possible bit patterns have been analyzed. Any possible code words are displayed in the Codes (oct) column. Even if no code words are found, this field will still display the bit sequence that was received.

Operating Considerations
This field is blank if the only signal received during the decoder’s latest sampling period is a Turn Off Code.

The final bit pattern displayed will not necessarily match any of the displayed Codes, since the bits are shifted 23 times during decoding.

Data Rate
This measurement field displays the data rate in bits-per-second for the data stream being received.

Operating Considerations
For accurate measurements, the Data Rate for the CDCSS Encoder should be set to the expected data rate for the signal being analyzed by the CDCSS Decoder.
CDCSS Decoder Screen

Input Level

This field specifies the signal level that you input (after de-emphasis if used). The higher the level of signal expected by the analyzer, the higher the Trigger Level is set.

Operating Considerations

The unit-of-measure is determined by the **AF Anl In** setting.

The input level should be set high enough to prevent false triggering, but low enough to detect all valid zero-crossings of the incoming signal.

When using de-emphasis, the Input Level setting may need to be reduced significantly to properly decode the incoming signal. De-Emphasis is enabled/disabled using the **De-Emphasis** field on the **AF ANALYZER** screen.

Polarity

This field is used to match the polarity of the encoded signal being analyzed.

Normal Operation

When this field is set to **Norm**, a logical high (1) is displayed when a positive peak in the received signal is detected. A negative peak displays a logical low (0).

Inverted Operation

When this field is set to **Invert**, a logical low (0) is displayed when a positive peak in the received signal is detected. A negative peak displays a logical high (1).

Operating Considerations

Inverting amplifiers used in transmitters, receivers, and repeaters can cause an inversion of the modulating digital data. If the decoded signal does not display the expected results, change this field's setting to see if the signal may be getting inverted before being decoded.

Single/Cont

This field specifies how you want the analyzer to be armed:

- **Single** is used to analyze and display the decoded information once each time **Arm Meas** is selected.
- **Cont** is used to automatically re-arm the analyzer and display the measurements on a continual basis until **Single** is selected.

Stop Meas

Selecting this field stops the analyzer when making a single measurement.

Trig Level

The **Trigger Level** indicates the minimum signal level required to begin a measurement that has been "armed". The level is adjusted by changing the **Input Level** field setting.
The Digital Paging Decoder is used to test paging system transmitters using various formats, such as POCSAG and GSC (Golay Sequential Code). The Tune Freq field of the TX TEST screen is typically used to tune to the pager channel to be decoded.

Figure 4-52. The Digital Paging Decoder Screen

- **AF Anl In**: Audio Frequency Analyzer Input selects the source of the signal to be analyzed. This is typically set to FM Demod for off-the-air decoding of pager transmitters.

- **Arm Meas**: Arm Measurement prepares the decoder to be triggered by an incoming signal.

- **Data Display**: This field displays up to three different decoded parameters after a message has been analyzed:
 - **Pager code**: the unique pager code number or 'address'.
 - **Function**: number representing one of the four types of signals that can be sent.
 - **Pager data**: information sent as a numeric or alpha-numeric message. This parameter is not displayed when tone-only formats are decoded.
Digital Paging Decoder Screen

Data Rate
This display field lists the Data Rate of the received signal in bits-per-second (bps).

Operating Considerations
This measurement relies on the Digi Page Encoder screen’s Data Rate setting to function properly. Set that field to the expected incoming data rate for accurate measurements.

Display Page
This field is used to select a specific page of decoded data. More than one page of decoded data may be available when a batch of messages is receive during the specified Gate Time. The Number of Pages field indicates how many pages were decoded.

Gate Time
This field specifies how long the Decoder analyzes a signal after it has been triggered. Up to 65 seconds of Gate Time can be specified. The minimum gate time should be set long enough to allow the preamble and all necessary data bits to be captured.

If too much data is decoded during the Gate Time, the decoder buffer will overflow (an error message is displayed when this happens). Decrease the Gate Time if this error is displayed.

Input Level
Enter the expected data signal level in this field. The higher the level of signal expected by the analyzer, the higher the Trigger Level is set.

Operating Considerations
The unit-of-measure is determined by the AF Anl In setting.

The input level should be set high enough to prevent false triggering, but low enough to allow triggering for valid signals (typically about 3 kHz).

De-emphasis should not be used with this signaling format. Access the AF ANALYZER screen and set the De-Emphasis field setting to Off.

Number of Pages
See Also
Display Page field description.
Digital Paging Decoder Screen

Polarity
This setting is used to match the Polarity of the encoded signal being analyzed.

Normal Operation
When this field is set to Norm, a logical high (1) is displayed when a positive peak in the received signal is detected. A negative peak displays a logical low (0).

Inverted Operation
When this field is set to Invert, a logical high (1) is displayed when a negative peak in the received signal is detected. A positive peak displays a logical low (0).

Single/Cont
This field specifies how long you want the analyzer to decode incoming signals:

- **Single** tells the analyzer to display the information received during one Gate Time. Measurements are displayed until Arm Meas is selected again.

- **Cont** is used to automatically re-arm the analyzer and display new measurements on a continual basis until Single is selected. Previous measurement results are over-written by subsequent measurements.

Standard
This field is used to select the signaling standard for your pager. Various fields may be automatically added, removed, or changed for each standard.

Stop Meas
Selecting this field stops the analyzer when making single measurements.

Trig Level
The **Trigger Level** indicates the minimum signal level required to begin a measurement that has been “armed.” The level is adjusted by changing the Input Level field setting.
AMPS-TACS NAMPS-NTACS Decoder

The AMPS-TACS/NAMPS-NTACS decoder acts like a base station receiver by analyzing Reverse Control Channel (RECC) and Reverse Voice Channel (RVC) message streams for various cellular telephone formats.

The decoder can also be used to analyze Forward Control Channel (FOCC) and Forward Voice Channel (FVC) data from the base station.

Decoder Mode Differences

The AMPS-TACS and NAMPS-NTACS Decoder modes are essentially the same for analyzing Reverse Control Channel (RECC) information. However, the Voice Channel (RVC) information for NAMPS-NTACS is displayed differently than AMPS-TACS information. Fields and decoder measurements that are only used for either mode are noted in their descriptions.

Figure 4-53. AMPS-TACS Ctrl/Voice and NAMPS-NTACS Ctrl Channel Decoder
Interaction With the Encoder

The **Encoder** screen data rate field tells the decoder how fast the incoming message is being sent. Set that field's value before using the AMPS-TACS or NAMPS-NTACS decoder.

Figure 4-55. Decoding the Reverse Control Channel (RECC) Data

Digital Color Code
AMPS-TACS NAMPS-NTACS Decoder Screen

The measurement begins here and ends after the Gate Time has elapsed.

<table>
<thead>
<tr>
<th>101 Bits</th>
<th>11 Bits</th>
<th>48 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
<th>48 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTTING</td>
<td>WORD</td>
<td>SYNC</td>
<td>REPEAT</td>
<td>1 OF</td>
<td>WORD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DOTTING</td>
<td>WORD</td>
<td>SYNC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 OF</td>
<td>WORD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>37 Bits</th>
<th>11 Bits</th>
<th>48 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
<th>48 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTTING</td>
<td>WORD</td>
<td>SYNC</td>
<td>DOTTING</td>
<td>WORD</td>
<td>SYNC</td>
<td>DOTTING</td>
<td>WORD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>REPEAT</td>
<td>3 OF</td>
<td>WORD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WORD</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
<th>48 Bits</th>
<th>37 Bits</th>
<th>11 Bits</th>
<th>48 Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPEAT</td>
<td>5 OF</td>
<td>DOTTING</td>
<td>WORD</td>
<td>SYNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-56. Decoding AMPS-TACS Reverse Voice Channel (RVC) Data

Measure

Channel

<table>
<thead>
<tr>
<th>DSAT</th>
<th>CntlVoice</th>
</tr>
</thead>
</table>

DSAT/DSST (hex)

Displays 6-digit DSAT or DST data.

DSAT

or

RVC Data (hex)

Decodes the full RVC data stream.

Data

or

Message (36 bits) Parity (12 bits)

DTMF

Displays DTMF (Dual Tone Multi-Frequency) tone information

Sym

1 697.0 1209.0 50.0 50.0

Figure 4-57. Decoding NAMPS-NTACS Reverse Voice Channel (RVC) Data
Interpreting Decoded Data

The following information refers to all Reverse Control Channel (RECC) measurements, and the AMPS-TACS Reverse Voice Channel (RVC) measurements. See the next section about NAMPS-NTACS RVC measurements.

After being armed, the measurement begins when the last bit of Word Sync has been received. All RECC measurements, and the AMPS-TACS RVC measurement, last for the period specified in the Gate Time field.

The received bits are displayed as hexadecimal (hex) characters. If the last bits received do not complete the last hex character, the received bits are used as the Most Significant Bits in the character, and the remaining bit positions are filled with zeros.

For example; if the last bits received are “01”, two zeros are added to the right to produce the binary number 0100. The hexadecimal equivalent, 4, is displayed.

The first two hex characters of the RECC data displayed contain the 7-bit Digital Color Code of the Seizure Precursor. The characters are right-justified so the farthest bit to the left for the first hex character is always 0. The first word of the RECC message begins in the third hex character of the displayed data.

All bits of the RECC and RVC data streams received after the initial Word Sync are displayed, including Parity and additional Dotting and Word Sync Sequences.

The Decoder does not check for any errors in the received data stream.
AMPS-TACS NAMPS-NTACS Decoder Screen

NAMPS-NTACS Reverse Voice Channel Measurements

Three types of RVC information can be decoded; selected using the Measure field.

- **DSAT** displays the 6-digit DSAT (Digital Supervisory Audio Tone) or DST (Digital Signaling Tone) number, depending on the type of signal being received. If the received number is not one of the 14 standard combinations (7 DSAT or 7 DST), the decoder displays a constantly changing number until one of the standard values is detected.

- **Data** displays the 36 Message bits and 12 Parity bits of the RVC message. The measurement begins when the last Sync Word bit is received, and ends after the last Parity bit is received. The measurement is re-triggered when the next Sync Word is received: there is no Gate Time function for this Decoder Mode.

- **DTMF** displays Dual-Tone Multi-Frequency tone pair frequencies and on/off times. These are tones that may be used to trigger connected equipment after a mobile to base station connection has been made (such as an answering machine or voice-mail system).
AMPS-TACS NAMPS-NTACS Decoder Screen

AF Anl In Audio Frequency Analyzer Input selects the source of the signal to be analyzed.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in this screen.

Arm Meas Arm Measurement prepares the decoder to be triggered by an incoming signal.

Channel This field selects the type of data to decode: Reverse Control Channel (Cntl), or Reverse Voice Channel (Voice).

Data (hex) (AMPS-TACS)
This display field lists the decoded data serially as it is received. This field is labeled RECEIVED DATA (hex) for the NAMPS/NTACS mode, but performs the identical function.

Gate Time This field specifies how long the Decoder analyzes a signal after it has been triggered. The longer the Gate Time, the greater the number of bits analyzed.

Operating Considerations
If the Gate Time is too long, the decoder's data buffer becomes full. A message is displayed instructing you to decrease the gate time.
This function is not used with the NAMPS/NTACS RVC decoder.

See Also
Arm Meas field description.
Num of Bits field description.

4-158 Screen and Field Descriptions
AMPS-TACS NAMPS-NTACS Decoder Screen

Input Level
This field specifies the expected data signal level (after de-emphasis if used). The higher the level of signal expected by the analyzer, the higher the Trigger Level is set.

Operating Considerations
The unit-of-measure is determined by the **AF Anl In** setting.

The input level should be set high enough to prevent false triggering, but low enough to allow triggering for valid signals. *This may require you to set the Input Level well below the expected level.*

Also, when using de-emphasis, the **Input Level** setting may need to be reduced significantly to properly decode the incoming signal. De-Emphasis is enabled/disabled using the **De-Emphasis** field on the **AF ANALYZER** screen.

Measure (NAMPS-NTACS: RVC)
This field selects the type of decoded data to display: DSAT or DST codes, Message data, or DTMF (Dual-Tone Multi-Frequency) tone data.

Num of Bits
This field lists the total number of bits displayed. This number is dependent on Data Rate of the signal being decoded, the **Gate Time** of the decoder, and the size of the decoder’s data buffer.

Operating Considerations
The buffer has a maximum capacity of:

- 1584 bits for decoding Reverse Voice Channel (RVC) data streams.
- 1583 bits for decoding Reverse Control Channel (RECC) data streams.

This measurement is not available for NAMPS-NTACS RVC decoding.

See Also
Gate Time field description

Polarity
This setting is used to match the Polarity of the encoded signal being analyzed.

Normal Operation
When this field is set to **Norm**, a logical high (1) is displayed when a positive peak in the received signal is detected. A negative peak displays a logical low (0).

Inverted Operation
When this field is set to **Invert**, a logical high (1) is displayed when a negative peak in the received signal is detected. A positive peak displays a logical low (0).
AMPS-TACS NAMPS-NTACS Decoder Screen

RECC Data (NAMPS-NTACS: RECC)

This display field lists the decoded data serially as it is received. This is the same information that the AMPS-TACS Data (hex) measurement displays.

Single/Cont

This field specifies how long you want the analyzer to decode incoming signals:

- **Single** tells the analyzer to display the information received during one Gate Time (or after one measurement for NAMPS-NTACS RVC data).
- **Cont** is used to automatically re-arm the analyzer and display the measurements on a continual basis until Single is selected.

Stop Meas

Selecting this field stops the analyzer when making single measurements.

Trig Level

The **Trigger Level** indicates the minimum signal level required to begin a measurement that has been “armed.” The level is adjusted by changing the Input Level field setting.

The input level should be set high enough to prevent false triggering, but low enough to allow triggering for valid signals. *This may require you to set the Input Level well below the expected level.*
AMPS-TACS NAMPS-NTACS Decoder Screen

Trigger Pattern (bin) This field allows you to enter a specific bit pattern to ‘filter’ displayed information. The decoder only displays the received data when this binary pattern is encountered immediately after triggering. This is helpful when you only want to display messages containing very specific information.

The trigger pattern is entered as a sequence of ones, zeros, and dots. A dot will cause the decoder to trigger for either a one or a zero in that bit position in the received data stream.

Operating Considerations
This function is not available for decoding NAMPS-NTACS RVC information.
The NMT Encoder and Decoder work together to test Nordic Mobile Telephone equipment used in a number of countries using different NMT standards. As each standard is selected, the Test Set configures the Encoder and Decoder to create and measure the corresponding RF carrier and digital data structure.

The Encoder screen is used to create the different signals used to communicate between the Mobile Station, Base Station, and Mobile Telephone Exchange. The signal is output under program control from the NMT Decoder screen.

The Decoder screen is used to load and run NMT test programs you create. The programs are used to transmit NMT-encoded signals to a device, and to evaluate received NMT signals.

Operating Steps

Manual NMT radio tests generally follow four basic steps:

1. Write your test program to send encoded information and evaluate received frames.
2. Enter the necessary information into the various Encoder and Decoder fields.
3. Make the required Test Set AF Analyzer, RF Analyzer, and RF Generator settings.
4. Load and run your program from the Decoder.

Note

Changing Standards: Each NMT standard affects several operating parameters for the Encoder and Decoder screens; however, there are no visual changes to the contents of either screen when standards are changed. You must be aware of these changes when manually testing radios using these screens.

Refer to the Standard and Calling Channel Number field descriptions for explanations on the effects of these fields.
NMT Decoder/Encoder Description

Standard Equivalents

Only two standards are referred to in this section: STD450 and STD900. All other national standards are based on these two. If a field description says "only used with the STD900 standard", the field can also be used with other national standards listed under the STD900 equivalents below.

The following list identifies which national standards are based on STD450 and STD900:

STD450 Equivalents
- Austria
- Benelux
- Bulgaria
- Cro-Slav (Croatia-Slovenia)
- Hungary
- Malaysia
- Saudi 1
- Saudi 2
- Spain
- Thailand
- Turkey

STD900 Equivalents
- France (Uses the STD900 protocol at STD450 frequencies)

Manual Testing of NMT Radios

NMT signals contain complex groupings of digital data that vary in format and function, depending on a number of system operating needs.

To be able to test NMT radios using these screens, you must be familiar with the theory, applications, and specifications of the NMT systems. The large volume of information required to explain the NMT system is beyond the scope of this manual.

Documents explaining the structure and specifications for the different NMT standards should be obtained from the radio communications regulatory agency of the appropriate country.
NMT Decoder/Encoder Description

Automated NMT Radio Tests

The HP 11807A Option 006 NMT Cellular Tests software for the HP 8920A provides comprehensive automated tests of NMT mobile stations. All Test Set RF, AF, and Encoder/Decoder settings are made automatically, requiring minimal operator inputs.

The test type and sequence, measurement specifications, and instrument settings are easily configured for the device being tested. Customized test procedures can be stored on external disks or memory cards for later use.

All HP 11807 Test Software packages include comprehensive documentation explaining hardware connections and software configuration and operation.

Terms Used in This Section

The following terms are used throughout this portion of the manual:

DUT - Device Under Test: The device being tested (MS, BS, or MTX).

Frames: Groups of digital information that comprise an NMT signal. (This manual assumes you understand the frame structure for the signals you need to create or analyze; any frame information provided is for reference purposes.)

MS - Mobile Station: The equipment used by a mobile subscriber.

BS - Base Station: The unit that provides the radio interface between one or more Mobile Stations and the Mobile Telephone Exchange.

MTX - Mobile Telephone Exchange: The unit that provides the interface between one or more Base Stations and the telephone network.

Standard: The set of frequency and data format standards used by different countries.
NMT Decoder/Encoder Description

Required Test Set Settings

The following Test Set settings should be made before using the NMT Encoder/Decoder screens. These settings assume the Test Set is in its PRESET state.

RF Generator Settings

AFGen1 To: Audio Out and Off

AFGen2 To: FM and 3.5 kHz

RF Analyzer Settings

Tune Mode: Manual

Input Attenu: Hold and 0 dB

Squelch: Fixed

AF Analyzer Settings

AF Anl In: FM Demod

Filter 1: 300Hz HPF

Filter 2: 15kHz LPF

De-Emphasis: Off

Initial NMT Encoder Settings

Mode: NMT

DUT: MS (for testing Mobile Stations)

Initial NMT Decoder Settings

Input Level: 3.0 kHz
Special Frame Suffixes

Some frame designations include a suffix to identify specific **Encoder** screen fields (such as **TC2** for Alternate Traffic Channel) or to indicate special frame values affected (such as the **S** suffix that indicates Battery Save information; example - 1aS).

The following suffixes are appended to some frame designations:

- **AC** = Access Channel
- **CC** = Calling Channel
- **S** = Battery Save
- **TA1** = Main Traffic Area
- **TA2** = Alternate Traffic Area
- **TC1** = Main Traffic Channel
- **TC2** = Alternate Traffic Channel
Figure 4-58. The NMT Encoder Screen

Screen and Field Descriptions 4-167
General Encoder Operation

The following are fields that are typically used for testing different types of NMT equipment.

Refer to the individual field descriptions for detailed information on each field’s function and operating parameters.

Testing Mobile Stations
These fields are typically used to test an MS:

- Calling Channel: Number and Power
- Traffic Channel (Main): Number and Power
- Traffic Channel (Alt): Number and Power
- Traffic Area: Main and Alt
- DUT
- TCI (Tariff Class Information)
- MSN (Mobile Subscriber Number)
- Data Rate
- Access Channel: Number and Power
- Batt Save
- Area #
- Add Info
- SIS Challenge

Testing a BS or MTX
These fields are typically used to test a BS or MTX.

- Mgmt/Maint
- Meas Ch #
- Phi Signal
- Meas Field Strength
- Password
- BS Identity
- Alarm Level High and Low
- SIS Response

Fields Used With Different Standards
(Refer to Figure 4-58.)

Fields in the upper part of the screen (area 1) are used with all NMT standards. Fields in the lower part of the screen (area 2) are only used with the STD900 standard.
NMT Encoder Screen

Access Channel Number

This field defines the channel number for the signal that initiates a call from the MS to the MTX.

Valid Entry Range: 1 - 2023

NMT Frames Affected: 3d, 3dTA2, 4b, 4bTA2, 10aAC

Operating Considerations

This field is only used with the STD900 standard.

This setting affects the RF generator and analyzer frequencies used when the TCHAN AC and RCHAN AC commands are used.

See Also

Calling Channel field description concerning valid Access Channel settings for each standard.

Access Channel Power

This field specifies the Access Channel’s power setting. Each Power setting represents one of the four available levels allowed by the NMT standards.

Valid Entry Range: 0 - 3

NMT Frames Affected: 3d, 3dTA2, 4b, 4bTA2, 10aAC.

Operating Considerations

This field is only used with the STD900 standard.
NMT Encoder Screen

Add Info The Additional Information field contains various types of information, depending on the frame type. Several frame types contain Additional Information digits in the form H1 to H10, as outlined in the NMT system standards.

The following table shows the relationship between the Add Info, Area #, and Batt Save fields, and how they are used in frame data. (The H1 to H10 designations correspond to the frame digit assignments shown in the NMT DOC. 900-1, Jan. 1985 standards.)

<table>
<thead>
<tr>
<th>Frames</th>
<th>Content of Additional Information Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a,1at, 1a#t</td>
<td>H1H2H3H4H5H6H7H8H9H10 From “Add Info” field</td>
</tr>
<tr>
<td>1aS, 1a/S, 1a#S</td>
<td>H1H2H3H4H5H6H7H8H9H10 From “Add Info” field H3 From “Batt Save” field</td>
</tr>
<tr>
<td>1b, 1bTA1, 1bTA2</td>
<td>H1H2H3H4H5H6H7 From “Add Info” field H8H9H10 From “Area #” field</td>
</tr>
<tr>
<td>1bS</td>
<td>H1H2H4H5H6H7 From “Add Info” field H3 From “Batt Save” field H8H9H20 From “Area #” field</td>
</tr>
<tr>
<td>2a, 2at, 2a#t, 2e, 3b, 3bTA2, 3bTC2, 4, 4TA2, 4b, 4bTA2, 30</td>
<td>H1H2H3H4H5H6H7 Not Used. H8H9H10 From “Area #” field</td>
</tr>
<tr>
<td>2c, 2ct, 2c#t, 2d, 2dt, 2d#t, 2f</td>
<td>H1H2H3H4H5H6H7 Not used. H8H9H10 Fixed by standard as fictitious channel numbers.</td>
</tr>
</tbody>
</table>

Valid Entry Range: 0000000000 - FFFFFFFF (hex)

NMT Frames Affected: (Refer to the Frames column in the preceding table.)

Operating Considerations

This field is only used with the STD900 standard.
NMT Encoder Screen

AFGen2 To Audio Frequency Generator 2 To contains two fields:
- The upper field determines whether the NMT Encoder modulates the RF Generator, or is output through AUDIO OUT. *The lower field sets the amplitude (including Off).

Alarm Level Low This field sets the lower trigger level for the signal strength measurement alarm for the Phi Signal.
- Valid Entry Range: 0 - F (hex)
- NMT Frames Affected: 20, 25.

Operating Considerations
This field is only used with the STD900 standard.

Alarm Level High This field sets the upper trigger level for the signal strength measurement alarm for the Phi Signal.
- Valid Entry Range: 0 - F (hex)
- NMT Frames Affected: 20, 25.

Operating Considerations
This field is only used with the STD900 standard.

Area # The Area Number field identifies which MTX is used to call an MS. This identification prevents MS to BS calling problems caused by co-channel interference.
- Valid Entry Range: 1 - 4
- NMT Frames Affected: 1b, 1bS, 1bTA1, 1bTA2, 2a, 2a1, 2a2, 2e, 3bTA2, 3b, 3bTC2, 4, 4TA2, 4b, 4bTA2, 10a, 10aAC, 10b, 10c, 10d, 11a, 11b, 12, 30.

Operating Considerations
This information is used to encode the information in the last three digits of the Add Info field, rather than taking the information directly from that field.
This field is only used with the STD900 standard.

Audio Out Audio Out Coupling selects AC or DC coupling of the encoder to the AUDIO OUT connector when the upper AFGen2 To field is set to Audio Out.
NMT Encoder Screen

BS Identity

The **Base Station Identity** field provides the 3-digit hex code that identifies which BS an MTX is communicating with.

Valid Entry Range: 000 - FFF (hex)

NMT Frames Affected: 20, 21b, 21c, 22.

Operating Considerations

This field is only used with the STD900 standard.

Batt Save

The **Battery Save** field signifies the length of the battery saving period in 5 second increments. For example, a setting of 5 produces a 25 second period.

Valid Entry Range: 0 - 7

NMT Frames Affected: 1aS, 1aS, 1aS, 1bS

Operating Considerations

This field is only used with the STD900 standard.

Calling Channel Number

This field defines the channel number setting when initiating a call from the BS to the MS.

Valid Entry Range: 1 - 2023

NMT Frames Affected: 1a, 1a, 1a, 1a, 1aS, 1aS, 1aS, 1b, 1bS, 2a, 2a, 2a, 2b, 2b, 2b, 2b, 2c, 2c, 2c, 2d, 2d, 2d, 2e, 2f, 10a, 10d, 11b.

Operating Considerations

This setting affects the RF frequencies the RF generator and analyzer tune to when the TCHAN CC and RCHAN CC commands are used.

Each NMT standard has its own range of available channels. The following table lists the valid channel assignments for Calling, Traffic, and Access channels.

<table>
<thead>
<tr>
<th>Table 4-5. Valid Channel Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMT Standard</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>STD450</td>
</tr>
<tr>
<td>STD900</td>
</tr>
</tbody>
</table>

4-172 Screen and Field Descriptions
NMT Encoder Screen

Calling Channel Power
This field specifies the Calling Channel’s power setting. Each Power setting represents one of the four available levels allowed by the NMT standards.

Valid Entry Range: 0 - 3

NMT Frames Affected: 1a, 1a$, 1a$, 1a$, 1a$, 1a$, 1b, 1b$, 2a, 2a$, 2b, 2B$, 2c$, 2c$, 2d$, 2d$, 2e$, 2f, 10a, 10d, 11b.

Data Rate
This field specifies the rate that the frames are output in bits-per-second. This field also sets the data rate expected by the NMT Decoder.

Valid Entry Range: 9.2 - 2400

DUT
The Device Under Test field defines the device you are testing.

Valid Entries: MS, BS, MTX

NMT Frames Affected: None

Operating Considerations
This field affects the RF generator and analyzer frequencies used for the NMT TCHAN and RCHAN program commands.

This field also affects how frames are interpreted by the Decoder when determining the type of frame being received.

FM Coupling
This field alters the FM modulator to allow DCFM from internal and external modulation sources. This field also selects AC or DC coupling between the RF Generator’s frequency modulator and the rear-panel MODULATION INPUT connector.

Meas Ch #
The Measurement Channel Number field specifies the channel whose signal strength is measured.

Valid Entry Range: 1 - 2023

NMT Frames Affected: 21b, 21c, 26.

See Also
Calling Channel Number field description for a list of valid channel numbers for each standard.
NMT Encoder Screen

Meas Field Strength
This field specifies the Phi Signal strength measurement that is sent from the BS to the MTX.

Valid Entry Range: 0 - 99

NMT Frames Affected: 26

Mgmt/Maint
The Management/Maintenance field is used to send system status information.

Valid Entry Range: 000000 - FFFFFFF (hex)

NMT Frames Affected: 22, 27, 28.

MSN
The Mobile Subscriber Number field specifies the unique seven digit code that identifies an MS.

Valid Entry Range: 0000000 - FFFFFFF (hex).

NMT Frames Affected: 2a, 2at, 2au, 2b, 2bt, 2bu, 2c, 2ct, 2cu, 2d, 2dt, 2du, 2e, 2f, 3a1, 3a2, 3b, 3bTA2, 3bTC2, 3c, 3d, 3dTA2, 5a, 5b, 10a, 10aAC, 10b, 10c, 10d, 11, 11a, 11b, 12, 13a, 13b, 14a, 14b.

Phi Signal
This field specifies the ϕ signal frequency.

Valid Entry Range: 0 - F (hex)

NMT Frames Affected: 20, 21b, 21c, 25, 26.

Password
This field specifies the 3-digit code added to the end of the Mobile Subscriber Number to prevent unauthorized use of a subscriber number.

Valid Entry Range: 000 - FFF (hex)

NMT Frames Affected: 10b, 10c, 11a, 12.

Operating Considerations
This field is only used with the STD900 standard.

Pre-Emp
Pre-Emphasis, when used, attenuates the lower frequency tone (1200 Hz at 1200 bps) to 2/3 of the Gen2 To field level setting.
NMT Encoder Screen

SIS Challenge
The Subscriber Identity Security Challenge field is used to confirm a subscriber's MS identity.

Valid Entry Range: 0000000 - FFFFFFF (hex)

NMT Frame Affected: 7

Operating Considerations
This field is only used with the STD900 standard.

SIS Response
The Subscriber Identity Security Response field is used to respond to the SIS Challenge to confirm a subscriber's MS identity.

Valid Entry Range: 0000 - FFFF (hex)

NMT Frame Affected: 16

Operating Considerations
This field is only used with the STD900 standard.

Standard
This field selects the NMT system standard for equipment you are testing. When a standard is chosen, the Test Set automatically alters several corresponding parameters.

Operating Considerations
Each standard affects the following conditions:

- The types of frames that can be sent.
- The range of valid channel numbers.
- The encoding of the frame data.
- The frequencies tuned to for the various channel settings when Chan commands are executed in an NMT program.
- The interpretation of received frames.

The following standards are available:

STD450: Transmit and receive frequencies are in the 453 to 467.5 MHz range.

STD900: Transmit and receive frequencies are in the 890 to 960 MHz range.

See Also
Calling Channel field description concerning valid channel settings for each standard.
NMT Encoder Screen

TCI The Tariff Class Information field is used to specify MS billing information to the MTX.

Valid Entry Range: 0 - 99
NMT Frames Affected: 5b, 13b.

Traffic Area - Alt This field specifies the alternate Traffic Area code that identifies the Base Stations used to simultaneously transmit a calling signal to an MS.

Valid Entry Range: 0 - FF (hex)
NMT Frames Affected: 1bTA2, 3bTA2, 3dTA2, 4TA2, 4bTA2.

Traffic Area - Main This field specifies the main Traffic Area code that identifies the Base Stations used to simultaneously transmit a calling signal to an MS.

Valid Entry Range: 0 - FF (hex)
NMT Frames Affected: 1a, 1a′, 1a′′, 1aS, 1a′S, 1a′′S, 1b, 1b′, 1bTA1, 2a, 2a′, 2a′′, 2b, 2b′, 2b′′, 2c, 2c′, 2c′′, 2d, 2d′, 2d′′, 2e, 2f, 3a1, 3a2, 3b, 3bTC2, 3c, 3d, 4, 4b, 5a, 5b, 7, 10a, 10aAC, 10b, 10c, 10d, 11a, 11b, 12, 20, 21b, 21c, 22, 30.

Traffic Channel (Alt) Number This field specifies the Alternate Traffic Channel used for conversation after communications have been established.

Valid Entry Range: 1 - 2023
NMT Frames Affected: 3a2, 3bTC2, 3c.

Operating Considerations This setting affects the RF generator and analyzer frequencies used when the TCHAN TC2 and RCHAN TC2, or TCHAN TCA and RCHAN TCA, programming commands are used.

See Also Calling Channel field description concerning valid channel settings for each standard.
NMT Encoder Screen

Traffic Channel (Alt) Power

This field specifies the power of the alternate Traffic Channel. Each Power setting represents one of the four available levels allowed by the NMT standards.

Valid Entry Range: 0 - 3

NMT Frames Affected: 3a2, 3bTC2, 3c.

Traffic Channel (Main) Number

This field specifies the main Traffic Channel used for conversation after communications have been established.

Valid Entry Range: 1 - 2023

NMT Frames Affected: 1bTA1, 1bTA2, 2b, 2bT, 2bNT, 3a1, 3a2, 3b, 3bTA2, 3d, 3dTA2, 4, 4TA2, 5a, 5b, 7, 10b, 10c, 11, 11a, 12, 13a, 13b, 14a, 14b, 16, 20, 21b, 21C, 22, 25, 26, 27, 28, 30.

Operating Considerations

This setting affects the RF generator and analyzer frequencies used when the TCHAN TC1 and RCHAN TC1, or TCHAN TCM and RCHAN TCM, programming commands is used.

See Also

Calling Channel field description for a list of valid channel numbers for each standard.

Traffic Channel (Main) Power

This field specifies the power of the main Traffic Channel. Each Power setting represents one of the four available levels allowed by the NMT standards.

Valid Entry Range: 0 - 3

NMT Frames Affected: 1bTA1, 1bTA2, 2b, 2bT, 2bNT, 3a1, 3a2, 3b, 3bTA2, 3d, 3dTA2, 4, 4TA2, 5a, 5b, 7, 10b, 10c, 11, 11a, 12, 13a, 13b, 14a, 14b, 16, 20, 21b, 21C, 22, 25, 26, 27, 28, 30.
Figure 4-59. The NMT Decoder Screen

General Decoder Operation

The NMT Decoder screen has several uses:

- Entering NMT programming commands.
- Loading existing NMT tests from a variety of storage media.
- Running NMT tests.
- Decoding received NMT signals.
Frame Log

The Frame Log area lists the recorded frame information generated by the Encoder and received by the Decoder. Field descriptions for this area are listed together.

D
The **Direction** column tells if a frame was *transmitted* by the Encoder \((T)\), or *received* by the Decoder \((R)\).

Frame Digits
This column lists the information part of the recorded frames, displayed as hexadecimal digits.

Num
This column lists the reference numbers assigned to the recorded frames in the order they were transmitted and received.

Time
The times in this column indicate when each frame was transmitted or received after **Run Test** was selected. The times are listed in bit intervals that are dependant on the Data Rate.

For example, at a Data Rate of 1200 bps, one bit interval is equivalent to 0.833 ms \((1/1200)\).

Type
This column lists the NMT standards **frame type** for each frame.

Operating Considerations
The received frame type is determined using the Decoder’s **Standard** field setting, and the Encoder’s **DUT** field setting. If these settings do not agree with the actual DUT and its standard, the received \((R)\) frame types may not be correctly identified.

The transmitted frame type is determined by the **Send f** commands used in the NMT test program being executed.
NMT Decoder Screen

AF Anl In Audio Frequency Analyzer Input selects the input for the analyzer. When selected, this field displays a list of choices:
- The output of the AM, FM, or SSB demodulators.
- The AUDIO IN, RADIO INTERFACE, MODULATION INPUT, MIC/ACC, and AUDIO OUT connectors.
- The signal present at the AM or FM modulators for the RF Generator.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also
"Interaction Between Screens" in Chapter 3
"Displaying Measurements" in Chapter 3

Exit Status This field indicates which EXIT n command caused the program to stop running.

See Also
Refer to the ‘EXIT n’ command in the NMT Test Entry Command Syntax information in this section.

First Frame The NMT decoder can record over 2000 frames, but only the last 500 frames can be displayed. This field specifies the first of 15 frames to be viewed.

Input Level This field specifies the signal level that you input. The higher the level of signal expected by the analyzer, the higher the Trigger Level is set.

Operating Considerations
The unit-of-measure is determined by the AF Anl In setting.

The input level should be set high enough to prevent false triggering, but low enough to allow triggering for fluctuating signal levels.

De-emphasis can greatly affect the Input Level required for proper decoding. When decoding NMT data streams, you should turn de-emphasis off (controlled by the De-Emphasis field on the AF ANALYZER screen.)

4-180 Screen and Field Descriptions
NMT Decoder Screen

Load Test
This double field is used to select and load NMT tests from a variety of mass storage devices. After the appropriate Mass Storage device is selected using the right field, the desired NMT test is selected using the left field.

Operating Considerations
Directly entering a command into the NMT Test Entry field automatically removes from memory any NMT test previously loaded using the Load Test field.

Num Frames
The Number of Frames field lists the number of frames in the Frame Log. When this number is >15, the First Frame field is used to view the other frames.

Run Test
Selecting this function executes (runs) the NMT test specified in the Load Test field or entered directly into the NMT Test Entry field.

Single/Cont
This field specifies how you want the test to be run:
- Single executes the NMT program and displays the decoded information once each time Run Test is selected.
- Cont continually re-runs the program, and displays the decoded information, until Single is selected.

Stop Test
Selecting this field interrupts the NMT test while running. If Cont is selected, the program automatically re-runs from the beginning.
NMT Decoder Screen

Standard
This field specifies the NMT standard for the signal being decoded.

Operating Considerations
This setting alters the Decoder's function by specifying the expected frame structure and channel range for the incoming signal.

Trying to run a test with the wrong standard selected will result in incorrect decoded data, or display an operating error message.

See Also
Calling Channel field description for the NMT Encoder for a list of valid channel assignments.
Standard Equivalents at the beginning of the NMT section.

Trig Level
The Trigger Level indicates the minimum signal level required to begin a measurement. This level is adjusted by changing the Input Level field setting.
Creating NMT Tests

The NMT Encoder outputs signals using programs running in the NMT Decoder. This differs from the Test Set’s other signaling Encoder functions that have a Send function to directly output their signals (such as DTMF and Tone Sequence).

To use the NMT Encoder and Decoder functions, you must first understand how tests are written.

Programming Overview

Special program commands are used by the Test Set to test NMT radios. These commands are used to send frames, perform simple branching and looping operations, change RF channels, and test received frame types.

The NMT Decoder has its own RAM to run programs. All NMT program commands must be entered into the Decoder’s RAM before they can be executed. This can be done directly by entering commands one at a time into the NMT Test Entry field, or by loading a test program that has been created and saved on mass storage.

Creating NMT Tests

Tests can be created and saved using any of these methods:

- Writing programs on a connected external controller, downloading them into the Test Set’s IBASIC RAM, and then storing them on mass storage.

- Using the TESTS screen’s IBASIC Controller and the Cursor Control knob to enter programs line-by-line into IBASIC RAM, and then saving them on mass storage.

- Using the TESTS screen’s IBASIC Controller and a connected terminal to enter programs line-by-line into RAM, and then saving them on mass storage.

- Using an IBASIC program that creates a file to output program commands.

NMT File Format: When storing NMT tests you have created, you must save them as ASCII files using the BASIC command ‘SAVE’ (and using the ‘GET’ command to retrieve them). Non-ASCII files cannot be retrieved using the NMT Decoder screen’s Load Test field, and therefore cannot be run.
Creating NMT Tests

Entering Tests Into The Decoder's RAM

NMT commands are entered into the Decoder's RAM using any of these methods:

- Using the Load Test field to load an existing test from mass storage.
- Using a connected terminal or Cursor Control knob to directly enter commands into the Decoder's NMT Test Entry field. *Using an IBASIC program that OUTPUTs commands to the NMT Test Entry field.

The most efficient method is to use a connected computer to write the program, store the program on a memory card, and then select the test from the memory card using the Decoder's Load Test field.

Using Direct Command Entry

The Decoder's NMT Test Entry field allows you to directly enter program commands into the Decoder's RAM. Program line numbers are not used, and no LIST or EDIT function is available for programs entered this way. This capability is provided to allow direct entry of small programs without the need of external equipment or the need to store the program for future use.

Program Example

This example program can be entered line-by-line into the NMT Test Entry field, and then run by selecting Run Test:

```
begin
set 1 5
10 send 1a
send 2a
repeat 1 10
exit 0
end
```

Note

Entering commands directly into the NMT Test Entry field causes any existing programs you have loaded to be removed from the Decoder's memory.

Also, programs entered into the NMT Test Entry field cannot be saved on mass storage.
Creating NMT Tests

Programming Using an External Computer

Writing programs on an external computer using BASIC allows you to write and edit the NMT program, and then store it on mass media (memory card, RAM disk, external disk).

Since some NMT syntax used are not valid BASIC language commands, a special program structure is required.

Program Structure

The following rules must be followed when writing NMT programs to be stored on mass media:

- All statements in the program must appear as BASIC comments, beginning with an exclamation point (!) following the line number. REM statements cannot be substituted for the (!) symbol.

- All statements desired as comments in the NMT program are indicated by a double exclamation point (!!) as the first entry following the line number.

- The first line of all NMT programs must be !!NMT, following the line number.

- When storing NMT programs, file names must begin with the letter ‘n’ (either lower or upper case). The ‘n’ is removed before the filename is shown in the menu for the Load Test field. (Example; a file saved as nNMT1 appears as NMT1)

Program Example

The following example can be saved on mass storage, and then retrieved and run using the Decoder's Load Test field:

```
10  !!NMT
20  !BEGIN
30  !SET 1 5
40  !10 SEND 1A
50  !SEND 2A
60  !REPEAT 1 10
70  !EXIT 0
80  !END
```
Creating NMT Tests

Downloading Programs

Once programs are entered into the Test Set’s IBASIC Controller RAM and saved on mass storage, they can be retrieved and run from the NMT Decoder.

Downloading A Program Into IBASIC Controller RAM

To copy a program from your BASIC computer to the Test Set’s RAM, follow these steps:

1. Connect an HP-IB cable from your BASIC computer to the Test Set.
2. Load the program into your computer.
3. Set the HP-IB Mode field in the Configure screen to Talk&Listen.
4. Enter the following commands on your computer:

 OUTPUT Addr;"PROG:DEL"
 OUTPUT Addr;"PROG:DEF #0"
 LIST #Addr
 OUTPUT Addr;"END"

 ‘Addr’ is the HP-IB address of the Test Set.

The ‘END’ statement indicates that EOI is asserted with the last byte sent. (Refer to IEEE 488.2 standards for more information.)

Note

Although your NMT program is now in the Test Set’s IBASIC program RAM, it cannot be run from the IBASIC Controller screen, since IBASIC does not recognize the NMT commands. You must copy the program to mass storage before it can be run in the Decoder.

Copying Programs To Mass Storage

Programs copied to RAM Disk, External Disk, or Memory Cards require specific initialization and configuration procedures for proper storage and retrieval.

Refer to the Programmer’s Guide.
Creating NMT Tests

Program Command Syntax

The following list describes the NMT command syntax and parameters. Commands can be entered directly into the Decoder's NMT Test Entry field, or used in test programs saved on mass storage.

All commands can be preceded by an integer as a label for branching purposes. These labels can range from 0 to 255.

BEGIN

Begin description of NMT test. This must always be the first command entered to describe a new NMT test program. It will initialize all internal memory associated with the NMT test and prepare the Test Set to accept the rest of the test program. It has no parameters.

END

End of the NMT test. This must always be the last command entered to describe an NMT test. It causes the program to be checked for valid label references and terminates the test entry process.

EXIT n

Stop the test and report exit status n.

Valid entries for the parameter n are integers from 0 to 10 and the following words (these may be in upper or lower case): PASSED, FAILED, ACCEPTED, REJECTED, INCOMPLETE.

EXITX n

Stop the test and report exit status n. Exchange the settings in the Main and Alternate Traffic Channel Number and Power fields.

Valid entries for the parameter n are integers from 0 to 10 and the following words (these may be in upper or lower case): PASSED, FAILED, ACCEPTED, REJECTED, INCOMPLETE.

GOTO l

Unconditionally jump to the label reference l.

Valid entries for the parameter l are integers from 0 to 255. The label reference must exist within the program or an error will occur after the END statement is entered.

All NMT test programs must contain an EXIT n, EXITX n, or GOTO l statement immediately before the END statement.
Creating NMT Tests

RCHAN c

Set the RF Analyzer to the correct frequency for NMT channel c.

Valid entries for the parameter c are as follows: CC, TC1, TCM, TC2, TCA and AC. TC1 and TCM are synonyms as are TC2 and TCA.

The frequency setting is determined by the channel number in the appropriate Encoder field, the selected DUT, and the selected Standard.

The parameter CC refers to Calling Channel; TC1 and TCM refer to Traffic Channel (Main); TC2 and TCA refer to Traffic Channel (Alternate); AC refers to the Access Channel.

TCHAN c

Set the RF Generator to the correct frequency for NMT channel c.

Valid entries for the parameter c are as follows: CC, TC1, TCM, TC2, TCA and AC. TC1 and TCM are synonyms as are TC2 and TCA.

The frequency setting is determined by the channel number in the appropriate Encoder field, the selected DUT, and the selected Standard.

The parameter CC refers to Calling Channel; TC1 and TCM refer to Traffic Channel (Main); TC2 and TCA refer to Traffic Channel (Alternate); AC refers to the Access Channel.

SEND f

Send the designated frame f.

Valid entries for the parameter f are as follows: 1A, 1A’ or 1AP, 1A" or 1APP, 1AS, 1A’S or 1APS, 1A”S or 1APPS, 1B, 1BS, 1BTA1, 1BTA2, 2A, 2A’ or 2AP, 2A” or 2APP, 2B, 2B’ or 2BP, 2B” or 2BPP, 2C, 2C’ or 2CP, 2C” or 2CPP, 2D, 2D’ or 2DP, 2D” or 2DPP, 2E, 2F, 3A, 3A1, 3A2, 3B, 3BTA2, 3BTC2, 3C, 3D, 3DTA2, 4, 4TA2, 4B, 4BTA2, 5B, 6, 7, 10A, 10AAC, 10B, 10C, 10D, 11, 11A, 11B, 12, 13B, 15, 16, 21B, 21C, 22, 26, 27, 28 and 30.

Some of these frame types are only valid for certain NMT Standards. This will be checked when the program is run.
Creating NMT Tests

SEND f n
Send the designated frame f with the signal n. Valid entries for the parameter f with parameters n are as follows:

<table>
<thead>
<tr>
<th>f</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a, 13a</td>
<td>Line signal number: 0 to 15, or 0 to F (hex)</td>
</tr>
<tr>
<td>14a, 14b</td>
<td>Digit signal value: 0 to 13, A to D(10 to 13), * and #.</td>
</tr>
<tr>
<td>20</td>
<td>Channel activation order: 0 to 15, or 0 to F (hex)</td>
</tr>
<tr>
<td>25</td>
<td>Channel status information: 0 to 15, or 0 to F (hex)</td>
</tr>
</tbody>
</table>

IF f l
If the received frame register contains the frame f, go to label l.

Valid entries for the parameter f include all the valid entries for f in the two SEND statements; however, the Special Suffixes discussed in the Encoder description are ignored by this instruction.

Valid entries for l are integers from 0 to 255. The specified label l must appear somewhere before the END statement of the program.

CLEAR
Clear the received frame register. This statement should appear before an IF f l statement in the test program.

SET n m
Set the counter n to the value m.

Valid entries for the parameter n are integers 1 and 2. Valid entries for m are integers from 0 to 255.

REPEAT n l
Decrement the counter n by one and go to the label l if the counter value is still greater than 0.

Valid entries for n are 1 and 2. Valid entries for l are integers from 0 to 255. The specified counter n must have been set with a SET n m statement previously in the test. The label l must appear somewhere in the test before the END statement.

WAIT n
Wait n bits with no data being sent.

Valid entries for the parameter n are integers from 0 to 4095. The actual wait time depends on the Data Rate setting in bits-per-second on the NMT ENCODER.
This Decoder mode displays trunked signaling data for mobile radios and repeaters using the EF Johnson LTR® (Logic Trunked Radio) format.

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>Surv bps</th>
<th>Data</th>
<th>Status: Idle</th>
<th>Mode</th>
<th>Status:</th>
<th>Surv LTR</th>
<th>Standard LTR</th>
<th>To Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RF GEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RF ANL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RF ANL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPEC ANL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENCODER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DECODER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RADIO INIT</td>
</tr>
</tbody>
</table>

LTR display

[Call/Repeater]

Figure 4-60. The LTR Trunked Radio Decoder Screen

4-190 Screen and Field Descriptions
Decoding Mobile Radio Signaling Data

A transmit channel must be established before a mobile radio is tested (otherwise the transmitter will attempt to transmit but time-out and de-key automatically). A procedure for establishing a trunked transmit channel is provided in the previous LTR Encoder section.

After establishing a trunked transmit channel, keep the transmitter keyed and perform the following steps -

1. Access the Decoder, and select LTR for the Mode.
2. Set the LTR display field to Radio.
3. Set the Single/Cont field to Single.
4. Set the AF Anl In field to FM Demod.
5. Set the Input Level to 1 kHz.
6. Select Arm Meas to prepare the Decoder for triggering. *The transmitted data should be displayed after being 'computed'.

An End of Data reached during decode. message may be displayed at the top of the screen during decoding. Four conditions usually cause this message to be displayed:

- The Gate Time is too short to decode all the data. Increase this setting.
- The Input Level is set too low or too high. Change the level.
- The trunking data is inverted. Select Invert in the Polarity field.
- The LTR radio is not transmitting. Re-establish a transmit channel.
LTR Decoder Screen

Decoding Repeater Signaling Data

1. Press [Preset].
2. Access the DUPLEX TEST screen.
4. Enter your repeater’s transmit frequency in the Tune Freq field.
5. Select the Input Port (RF IN/OUT for direct transmitter-to-Test Set connections; Ant (Antenna) for off-the-air measurements).
6. Attach an antenna to the Test Set if you are making off-the-air measurements.
7. Access the DECODER and select the LTR mode.
8. Set the LTR display field to Repeater.
9. Select the triggering mode -
 a. Select Single to only decode and display the first valid transmitter data received. The decoder must be re-armed before another measurement can be made.
 b. Select Cont to continuously monitor a repeater and display its transmitted data.
10. Set the AF Anal In field to FM Demod.
11. Set the Input Level to 1 kHz.
12. Select Arm Meas if you are using Single triggering. *The transmitted data is displayed after ‘computing’ is displayed in the Status field.

If no decoded data is displayed -

1. The repeater may not be transmitting.
2. The RF signal may be too low for off-the-air measurements.
 Use a better antenna, and/or set the RF ANALYZER screen’s Sensitivity field to High.
3. The Gate Time may be too short. Increase the value.
4. The received data may be inverted. Set the Polarity field to Invert.
5. The Trigger Level may be too low or too high. Change the Input Level setting.
LTR Decoder Screen

AF Anl In Audio Frequency Analyzer Input selects the source of the signal to be analyzed (almost always FM Demod for LTR decoding).

Arm Meas Arm Measurement prepares the decoder to be triggered by an incoming signal when set to make a Single measurement.

Data This field displays decoded LTR data. The LTR display setting determines what type of data is decoded:

- Radio - displays the mobile’s transmitted trunking data. Example:

 Area : 0
 Goto : 2
 Home : 2
 ID : 128
 Free : 31

- Repeater - lists the 20 possible repeater numbers in an LTR system. The data from the monitored repeater is displayed. If multiple radios try to access the repeater during decoding, the data sent to those radios by that repeater is also displayed.

 The data is displayed as a series of digits next to the number of the repeater that sent it. For example, a decoded message with a Goto number of 02 may look like this -

 01: 02: 0020212806
 03:
 04: 05:
 06:

 This is interpreted as -

 02: 0 02 02 128 06
 Repeater Area Goto Home ID Free

Data Rate This display field lists the Data Rate of the received signal.

Operating Considerations

This measurement relies on the LTR Encoder screen’s Data Rate setting to function properly. Set that field to the expected incoming data rate for accurate measurements (typically 297.6 bps).

Gate Time This field specifies how long the Decoder analyzes a signal after it has been triggered.

Screen and Field Descriptions 4-193
LTR Decoder Screen

Input Level
Enter the expected data signal level in this field (typically 1 kHz for LTR data). The higher the level of signal expected by the analyzer, the higher the Trigger Level is set.

Operating Considerations
The unit-of-measure is determined by the AF Anl In setting (kHz when the input is FM Demod).
The input level should be set high enough to prevent false triggering, but low enough to allow triggering for valid signals.

Polarity
This setting is used to match the Polarity of the encoded signal being analyzed.

Normal Operation
When this field is set to Norm, a logical high (1) is displayed when a positive peak in the received signal is detected. A negative peak displays a logical low (0).

Inverted Operation
When this field is set to Invert, a logical high (1) is displayed when a negative peak in the received signal is detected. A positive peak displays a logical low (0).

Single/Cont
This field specifies how long you want the analyzer to decode incoming signals:
- **Single** tells the analyzer to display valid LTR information received during one Gate Time.
- **Cont** is used to automatically re-arm the analyzer and display the measurements on a continual basis until Single is selected.

Standard
This field is used to select the trunked signaling standard for your radio (as new standards are added).

Stop Meas
Selecting this field stops the analyzer when making single measurements.

Trig Level
The Trigger Level indicates the minimum signal level required to begin a measurement that has been “armed.” The level is adjusted by changing the Input Level field setting.
This screen decodes the digital signaling data from an Ericsson GE EDACS® (Enhanced Digital Access Communications System) transmitter. This function is provided to test mobile radios, but it is not designed to test EDACS base stations.

Before transmitter measurements can be made, the EDACS Encoder screen must first be used to provide the necessary system information. (Refer to the Encoder section for information on setting up the EDACS Encoder.)

Four types of calls can be decoded: group, individual, emergency, and voice guard.

Figure 4-61. The EDACS Trunked Radio Decoder Screen
EDACS Decoder Screen

EDACS Transmitter Testing

When the mobile is turned on, it automatically tunes to its preprogrammed Control Channel frequency. The Test Set generates the Control Channel signal using the RF Generator and the Control Channel fields of the EDACS Encoder.

When the mobile is receiving the Control Channel, the transmitter can be keyed to send a Call Request message to go to a Working Channel. (The Working Channel settings are specified in the EDACS Encoder.)

After the mobile starts transmitting, the EDACS Decoder displays the decoded signaling data. You can then access the Duplex Test screen to make modulation and RF carrier measurements.

Transmitter Test Procedure

This procedure establishes a Control Channel connection between the Test Set and your mobile. After the mobile locks to the Control Channel, the Decoder is armed and the mobile's transmitter is keyed to make measurements.

Note

Each EDACS radio is pre-programmed to access a specific Control Channel and one or more Working Channels. Other mobile and system identification information is also programmed into the radio. You cannot test an EDACS mobile without first entering these values into the EDACS Encoder screen.

Caution

Before testing your transmitter, read the MAX PWR limit printed under the Test Set's RF IN/OUT port. Exceeding this limit could damage your Test Set.

Preset the Test Set

Press [Preset] on the Test Set to set all controls to a known state and display the RX TEST screen.

Connect the Mobile to the Test Set

Connect the antenna port of the mobile to the RF IN/OUT port of the Test Set.
EDACS Decoder Screen

Define the Control Channel Settings

1. Turn AF Generator 1 Off by positioning the cursor in front of the 3:00 value of the AGen1 To field and pressing ON/OFF.
2. Select the ENCODER function from the To Screen menu.
3. Select the EDACS Mode to display the EDACS Encoder.
4. Select the Data Rate using the Standard field. (4800 or 9600 bps)
5. Enter the Control Channel settings.
 a. The Number is your systems Control Channel number.
 b. The RX Frequency is the Control Channel receive frequency for your mobile.
 c. The TX Frequency is the Control Channel transmit frequency for your mobile.
6. Enter the Working Channel settings.
 a. The Number is the Working Channel number you want the mobile to be sent to.
 b. The RX Frequency is the mobile's receive frequency for the selected Working Channel.
 c. The TX Frequency is the mobile's transmit frequency for the selected Working Channel.
7. Enter the Logical ID number.
8. Enter the Group ID number.
9. Enter the Site ID number.

Prepare the Decoder for Transmitter Measurements

1. Turn the SQUELCH control on the Test Set fully clockwise.
2. Select Decoder from the To Screen menu to access the EDACS Decoder.
3. Set the AF Anl In field to FM Demod to demodulate the signal from your transmitter.
4. Set the Input Level field to about one third of the expected deviation. (For example, if your transmitter's deviation is 3 kHz, set the Input Level to about 1 kHz.)
5. Select the Arm Meas field to prepare the decoder. The Status: field should indicate Armed.
6. Select the Send field (under RX Test). This outputs the Control Channel information specified in the EDACS Encoder.

The mobile should indicate that it is receiving the Control Channel data.
EDACS Decoder Screen

Make Basic Transmitter Measurements

1. Key the mobile's transmitter and verify that its transmit indicator is on. The call type, Group ID, and Logical ID information transmitted by your mobile is displayed under the Data field.

2. With the transmitter still keyed, press DUPLEX to access the DUPLEX TEST screen. TX Frequency and TX Power are displayed.

Making Other Transmitter Measurements

By connecting Audio Frequency Generator 1 (AFGen 1) to your transmitter's microphone input, you can make calibrated modulation measurements; such as microphone sensitivity, modulation limiting, and transmitter frequency response.

To be able to make these measurements:

1. Connect the AUDIO OUT port of the Test Set to your mobile's microphone input.

2. Access the DUPLEX TEST screen.

3. Set the upper part of the AFGen1 To field to Audio Out.

4. Use the lower part of the AFGen1 To field to adjust the output level into the microphone line.

5. Use the AFGen1 Freq field to adjust the audio generator's frequency.
EDACS Decoder Screen

AF Anl In
This field selects the source of the signal to be decoded. FM Demod is normally used, since the data being decoded is usually the demodulated signaling data from an EDACS transceiver.

Arm Meas
Select this field to prepare the decoder to be triggered by transmitted signaling data. When selected, the **Status** field indicates **Armed**.

Data
This area displays the decoded Call Request signaling data from your transmitter. The type of data displayed depends on the **Radio/Repeater** setting and the type of message decoded.

Input Level
This field is used to set the trigger level for the decoder. The displayed **Trig Level** changes as the **Input Level** is adjusted. This field is normally set to 1 kHz for EDACS decoding (assuming the **AF Anl In** field is set to FM Demod).

Operating Considerations
The units displayed (kHz, %, V) depends on the **AF Anl In** setting.

Polarity
This field is used to match the polarity of the data to be decoded. This field is usually set to **Norm**.

See Also
Polarity field description for the EDACS Encoder.

Radio/Repeater
This field specifies whether the decoder will trigger on the received sync word of a mobile signal (Radio), or on the sync word from a repeater (Repeater). It also specifies how the received data will be interpreted.

The **Repeater** function is not fully implemented at this time to provide base station decoding.

RX Test
When **Send** is selected, the Control Channel Site ID message is output at the RX Frequency specified in the **Control Channel** settings on the EDACS Encoder screen.
EDACS Decoder Screen

Single/Cont This field specifies how you want to arm the decoder.

- **Single** requires you to manually arm the decoder (using the **Arm Meas** field) before each measurement is made.

- **Cont** automatically arms the decoder to make a measurement, and re-arms the decoder after a measurement is made.

Operating Considerations

To dis-arm the decoder in **Single** mode, select the **Stop Meas** field. The **Stop Meas** function is disabled when **Cont** is selected.

Standard

The Encoder Data Rate field must be set to the data rate expected for the radio or the repeater being decoded. This is best done by selecting the corresponding Standard on the Encoder screen.

See Also

Standard field description for the EDACS Encoder.

Stop Meas

This field is used to dis-arm the decoder when making **Single** measurements. It is not used when making continuous (**Cont**) measurements.
The MPT 1327 Decoder screen is used with the MPT 1327 Encoder screen to decode and display MPT 1327 data streams. Like the MPT 1327 Encoder, the MPT 1327 Decoder is primarily intended to be controlled using IBASIC programs running on the Test Set's IBASIC controller or on an external controller.

SIGNALING DECODER

<table>
<thead>
<tr>
<th>Data Rate (bits)</th>
<th>Timing (bits)</th>
<th>Status: Idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Receive Buffer

- RF Aml In
- Audio In
- Input Level
- Tme Level 383 mV

To Screen

- RF GEN
- RF AML
- SCOPE
- SPEC AML
- ENCODER
- DECODER
- RADIO INT

More

Manually Decoding MPT 1327 Signals

To manually test MPT 1327 radios using this decoder, you must first set up the MPT 1327 Encoder to provide the necessary protocol to get the radio up on the correct channel. This requires a thorough knowledge of the MPT 1327 Encoder operation, including using the Undisplayed Controls accessed using IBASIC commands.

For these reasons, the following information generally assumes you are operating the decoder under IBASIC control.
Decoder Triggering

For MPT 1327 signaling detection, the decoder should be configured for repetitive retriggering using the HP-IB command:

```
TRIGger:MODE:RETRigger REPetitive
```

When the decoder is armed it is triggered whenever it receives the synchronization sequence appropriate to the test mode (selected on the MPT 1327 Encoder screen). Refer to Table 4-6.

<table>
<thead>
<tr>
<th>Test Mode</th>
<th>Decoder Synchronization Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>-</td>
</tr>
<tr>
<td>Control</td>
<td>SYNC</td>
</tr>
<tr>
<td>Traffic</td>
<td>SYNT</td>
</tr>
<tr>
<td>1200Hz</td>
<td>1111</td>
</tr>
<tr>
<td>1800Hz</td>
<td>0000</td>
</tr>
<tr>
<td>Dotting</td>
<td>1010</td>
</tr>
</tbody>
</table>

The SYNC and SYNT patterns are those defined for the MPT 1327 Encoder. (The defaults are $C4D_{16}$ and $3B28_{16}$ respectively.)

When a synchronization sequence is recognized, the message is placed (timeslot aligned) into the receive buffer. The receive buffer is organized as 16 x 128 bit timeslots.

Decoder repetitive retriggering is used to minimize the decoder down-time between messages. It is therefore important to extract the messages from the decoder buffer as soon as possible after their arrival. This avoids the messages being overwritten by further signaling.
Detecting and Querying Messages

IBASIC can be informed about the arrival of a message in the decoder buffer. To do this, configure the HP-IB status registers to cause a service request (SRQ) on the negative transition event of bit 12, "Decoder Result Available" in the Hardware Status Register #1.

For further information on the Hardware Status Register refer to the Programmer's Guide.

The message is read from the decoder buffer by the command:

`MEASURE:DECoder:MPT1327:BUFFER?`

This query returns a quoted string comprising the contents of one or more timeslots. The string is dis-assembled into the mnemonic form documented in appendix A. If more than one message is received, the individual messages are separated by semi-colons. If a timeslot contains data codewords, it is disassembled into the DCW extension. Examples of this are:

- Simple RQS from RU.
 `RQS 0,1,5,0`

- Cleardown from RU sent in three consecutive timeslots.
 `MAINT 0,1,283,3,0;MAINT 0,1,283,3,0;MAINT 0,1,283,3,0`

- SAMIS response to AHYC giving PSTN digits for call.
 `SAMIS 14391,83782;DCW #H080000000000,#H000000000000`

There are two other measurements available on the decoder screen:

- The Signaling Data Rate
 The signaling data rate measurement is the measured baud rate of the received message. It is most accurately measured on a "dotting" pattern.

- The Received Message Timing
 This measures the timing of the received message relative to the timeslots in the forward-control channel. It has two modes of operation:

 - Slot timing mode
 This works in the Control test mode only, it is disabled in all other modes.

 The timing counter is reset at the end of every control channel timeslot. If a message is received, the time from the most recent slot end, to the start of the received message's preamble, is reported as the timing measurement result.

 In the slot timing mode it is not possible to determine whether the message was returned in the "correct" timeslot. (For example, if it is a response that should return in the timeslot immediately following the requesting forward message.) It is possible to check that the timing offset from the forward channel slot boundaries is within specification.
MPT 1327 Decoder Screen

This mode is selected via the HP-IB with the command:

DECoDer: MPT1327: TIME: MODE 'SLOT'

This is the default mode.

☐ Response timing mode

This works in the Control and Traffic test modes, it is disabled in all other modes.

In Control mode the timing counter is reset at the end of each message transmitted from the control channel message buffer. It is not affected by the on-going transmission of the control channel filler pattern.

In the Traffic mode the timing counter is reset at the end of each message transmitted from the traffic channel message buffer. There is no background filler pattern.

In the response timing mode both next slot and slot offset timing can be checked. The received message must however, be solicited by a forward message so that the timer is reset and the measurement is meaningful.

This mode is selected via the HP-IB with the command:

DECoDer: MPT1327: TIME: MODE 'RESPONSE'
The RADIO INTERFACE screen controls the digital functions of the rear-panel RADIO INTERFACE connector. You can set the bit values on the 16 parallel data pins, strobe the data out, designate pins as inputs, and clock data in. You can also arm the interrupt pins and determine if an interrupt has been tripped.

The fields on this screen can be set or read by IBASIC or HP-IB programs.

See Also
Chapter 5
Programmer’s Guide
Radio Interface Screen

Input Data
This field triggers the Test Set to latch the data on the parallel data pins that have been designated as inputs.

Interrupt 1
This field arms or disarms the Interrupt 1 pin. When it is armed, and the pin is pulled low by an external device, Tripped is displayed below the field.

Operating Considerations
The field can be queried directly in an IBASIC or HP-IB program, or it can be monitored with the HP-IB status reporting system. This is done by reading bit 5 of the status byte and then reading bit 13 of the Hardware 1 status register. The Interrupt 1 pin can also be set as the HP-IB SRQ mask.

Once the interrupt has been tripped it must be re-armed. To do this, remove the low on the Interrupt 1 pin and then select the Interrupt 1 field once to Disable the interrupt and again to Arm it.

See also
Programmer's Guide

Interrupt 2
Same as Interrupt 1 but, it applies to the Interrupt 2 pin on the RADIO INTERFACE connector and bit 14 of the Hardware 1 status register.

I/O Config
This field designates which of the 16 parallel data pins will be used as inputs. Pins designated as inputs are pulled high internally. They can be left high for a logic 1 or pulled low for a logic 0.

Operating Considerations
A hexadecimal number that can range from 0000 to FFFF is entered in this field. Hex 0000 designates no pins as inputs, while hex FFFF designates all 16 pins as inputs.

To determine the number, convert the input pin's binary weight to hexadecimal, then add. Pin 19, D0, is the least significant bit. For example, if D0 through D7 are to be inputs and D8 through D15 are outputs the number to enter would be 00FF.
Radio Interface Screen

Output Data
This field sets the data to be output on the parallel data lines.

Operating Considerations
The data is entered as a hexadecimal number that can range from 0000 to FFFF. To determine the number convert the binary weight of the pins that you want to set high to hexadecimal, then add. Pin 19, D0, is the least significant bit. For example 0008 would set pin 22, D3, high and the rest of the pins low.

The field will show the entered value but the pins don’t change until the Send Data field is selected.

Parallel Data In
This field displays the value on the parallel data pins when the Parallel Data In field is selected.

Send Data
When selected, this field clocks the data in the Output Data field to the parallel data pins. It also outputs a pulse on the Strobe pin.

Strobe Pol
Strobe Polarity. This field sets the polarity of the pulse on the Strobe pin. This pulse occurs when the Send Data field is selected.
Radio Interface Screen
The CONFIGURE screen defines a number of general operating functions, such as date and time, screen intensity, and beeper volume. It is also used to define some RF signal parameters, such as RF Generator/Analyzer offset, channel standards and characteristics, and signal loss/gain compensation.
Configure Screen

Antenna In

This field is used to indicate losses or gains between the ANT IN port and the device under test.

Enter a positive value to indicate a gain (such as an amplifier). The Spectrum Analyzer Marker Level (Lvl) measurement is automatically reduced by that amount. (The Spectrum Analyzer Ref Level is automatically decreased by the same amount, so the trace position does not appear to change.)

Enter a negative value to indicate a loss (such as cable loss). The Spectrum Analyzer Marker Level (Lvl) measurement is automatically increased by that amount. (The Spectrum Analyzer Ref Level is automatically increased by the same amount, so the trace position does not appear to change.)

This field is only used when the RF Level Offset field is set to On.

See Also

RF Level Offset field description

Base Freq (User Defined)

The Base Frequency field sets the RF Generator reference for channel 1 when the RF Chan Std is set to USER-DEF, and the RF Display field is set to Chan.

For example, if your multi-channel radio's lowest receive channel frequency is 300 MHz, you would enter 300 MHz in this field. You would also use the Chan Space and (Gen)-(An1) to tell the Test Set where other transmit and receive channel frequencies are in relation to the Base Frequency, and whether or not the system is duplex.

Operating Considerations

The value of this field is only used if the RF Display field is set to Chan, and the RF Chan Std field is set to USER-DEF.

See Also

Chan Space field description
(Gen)-(An1)(User Defined) field description
RF Chan Std field description
RF Display field description
Configure Screen

Beeper
This field changes the audio beeper volume by selecting the desired level from a list of choices. The Beeper always beeps when the instrument is turned on, regardless of this setting.

Operating Considerations
The Beeper alerts you any time a message is displayed. Since a message may be removed from the screen before you notice it, it is better to leave the Beeper on to alert you to potential errors during operation.

The Beeper volume setting is retained when the instrument is turned off.

Chan Space (User Defined)
This field specifies the RF channel spacing when the RF Display field is set to Chan, and the RF Chan Std field is set to USER-DEF.

For example, entering 25 kHz causes a 25 kHz spacing between each channel. If the receive frequency for channel 1 is 150.500 MHz, channel 2's receive frequency would be 150.525 MHz.

Operating Considerations
The value of this field is only used if the RF Display field is set to Chan, and the RF Chan Std field is set to USER-DEF.

See Also
(Gen)-(Anl) field description
RF Chan Std field description
RF Display field description
Base Freq field description
Configure Screen

Date
This field specifies the current date for the internal clock. The date can be read by a controller using HP-IB, and printed on test results. The format is MMDDYY (Month Day Year), using two digits for each term. When entering months January through September (01-09), the leading zero is not displayed when entered. Example; May 5, 1993 is entered as 050593, but is displayed as 50593.

The internal clock still functions when the instrument is turned off.

Duplex Out
This field is used to indicate losses or gains between the DUPLEX OUT port and the device under test.

- Enter a **positive** value to indicate a gain (such as an amplifier gain). The RF Generator level is automatically set that amount **below** what is indicated in the RF Generator’s **Amplitude** field. (Example; if this value is 10 dB, and the **Amplitude** field shows 0 dBm, the actual level out this port is −10 dBm.) The value at the output of the external amplifier should then be at the level indicated in the **Amplitude** field.

- Enter a **negative** value to indicate a loss (such as cable loss). The RF Generator level is automatically set that amount **above** what is indicated in the RF Generator’s **Amplitude** field to compensate. The value at the opposite end of the cable (loss) should then be at the level indicated in the **Amplitude** field; unless the resulting RF Generator setting exceeds the maximum output level, then an error occurs - **Input value out of range**. In that case, reduce the **Amplitude** setting, or decrease the **Duplex Out** value.

This field is only used when the **RF Level Offset** field is set to **On**.
Configure Screen

Firmware
This field displays the current firmware revision for your Test Set. The revision number is automatically changed when updated firmware is installed.

Gen-Anl
This field is used with the RF Offset field to specify the amount of frequency offset between the RF Generator and RF Analyzer.

This field is not displayed when the RF Display field is set to *Chan* (the offset is automatically set when using channel tuning).

See Also
“Setting an RF Generator/Analyzer Offset” in Chapter 3

Gen-Anl* (User Defined)
This field defines the receiver-transmitter frequency offset when using User Defined channel operation.

Use a **positive** value when the radio’s receive frequency is higher than the transmit frequency (such as 45 MHz).

Use a **negative** value when the radio’s receive frequency is lower than the transmit frequency (such as −45 MHz).

Operating Considerations
The value of this field is only used if the RF Display field is set to *Chan*, and the RF Chan Std field is set to *USER-DEF*.

See Also
Chan Space field description
RF Chan Std field description
RF Display field description
Configure Screen

Intensity
This field adjusts the screen intensity from a setting of 1 (very dim) to 8 (bright). If the setting is set too low, the screen can no longer be read. If you can’t read the screen, and you don’t know where the cursor is (or even what screen is displayed!), press [PRESET], and re-access the CONFIGURE screen. The cursor automatically goes to this field at that point. Press [8], [ENTER] to set the maximum intensity, and re-adjust if desired.

This setting is retained when the instrument is turned off.

Low Battery
This setting is used during battery (DC) operation to alert you when no front-panel controls are used within the specified amount of time. The setting is changed by selecting this field, then choosing the setting from a list of choices.

This setting is retained when the instrument is turned off.

Notch Coupl
This field selects if the Notch Freq setting of the AF ANALYZER screen is coupled to the AF Gen1 Freq setting. When set to None, the notch filter and AF Generator 1 do not interact. When set to AFGen1 (coupled), the settings track each other unless the AF Generator frequency is set outside the 300 Hz to 10 kHz limits of the Notch Filter (optional for the HP 8920A and HP 8921A).
Configure Screen

Range Hold

These fields enable/disable several auto-ranging and auto-tuning routines.

- Auto All enables these routines, providing automatic adjustment when making AF or RF measurements.
- Hold All disables these routines, requiring you to manually set the affected settings.

The following fields are affected by the Range Hold field:

- RX/TX Cntl in the CONFIGURE screen.
- Tune Mode in the TX TEST, DUPLEX TEST, and RF ANALYZER screens.
- Input Attten in the RF ANALYZER and SPECTRUM ANALYZER screens.
- Gain Cntl in the AF ANALYZER screen. This field controls three AF gain setting fields:
 - Input Gain
 - De-Emp Gain
 - Notch Gain

Operating Considerations

The Hold All setting is primarily used when the instrument is operated by remote control, such as in an automated test system.

Unless you have very specific reasons for disabling the automatic functions, you should set this field to Auto All when operating the instrument manually.

See Also

Programmer’s Guide
Configure Screen

RF Chan Std

Use the RF Channel Standard field to select the channel standard for the radio under test. The RF Generator and RF Analyzer frequencies are automatically set to correspond to the channel number entered in the RF Channel field. (RF Channel replaces the Amplitude and Tune Freq fields on several screens when channel tuning is used.)

Each standard has a prefix code that indicates what type of radio to test; Mobile Station (MS) or Land (base) Station (LS). For example, if you are testing an AMPS mobile, select MS AMPS.

For the NAMPS standards, a third letter is added indicating which frequency band is used: Upper, Middle, or Lower. For example, when testing a Mobile Station using the Lower band, choose MSL NAMPS. Testing a Land Station using the Upper band you would select LSU NAMPS.

The USER-DEF selection is used to define your own channel assignments. When selected, you enter the Base Freq, Chan Space, and (Gen)-(An1) settings.

See Also

- Base Freq field description
- Chan Space field description
- (Gen)-(An1) field description
Configure Screen

RF Display
This field selects the format for entering the RF Generator and RF Analyzer frequencies:

- When **Freq** is selected, you enter the RF Generator and RF Analyzer frequencies directly using the keypad or knob.
- When **Chan** is selected, the RF Gen Freq and Tune Freq fields on all screens are replaced by the RF Channel field, and only the channel number is entered and displayed.

Channel tuning eliminates the need to enter transmit and receive frequencies directly into the Test Set. Once the your radio’s RF Channel Standard is selected, you only have to enter the channel number to automatically set the RF Generator and RF Analyzer to the correct frequencies.

Operating Considerations

When Channel tuning is used, the RF Analyzer is set to manual tuning. The Tune Mode field on the TX TEST, DUPLEX TEST, and RF ANALYZER screens is no longer displayed. As a result, the TX Freq Error measurement is displayed (since the TX Frequency measurement is only displayed when the Tune Mode field is set to Auto).

See Also

RF Chan Std field description
Configure Screen

RF Gen Volts
This field specifies whether you want RF Voltages expressed as the voltage across a 50Ω load, or the open circuit voltage (emf).

Operating Considerations
This setting affects the RF Generator and Tracking Generator Amplitudes.

RF In/Out
This field is used to indicate losses or gains between the RF IN/OUT port and the device under test.

- **Enter a positive value** to indicate a gain (such as an amplifier gain). When the RF IN/OUT port is used as an output, the RF Generator (or Tracking Generator) level is automatically set that amount below what is indicated in the RF Generator's Amplitude field. (Example; if this value is 10 dB, and the Amplitude field shows 0 dBm, the actual level out this port is – 10 dBm.)

 When this port is used as an input, the **TX Power** measurement and Spectrum Analyzer Marker Level (Lvl) are automatically reduced by that amount.

- **Enter a negative value** to indicate a loss (such as cable loss).
 The RF Generator (or Tracking Generator) level out this port is automatically set that amount above what is indicated in the RF Generator’s Amplitude field to compensate.

 When used as an input, the **TX Power** and Spectrum Analyzer Marker (Lvl) measurements are increased by that amount.

Duplex Testing
This field is used when the RF Level Offset field is set to **On**.

This field is used when the RF IN/OUT connector is only used as an input OR only used as an output; not doing both at the same time (Duplex testing).

If you need to use the RF Level Offset functions when testing Duplex radio's, use the DCHPEX OUT connector and Duplex Out field for the RF Generator function, and the RF/IN OUT connector and RF IN/OUT field for the RF Analyzer function.

See Also
RF Level Offset field description
Configure Screen

RF Level Offset

This field enables/disables the effects of the RF In/Out, Duplex Out, and Antenna In fields below it.

- When set to **Yes**, the RF Generator amplitude and RF Analyzer power measurement are offset by the values entered in these fields.
- When set to **Off**, the values in these fields are ignored.

See Also

Antenna In field description
Duplex Out field description
RF In/Out field description

RF Offset

This field enables/disables the RF Generator–RF Analyzer offset specified in the (Gen)-(Anl) field below it. (Don’t confuse this field with the (Gen)-(Anl) field used for channel tuning.)

Operating Considerations

When an RF Offset is used, changing the RF Generator frequency or RF Analyzer tune frequency automatically alters the other setting. On screens where both fields are not shown (such as the RX TEST and TX TEST screens), you will not see the corresponding field change.

See Also

“Setting an RF Generator/Analyzer Offset” in Chapter 3
Configure Screen

RX/TX Cntl This function controls automatic screen changes between the RX TEST and TX TEST screens during radio testing. It is divided into two fields:

- **Auto/Manual** field enables/disables automatic switching between the RX TEST and TX TEST screens under certain testing conditions.

 - **Auto** allows automatic screen changes between the RX TEST and TX TEST screens while testing radios.

 - **Manual** requires you to select the RX TEST or TX TEST screen when performing radio tests.

The **Carrier/PTT** field specifies the condition that will cause automatic screen changes:

- **Carrier** causes the instrument to automatically switch from the RX TEST screen to the TX TEST screen when an RF carrier is detected. The screen returns to RX TEST when the carrier is no longer detected.

- **PTT** (Push To Talk) causes the instrument to automatically switch from the TX TEST screen to the RX TEST screen when a microphone connected to the MIC/ACC connector is keyed. The screen changes back to TX TEST when the microphone is no longer keyed.

Operating Considerations

If **Auto** and **Carrier** are used together, the screen may continuously change between RX TEST and TX TEST. This only occurs if the RF IN/OUT port is used with the RF Generator **Amplitude** set > -35 dBm (a much higher level than is typically used for receiver tests). To prevent this problem, set the Amplitude <-35 dBm or OFF, or use the DUPLEX OUT port for the RF Generator's output.

Caution

The Test Set can be damaged by connecting a reverse power signal to the DUPLEX OUT port of >200 mW.

Serial No.

This field displays the serial number of the Test Set.

Time

This field sets the time-of-day for the instrument’s 24 hour clock. (Example: 4:53 PM is entered 16:53)

Operating Considerations

The internal clock still functions when the instrument is turned off.

Total RAM

This field displays the total amount of RAM available for IBASIC programs and save/reCALL registers.
SERVICE

Note
This screen is used for component-level troubleshooting by the manufacturer. This method of troubleshooting is not currently supported outside of the factory.

To access the SERVICE screen, you must first access the CONFIGURE screen, then select Service from the To Screen menu in the bottom right corner.

This screen allows you to monitor individual circuit node measurements and change various MUX and DAC Latch settings for isolating faulty modules.

Counter Connection
This field selects the desired circuit node to connect to the frequency counter.

Frequency
This measurement field displays the frequency measurement for the circuit node shown in the Counter Connection field.

Gate Time
This field is used to adjust the frequency counter’s gate time. A shorter gate time may enable you to see frequency fluctuations that might not be seen using a longer gate time.
Service Screen

Latch This field is used to alter the circuit latches that control a variety of operations. The value of the selected latch is displayed and changed in the Value field.

RAM Initialize Selecting this field clears all SAVE registers and test programs that may be in RAM, and resets all latches to their factory power-up configuration.

Operating Considerations If you have saved one or more instrument setups using the SAVE function, using this function will permanently remove them.

Value This field displays and changes the value for the latch shown in the Latch field.

Voltage This measurement field displays the voltage measurement for the circuit node shown in the Voltmeter Connection field.

Voltmeter Connection This field selects the desired circuit node for voltage measurements. The reading is displayed in the Voltage measurement field.
The MESSAGE screen lists any error or operation messages that have occurred since the instrument was turned on.

The type of error and the time it occurred are listed. If one error occurs more than once before a different error is encountered, the number of times it occurred, and when it occurred, are displayed.

All messages are shown until the entire display is filled. If enough errors occur, the MESSAGE screen will scroll the first messages past the top of the screen. These messages cannot be retrieved.

See Also

Error Messages
The TESTS screens are also referred to as the "Tests Subsystem"; a group of screens used to create, edit, and run automated test programs. Using program control, the Test Set can run radio tests by itself and control other instruments using the optional HP-IB or Serial Port. The HP 11807A Radio Test Software is an example of this type of operation.

Tests can be run from memory cards, the Test Set's internal ROM or RAM, or from an external disk drive.

Test programs are written in the HP Instrument BASIC (IBASIC) programming language.

For detailed (step-by-step) instructions about using the TESTS screens, see your Radio Test Software's documentation or the Test Set’s Programmer’s Guide.
Tests Subsystem Screens

When you press [TESTS], you access the main TESTS screen. The other screens of the subsystem are accessed using the CUSTOMIZE TEST PROCEDURE: or SET UP TEST SET: lists at the bottom of this screen.

TESTS Subsystem Screens

- **Main Menu** is used to load a test procedure from a disk, RAM, ROM or memory card. It is also used to access the other screens in the Tests Subsystem.

- **Channel Information** is used to specify transmitter and receiver frequency information for the radio being tested and to enter squelch and signaling information.

- **Test Parameters** is used to tell the Test Set the requirements of the test system for testing your radio.

- **Order of Tests** is used to define a test sequence from a list of possible tests.

- **Pass/Fail Limits** is used to specify the upper and lower limits for each test point. If a limit is violated during a test, an “F” appears next to the test value to indicate a failure.

- **Save/Delete Procedure** is used to save and delete test procedures.

- **Execution Conditions** is used to control which test results are output and where the results are printed (CRT/printer). This screen also controls whether tests run continuously or singly, and whether the test continues or stops after a failure is detected.

- **External Devices** is used to specify what types of external equipment are connected to the Test Set and their addresses. It is also used to specify where to store test result data.

- **Printer Setup** is used to control which test results are output and where the results are printed. This screen is also used for basic formatting of the printout (lines per page and form feeds). Printer port and printer model number are also chosen on this screen.

- **IBASIC Ctrl** is used to run IBASIC programs. This screen is also used as a “stand-alone” IBASIC computer. See the Instrument BASIC Programmer's Guide for information about writing your own tests for the Test Set.
TESTS (Main Menu)

<table>
<thead>
<tr>
<th>LOAD TEST PROCEDURE:</th>
<th>SET UP TEST SET:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Freq Channel Information</td>
</tr>
<tr>
<td></td>
<td>Parm Test Parameters</td>
</tr>
<tr>
<td>Library</td>
<td>IBASIC IBASIC Cntrlt</td>
</tr>
<tr>
<td>Program</td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td>Parm Test Parameters</td>
</tr>
</tbody>
</table>

Description: This field displays a description of the file chosen in the Select Procedure Filename field.

Cnfg External Devices: Selecting this field displays the TESTS (External Devices) screen.

Continue: This field is used to restart a paused test.

Exec Execution Cond: Selecting this field displays the TESTS (Execution Conditions) screen.

Freq Channel Information: Selecting this field displays the TESTS (Channel Information) screen.

IBASIC IBASIC Cntrlt: Selecting this field displays the TESTS (IBASIC Controller) screen.

Library: This field displays the library information of the file chosen in the Select Procedure Filename field.

Parm Test Parameters: Selecting this field displays the TESTS (Test Parameters) screen.

Figure 4-64. The TESTS (Main Menu) Screen.
TESTS (Main Menu) Screen

Print Printer Setup
Selecting this field displays the TESTS (Printer Setup) screen.

Proc Save/Delete Procedure
Selecting this field displays the TESTS (Save/Delete Procedure) screen.

Program
This field displays program information for the file chosen in the Select Procedure Filename field.

Run Test
Selecting this field loads and runs the test chosen in the Select Procedure Filename field.

Select Procedure Filename
This field is used to select the file you want to load from the location chosen in the Select Procedure Location field.

Select Procedure Location
This field is used to select the location of the procedure to load. Procedures can be loaded from disk, card, ROM, or RAM.

Seqn Order of Tests
Selecting this field displays the TESTS (Order of Tests) screen.

Spec Pass/Fail Limits
Selecting this field displays the TESTS (Pass/Fail Limits) screen.
Figure 4-65. The TESTS (Channel Information) Screen.

This screen displays the channel frequencies to be tested.

Delete Ch

This field allows you to delete a channel from the frequency table at the bottom of the screen.

Insert Ch

This field allows you to enter a new channel in frequency table at the bottom of the screen.

Operating Considerations

You are required to specify if the test channel is a “prime test channel”. Prime test channels are the radio channels primarily used by the radio operator; they are the channels you are the most concerned about testing.

Use the RX Chan Info or TX Chan Info fields if the channel requires a tone code or frequency for testing radios that have CTCSS (Continuous Tone-Controlled Squelch System) squelch.

For example, if your radio uses a CTCSS tone of 91.5 Hz, you could enter the tone frequency in both RX and TX channel information fields as CT FR91.5 or you could enter the tone code itself as CT ZZ. The specific entries are described in your HP 11807A software manual.
TESTS (Channel Information) Screen

When testing cellular radios, the Channel Information is the channel number you are testing (don’t confuse this with the Chan# field used to list channels on this screen). When the cellular radio channel number is entered, the HP 11807A software automatically sets the channel frequencies when testing. You do not need to enter the RX and TX frequencies because they correspond directly to the channel numbers.

Note

Enter a “−1” in the RX and TX test frequency fields to have all subsequent channels ignored when testing is started.

Print All

This field allows you to print the Test Set’s screen image.

Main Menu

Selecting this field returns you to the TESTS (Main Menu) screen.
TESTS (Test Parameters)

Figure 4-66. The TESTS (Test Parameters) Screen.

Test Parameters are used to define operating and testing characteristics to match those of the radio being tested (audio-load impedance, audio power, power-supply voltage, and so forth).

By selecting the Parm#, Value, or Units fields and using the data and units keys, you can modify or enter parameters.

Note

The tests you select determine the parameters that are required. Your radio test documentation provides details if you are using HP 11807 software.

- **Print All** This field allows you to print the Test Set's screen image.
- **Main Menu** Selecting this field returns you to the TESTS (Main Menu) screen.
TESTS (Order of Tests)

<table>
<thead>
<tr>
<th>Step#</th>
<th>Test Name</th>
<th>Description</th>
<th>All Chans?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing TESTS (Order of Tests) screen]

Figure 4-67. The TESTS (Order of Tests) Screen.

The order of tests is set up by selecting one or more tests from the complete list of available tests (such as selecting a subset of an entire HP 11807A package). The TESTS (Order of Tests) menu lets you select the radio tests you want to perform and the order in which the tests are done.

Tests can be selected in any order; but to reduce testing time, you should strategically organize the test sequence. Tests requiring operator intervention (changing volume, channels, and so forth) should be grouped together. If you are using HP 11807 software, see its documentation to see which parameters go with each test.
TESTS (Order of Tests) Screen

All Chans? This field allows you to choose if a new test is to be run on all channels (yes) or only on prime channels (no). Prime channels are specified on the TESTS (Channel Information) screen. The underlined entry is the active choice.

Delet Stp This field allows you to delete a step from the test list at the bottom of the screen.

Insrt Stp This field allows you to enter a step in the test list at the bottom of the screen.

Operating Considerations
When inserting a new test, you must select the Step# where you want to insert a new test. When inserted, the new test forces the current test (at that step #) down one step, and a duplicate of the current test is inserted. This duplicate is overwritten when the new test is selected.

See Also
Programmer’s Guide

Main Menu Selecting this field returns you to the TESTS (Main Menu) screen.

Print All This field allows you to print the Test Set’s screen image.

Step# The Step# field lists the order of selected tests for the current procedure.

Operating Considerations
Use the knob, [↑], or [↓] key to select the step where you want to delete, replace, insert a test.

Test Name This field displays the names of the tests available from the software package or program currently selected. As you turn the knob, the Test Name for the corresponding step appears above the test Description.
Pass/Fail limits are the radio manufacturer's upper and lower limits used by the Test Subsystem. For a radio to pass a test, the measured value must fall within the test's limits. Tests results can be compared to only the lower limit, only the upper limit, both the upper and lower limits, or no limits (None). (Pass/Fail limits are sometimes referred to as specifications.)

The tests you select determine the specifications that are required. The HP 11807 documentation provides details if you are using HP 11807 software.
TESTS (Pass/Fail Limits) Screen

Check This field is used to select whether the test will verify only upper, only lower, both, or none of the specified limits.

Operating Considerations
Selecting both upper and lower limits increases test time, but may be required for some tests.

Lower Limit This field is used to set the lower limit to be compared with the measured results. If the measured result is below this limit, the test will fail.

Main Menu Selecting this field returns you to the TESTS (Main Menu) screen.

Print All This field allows you to print the Test Set's screen image.

Spec# The Spec# field lists the order of selected pass/fail limits for the current procedure.

Units The Units column indicates the unit-of-measure used for the limits (%, dBm, kHz, and so forth).

Upper Limit This field is used to set the upper limit to be compared with the measured results. If the measured result is above this limit, the test will fail.
Figure 4-69. The TESTS (Save/Delete Procedure) Screen.

After selecting a test sequence and defining the appropriate specifications, parameters, frequencies, and system configuration, you can save all that information as a Procedure File for later use.

This screen is also used to delete procedures.

Code Location

This field is used to select where the program (code file) for the test procedure is stored. Code files are the main program files of the software, containing all of the test subroutines. If an HP 11807 memory card is catalogued, the code file is preceded by a lower-case c.

Enter Procedure Filename

This field is used to enter the name of the file you want to save or delete.

Operating Considerations

When you save a procedure file, you can use any name with up to 9 characters.

You can also delete previously-saved files to be able to re-save a file using the same file name.

The media must be initialized before a file can be saved. Refer to the *Programmer’s Guide*
TESTS (Save/Delete Procedure) Screen

Main Menu
Selecting this field returns you to the TESTS (Main Menu) screen.

Pass Word
The Pass Word field allows you to access a secured test procedure file. Test procedures are secured using the SECURE_IT program in ROM. On the HP 8920B, load and run the ROM IB_UTIL program to access the SECURE_IT program. On the HP 8920A and HP 8921A this program is directly accessed from the ROM list of choices.

See Also
ROM Programs, Securing a Test Procedure

Procedure Library
This field is used to select whether the new test procedure will use the current test’s library or no library. All HP 11807 Test Procedures must be saved with a test library. Other IBASIC programs may not require an associated library file.

Library files contain all of the channel, parameter, and test name information used with the code file. If an HP 11807 memory card is catalogued, the library file is preceded by a lower-case l.

Select Procedure Location
This field is used the select where a new procedure will be saved, or the location from which a procedure will be deleted. Procedures can be saved to, or deleted from, disk, card, or RAM.

Operating Considerations
Procedure files contain a subset of the library file. This is where you save all of your own frequency, parameter, test sequence, specification, and system configuration information. A procedure file is not a directly-executable file for HP 11807 tests; it requires the code and library files to be present before running.

To save a file to an external disk drive, you must enter drive’s HP-IB address into the External Disk Specification field on the TESTS (External Devices) screen.
TESTS (Execution Conditions)

TO CONTROL:
- Output Results To:
 - Console
 - Printer
- Output Results For:
 - All
 - Failures
- Output Heading:
 -

TO CONTROL RUN TEST:
- If Unit-Under-Test Fails:
 - Continue
 - Stop
- Test Procedure Run Mode:
 - Continuous
 - Single Step

Autostart Test Procedure on Power-Up:
- Off
- On

Figure 4-70. The TESTS (Execution Conditions) Screen.

The **TESTS (Execution Conditions)** screen determines how tests are run.

Autostart Test Procedure on Power-Up

When set to **On**, this field automatically loads and runs the specified procedure whenever the Test Set is turned on. If this field is set to **Off** or the specified procedure cannot be loaded for any reason (such as, memory card not inserted, disk drive not connected), the Test Set will default to its normal power-on state.
TESTS (Execution Conditions) Screen

Continue
This field is used to restart a paused test.

If Unit-Under-Test Fails
This field selects what happens if the measured results do not meet criteria for passing the current test. The underlined entry is the active choice.

- **Continue** continues with testing even though a test in the test sequence fails to meet its test specification limits. When this occurs, an error is listed on the test-results printout and/or is displayed on the CRT.
- **Stop** stops the test when a "failure" occurs and requires operator intervention before testing proceeds.

Main Menu
Selecting this field returns you to the TESTS (Main Menu) screen.

Output Heading
This field allows you to enter a heading for the test results printout (or CRT display).

Output Results To
This field selects where test results are output. The underlined entry is the active choice.

- **CRT** displays test results on the Test Set's CRT.
- **Printer** displays test results on the Test Set's CRT and outputs them to a printer. (The printer information must first be entered on the TESTS (Printer Setup) screen.)

Output Results For
This field selects which test results are output. The underlined entry is the active choice.

- **All** outputs all test results on to the location selected in the Output Results To field.
- **Failures** outputs only the results of tests which fail.
TESTS (Execution Conditions) Screen

Run Test
Selecting this field loads and runs the test chosen in the Select Procedure Filename field on the TESTS (Main Menu) screen.

Test Procedure Run Mode
This field selects how the test will be run. The underlined entry is the active choice.

- **Continuous** runs the tests in the test sequence one after another without stopping. Testing pauses only if the operator is required to interact with the UUT or Test Set. Interactions such as changing UUT channels and setting squelch and audio levels cause testing to pause. Selecting **Stop** in the If Unit-Under-Test Fails field may also stop a test.

- **Single Step** runs the tests in the test sequence one at a time. The operator is prompted to press **Continue** to proceed with testing.
The Tests Subsystem can only access external devices if they have been configured. Most external devices use the HP-IB port for control. A serial printer can be connected to the serial port for printing test results.

Note

HP-IB Mode: The Mode field on the I/O CONFIGURE screen must be set to Control to access connected HP-IB instruments.
TESTS (External Devices) Screen

Addr
This field is used to enter the instrument's remote address. For HP-IB instruments, enter the full 3-digit address (such as 704).

Calling Name
The Calling Name field is used to enter the instrument’s function (in upper-case letters). For example, PRINTER, POWER SUPPLY, DATA COLLECTION (disk drive), and so forth.

Delet Ins
This field allows you to delete an instrument from the list at the bottom of the screen.

Use the knob, (), or () key to select the step where you want to delete an instrument.

External Disk Specification
This field is used when storing and loading procedures on an external disk.

Operating Considerations
The HP-IB path entered in the External Disk Specification field is used by the Select Procedure Location field on the TESTS (Main Menu) screen when Disk is selected.

Insr Ins
This field allows you to enter an instrument in the list at the bottom of the screen.

Use the knob, (), or () key to select the step where you want to insert an instrument.

See Also
Programmer's Guide

Inst#
The Inst# field lists the number of external devices that are configured for the tests in the current procedure.

Main Menu
Selecting this field returns you to the TESTS (Main Menu) screen.
TESTS (External Devices) Screen

Model
This field is used to enter the instrument's model number. There is no specific syntax for entering model numbers into this field.

Options
This field is used to enter the instrument's option number(s) if any.

Operating Considerations
This field may be left blank, or otherwise may include other calling name options, for example:

Printer options – LN=#,START,END
Where # is the number of lines on each page.
Where START causes a form feed at the start of each printout.
Where END causes a form feed at the end of each printout.

Data collection options – NN
Where NN is the number of records (file size) for the mass-storage location where data will be collected on disk or memory card. The default record size is "80".

Print All
This field allows you to print the Test Set's screen image.
Figure 4-72. The TESTS (Printer Setup) Screen.

The TESTS (Printer Setup) screen determines how tests are run.

Continue
This field is used to restart a paused test.

FF at End
This field is used to specify if you want a Form Feed at the end of printing. The underlined entry is the active choice.

FF at Start
This field is used to specify if you want a Form Feed at the start of printing. The underlined entry is the active choice.
TESTS (Printer Setup) Screen

Lines/Page
This field is used to specify how many lines are printed per page.

Main Menu
Selecting this field returns you to the TESTS (Main Menu) screen.

Model
This field is used to specify the type of printer used. If your printer is not listed in the Choices menu when you select this field, configure your printer to emulate one of those that is listed.

Output Heading
This field allows you to enter a heading for the test results printout (or CRT display).

Output Results To
This field selects where test results are output. The underlined entry is the active choice.
- CRT displays test results on the Test Set’s CRT.
- Printer displays test results on the Test Set’s CRT and outputs them to a printer.

Output Results For
This field selects which test results are output. The underlined entry is the active choice.
- All outputs all test results on to the location selected in the Output Results To field.
- Failures outputs only the results of tests which fail.

Printer Address
This field is used to specify the address of an HP-IB printer. This field is only displayed if the Printer Port field is set to HP-IB.

Printer Port
This field is used to select the port your printer is connected to.

Run Test
Selecting this field loads and runs the test chosen in the Select Procedure Filename field on the TESTS (Main Menu) screen.
Figure 4-73. The TESTS (IBASIC Controller) Screen.

The IBASIC controller is used to run IBASIC programs. This screen is also used as a "stand-alone" IBASIC computer. See the Instrument BASIC documentation for information about writing your own tests for the Test Set.

If you need to perform a simple IBASIC operation, such as a SAVE or GET function, you can enter commands one at a time. To do this, access the TESTS (IBASIC Controller) screen and use the knob to enter commands.

Refer to the Programmer's Guide for information about using the TESTS (IBASIC Controller) screen to write and store your own tests.
TESTS (IBASIC Controller) Screen

Clr Scr This field is used clear the IBASIC controller screen.

Continue This field is used to restart a paused test.

Main Menu Selecting this field returns you to the TESTS (Main Menu) screen.

Run Selecting this field runs the IBASIC program.

Sngl Step This field allows you to step through an IBASIC program line-by-line.
ROM Programs

Using the Signal Strength Meter

![Signal Strength Meter Screen](image)

Figure 4-74. Signal Strength Meter Screen

The Signal Strength Meter is accessed by loading and running the LVL_MTR ROM program.

1. Select the **TESTS (Main Menu)** screen.

2. Move the cursor to the **Select Procedure Location** field and choose **ROM**.

3. Move the cursor to the **Select Procedure Filename** field and select **LVL_MTR**.

4. Press K3 and enter the tune frequency (in MHz), then press **ENTER**. Do not press a units (MHz, kHz, Hz) key. MHz is the default unit and cannot be changed.

The ANT IN port is always the signal source.
Securing a Test Procedure

The pass word option for securing a test procedure is accessed by loading and running the SECURE.IT ROM program. This program is accessed by running the IB_UTIL program (HP 8920B), or by directly selecting it from the Choices menu (HP 8920A and HP 8921A).

1. Select the TESTS (Main Menu) screen.

2. Select the Select Procedure Location field and choose ROM.

3. Select the Select Procedure Filename field.
 a. For the HP 8920A and HP 8921A, select SECURE.IT from the list of programs. Press Run Test to run the procedure; follow the directions to secure the desired information.
 b. For the HP 8920B, select IB_UTIL from the list of programs. Press Run Test to display a list of procedures; select SECURE.IT and follow directions to secure the desired information.

Clearing RAM

RAM can be cleared using the RAM_MNG program in the Test Set’s ROM. This program clears all RAM, including any SAVE/RECALL registers saved to Internal (see the Save/Recall field description for the I/O CONFIGURE screen).

This program is accessed by running the IB_UTIL program (HP 8920B), or by directly selecting it from the Choices menu (HP 8920A and HP 8921A).

1. Select the TESTS (Main Menu) screen.

2. Select the Select Procedure Location field and choose ROM.

3. Select the Select Procedure Filename field.
 a. For the HP 8920A and HP 8921A, select RAM_MNG from the list of programs. Press Run Test to run the procedure; follow directions to clear RAM.
 b. For the HP 8920B, select IB_UTIL from the list of programs. Press Run Test to display a list of procedures; select RAM_MNG and follow directions to clear RAM.

To preserve the SAVE/RECALL registers, don’t use the RAM_MNG program. Instead, load a different test program to clear the previous test from RAM, and then re-load the desired test.
The HELP screen is used to access tutorial information for a wide variety of instrument functions.

After this screen is accessed, push the Cursor Control knob to display the "Help Index". The knob is then used to select the desired topic.

Once you have accessed the desired Help information, you can return to the "Help Index" by pushing the Cursor Control knob.

To exit the HELP screen and return to the previous screen, press \texttt{PREV}.
The I/O CONFIGURE (Input/Output) fields are used to specify HP-IB and serial communications settings (HP 8920A must be equipped with option 003).

This screen is accessed by selecting the More field (directly below the To Screen menu), and selecting IO CONFIG.
I/O Configure Screen

Data Length This field specifies the number of bits used for each word of serial data when using the rear-panel Serial Port. This setting is retained when the instrument is turned off.

HP-IB Address This field is used to display and change the HP-IB address of the Test Set.

Operating Considerations
The address can be set from 0 to 30 using the DATA keys, or by pushing then turning the Cursor Control knob.
This setting is retained when the instrument is turned off.

IBASIC Echo This field enables/disables screen and error message echoing from IBASIC.
This setting is retained when the instrument is turned off.

Inst Echo This field enables/disables character and screen echoing when using an external ASCII RS-232 terminal or computer to enter or edit IBASIC programs.
This setting is retained when the instrument is turned off.

Mode This field sets the HP-IB operating mode.
Talk&Listen is used for “normal” HP-IB operation.
Control is used to control external instruments using the Test Set.
This setting is retained when the instrument is turned off.

Parity This field specifies the serial communication Parity setting when using the optional rear-panel Serial Port.
This setting is retained when the instrument is turned off.
I/O Configure Screen

Rcv Pace

The **Receive Pace** field is used when receiving serial data.

- **Xon/Xoff** lets the Test Set “talk” to the transmitting device to alter the rate of the data being sent.
- **None** disables the Xon/Xoff function.

This setting is retained when the instrument is turned off.

Save/Recall

This field specifies which memory device the Test Set accesses when the SAVE and RECALL functions are used.

- **Internal** is a section of internal RAM. RAM is also used for running IBASIC programs, which may require you to delete the Save/Recall registers if the program is very large.
- **Card** is the front-panel MEMORY CARD slot. A “Save/Recall Device is not Present” message is displayed if you try to SAVE or RECALL an instrument setup when a write-able memory card is not installed in the Test Set.
- **RAM** refers to RAM Disks that you can create on internal RAM. Refer to the *Programmer’s Guide* for information on creating RAM Disks. This is part of the same memory used when “internal” is specified, and may have to be erased when loading very large IBASIC programs. A “Save/Recall Device is not initialized” message is displayed if you try to SAVE or RECALL an instrument setup when a RAM disk has not been created.
- **Disk** is used with external disk drives. The **Mode** field must be set to **Control** to access the drive. Also, the HP-IB address of the drive must be entered in the External Disk Specification field of the TESTS (External Devices) screen.

Serial Baud

This field selects the baud rate for serial communications when using the optional rear-panel Serial Port. Selecting this field displays a list of baud rate choices.

This setting is maintained after the instrument is turned off.
I/O Configure Screen

Serial In
This field selects the destination of characters received by the Test Set on the Serial Port.
- **Inst** configures the serial port to connect to an external ASCII terminal or computer to enter IBASIC programs, or to control the Test Set using an external keyboard.
- **IBASIC** is used to allow the IBASIC controller to read the serial port while a program is running.

Operating Considerations
If a serial printer is connected, the PRINT command causes the printer to take control of the serial port until printing is done.
This setting is maintained after the instrument is turned off.

See Also
Programmer’s Guide

Stop Length
This field specifies the number of stop bits used for serial communications when using the optional rear-panel Serial Port. Selecting this field displays a list of stop bit choices.
This setting is maintained after the instrument is turned off.

Xmt Pace
The Transmit Pace field is used when transmitting serial data.
- **Xon/Xoff** lets the receiving device “talk” to the Test Set to alter the rate of the data being sent.
- **None**: disables the Xon/Xoff function.
This setting is maintained after the instrument is turned off.
Figure 4-76. The Printer Configuration Screen

This screen is displayed on HP 8920As only if your instrument has Option 103 (standard on all other Test Set models).

This screen configures the Test Set to print screen images with your printer. Images are printed using either the front-panel [SHIFT] PRINT function or the Print All User Key available on some TESTS environment screens.

Refer to your HP 11807 software manual for information on how to use your printer to print automated test results.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abort Print</td>
<td>Select this field to interrupt the print in progress.</td>
</tr>
<tr>
<td>FF at End</td>
<td>This field is used to specify if you want a Form Feed at the end of printing.</td>
</tr>
<tr>
<td>FF at Start</td>
<td>This field is used to specify if you want a Form Feed at the start of printing.</td>
</tr>
<tr>
<td>Lines/Page</td>
<td>This field is used to specify how many lines are printed per page.</td>
</tr>
</tbody>
</table>
Print Configure Screen

Model This field is used to specify the type of printer used. If your printer
is not listed in the Choices menu when you select this field, configure
your printer to emulate one of those that is listed.

Printer Address This field is used to specify the address of an HP-IB printer. This
field is only displayed if the Printer Port field is set to HP-IB.

Print Data Destination This field will be used in the future to select whether the data is
formatted specifically for printers or for some other device (such as a
computer). At this time the only selection is Printer.

Printer Port This field is used to select the port your printer is connected to.

Print Title This field is used to enter up to 50 characters to be displayed at the
top of the print.
ADJACENT CHANNEL POWER

<table>
<thead>
<tr>
<th>TX Frequency</th>
<th>Upper ACP Ratio</th>
<th>TX Power</th>
<th>Lower ACP Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.066178 MHz</td>
<td>----</td>
<td>-0.00004</td>
<td>----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tune Mode</th>
<th>Input Port</th>
<th>AFGen1 Freq</th>
<th>AFGen1 To</th>
<th>ACP Meas Ratio/Level</th>
<th>To Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/F</td>
<td>RF In/Ant</td>
<td>1.0000 kHz</td>
<td>3.00 kHz</td>
<td>12.500 kHz</td>
<td>FF GEN</td>
</tr>
<tr>
<td>150.000000 MHz</td>
<td>Auto/Manual</td>
<td></td>
<td></td>
<td></td>
<td>RF ARL</td>
</tr>
<tr>
<td>TX Power</td>
<td>Input Atten</td>
<td>AFGen1 To</td>
<td>Ch Offset</td>
<td>Channel BW</td>
<td>RF ARL</td>
</tr>
<tr>
<td>0.0 dB</td>
<td>Auto/Manual</td>
<td>3.00 kHz</td>
<td>12.500 kHz</td>
<td>15.000 kHz</td>
<td>SCOPE</td>
</tr>
<tr>
<td>TX Pur Meas</td>
<td>Carrier Ref</td>
<td>Ch Offset</td>
<td>Res BW</td>
<td>Res BW</td>
<td>SPEC ARL</td>
</tr>
<tr>
<td>Ssmk/Same</td>
<td>Unassign/Mode</td>
<td>12.500 kHz</td>
<td>300 Hz</td>
<td></td>
<td>ENCODER</td>
</tr>
<tr>
<td>TX Pur Zero</td>
<td>Ext TX Key</td>
<td>Res BW</td>
<td></td>
<td></td>
<td>DECODER</td>
</tr>
<tr>
<td>0.0 dB</td>
<td>On/Off</td>
<td>300 Hz</td>
<td></td>
<td></td>
<td>RADIO INT</td>
</tr>
<tr>
<td>Zero</td>
<td>Ext TX Key</td>
<td></td>
<td></td>
<td></td>
<td>More</td>
</tr>
</tbody>
</table>

Figure 4-77. The Adjacent Channel Power Screen

Note

This screen is displayed on HP 8920As and HP 8920Bs Option 102, Spectrum Analyzer.

This feature is standard on HP 8921As.

This screen is used to measure Adjacent Channel Power. This is a measurement of the power of signals at a specific channel spacing above and below the RF Analyzer's center frequency.

This screen is accessed by selecting the More field (directly below the To Screen menu), and selecting AD CH PWR.
Adjacent Channel Power Screen

How the Test Set Measures Adjacent Channel Power (ACP)

When you access this screen, the Test Set automatically starts a
multi-step process for measuring ACP:

1. AFGen1 is turned off if the Carrier Ref field is set to Unmod.

2. The amplitude of the center frequency (Tune Freq) is measured to
 establish a reference.

3. AFGen1 is turned back on if it was previously turned off.

4. The power in each of the adjacent channels is analyzed.

5. Adjacent Channel Power is calculated and displayed. This
 value can be displayed as an absolute power level or as a ratio
 referenced to the center frequency’s level.

Note

Which Input Port to Use:
The TX Power measurement is used to calculate absolute Adjacent
Channel Power. Since TX Power can only be measured using the RF
IN/OUT Port, you must use this port to measure ACP Level. ACP
Ratio can be measured using either the RF IN/OUT or the ANT IN
port.

Measuring ACP on AM Transmitters:

When measuring AM signals, the reference level must be measured
on an unmodulated carrier; so the Carrier Ref field must be
set to Unmod. After the reference is measured, the power in the
adjacent channels must be measured with modulation. This
requires the modulating signal to be turned off and on repeatedly as
measurements are being calculated and displayed.

Since the Test Set automatically turns AFGen1 on and off when the
Carrier Ref field is set to Unmod, you must use AFGen1 and the
AUDIO OUT port as the modulation source for making AM ACP
measurements.
Adjacent Channel Power Screen

ACP Meas
This field selects the format for displaying upper and lower adjacent channel power levels.

- Ratio displays the power levels relative to the power around the center frequency (Tune Freq). Levels can be displayed in dB or as a percentage (%).
- Level displays the absolute power levels in mW, W, dBm, V, mV, and dBµV.

Operating Considerations
TX Power and ACP Level can only be measured through the RF IN/OUT port. Four dashes are displayed for these measurements when the Input Port is set to ANT IN.

ACP Ratio can be measured on either the ANT IN port or RF IN/OUT port.

Refer to “How the Test Set Measures Adjacent Channel Power (ACP)” at the earlier in this section.

AFGen1 Freq
Audio Frequency Generator 1 Frequency sets the frequency for the first audio frequency sinewave generator.

AFGen1 To
Audio Frequency Generator 1 To is used to set two values:

- The upper field determines whether the AFGen1 signal modulates the RF Generator or is output through the AUDIO OUT connector.
- The lower field sets the amplitude (including off). The AUDIO OUT level is always in volts RMS.

Operating Considerations
This is a priority control field. Accessing the RX TEST or TX TEST screen overrides any changes made to this field in other screens.

See Also
“Interaction Between Screens” in Chapter 3
Adjcent Channel Power Screen

Carrier Ref
Use the Carrier Reference field to indicate whether the carrier (Tune Freq) being measured should be unmodulated or modulated when making the ACP reference measurement. (Refer to “How the Test Set Measures Adjacent Channel Power (ACP)” earlier in this section.)

Operating Considerations
- FM transmitters can be measured with the carrier modulated or unmodulated.
- For AM transmitters, the carrier must be measured while **unmodulated**. AFGen1 and the AUDIO OUT port must be used as the modulation source whenever **Unmod** is selected.

Channel BW
Use the Channel Bandwidth field to specify the bandwidth of the carrier and adjacent channels to be measured. (See Figure 4-78)

![Channel BW Diagram](image)

Figure 4-78. Relationship between Tune Freq, Ch Offset, and Channel BW fields.
Adjacent Channel Power Screen

Ch Offset
Use the Channel Offset field to enter the frequency difference between the Tune Freq setting and the center of the adjacent channels you want to measure. This is an absolute value; only positive values can be entered. (See Figure 4-78)

Ext TX key
This field controls a switch at the MIC/ACC connector. Its intended use is to “key” an external transmitter.

See Also
“MIC/ACC” in Chapter 5

Input Attenu
Input Attenuation sets the amount of input attenuation for the RF IN/OUT and ANT IN connectors. This function controls two settings:

- The upper field determines if you want the instrument to set the attenuation automatically (Auto), or if you want to set the value manually (Hold).

- The lower field displays the present attenuation value, and is used to set the desired attenuation level when the upper area is set to Hold.

Operating Considerations

Input Attenuator auto-ranging can interfere with oscilloscope or signaling decoder operation under certain conditions. Refer to the AF Analyzer screen’s description of this field for additional information.
Adjacent Channel Power Screen

Input Port
This field selects the RF IN/OUT or ANT IN port for making RF measurements. The RF IN/OUT port must be used for making TX Power or ACP Level measurements on this screen.

Operating Considerations
Power levels for each port are printed on the Test Set’s front panel. If the RF power at the RF IN/OUT port exceeds allowable limits, a loud warning signal sounds and a message appears at the top of the screen. If this occurs, disconnect the RF power, press [MEAS RESET], and allow the Test Set to cool off for approximately 2 minutes before making any other measurements on this port.

The ANT IN (Antenna Input) connector provides a highly-sensitive input for very low level signals (such as “off the air” measurements). You cannot measure TX (RF) Power or ACP Level on this screen using the Antenna port.

Caution
Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press [MEAS RESET] or turn the Test Set off and on to reset it.

Lower and Upper ACP [Ratio:Level]
These two measurements display the amount of power in signals above and below the Tune Freq signal. The level is displayed as a ratio (referenced to the power around the Tune Freq) or as an absolute value.

See Also
ACP Meas field description.
Adjacent Channel Power Screen

Res BW
The Resolution Bandwidth field selects the IF filter used when measuring the power of the carrier and the adjacent channels.

Operating Considerations
Using a narrower bandwidth filter (300 Hz) slows the measurement, but rejects carrier leakage and out of channel spurs well. Using a wider bandwidth filter (1 kHz) speeds measurements, but may allow unwanted spurs and carrier leakage to be integrated into the measurement when measuring at the edges of the selected Channel Bandwidth.

Tune Freq
RF Analyzer Tune Frequency sets the center frequency for the RF signal to be analyzed.

See Also
Tune Mode field description.

Tune Mode
This field selects Automatic or Manual tuning of the RF Analyzer.

Auto: tuning causes the RF Analyzer to find the signal with the greatest amplitude >-36 dBm, and set the Tune Frequency for that signal.

Manual: tuning requires the operator to set the Tune Frequency for the RF signal to be analyzed.

Operating Considerations
Changing the Tune Mode also changes the RF frequency display. Automatic tuning enables the TX Frequency measurement. Manual tuning enables the TX Freq Error measurement.

TX Freq Error/TX Frequency
This measurement displays Transmitter Frequency Error or absolute Transmitter Frequency.

See Also
Tune Mode field description.
Adjcent Channel Power Screen

TX Power

Transmitter Power measures RF power at the RF IN/OUT port.

Operating Considerations

Only the RF IN/OUT port can be used for measuring TX Power on this screen. When the Input Port is set to Ant, four dashes (- - - -) appear in place of digits for this measurement.

Use the Spectrum Analyzer (optional on some Test Set models) to measure low-level RF power (≤200 mW) at the Antenna port.

TX Pwr Meas (HP 8920B Only)

The Transmitter Power Measurement field specifies how transmitter power measurements are made:

- **Peak** can be used to measure AM, FM, and un-modulated (CW) signals.
- **Sample** can be used to measure FM or CW signals with increased measurement speed. This method can only be used with signals having no amplitude modulation component.

Operating Considerations If you change this field, zero the power measurement (using the TX Pwr Zero field) before measuring power.

TX Pwr Zero

The Transmitter Power Zero function establishes a 0.0000 W reference for measuring RF power at the RF IN/OUT port.

Caution

RF power must not be applied while zeroing.

Operating Considerations

When power is applied to the RF IN/OUT connector, the temperature of the internal circuitry increases. This can cause changes in the TX Power measurement when low power levels are measured immediately following high power measurements.

When alternately making high and low power measurements, always zero the power meter immediately before making the low power measurements to provide the best measurement accuracy.
Connector, Key, and Knob Descriptions

Connector Descriptions

ANT IN
The Antenna Input is used for analyzing low-power RF signals (≤200 mWatts), and is typically used for off-the-air measurements. This port can be selected in the **TX TEST, DUPLEX TEST, RF ANALYZER**, or **SPECTRUM ANALYZER** screens.

Caution
Connecting a signal of >200 mW to the Antenna port can cause instrument damage (although internal protection circuits can typically withstand a short-duration signal of 1 or 2 Watts).

If the over-power circuit is triggered (signified by a warning message at the top of the screen), remove the signal from the Antenna port, and press **MEAS RESET** or turn the Test Set off and on to reset it.

Operating Considerations

Input impedance = 50Ω

TX Power cannot be measured using this port; use the RF IN/OUT port. However, low power levels can be measured using this port with the Spectrum Analyzer.

Additional sensitivity for this port is available using the Sensitivity field in the **RF ANALYZER** and **SPECTRUM ANALYZER** screens.
Connector Descriptions

AUDIO IN

Two connectors are used to input audio signals to the AF Analyzer:

- **HI** is the main audio signal input connection.
- **LO** is used for the audio signal reference. Three choices are available using the **AF ANALYZER** screen's **Audio In Lo** field:
 - **Gnd** - connects the center pin through $\approx 100\Omega$ to chassis ground.
 - **Float** - provides a floating input.
 - **600 To Hi** - provides a 600Ω internal load to match an audio source with an output impedance of 600Ω.

The measured level is the potential between the HI and LO center pins. The shells of both connectors are at chassis ground.

Operating Considerations

Input impedance:

Switchable between $1\ M\Omega$ in parallel with $95\mu F$, or 600Ω floating.

This port is selected as the AF Analyzer's input using the **AF Anal In** field in the **TX TEST** screen, **DUPLEX TEST** screen, **AF ANALYZER** screen, and various **ENCODER** screens. This port is always the AF Analyzer's input when the **RX TEST** screen is displayed.

Signals input to the AF Analyzer are routed through different filters, amplifiers, and detectors that affect the displayed measurement.

Caution

The maximum level between the HI and LO center pins is $42\ V$ peak ($\approx 30\ V_{rms}$). Exceeding this value can cause permanent instrument damage.

See Also

AF ANALYZER screen and field description in chapter 4.
AUDIO MONITOR OUTPUT

This connector provides an external output from various tap points in the AF Analyzer.

Operating Considerations

The Scope To field in the AF ANALYZER screen determines the source of this signal.

The level is not affected by the front-panel VOLUME knob.

Output impedance <1 kΩ

See Also

AF ANALYZER screen and field description in chapter 4.

AUDIO OUT

This port is used to output signals from AF Generators 1 and 2, including the Encoder functions.

Operating Considerations

The output level is set by the AF Generators, and is not affected by the front-panel VOLUME control.

Output impedance <1Ω

Maximum output current = 20 mA peak

Maximum reverse voltage = 12 V peak

AC/DC coupling is selected using the Audio Out field. This field is available in the DUPLEX TEST screen, RF GENERATOR screen, and various ENCODER screens.

(Chassis Ground)

The rear-panel chassis ground terminal provides a general chassis connection, as well as providing a safety ground when DC power is used.

Warning

To prevent a potential shock hazard, always connect the chassis ground terminal to earth ground when operating this instrument from a DC power source.

CRT VIDEO OUTPUT

This connector provides a signal for using an external video monitor. The signal provides a duplicate of the Test Set's screen.

Operating Considerations

A multi-sync monitor must be used to match the video sync rate of 19.2 kHz. Example monitors include - Mitsubishi Diamond Scan, NEC 3D, Leading Edge CMC-141M, and Sony CPD-1302.
Connector Descriptions

DC CURRENT MEASUREMENT

Note: This connector is optional on the HP 8920A.

These connectors are used in series with a DC supply and load to provide a 0 to 10 amp DC current meter.

Operating Considerations

The DC Current meter is designed to measure positive current (the connector’s polarity is marked on the rear panel). Negative current of ≤10 amps will not damage the instrument, but will cause inaccurate positive current measurements (due to magnetic memory within the current-sensing element).

To re-calibrate the current meter after negative current has been applied:

1. Connect a 10 amp positive current.
2. Disconnect the current.
3. Access the AF ANALYZER screen.
4. Select the DC Current Zero field to zero the meter.

See Also

Displaying Measurements in chapter 3.

DC INPUT

This female connector is used with a DC supply to provide power to the instrument. The male counterpart to this connector is included in the Connector Kit accessory. (See Accessories in chapter 6.)

The following HP parts can also be ordered to assemble the male counterpart to this connector:
Connector housing: 1251-4782 (1 required)
Connector contacts: 1252-0385 (2 required)

Warning

To prevent a potential shock hazard, always connect the chassis ground terminal to earth ground when operating this instrument from a DC power source.
Digital Test Connections

Control I/O, CW RF OUT, DET OUT, IQ RF IN, 114.3 MHz OUT

The following connectors are only used when an HP cellular adapter (such as an HP 83203B) is connected to the Test Set to perform digital modulation tests. These connectors are optional on HP 8920As and HP 8920Bs.

1. **Control I/O** provides control of the cellular adapter.
2. **CW RF OUT** routes the RF carrier to the cellular adapter. *If a cellular adapter is not present, a jumper must be used to connect this port to the IQ RF IN port.*
3. **DET OUT** routes the average power detector's signal to the AUX DSP IN of the cellular adapter for making average power measurements. This port may not be used with all models of cellular adapter.
4. **IQ RF IN** routes the RF carrier from the cellular adapter back into the Test Set. *If a cellular adapter is not present, a jumper must be used to connect this port to the CW RF OUT port.*
5. **114.3 MHz IF OUT** provides the down-converted RF signal to the cellular adapter.

DUPLEX OUT

This connection is an output for the RF Generator and Tracking Generator.

Operating Considerations

Output impedance = 50Ω

The RF Generator’s output is selected in the Output Port field. This field is available in the RX TEST, DUPLEX TEST, RF GENERATOR, and SPECTRUM ANALYZER screens.

Caution

Connecting an RF source of >200 mW to this connector can permanently damage the instrument.
Connector Descriptions

EXT SCOPE TRIGGER INPUT

This connector provides an external oscilloscope trigger.

Operating Considerations

Input threshold \(\approx 2.5 \) V
Maximum Input level \(\approx 20 \) V peak
Input impedance is:

- 100 kΩ for signals \(\leq 5.6 \) V peak
- 5 kΩ for signals \(> 5.6 \) V peak

When measured with no load on the input, a 5 Volt level is present on the connector due to the internal pull-up resistor design.

See Also

OSCILLOSCOPE screen and field description in chapter 4.

HEADPHONE (HP 8921A only)

This port furnishes an alternate audio monitor output from the speaker circuit. It allows you to listen to signals in a noisy environment (such as a cell site). The front-panel VOLUME knob controls the level.

Operating Considerations

Output impedance \(\approx 1 \) kΩ

HP-IB

Note: This connector is optional on the HP 8920A.

This connector allows communication between the Test Set and other instruments or computers using the Hewlett-Packard Interface Bus (HP-IB).

See Also

I/O CONFIGURE screen and field description in chapter 4, Programmer’s Guide

MEMORY CARD Slot

This front-panel opening is where memory cards are inserted.

See Also

Programmer’s Guide
Connector Descriptions

MIC/ACC

This 8-pin DIN connector is used for several functions:

- MIC IN is used to modulate the RF Generator when the KEY IN line is grounded. This signal is summed with the external MODULATION INPUT signal. The Mod In To field of the RF GENERATOR screen sets the type of modulation (AM or FM) and sensitivity (%AM/Vpk or kHz/Vpk) for this connection.

- KEY IN provides control of the RF Generator's output state (on or off) and automatic switching between the TX TEST and RX TEST screens (if the CONFIGURE screen Rx/Tx Cntl1 functions are set to Auto and PTT). Screen switching occurs when this line is grounded.

- KEY OUT1 and KEY OUT2 provide a switch path to control external equipment (such as keying a transmitter). KEY OUT1 and KEY OUT2 are connected when the Ext Tx key field is set to “On”.

Caution

Do not exceed 50 Vdc (open circuit) or 250 mA dc (closed circuit) between Key Out1 and Key Out2. Damage to internal components may result.

To Use the Microphone

To modulate the RF Generator using the optional microphone (08920-61059):

1. Connect the microphone to the MIC/ACC connector.
2. Access the RF GENERATOR screen.
3. Enter the carrier frequency in the RF Gen Freq field.
4. Enter the RF Generator Amplitude.
5. Select the Output Port (RF IN/OUT or DUPLEX OUT).
6. Connect the selected output port to your receiver or antenna.
7. Using the Mod In To field -
 a. Select the type of modulation: FM/AM/Vpk.
 b. Enter the modulation sensitivity to a 1 Vpeak signal (usually 1 kHz for microphone use). (See the Mod In To field description in chapter 4 RF Generator screen description).
8. Key the microphone to transmit.
Connector Descriptions

MIC/ACC Operating Considerations

MIC IN specifications:
- Input impedance = 100 kΩ
- Maximum input level = 10 V peak
- Full scale input = 10 mV
- Bandwidth is limited to 3 kHz.

The MIC IN signal is filtered and amplified to provide a stable deviation-limited signal to the RF Generator.

750 µs microphone pre-emphasis is selected in the RF GENERATOR screen.

![MIC/ACC Connections](image)

Figure 5-1. MIC/ACC Connections

See Also

RF GENERATOR, RF ANALYZER, and CONFIGURE screen descriptions in chapter 4.
Connector Descriptions

MODULATION INPUT

This connector provides an external modulation connection to the RF Generator.

Operating Considerations

Input impedance = 600Ω
Maximum input level = 12 V peak
Full scale input = 1 V peak

The Mod In To field of the RF GENERATOR screen sets the type of modulation (AM or FM) and sensitivity (%AM/Vpk or kHz/Vpk) for this connection.

This signal is summed with the microphone MIC IN signal from the MIC/ACC connector.

The FM Coupling field in the RF GENERATOR, DUPLEX TEST, and various ENCODER screens selects AC or DC coupling of this signal for FM operation.

Parallel Port

Note: This port is optional on the HP 8920A.

This port is used with printers requiring a parallel interface when printing screen images or test results. Set the Printer Port: field (on the PRINT CONFIGURE screen or TESTS (Printer Setup) screen) to Parallel to print to this port. Use address 15 when sending data to this port from I BASIC programs.

Pin numbers are embossed on the connector. Pin assignments are as follows:

1. nStrobe
2. Data 1 (Least Significant Bit)
3. Data 2
4. Data 3
5. Data 4
6. Data 5
7. Data 6
8. Data 7
9. Data 8 (Most Significant Bit)
10. nAck
11. Busy
12. PError
13. Select
14. nAutoFd
15. nFault
16. nInit
17. nSelectIn
18. Signal Ground (nStrobe)
19. Signal Ground (Data 1 and Data 2)
20. Signal Ground (Data 3 and Data 4)
21. Signal Ground (Data 5 and Data 6)
22. Signal Ground (Data 7 and Data 8)
23. Signal Ground (Busy and nFault)
Connector Descriptions

24. Signal Ground (PError, Select, and nAck)
25. Signal Ground (nAutoFd, nSelectIn, and nInit)

RADIO INTERFACE

Note: This connector is optional on all Test Sets.

This connector provides parallel and serial communications between the Test Set and external radio equipment. Audio and transmitter control lines are also provided.

Serial and parallel communication parameters are entered in the RADIO INTERFACE screen. This screen is only available if the Radio Interface option is installed.

The audio signal from this connector is input by setting the AF Anl In field to Radio Int. (The AF Anl In field is available in the TX TEST, DUPLEX TEST, and AF ANALYZER screens, as well as various DECODER screens.)
Connector Descriptions

Radio Interface Operating Considerations

Connector type: D-Subminiature, 37 pin.

The pin numbers are listed on the connector.
Pin assignments:

1 - GND
2 - No Connection
3 - Audio Out
4 - Key Out2 (See MIC/ACC Connector description.)
5 - Audio Input
6 - Key Out1 (See MIC/ACC Connector description.)
7 - Power: $-12.6 \, \text{V}$ (current limited by internal 100Ω, 2 W resistor)
8 - Power: $+12.6 \, \text{V}$ (current limited by internal 100Ω, 2 W resistor)
9 - Data Level: Either +12 volts or +5 volts is supplied by the radio under test to indicate the HI (1) logic level it uses for serial/parallel communications. If no signal is supplied, the logic level defaults to 5 volts.
10 - Serial Data Out
11 - Serial Clock Out
12 - Serial Strobe Out
13 - Parallel Strobe Out
14, 15 - Serial Status/Interrupt Input
16 - Serial Data In
17 - Serial Shift Load Out
18 - Serial Expansion Clock Out
19 through 34 - Parallel Data IN/Out. Pin 19 is LSB, Pin 34 is MSB.
35, 36, 37 - No Connection.

See Also

RADIO INTERFACE screen and field descriptions in chapter 4.
Connector Descriptions

RF IN/OUT

This Type-N connection is used to output signals from the RF Generator, and to input RF signals.

Caution

Over-Power Damage — Refer to the Test Set’s front panel for maximum input power level. Exceeding this level can cause permanent instrument damage.

If the RF power at the RF IN/OUT port exceeds allowable limits, a loud warning signal sounds and a message appears at the top of the screen. If this occurs, disconnect the RF power, press **MEAS RESET**, and allow the Test Set to cool off for ≈2 minutes before making any other measurements on this port.

Operating Considerations

This port must be used when measuring TX (RF) Power.

Signals ≤200 mWatts can be input to the ANT IN connector for all RF measurements except TX Power.

This port can be selected in the **TX TEST, DUPLEX TEST, RF ANALYZER**, or **SPECTRUM ANALYZER** screens.

See Also

Displaying Measurements in chapter 3.
Connector Descriptions

SERIAL PORT

Note: This connector is optional on the HP 8920A.

This 6-pin, RJ-11 dual serial port is used to input and output serial data for entering programs, printing test results and screen images, and sending test results to a connected controller, disk drive, or terminal.

Operating Considerations

The serial communications settings are defined on the I/O CONFIGURE screen.

Note: Using Port B: The second serial port (B) is only used with IBASIC programs to communicate with base stations or other equipment when the primary serial port is used for printing or data collection. Port B cannot be used for printing screens, and its communication settings can only be changed using IBASIC commands (listed in the Programmer's Guide).

Unless you are writing IBASIC programs that require serial printing and other serial data transfer at the same time, we recommend that you only use the primary port (A).

The IBASIC Controller sends and receives data to the serial ports using address 9 for the primary port, and 10 for Port B. For example, to enter data from the primary serial port into a program variable named SDATA, you could use the command:

```
ENTER 9;SDATA
```

To send data from your program out of the primary serial port, you could use the command:

```
OUTPUT 9;SDATA
```

Use an RJ-11/25-pin RS-232 adapter (HP P/N 98642-66508) and RJ-11 cable (HP P/N 98642-66505) to connect the Test Set to a serial printer or terminal/computer.
Connector Descriptions

Note

RJ-11 Connectors: RJ-11 cables and adapters can be wired several ways. If you buy a cable or adapter other than the HP parts listed, verify the connections for the pins indicated in the following table before connecting cables to the instruments.

The following table lists connections for the primary serial port (address 9). When using both ports at the same time, you need to locate or fabricate an adapter to provide the necessary connections.

<table>
<thead>
<tr>
<th>Test Set RJ-11 Serial Port</th>
<th>Terminal/PC 25-Pin RS-232</th>
<th>Terminal/PC 9-Pin RS-232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 2 (RX) to pin 2 (TX)</td>
<td>or pin 3 (TX)</td>
<td></td>
</tr>
<tr>
<td>Pin 5 (TX) to pin 3 (RX)</td>
<td>or pin 2 (RX)</td>
<td></td>
</tr>
<tr>
<td>Pin 4 (GND) to pin 7 (GND)</td>
<td>or pin 5 (GND)</td>
<td></td>
</tr>
</tbody>
</table>

Serial Port Connections

![Diagram of RJ-11 Serial Port Connections](image)

Figure 5-2. RJ-11 Serial Port Connections
Connector Descriptions

10 MHz REF INPUT
This connection allows you to input an external reference.

Operating Considerations
- Input frequency = 1, 2, 5, or 10 MHz
- Input level >0.15 V rms
- Input impedance ≈ 50 Ω

When a valid signal is applied to the 10 MHz REF INPUT, the Test Set automatically switches from internal to external reference.

This signal is used as a reference for, and directly affects, these functions:
- RF Generator Frequency (including the Tracking Generator)
- RF Frequency Counter
- AF Frequency Counter
- RF Analyzer Tune Frequency
- Spectrum Analyzer Center Frequency

AF Generators 1 and 2, and the Decoder's frequency counter, are not affected using an external reference; they use their own reference.

Note
The reference output frequency is always 10 MHz, independent of the selected input reference frequency.

10 MHz REF OUTPUT
This connector furnishes a 10 MHz reference for external instruments.

Operating Considerations
- Waveform = sinewave
- Output frequency = 10 MHz
- Output level >0.5 V rms
- Output impedance ≈ 50 Ω

Note
The reference output frequency is always 10 MHz, independent of the selected input reference frequency.
Key Descriptions

DATA Keys

The DATA keys have four main uses:

- The 0 to 9, ., +/-, and A to F keys are for entering and changing values.
- **ENTER** is used to select a field or screen, and to enter numbers when the unit-of-measure is not specified. This function is identical to pressing the cursor control knob.
- **ON/OFF** is used to enable and disable measurements, and to turn numeric fields (such as Amplitude) on and off.
- **YES** and **NO** are used to confirm selected operations before they are executed.
- **EEX (SHIFT, +/-)** is used for entering numbers using scientific notation.
- The remaining keys in this area are for entering and changing the unit-of-measure for measurements or field entries.

See Also

Entering and Changing Numbers in chapter 3.

DATA FUNCTIONS Keys

- **(INCR ÷ 10), (INCR SET), and (INCR X10)** are used to change the increment/decrement value when changing field values.
- **[1]** and **[2]** increment/decrement field values. These keys are also used to select alternate field entries without displaying the Choices menu used by some fields. They are also used to move the cursor in String Entry fields (such as the Print Title field on the I/O CONFIGURE screen).
- **LO LIMIT (SHIFT, [1]) and HI LIMIT (SHIFT, [3])** and set measurement end points. Exceeding the end points causes screen prompts to blink until they are reset.
- **REF SET (SHIFT, INCR ÷10)** is used to enter or remove a measurement reference for relative AF and RF measurements.
- **METER (SHIFT, INCR SET)** enables/disables the analog bar-graph meter function for measurements using large digits (such as the RX TEST and TX TEST screen measurements).
- **AVG (SHIFT, INCR X10)** enables/disables measurement averaging.

See Also

Key Descriptions

INSTRUMENT STATE Keys

- **LOCAL** returns the instrument to manual control after HP-IB control is used.
- **RECALL** lists any instrument setups that were saved.
- **MEAS RESET** clears the measurement “history” for all of the instrument’s measurement algorithms (such as the Averaging function) to re-start all measurements that are in progress.
- **PRESET** restores most instrument settings to their factory default states, (although most **CONFIGURE** screen changes are not affected). Instrument self-diagnostics are not run at this time.
- **ADRS** (**SHIFT**, **LOCAL**) displays the HP-IB address of the Test Set.
- **SAVE** (**SHIFT**, **RECALL**) stores instrument setups.

See Also

Saving and Recalling Instrument Setups in chapter 3.

SCREEN CONTROL Keys

- **RX**, **TX**, **DUPLEX**, **TESTS**. MSSG, HELP, and CONFIG access several instrument control and information screens.
- **PREV** accesses the previous screen.
- **HOLD** (**SHIFT**, **PREV**) stops all measurements. Selecting HOLD again resumes measurements.
- **PRINT** (**SHIFT**, **TESTS**) prints the entire contents of the displayed screen, the time and date, and any Print Title defined in the **PRINT CONFIGURE** screen.

See Also

Printing a Screen in chapter 3
Screen and Field Descriptions in chapter 4.
Key Descriptions

Miscellaneous Keys and Buttons

- \textbf{SHIFT} is used to select the blue-labeled functions listed above some keys (such as PRINT, CONFIG, RELEASE, EEX ...).
- \textbf{CANCEL} is used to cancel an entry in progress, or stop a running IBASIC program. For example: if you press \textbf{RECALL} to recall an instrument setup, and then decide not to recall a setting, pressing \textbf{CANCEL} exits the recall procedure.
- \textbf{←} (backspace) is used to move the cursor to the left when entering numbers in a field, such as RF Gen Freq. Each press of this key moves the cursor one place to the left, erasing the previous character.
- The rear-panel AC/DC button setting selects the instrument’s power source. The power source must be changed with the Test Set turned off.
- \textbf{POWER} turns the instrument power on and off. Several CONFIGURE screen settings, and all SAVE/RECALL registers, are retained by battery back-up when power is disconnected.

USER Keys

These keys are used to instantly access fields without using the Cursor Control knob or changing screens.

See Also

Using USER Keys in chapter 3.
Cursor Control has three functions:

- Moving the cursor.
- Selecting fields, screens, and settings from a list of choices.
- Changing numeric field values.

VOLUME controls the speaker volume for monitoring the AF Analyzer's selected input. The volume is also affected by the Speaker Vol and Speaker ALC fields in the AF ANALYZER screen.

SQUELCH adjusts the squelch level when demodulating AM, FM, or SSB signals. The squelch level is affected by the Squelch field in the RF ANALYZER screen.

See Also

RF ANALYZER and AF ANALYZER screen and field descriptions in chapter 4.
Modifications, Accessories, Manuals, Support

Modifications
This section includes information regarding:
- Hardware Upgrades/Modifications
- Firmware Upgrades
- Accessories
- Manuals (English and non-English)
- Radio Test Software
- Power Cables
- Sales and Service Support

Hardware Upgrades and Modifications
You can install several options in your Test Set or have Hewlett-Packard install them for you. If you want HP to install the options, contact the nearest regional sales office listed at the end of this chapter.

Note
Some options may not be available depending on which model number you have. One or more options may already installed in your instrument. Refer to the table below for specific information.
Hardware Upgrades and Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>HP 8920A</th>
<th>HP 8920B</th>
<th>HP 8921A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 001 High Stability Timebase</td>
<td>R01</td>
<td>R01</td>
<td>standard</td>
</tr>
<tr>
<td>Option 003 HP-IB/RS-232/DC Current Measurements</td>
<td>R03</td>
<td>R03</td>
<td>standard</td>
</tr>
<tr>
<td>Option 004 Tone/Digital Signaling</td>
<td>R04<sup>1</sup></td>
<td>R04<sup>1</sup></td>
<td>standard</td>
</tr>
<tr>
<td>Option 005 512K RAM Memory Expansion</td>
<td>R05<sup>2</sup></td>
<td>R05</td>
<td>standard</td>
</tr>
<tr>
<td>Option 007 Low-level RF Power Measurements</td>
<td>R07<sup>3</sup></td>
<td>08920-61007<sup>3</sup></td>
<td>not available</td>
</tr>
<tr>
<td>Option 008 Medium-level RF Power Measurements</td>
<td>R08<sup>4</sup></td>
<td>R08<sup>4</sup></td>
<td>not available</td>
</tr>
<tr>
<td>Option 010 400 Hz High Pass Filter<sup>5</sup></td>
<td>R10</td>
<td>R10</td>
<td>not available</td>
</tr>
<tr>
<td>Option 011 CCITT Weighting Filter<sup>5</sup></td>
<td>R11</td>
<td>R11</td>
<td>R11</td>
</tr>
<tr>
<td>Option 012 4 kHz Bandpass Filter<sup>5</sup></td>
<td>R12</td>
<td>R12</td>
<td>R12</td>
</tr>
<tr>
<td>Option 013 C-Message Filter<sup>5</sup></td>
<td>R13</td>
<td>R13</td>
<td>standard</td>
</tr>
<tr>
<td>Option 014 6 kHz Bandpass Filter<sup>5</sup></td>
<td>R14</td>
<td>R14</td>
<td>standard</td>
</tr>
<tr>
<td>Option 019 Variable Frequency Notch</td>
<td>R19</td>
<td>R19</td>
<td>R19</td>
</tr>
<tr>
<td>Option 020 Radio Interface Card</td>
<td>R20</td>
<td>R20</td>
<td>R20</td>
</tr>
<tr>
<td>Option 050 Dual-mode Rear Panel Connectors<sup>6</sup></td>
<td>R50<sup>7</sup></td>
<td>R50</td>
<td>standard</td>
</tr>
<tr>
<td>Option 102 Spectrum Analyzer with Tracking Generator</td>
<td>R02<sup>8</sup></td>
<td>R02</td>
<td>standard</td>
</tr>
</tbody>
</table>

1 Includes Op/Sys and Signaling ROMs, Mod Distribution and Signaling assemblies.
2 Instruments with serial prefix 3247A or below contain 256K RAM for Option 005.
3 Reduces maximum input power from 100W to 4W.
4 Reduces maximum input power from 100W to 10W.
5 A maximum of two filters options can be added to an instrument.
6 Included high stability timebase and improved residual FM performance.
7 Retrofit kit can only be installed in instruments with serial prefix 3248A and above.
8 Retrofit kit does not include firmware. 1, 2, 10 dB resolution requires firmware revision A.06.01 or later. ACP (Adjacent Channel Power) measurement capability requires revision A.12.01, or later.
Firmware Upgrades

<table>
<thead>
<tr>
<th>Description</th>
<th>HP 8920A</th>
<th>HP 8920B</th>
<th>HP 8921A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System and Signaling 1 ROMs</td>
<td>R58</td>
<td>R58</td>
<td>R58</td>
</tr>
</tbody>
</table>

1 Option 004 Tone/Digital Signaling.

External Monitor

The CRT's Video Output drives a multisync monitor at 19.2 kHz (analog). Examples of this type of monitor include the Sony CPD-1302, Leading Edge CMC-141M, NEC 3d, and Mitsubishi Diamond Scan.
Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>HP 8920A</th>
<th>HP 8920B</th>
<th>HP 8921A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescoping Antenna</td>
<td>08920-61060</td>
<td>08920-61060</td>
<td>08920-61060</td>
</tr>
<tr>
<td>Microphone</td>
<td>08920-61059</td>
<td>08920-61059</td>
<td>08920-61059</td>
</tr>
<tr>
<td>DC Battery Pack (24V)</td>
<td>08920-80027</td>
<td>08920-80027</td>
<td>08920-80027</td>
</tr>
<tr>
<td>Battery Charger</td>
<td>08920-80028</td>
<td>08920-80028</td>
<td>08920-80028</td>
</tr>
<tr>
<td>CRT Sun Shade</td>
<td>08920-61051</td>
<td>08920-61051</td>
<td>08920-61051</td>
</tr>
<tr>
<td>Connector Kit (one each: DC power, MIC/ACC, RS-232→RJ-11, and radio interface connectors)</td>
<td>08920-61061</td>
<td>08920-61061</td>
<td>08920-61061</td>
</tr>
<tr>
<td>DC Power Connector Housing (Qty 1)</td>
<td>1251-4782</td>
<td>1251-4782</td>
<td>1251-4782</td>
</tr>
<tr>
<td>DC Power Connector Contacts (Qty 2)</td>
<td>1252-0385</td>
<td>1252-0385</td>
<td>1252-0385</td>
</tr>
<tr>
<td>System Rack Mount Flange Kit (Option 908)</td>
<td>5061-4846</td>
<td>5061-4846</td>
<td>5061-4846</td>
</tr>
<tr>
<td>Rack mount kit(^1) for HP 8920D or HP 8921D</td>
<td>08921-61037</td>
<td>08921-61037</td>
<td>08921-61037</td>
</tr>
<tr>
<td>Padded Carrying Case</td>
<td>1540-1130</td>
<td>1540-1130</td>
<td>1540-1130</td>
</tr>
<tr>
<td>Hardshell Transit Case</td>
<td>08920-90033</td>
<td>08920-90033</td>
<td>08920-90033</td>
</tr>
<tr>
<td>Passive Oscilloscope Probe (1 MΩ/7.5pF 10:1)</td>
<td>HP 10435A</td>
<td>HP 10435A</td>
<td>HP 10435A</td>
</tr>
<tr>
<td>Passive Oscilloscope Probe (High Z/40pF 1:1)</td>
<td>HP 10438A</td>
<td>HP 10438A</td>
<td>HP 10438A</td>
</tr>
<tr>
<td>Passive Oscilloscope Probe (High Z/64pF 1:1)</td>
<td>HP 10439A</td>
<td>HP 10439A</td>
<td>HP 10439A</td>
</tr>
<tr>
<td>RF Detector Probe (100 kHz to 700 MHz)</td>
<td>HP 34301A</td>
<td>HP 34301A</td>
<td>HP 34301A</td>
</tr>
<tr>
<td>Resistor Divider Probe Kit</td>
<td>HP 54006A</td>
<td>HP 54006A</td>
<td>HP 54006A</td>
</tr>
<tr>
<td>Power Splitter (DC to 3 GHz, 50Ω)</td>
<td>HP 11850C</td>
<td>HP 11850C</td>
<td>HP 11850C</td>
</tr>
<tr>
<td>32 KByte SRAM(^2) Memory Card</td>
<td>HP 85700A</td>
<td>-</td>
<td>HP 85700A</td>
</tr>
<tr>
<td>64 KByte SRAM(^2) Memory Card (PCMCIA)</td>
<td>-</td>
<td>HP 83230A</td>
<td>-</td>
</tr>
<tr>
<td>128 Kbyte SRAM(^2) Memory Card</td>
<td>HP 85702A</td>
<td>-</td>
<td>HP 85702A</td>
</tr>
<tr>
<td>256 Kbyte SRAM(^2) Memory Card</td>
<td>HP 85704A</td>
<td>-</td>
<td>HP 85704A</td>
</tr>
<tr>
<td>256 Kbyte SRAM(^2) Memory Card (PCMCIA)</td>
<td>-</td>
<td>HP 83233A</td>
<td>-</td>
</tr>
<tr>
<td>512 Kbyte SRAM(^2) Memory Card</td>
<td>HP 85705A</td>
<td>-</td>
<td>HP 85705A</td>
</tr>
<tr>
<td>1 Mbyte SRAM(^2) Memory Card (PCMCIA)</td>
<td>-</td>
<td>HP 83231A</td>
<td>-</td>
</tr>
<tr>
<td>128 Kbyte OTP(^3) Memory Card</td>
<td>HP 85701A</td>
<td>-</td>
<td>HP 85701A</td>
</tr>
<tr>
<td>256 Kbyte OTP(^3) Memory Card</td>
<td>HP 85703A</td>
<td>-</td>
<td>HP 85703A</td>
</tr>
<tr>
<td>512 Kbyte OTP(^3) Memory Card</td>
<td>HP 85706A</td>
<td>-</td>
<td>HP 85706A</td>
</tr>
</tbody>
</table>

1 Allows rack mounting of Cellular Adapter (example: HP 83201A) to HP 8920/8921.
2 SRAM = Static Random Access Memory
3 OTP = One Time Programmable (PROM).

6-4 Modifications, Accessories, Manuals, Support
Manuals (English and non-English)

<table>
<thead>
<tr>
<th>Description</th>
<th>Language</th>
<th>Option</th>
<th>HP 8920A</th>
<th>HP 8920B</th>
<th>HP 8921A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Reference Manual¹</td>
<td>English</td>
<td>-</td>
<td>08920-90010</td>
<td>08920-90010</td>
<td>08920-90010</td>
</tr>
<tr>
<td>Quick Reference Card¹</td>
<td>English</td>
<td>-</td>
<td>08920-90014</td>
<td>08920-90014</td>
<td>08920-90014</td>
</tr>
<tr>
<td>HP 8920 User's Guide</td>
<td>English</td>
<td>-</td>
<td>-</td>
<td>08920-90171</td>
<td>-</td>
</tr>
<tr>
<td>HP 8921 User's Guide</td>
<td>English</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>08921-90022</td>
</tr>
<tr>
<td>Instrument BASIC Language Reference</td>
<td>English</td>
<td>-</td>
<td>E2083-90000</td>
<td>E2083-90000</td>
<td>E2083-90005</td>
</tr>
<tr>
<td>Programmer's Guide</td>
<td>English</td>
<td>-</td>
<td>08920-90172</td>
<td>08920-90172</td>
<td>-</td>
</tr>
<tr>
<td>Assembly Level Repair Manual</td>
<td>English</td>
<td>-</td>
<td>08920-90168</td>
<td>08920-90168</td>
<td>08920-90168</td>
</tr>
<tr>
<td>Applications Handbook</td>
<td>English</td>
<td>-</td>
<td>08920-90126</td>
<td>08920-90126</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual²</td>
<td>Japanese</td>
<td>ABJ</td>
<td>08920-90016</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>User's Guide</td>
<td>Japanese</td>
<td>ABJ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual²</td>
<td>Spanish</td>
<td>ABE</td>
<td>08920-90017</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>User's Guide</td>
<td>Spanish</td>
<td>ABE</td>
<td>08920-90097</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual²</td>
<td>French</td>
<td>ABF</td>
<td>08920-90018</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual²</td>
<td>German</td>
<td>ABD</td>
<td>08920-90019</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual²</td>
<td>Italian</td>
<td>ABZ</td>
<td>08920-90020</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>User's Guide</td>
<td>Italian</td>
<td>ABZ</td>
<td>08920-90123</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual² (Traditional Chinese for Taiwan)</td>
<td>Chinese</td>
<td>AB0</td>
<td>08920-90021</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>User's Guide (Traditional Chinese for Taiwan)</td>
<td>Chinese</td>
<td>AB0</td>
<td>08920-90098</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Applications Handbook (Traditional Chinese for Taiwan)</td>
<td>Chinese</td>
<td>AB0</td>
<td>08920-90146</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual² (Simplified Chinese, PRC)</td>
<td>Chinese</td>
<td>AB2</td>
<td>08920-90022</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>User's Guide (Simplified Chinese, PRC)</td>
<td>Chinese</td>
<td>AB2</td>
<td>08920-90156</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Applications Handbook (Simplified Chinese, PRC)</td>
<td>Chinese</td>
<td>AB2</td>
<td>08920-90147</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual² (Simplified Chinese, PRC)</td>
<td>Korean</td>
<td>AB1</td>
<td>08920-90023</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Applications Handbook (Simplified Chinese, PRC)</td>
<td>Korean</td>
<td>AB1</td>
<td>08920-90145</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick Reference Manual² (Simplified Chinese, PRC)</td>
<td>Finnish</td>
<td>ABX</td>
<td>08920-90039</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Shipped inside instrument impact cover
2 Each non-English Quick Reference Manual includes a Quick Reference Card, and a Quick Start Label.
Radio Test Software

The Radio Test Software performs automated tests on radios used in various radio communication systems. Each test package is contained on an individual memory card.

The HP 11807A Radio Test Software performs automated tests on radios used in various radio communication systems. This software is used primarily with the HP 8920A.

The HP 11807B Cell Site Test Software performs automated tests on cell site base stations. This Software is used with the HP 8921A.

Note

Memory Expansion — All HP 11807A software products require the HP 8920A to be equipped with instrument option 005—512 kilobyte RAM expansion.

HP 11807A Software for HP 8920A

<table>
<thead>
<tr>
<th>Option</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>North American FM Tests</td>
</tr>
<tr>
<td>002</td>
<td>European PM Tests</td>
</tr>
<tr>
<td>003</td>
<td>AM Tests</td>
</tr>
<tr>
<td>004</td>
<td>AMPS-NAMPS Cellular Tests</td>
</tr>
<tr>
<td>005</td>
<td>TACS Cellular Tests</td>
</tr>
<tr>
<td>006</td>
<td>NMT Cellular Tests</td>
</tr>
<tr>
<td>007</td>
<td>JTACS-NTACS Cellular Tests</td>
</tr>
<tr>
<td>008</td>
<td>NADC Dual Mode Cellular Tests</td>
</tr>
<tr>
<td>009</td>
<td>NADC Dual Mode Cellular Tests</td>
</tr>
<tr>
<td>010</td>
<td>LTR Trunked Radio Tests (Includes conventional FM test capability.)</td>
</tr>
<tr>
<td>011</td>
<td>EDACS Trunked Radio Tests</td>
</tr>
<tr>
<td>012</td>
<td>MPT 1327 Trunked Radio Tests</td>
</tr>
<tr>
<td>100</td>
<td>System Support Tests (frequency scanning, cable fault location, field strength, intermodulation products programs).</td>
</tr>
</tbody>
</table>

1 HP 8920A requires Option 004 Tone/Digital Signaling
2 Requires an HP 83201A Dual Mode Cellular Adapter

HP 11807B Software for HP 8921A

<table>
<thead>
<tr>
<th>Option</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>040</td>
<td>Motorola Test Software</td>
</tr>
<tr>
<td>041</td>
<td>General Electric Test Software</td>
</tr>
<tr>
<td>042</td>
<td>Ericsson GE Cell Site Software</td>
</tr>
<tr>
<td>043</td>
<td>AT&T Test Software</td>
</tr>
<tr>
<td>044</td>
<td>Northern Telecom Test Software</td>
</tr>
<tr>
<td>050</td>
<td>System Analysis/Call Following Software</td>
</tr>
<tr>
<td>052</td>
<td>Ericsson TACS Cell Site Software</td>
</tr>
</tbody>
</table>

6-6 Modifications, Accessories, Manuals, Support
Power Cables

<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Straight/Straight Straight/90°</td>
<td>8120-1689 8120-1692</td>
<td>79 inches, mint gray 79 inches, mint gray</td>
</tr>
</tbody>
</table>

IEC 83 C4, 250 V

Used in the following locations:

- Afghanistan, Albania, Algeria, Angola, Armenia, Austria, Azerbaijan, Azores
- Bangladesh, Belgium, Benin, Bolivia, Boznia-Herzegovina, Bulgaria, Burkina Faso, Burma, Burundi, Byelarus
- Cameroon, Canary Islands, Central African Republic, Chad, Chile, Comoros, Congo, Croatia, Czech Republic, Czechoslovakia
- Denmark, Djibouti
- East Germany, Egypt, Estonia, Ethiopia
- Finland, France, French Guiana, French Indian Ocean Areas
- Gabon, Gaza Strip, Georgia, Germany, Gozo, Greece
- Hungary
- Iceland, Indonesia, Iran, Iraq, Israel, Italy, Ivory Coast
- Jordan
- Kazakhstan, Korea, Kyrgyzstan
- Latvia, Lebanon, Libya, Lithuania, Luxembourg
- Macedonia, Madeira Islands, Malagasy Republic, Mali, Malta, Mauritania, Miquelon, Moldova, Mongolia, Morocco, Mozambique
- Nepal, Netherlands, Netherlands Antilles, Niger, Norway
- Oman
- Pakistan, Paraguay, Poland, Portugal
- Rep. South Africa, Romania, Russia, Rwanda
- Saudi Arabia (220V), Senegal, Slovak Republic, Slovenia, Somalia, Spain, Spanish Africa, Sri Lanka, St. Pierre Islands
- Sweden, Syria
- Tajikistan, Thailand, Togo, Tunisia, Turkey, Turkmenistan
- USSR, Ukraine, Uzbekistan
- Western Africa, Western Sahara
- Yugoslavia
- Zaire
<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 1681, 125 V</td>
<td>Straight/Straight</td>
<td>8120-1378</td>
<td>90 inches, jade gray</td>
</tr>
<tr>
<td></td>
<td>Straight/90°</td>
<td>8120-1521</td>
<td>90 inches, jade gray</td>
</tr>
<tr>
<td></td>
<td>Straight/Straight</td>
<td>8120-1751</td>
<td>90 inches, jade gray</td>
</tr>
<tr>
<td>Used in the following locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Samoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahamas, Barbados, Belize, Bermuda, Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caicos, Cambodia, Canada, Cayman Islands, Colombia, Costa Rica, Cuba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominican Republic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador, El Salvador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French West Indies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guam, Guatemala, Guyana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haiti, Honduras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laos, Leeward and Windward Is., Liberia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico, Midway Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Pacific Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panama, Philippines, Puerto Rico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia (115V,127V), Suriname</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan, Tobago, Trinidad, Trust Territories of Pacific Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turks Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela, Vietnam, Virgin Islands of the US</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wake Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JIS C 8303, 100 V</td>
<td>Straight/Straight</td>
<td>8120-4753</td>
<td>90 inches, dark gray</td>
</tr>
<tr>
<td></td>
<td>Straight/90°</td>
<td>8120-4754</td>
<td>90 inches, dark gray</td>
</tr>
<tr>
<td>Used in the following locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan Only</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEV 1011-195, 250 V</td>
<td>Straight/Straight</td>
<td>8120-2104</td>
<td>79 inches, gray</td>
</tr>
<tr>
<td></td>
<td>Straight/90°</td>
<td>8120-2296</td>
<td>79 inches, gray</td>
</tr>
<tr>
<td>Used in the following locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-8 Modifications, Accessories, Manuals, Support
<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA6-15P, 250 V</td>
<td>Straight/Straight</td>
<td>8120-0698</td>
<td>90 inches, black</td>
</tr>
<tr>
<td>Used in the following locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peru</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
</table>
| **SR 107-2-D1, 250 V** | 90°/Straight
90°/90°
Straight/Straight | 8120-2956
8120-2957
8120-3997 | 79 inches, gray
79 inches, gray
79 inches, gray |
| **Used in the following locations** | | | |
| | Denmark | | |
| | Greenland | | |

<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
</table>
| **IEC 83 B1** | Straight/Straight
Straight/90° | 8120-4211
8120-4600 | 79 inches, mint gray
79 inches, mint gray |
| **Used in the following locations** | | | |
| | Botswana | | |
| | India | | |
| | Lesotho | | |
| | Malawi | | |
| | South-West Africa (Namibia), Swaziland | | |
| | Zambia, Zimbabwe | | |
CEE 22, 250 V

<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight/straight</td>
<td>8120-1860</td>
<td>60 inches, jade gray</td>
<td></td>
</tr>
<tr>
<td>Straight/straight</td>
<td>8120-1575</td>
<td>30 inches, jade gray</td>
<td></td>
</tr>
<tr>
<td>Straight/90°</td>
<td>8120-2191</td>
<td>60 inches, jade gray</td>
<td></td>
</tr>
<tr>
<td>Straight/90°</td>
<td>8120-4379</td>
<td>15.5 inches, jade gray</td>
<td></td>
</tr>
</tbody>
</table>

Used in the following locations

System Cabinets

BS 1363A, 250 V

<table>
<thead>
<tr>
<th>Plug Type (Male)</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°/straight</td>
<td>8120-1351</td>
<td>90 inches, mint gray</td>
<td></td>
</tr>
<tr>
<td>90°/90°</td>
<td>8120-1703</td>
<td>90 inches, mint gray</td>
<td></td>
</tr>
</tbody>
</table>

Used in the following locations

Bahrain, British Indian Ocean Terr., Brunei
Canton, Cyprus
Enderbury Island, Equatorial Guinea
Falkland Islands, French Pacific Islands
Gambia, Ghana, Gibraltar, Guinea
Hong Kong
Ireland
Kenya, Kuwait
Macao, Malaysia, Mauritius
Nigeria
Qatar
Seychelles, Sierra Leone, Singapore, Southern Asia, Southern Pacific Islands, St. Helena, Sudan
Tanzania
Uganda, United Arab Emirates, United Kingdom
Yemen (Aden & Sana)
<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Plug Descriptions male/female</th>
<th>HP Part # (cable & plug)</th>
<th>Cable Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 3112, 250 V</td>
<td>Straight/Straight</td>
<td>8120-1369</td>
<td>79 inches, gray</td>
</tr>
<tr>
<td></td>
<td>Straight/90°</td>
<td>8120-0696</td>
<td>80 inches, gray</td>
</tr>
</tbody>
</table>

Used in the following locations
- Argentina, Australia
- China (People's Republic)
- New Zealand
- Papua New Guinea
- Uruguay
- Western Samoa
Parts and service for your Test Set can be ordered by contacting the nearest HP regional sales office listed at the end of this chapter.

Customer Training

Hewlett-Packard offers customers a variety of training materials and classes that explain the theory and applications of many HP products. Contact your HP regional sales office to arrange training for you or your group.
<table>
<thead>
<tr>
<th>REGIONAL SALES AND SERVICE OFFICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASTERN USA</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
</tr>
<tr>
<td>2101 Gather Rd</td>
</tr>
<tr>
<td>ROCKVILLE, MD 20850</td>
</tr>
<tr>
<td>Tel: (301) 258-2000</td>
</tr>
<tr>
<td>EASTERN USA</td>
</tr>
<tr>
<td>Hewlett-Packard Company</td>
</tr>
<tr>
<td>Service Center</td>
</tr>
<tr>
<td>150 Green Pond Road</td>
</tr>
<tr>
<td>Rockaway, NJ 07866</td>
</tr>
<tr>
<td>Tel: (201) 586-5400</td>
</tr>
<tr>
<td>MIDWESTERN USA</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
</tr>
<tr>
<td>5201 Tollview Drive</td>
</tr>
<tr>
<td>ROLLING MEADOWS</td>
</tr>
<tr>
<td>IL, 60008</td>
</tr>
<tr>
<td>Tel: (708) 342-2000</td>
</tr>
<tr>
<td>SOUTHERN USA</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
</tr>
<tr>
<td>1995 North Park Place</td>
</tr>
<tr>
<td>ATLANTA, GA 30339</td>
</tr>
<tr>
<td>Sales: (404) 955-1500</td>
</tr>
<tr>
<td>Fax: (404) 980-7292</td>
</tr>
<tr>
<td>Service: (404) 850-2544</td>
</tr>
<tr>
<td>Fax: (404) 955-1500</td>
</tr>
<tr>
<td>SOUTHERN USA</td>
</tr>
<tr>
<td>Hewlett-Packard Company</td>
</tr>
<tr>
<td>Service Center</td>
</tr>
<tr>
<td>330 E. Campbell Road</td>
</tr>
<tr>
<td>Richardson, TX 75081</td>
</tr>
<tr>
<td>Tel: (214) 699-4331</td>
</tr>
<tr>
<td>W ESTERN USA</td>
</tr>
<tr>
<td>Hewlett Packard Company</td>
</tr>
<tr>
<td>24 Inverness Place East</td>
</tr>
<tr>
<td>Englewood, CO 80112</td>
</tr>
<tr>
<td>Tel: (303) 649-5512</td>
</tr>
<tr>
<td>Fax: (303) 649-5787</td>
</tr>
<tr>
<td>W ESTERN USA</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
</tr>
<tr>
<td>1421 S. Manhattan Ave.</td>
</tr>
<tr>
<td>FULLERTON, CA 92631</td>
</tr>
<tr>
<td>Tel: (714) 999-6700</td>
</tr>
<tr>
<td>Fax: (714) 778-3033</td>
</tr>
<tr>
<td>Service: (714) 758-5490</td>
</tr>
<tr>
<td>UNITED STATES</td>
</tr>
<tr>
<td>OF AMERICA</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
</tr>
<tr>
<td>Customer Information Center</td>
</tr>
<tr>
<td>Tel: (800) 752-0900</td>
</tr>
<tr>
<td>6:00 AM to 5:00 PM</td>
</tr>
<tr>
<td>Pacific Time</td>
</tr>
<tr>
<td>Parts Direct: 1-800-227-8164</td>
</tr>
<tr>
<td>SOUTHEAST EUROPE</td>
</tr>
<tr>
<td>Hewlett-Packard Ges. m.b.h.</td>
</tr>
<tr>
<td>Liebigasse 1</td>
</tr>
<tr>
<td>P.O. Box 72</td>
</tr>
<tr>
<td>A-1222 VIENNA, Austria</td>
</tr>
<tr>
<td>Tel: 43 222 2590 0</td>
</tr>
<tr>
<td>Telex: 13 4425</td>
</tr>
<tr>
<td>EUROPEAN MULTICOUNTRY REGION</td>
</tr>
<tr>
<td>Hewlett-Packard S.A.</td>
</tr>
<tr>
<td>P.O. Box 95</td>
</tr>
<tr>
<td>150, Route dV Nant_dL_AVRIL</td>
</tr>
<tr>
<td>CH-1217 Meyrin 2</td>
</tr>
<tr>
<td>GENEVA Switzerland</td>
</tr>
<tr>
<td>Tel: (41)(22)780-8111</td>
</tr>
<tr>
<td>Fax: (41)(22)780-8542</td>
</tr>
<tr>
<td>NORTHERN EUROPE</td>
</tr>
<tr>
<td>Hewlett-Packard Nederland B.V.</td>
</tr>
<tr>
<td>Startbaan 16</td>
</tr>
<tr>
<td>1187 XIR AMSTELVEEN</td>
</tr>
<tr>
<td>The Netherlands</td>
</tr>
<tr>
<td>P.O. Box 687</td>
</tr>
<tr>
<td>Tel: 31/70 5476011 X 6631</td>
</tr>
<tr>
<td>Fax: 31-20-6471825NL</td>
</tr>
<tr>
<td>ASIA</td>
</tr>
<tr>
<td>Hewlett-Packard Asia Ltd.</td>
</tr>
<tr>
<td>22-30/F Peregrine Tower</td>
</tr>
<tr>
<td>Lippo Center</td>
</tr>
<tr>
<td>89 Queensway, Central</td>
</tr>
<tr>
<td>JAPAN</td>
</tr>
<tr>
<td>Yokogawa-Hewlett-Packard Ltd.</td>
</tr>
<tr>
<td>3-29-21, Takaido-Higashi</td>
</tr>
<tr>
<td>Suginami-Ku, TOKYO 168</td>
</tr>
<tr>
<td>Tel: 81 3 3331-6111</td>
</tr>
<tr>
<td>Fax: 81 3 3331-8631</td>
</tr>
<tr>
<td>INTERNATIONAL SALES BRANCH HEADQUARTERS</td>
</tr>
<tr>
<td>Hewlett-Packard S.A.</td>
</tr>
<tr>
<td>39, Rue Veyrot</td>
</tr>
<tr>
<td>P.O. Box 365</td>
</tr>
<tr>
<td>1217 Meyrin 1</td>
</tr>
<tr>
<td>GENEVA, Switzerland</td>
</tr>
<tr>
<td>Tel: 41-22-780-4111</td>
</tr>
<tr>
<td>Fax: 41-22-780-4770</td>
</tr>
</tbody>
</table>
REGIONAL SALES AND SERVICE OFFICES (continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>City</th>
<th>Province</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA/NEW ZEALAND</td>
<td>Hewlett-Packard Ltd.</td>
<td>P.O. Box 221</td>
<td>Victoria</td>
<td>(61/3) 895-2895</td>
<td>(61/3) 898-9257</td>
</tr>
<tr>
<td></td>
<td>31-41 Joseph St.</td>
<td>BLACKBURN</td>
<td>Victoria</td>
<td>(61/3) 895-2895</td>
<td>(61/3) 898-9257</td>
</tr>
<tr>
<td>CANADA</td>
<td>Hewlett-Packard (Canada) Ltd.</td>
<td>5150 Spectrum Way</td>
<td>MISSISSAUGA</td>
<td>(416) 206-4725</td>
<td>(416) 2-6-4739</td>
</tr>
<tr>
<td></td>
<td>Mississauga, Ontario L4W</td>
<td>5G1 Canada</td>
<td>Quebec</td>
<td>(416) 206-4725</td>
<td>(416) 2-6-4739</td>
</tr>
<tr>
<td></td>
<td>Tel: (416) 206-4725</td>
<td>Kirkland</td>
<td>Quebec</td>
<td>(416) 206-4725</td>
<td>(416) 2-6-4739</td>
</tr>
<tr>
<td></td>
<td>Fax: (416) 2-6-4739</td>
<td>H9J 2X8</td>
<td>Canada</td>
<td>(416) 206-3295</td>
<td>(416) 2-6-4739</td>
</tr>
<tr>
<td>CANADA</td>
<td>Hewlett-Packard LTD Service Center</td>
<td>11120 178 Street</td>
<td>Edmonton, Alberta</td>
<td>(403) 486-6666</td>
<td>(403) 489-8764</td>
</tr>
<tr>
<td></td>
<td>Tel: (403) 486-6666</td>
<td>T5S 1P2</td>
<td>Canada</td>
<td>(403) 486-6666</td>
<td>(403) 489-8764</td>
</tr>
<tr>
<td>LATIN AMERICA</td>
<td>Hewlett-Packard Company</td>
<td>LAHQ CO Lomas de virreyes</td>
<td>Mexico</td>
<td>(52/5)326-4000</td>
<td>(52/5)202 7718</td>
</tr>
<tr>
<td></td>
<td>Mexico</td>
<td>Tel: (52/5)326-4000</td>
<td>Mexico</td>
<td>(52/5)326-4000</td>
<td>(52/5)202 7718</td>
</tr>
<tr>
<td></td>
<td>Fax: (52/5)202 7718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>Hewlett Packard Ltd.</td>
<td>Cain Road</td>
<td>Berkshire, RG121HN, UK</td>
<td>44-344 360000</td>
<td>44-344 363344</td>
</tr>
<tr>
<td></td>
<td>Tel: 44-344 360000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fax: 44-344 363344</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-14 Modifications, Accessories, Manuals, Support
Error Messages

General Information About Error Messages

Information concerning error messages displayed by the Test Set may be found in one of the following manuals:

- HP 8920 or HP 8921 User's Guides
- HP 8920, 8921 Programmer's Guide
- HP 8920, 8921 Assembly Level Repair Manual
- HP Instrument BASIC User's Handbook:
 - HP 8920A or HP 8921A: HP Instrument BASIC Users Handbook (HP P/N E2083-90000)
 - HP 8920B: HP Instrument BASIC Users Handbook Version 2.0 (HP P/N E2083-90005)

The format of the displayed message determines which manual contains information about the error message. There are four basic error message formats:

- Positive numbered error messages
- IBASIC error messages
- HP-IB error messages
- Text only error messages

The following paragraphs give a brief description of each message format and direct you to the manual to look in for information about error messages displayed in that format.

Positive Numbered Error Messages

Positive numbered error messages are generally associated with IBASIC. Refer to the HP Instrument BASIC User's Handbook for information on IBASIC error messages.

Positive numbered error messages take the form: ERROR XX <error message>

For example:
 Error 54 Duplicate file name
 or
 Error 80 in 632 Medium changed or not in drive
IBASIC Error Messages

IBASIC Error Messages are associated with IBASIC operation. IBASIC error messages can have both positive and negative numbers. Refer to the HP Instrument BASIC User's Handbook for information on positive numbered error messages. Refer to the HP-IB Error Messages section of the HP 8920, HP 8921 Programmer's Guide for information on negative numbered error messages (the error message associated with a negative number is the same for HP-IB errors and IBASIC errors).

IBASIC error messages take the form: IBASIC Error: -XX <error message>

For example:
IBASIC Error: -286 Program runtime error

HP-IB Error Messages

HP-IB Error Messages are associated with HP-IB operation. Refer to the HP 8920, HP 8921 Programmers Guide for information on HP-IB error messages.

HP-IB error messages take the form: HP-IB Error: -XX <error message> or HP-IB Error <error message>

For example:
HP-IB Error: -410 Query INTERRUPTED.

or
HP-IB Error: Input value out of range.
Text Only Error Messages

Text only error messages are generally associated with manual operation of the Test Set. Refer to the HP 8920 or HP 8921 User's Guide for information on text only error messages.

Text only error messages can also be displayed while running the Test Set's built-in diagnostic or calibration utility programs. Refer to the HP 8920, HP 8921 Assembly Level Repair manual for information on text only error messages displayed while running the Test Set's built-in diagnostic or calibration utility programs.

Text only error messages take the form: This is an error message.

For example:
Input value out of range.

The Message Display

During instrument operation, various messages may appear on the Test Set's display. Prompt-type messages generally appear on the first line of the Test Set's display. General operating and error messages usually appear on the second line of the display. Some messages are persistent; they remain displayed until the error condition no longer exists, or until another persistent message with greater priority occurs. Other messages are only displayed when the error first occurs; they are removed when a key is pressed or the knob is turned, or when an HP-IB command is received. Many of the messages are displayed on the MESSAGE screen until the instrument is turned off.

Messages that are about error conditions may tell you what to do to correct the error (turn something off, reduce a field's value, press a certain key, and so forth). Messages and prompts are sometimes accompanied by a beep or warble.

Note

Warbles and Beeps

A warble sound indicates that an instrument-damaging event is occurring. Beeps often occur only with the first occurrence of the message. Prompts are generally silent.
Non-Recoverable Firmware Error

The non-recoverable firmware error is very important. It appears when an unanticipated event occurs that the Test Set's firmware cannot handle. The message appears in the center of the Test Set's display and (except for the two lines in the second paragraph) has the form:

Non-recoverable firmware error. Please record the 2 lines of text below and contact Hewlett Packard through your local service center or by calling (800) 827-3848 (USA, collect) and asking to speak to the 8920A Service Engineer.

'Address error exception'
at line number 0

To continue operation, turn POWER off and back on.

Follow the instructions in the message.

Unfortunately, you will not be able to recover from this condition. You must switch the Test Set off and back on. When you rerun the test where the Error Message occurred, it may not occur again. If it does reappear, it would be helpful to HP to record exactly what the configuration of the instrument was when the error appeared and contact HP.
Text Only Error Messages

Operation errors generally occur when you try to do something the Test Set was not designed to do. Most messages tell you what to do to correct the problem, (turn something off, reduce a field’s value, press a certain key, ... and so forth).

Some common messages are listed here:

All self tests passed.

The Test Set did not detect any hardware or firmware failures during its initial self-diagnostics. This message should always be displayed immediately after instrument turn on.

Input value out of range.

A number was entered that was too large or small for the selected field. Example: trying to set AFG1 Freq to 125 kHz.

Invalid keystroke.

You used a key that has no function relating to the selected field. Example: pressing the [ON/OFF] key while the Filter 1 field is selected.

Option not installed.

You selected a function that requires optional hardware that is not present. Example: selecting TDMA TEST from the To Screen menu when you do not have an HP 83201A or HP 83201B Cellular Adapter connected to the Test Set.

<table>
<thead>
<tr>
<th>Function</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD CH PWR (Adjacent Channel Power)</td>
<td>Option 102 - Spectrum Analyzer<sup>1</sup></td>
</tr>
<tr>
<td>SPEC ANL (Spectrum Analyzer)</td>
<td>Option 102 - Spectrum Analyzer<sup>1</sup></td>
</tr>
<tr>
<td>LTV_MTR (signal strength meter) ROM Program</td>
<td>Option 102 - Spectrum Analyzer<sup>1</sup></td>
</tr>
<tr>
<td>TDMA TEST</td>
<td>HP 83201A/B Cellular Adapter<sup>2</sup></td>
</tr>
<tr>
<td>PDC TEST, PHP TEST</td>
<td>HP 83201B Cellular Adapter<sup>2</sup></td>
</tr>
<tr>
<td>CDMA TEST</td>
<td>HP 83203A/B Cellular Adapters<sup>2</sup></td>
</tr>
<tr>
<td>PRNT CNFG (Printer Configure)</td>
<td>Serial/HP-IB/Parallel Ports<sup>3</sup></td>
</tr>
<tr>
<td>RADIO INT</td>
<td>Radio Interface Port<sup>2</sup></td>
</tr>
<tr>
<td>Encoder, Decoder</td>
<td>Signaling<sup>1</sup></td>
</tr>
</tbody>
</table>

¹ Optional on HP 8920A and HP 8920B

² Optional on all Test Sets

³ Optional on HP 8920A
Turn off either AM or FM settings.

You tried to create simultaneous AM and FM (using any combination of AFGen1, AFGen2, and the Mod In To field). The Test Set does not provide simultaneous AM and FM.

Squelch interrupt overflow. Press MEAS RESET.

The Test Set temporarily interrupts audio measurements when squelch is first broken to prevent internal switching transients from influencing measurements (except when using the SCOPE, SPECTRUM ANALYZER, DECODER, or SERVICE screens). If squelch is repetitively broken in a period of a few seconds, the duration of measurement interruption becomes too great, and the Test Set stops interrupting the signal. Following measurements may be influenced by transient signals.

Pressing **MEAS RESET** clears the data buffer used to generate interrupts, re-setting the normal squelch operation to eliminate transients.

This condition may occur when monitoring low-level off-the-air signals.

Cal file checksum incorrect - initializing file

This error usually occurs after changing the Test Set’s firmware ROM’s. It is not a problem in that instance, but should not re-appear during subsequent operation of the Test Set.

Decoder buffer full. Decrease gate time

Too many decoder samples were sent to the decoder’s buffer during a measurement gate time, causing a data overflow. Reducing the gate time decreases the amount of data sent during each measurement.

One or more self tests failed. Error code:XXXX

An instrument failure was detected when the Test Set was turned on. (For example, having a stuck front panel key during turn on.) The numbered error message corresponds to a binary-weighted group of errors listed in the *TST Common Command description in the Programmer’s Guide.

Change Ref Level, Input Port or Attenuator (if using “Hold”).

The RF signal level is either too great or too small for the current input port and/or attenuator setting. This error often occurs when trying to make a low level measurement using the RF IN/OUT port with the Spectrum Analyzer. Make the indicated change(s) until this message is no longer displayed.
Change RF Gen Amplitude, Output Port or Atten Hold (if on).

This message appears when the RF Generator Amplitude field is set too high when using the RF IN/OUT port, or when adjusting the amplitude with the Atten Hold field set to On.

The RF IN/OUT port has a lower maximum output level than the DUPLEX OUT port. Use the DUPLEX OUT port or reduce the RF Generator level.

If Atten Hold is On, you may be adjusting the amplitude outside of the allowed range. Change the amplitude.

Direct latch write occurred. Cycle power when done servicing.

The SERVICE screen was accessed and one or more internal latch settings were changed. Turn the instrument off and back on to reset the latches. (This condition can occur during periodic calibration.)
Index

Special characters
 meaning of, ACP level measurement, 4-261
 meaning of, squelch, 4-43
 meaning of, tone sequence decoding, 4-138
 meaning of, TX power measurement, 3-5, 4-18, 4-29, 4-37, 4-46, 4-57,
 4-261, 4-266

1 10 MHz REF INPUT connector
description, 5-15
10 MHz REF OUTPUT connector
description, 5-15
114.3 MHz IF OUT connector
description, 5-5

2 24-hour clock
 setting, 4-220

6 600 ohm impedance
 at AUDIO IN, 4-52

A Abort Print
 Print Configure screen, 4-257
 abort printing, 3-11
 ac
 power source, 5-18
 AC, access channel, 4-166
 access channel
 channel number, NMT, 4-172
 Access Channel Number
 Signaling Encoder screen, NMT mode, 4-169
 Access Channel Power
 Signaling Encoder screen, NMT mode, 4-169
 accessing screens, 1-2
 accessories, 6-4
 ac coupling
 input, 4-27, 4-35, 4-81, 4-83, 4-86, 4-91, 4-94, 4-103, 4-112, 4-119, 4-173
 output, 4-25, 4-35, 4-81, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171
 AC/DC button, 5-18
 ac level
 measurement, 3-6
 peak detector, 4-55
 AC Level
 Duplex Test screen, 4-23
 RF Analyzer screen, 4-41, 4-51
RF Generator screen, 4-33
RX Test screen, 4-5
ACP, 4-260
AM transmitter, 4-260, 4-262
FM transmitter, 4-262
input port, 4-260, 4-261
level, 4-261
measurement, 4-260
measurement speed, 4-265
output port, 4-260
ratio, 4-261
ACP Meas
Adjacent Channel Power screen, 4-261
Add Info
Signaling Encoder screen, NMT mode, 4-170
add options, 6-1
Addr
Tests (External Devices) screen, 4-242
address
digital paging, 4-95
HP-IB, external devices, 4-242
HP-IB, printer, 4-245, 4-258
HP-IB, test set, 4-254, 5-17
key, 5-17
pager, 4-150
Address Qualifier
Signaling Encoder screen, MPT 1327 mode, 4-126
adjacent channel power
measurement, 4-260
Adjacent Channel Power screen
ACP Meas, 4-261
AFGen1 Freq, 4-261
AFGen1 To, 4-261
Carrier Ref, 4-262
Channel BW, 4-262
Ch Offset, 4-263
Ext TX Key, 4-263
Input Atten, 4-263
Input Port, 4-264
Res BW, 4-265
Tune Freq, 4-265
Tune Mode, 4-265
TX Freq Error, 4-265
TX Frequency, 4-265
TX Power, 4-266
TX Pwr Meas (HP 8920B), 4-266
TX Pwr Zero, 4-266
view of, 4-259
ADRS key, 5-17
advanced mobile phone service
decoder, 4-153
coder, 4-96
AF analyzer
CDCSS decoder settings, 4-147
input, 4-13, 4-23, 4-51, 4-139, 4-141, 4-145, 4-148, 4-150, 4-158, 4-180, 4-193, 4-199
level, 4-139, 4-142, 4-145, 4-149, 4-151, 4-159, 4-180, 4-194, 4-199
signal types analyzed, 4-13, 4-23, 4-51

AF Analyzer screen
AF Anl In, 4-51
AF Cnt Gate, 4-51
AF Freq, 4-56
Audio In Lo, 4-52
Current, 4-56
DC current, 4-52
DC Level, 4-56
De-Emp Gain, 4-52
De-emphasis, 4-52
Detector, 4-53
Distn, 4-56
Ext Load R, 4-54
Filter 1 and Filter 2, 4-54
functional block diagram, 4-49
Gain Cntl, 4-54
Input Gain, 4-55
Notch Freq, 4-55
Notch Gain, 4-55
Pk Det To, 4-55
Scope To, 4-55
Settling, 4-56
SINAD, 4-56
SNR, 4-56
Speaker ALC, 4-57
Speaker Vol, 4-57
TX Freq Error, 4-57
TX Frequency, 4-57
TX Power, 4-57
view of, 4-49

AF Anl In
AF Analyzer screen, 4-51
Duplex Test screen, 4-23
Signaling Decoder screen, AMPS-TACS mode, 4-158
Signaling Decoder screen, CDCSS mode, 4-148
Signaling Decoder screen, Digi Page mode, 4-150
Signaling Decoder screen, DTMF mode, 4-145
Signaling Decoder screen, EDACS mode, 4-199
Signaling Decoder screen, Func Gen mode, 4-139
Signaling Decoder screen, LTR mode, 4-193
Signaling Decoder screen, NAMPS-NTACS mode, 4-158
Signaling Decoder screen, NMT mode, 4-180
Signaling Decoder screen, Tone Seq mode, 4-141
TX Test screen, 4-13

AF Cnt Gate
AF Analyzer screen, 4-51
AF Freq
AF Analyzer screen, 4-56
Duplex Test screen, 4-24
RF Generator screen, 4-36
RX Test screen, 4-9

Index-3
TX Test screen, 4-13
AFGen1 Freq
 Adjacent Channel Power screen, 4-261
Duplex Test screen, 4-24
RF Generator screen, 4-33
RX Test screen, 4-5
TX Test screen, 4-14
AFGen1 Lvl
TX Test screen, 4-14
AFGen1 To
 Adjacent Channel Power screen, 4-261
Duplex Test screen, 4-24
RF Generator screen, 4-33
RX Test screen, 4-6
AFGen2 Freq
 RF Generator screen, 4-33
RX Test screen, 4-5
 Signaling Encoder screen, Func Gen mode, 4-80
AFGen2 To
 RF Generator screen, 4-34
RX Test screen, 4-6
 Signaling Encoder screen, AMPS-TACS mode, 4-101, 4-103
 Signaling Encoder screen, CDCSS mode, 4-91
 Signaling Encoder screen, Digi Page mode, 4-93
 Signaling Encoder screen, DTMF mode, 4-86
 Signaling Encoder screen, EDACS mode, 4-118
 Signaling Encoder screen, Func Gen mode, 4-80
 Signaling Encoder screen, LTR mode, 4-112
 Signaling Encoder screen, NAMP-NTAC mode, 4-101, 4-103
 Signaling Encoder screen, NMT mode, 4-171
 Signaling Encoder screen, Tone Seq mode, 4-82
AF generator 1
 amplitude, 4-6, 4-24, 4-33
 frequency, 4-5, 4-14, 4-24, 4-33, 4-261
 level, 4-14
 modulation, 4-6, 4-24, 4-33, 4-261
AF generator 2
 amplitude, 4-6, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118,
 4-171
 frequency, 4-5, 4-33, 4-80
 modulation, 4-6, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118,
 4-171
 use of, 4-79
AF power
 external load resistance, 3-6, 4-5
 measurement, 3-6
Alarm Level High
 Signaling Encoder screen, NMT mode, 4-171
Alarm Level Low
 Signaling Encoder screen, NMT mode, 4-171
ALC
 disabling, 4-57
 internal speaker, 4-57
All Chans?
 Tests (Order of Tests) screen, 4-233
Aloha Number
 Signaling Encoder screen, MPT 1327 mode, 4-126
alpha-numeric operation
 digital paging, 4-94
alternate traffic area, 4-176
alternate traffic channel
 number, 4-176
 power, 4-177
AM
 depth, 3-6
 input, 4-35
 RF generator, 4-6, 4-24, 4-33, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171, 4-261
amplifier
 for distortion measurements, 4-55
 for SINAD measurements, 4-55
amplitude
 AFGen1, 4-6, 4-24, 4-33, 4-261
 AFGen2, 4-6, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171
 for tone sequence, 4-84
 function generator, 4-80
off, 4-6, 4-24, 4-33, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171, 4-261
 RF generator, 4-7, 4-25, 4-34, 4-72
 tracking generator, 4-73
 twist, 4-88
 vertical sensitivity, 4-62
Amplitude
 Duplex Test screen, 4-25
 RF Generator screen, 4-34
 RX Test screen, 4-7
 Spectrum Analyzer screen, 4-72
AMPS-TACS
 control channel decoder, 4-153
 forward control channel, 4-98
 forward voice channel, 4-99
 radio standard, 4-106
 reverse control channel, 4-154
 reverse voice channel, 4-155
 voice channel decoder, 4-153
AMPS-TACS decoder mode
 AF Anl In, 4-158
 Arm Meas, 4-158
 Channel, 4-158
 Data (hex), 4-158
 Gate Time, 4-158
 Input Level, 4-159
 Num of Bits, 4-159
 Polarity, 4-159
 Single/Cont, 4-160
 Stop Meas, 4-160
 Trigger Pattern (bin), 4-161
 Trig Level, 4-160
 view of, 4-153
AMPS-TACS encoder mode
AFGen2 To, 4-101
Audio Out, 4-101
B/I Delay, 4-101
Bursts, 4-102
Busy/Idle, 4-101
Channel, 4-102
Data Level, 4-102
Data Rate, 4-102
Filler, 4-103
FM Coupling, 4-103
Message, 4-103
Polarity, 4-104
SAT Freq, 4-105
SAT Level, 4-105
Send, 4-105
Send Filler, 4-105
Send Mode, 4-106
Standard, 4-106
Stop, 4-106
Stop Filler, 4-106
view of, 4-96
analog meter, 3-7
analyzer
arming measurements, 4-140, 4-143, 4-146, 4-149, 4-152, 4-160, 4-181,
4-194, 4-200
calibration, 4-68
disarming measurements, 4-200
frequency, markers, 4-69
input port, 4-70
level, markers, 4-69
analyzer, AF
CDCSS decoder settings, 4-147
input, 4-139, 4-141, 4-145, 4-148, 4-150, 4-158, 4-180, 4-193, 4-199
level, 4-139, 4-142, 4-145, 4-149, 4-151, 4-159, 4-180, 4-194, 4-199
analyzer, RF
frequency, 4-17, 4-28, 4-45
input attenuation, 4-41
input port, 4-42
level, 4-41, 4-51
measurements, 4-44
sensitivity, 4-43
tuning, 4-17, 4-28, 4-45
Antenna In
Configure screen, 4-210
ANT IN connector
avoiding damage, 3-5, 4-16, 4-18, 4-27, 4-29, 4-37, 4-42, 4-46, 4-57, 4-70,
4-264, 5-1
connecting to, 1-7, 4-70
description, 5-1
for ACP ratio measurements, 4-260, 4-261, 4-264
for off-the-air measurements, 4-16, 4-27, 4-42, 4-192, 4-264
for RF measurements, 4-16, 4-27, 4-42, 4-264
gain at, 4-210
input attenuation, 4-41, 4-76, 4-263
loss at, 4-210
Index-6
sensitivity, 4-43, 4-78

Area #
 Signaling Encoder screen, NMT mode, 4-171
Area 1
 Signaling Encoder screen, LTR mode, 4-112
Area 2
 Signaling Encoder screen, LTR mode, 4-112
arm
 measurement, 4-139, 4-140, 4-141, 4-143, 4-145, 4-146, 4-148, 4-149, 4-150,
 4-152, 4-158, 4-160, 4-181, 4-193, 4-194, 4-199, 4-200
 radio interface interrupt, 4-206
Arm Meas
 Signaling Decoder screen, AMPS-TACS mode, 4-158
 Signaling Decoder screen, CDCSS mode, 4-148
 Signaling Decoder screen, Digi Page mode, 4-150
 Signaling Decoder screen, DTMF mode, 4-145
 Signaling Decoder screen, EDACS mode, 4-199
 Signaling Decoder screen, Func Gen mode, 4-139
 Signaling Decoder screen, LTR mode, 4-193
 Signaling Decoder screen, NAMPS-NTACS mode, 4-158
 Signaling Decoder screen, Tone Seq mode, 4-141
arrow down key, 5-16
arrow left key, 5-18
arrow up key, 5-16
ASCII terminal, 3-24
 configuring, 4-256
ASSIGN, 3-21, 3-22
Atten Hold
 Duplex Test screen, 4-25
 RF Generator screen, 4-34
 RX Test screen, 4-7
attenuation
 automatic control, 4-41, 4-76, 4-263
 input, RF analyzer, 4-41, 4-263
 input, spectrum analyzer, 4-76
 manual control, 4-41, 4-76, 4-263
attenuator
 decoder interference, 4-41, 4-54
 input, 4-41, 4-76, 4-263
 oscilloscope interference, 4-41, 4-54
attenuator hold, 4-7, 4-25, 4-34
audio frequency counter
 gate time, 4-51
 sampling, 4-51
audio frequency generator, 4-5
audio frequency measurements, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
AUDIO IN connector
 avoiding damage to, 5-2
 description, 5-2
 for ac level measurement, 4-5
 for ac level measurements, 3-6
 for external load resistance measurement, 4-8, 4-54
 for SNR operation, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
AUDIO IN HI connector, 5-2
Audio In Lo
AF Analyzer screen, 4-52

AUDIO IN LO connector
- 600 ohm impedance, 4-52, 5-2
- floating, 4-52, 5-2
- grounded, 4-52, 5-2

AUDIO MONITOR OUTPUT connector
- description, 5-3

Audio Out
- Duplex Test screen, 4-25
- RF Generator screen, 4-35
- Signaling Encoder screen, AMPS-TACS mode, 4-101
- Signaling Encoder screen, CDCSS mode, 4-91
- Signaling Encoder screen, Digi Page mode, 4-93
- Signaling Encoder screen, DTMF mode, 4-86
- Signaling Encoder screen, EDACS mode, 4-118
- Signaling Encoder screen, Func Gen mode, 4-81
- Signaling Encoder screen, LTR mode, 4-112
- Signaling Encoder screen, NAMP-NTAC mode, 4-101
- Signaling Encoder screen, NMT mode, 4-171
- Signaling Encoder screen, Tone Seq mode, 4-82

AUDIO OUT connector
- coupling, 4-25, 4-35, 4-81, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171
- description, 5-3
- for ACP AM measurements, 4-260, 4-262

audio power
- measurement, 4-5
- audio source, 4-139, 4-141, 4-145, 4-148, 4-150, 4-158, 4-180, 4-193, 4-199

Auto All
- Range Hold, 4-215
- automatic level control, 4-57

Auto/Norm
- Oscilloscope screen, 4-63

autoring
- AF/RF measurements, 4-215
- gain setting, 4-54
- input attenuator, 4-41, 4-54

Autostart Test Procedure on Power-Up
- Tests (Execution Conditions) screen, 4-238

auto-tuning
- AF/RF measurements, 4-215
- RF, 4-17, 4-28, 4-45, 4-265

averaging
- example, 3-14
- measurement results, 3-14
- restart averaging, 3-14

AVG, 3-14, 5-16

Avg 1-100
- Spectrum Analyzer screen, 4-77
backspace key, 5-18
bandwidth
 adjacent channel power, 4-262
 IF filter, 4-16, 4-27, 4-41
 resolution, ACP measurement, 4-265
Base Freq
 Configure screen, 4-210
base settings
 changing, 3-19
 default, 3-19
base station receiver
 simulating, AMPS-TACS/NAMPS-NTACS, 4-153
basic operation, 3-1
battery, 2-3, 4-214
 saving, 4-172
Batt Save
 Signaling Encoder screen, NMT mode, 4-172
baud rate, 4-255
beat frequency, 3-7
beeper
 error alert, 4-211
 volume control, 2-3, 4-211
Beeper
 Configure screen, 2-3, 4-211
Bell
 radio standard, 4-87
bias
 dc, offsetting, 4-35
B/I Delay (FOCC)
 Signaling Encoder screen, AMPS-TACS mode, 4-101
 Signaling Encoder screen, NAMP-NTAC mode, 4-101
billing information, 4-176
bit error, 4-94
bits
 CDCSS data rate, 4-148
 CDCSS data stream, 4-90
 CDCSS sequence, 4-148
digital paging data rate, 4-151
dotting, 4-103
information, 4-103
LTR data rate, 4-193
message, 4-157
NMT data rate, 4-173
parity, 4-103, 4-157
serial data word, 4-254
specifying pattern to display, 4-161
sync word, 4-157
triggering, 4-161
type, 4-103
word sync, 4-103
block diagram, 1-9
AF Analyzer, 4-49
Duplex Test screen, 4-21
overall instrument, 1-8
RF Analyzer, 4-39
RF Generator, 4-32
RX Test, 4-4
TX Test, 4-12
brightness
setting, 2-1, 4-214
BS
definition, 4-164
BS Identity
Signaling Encoder screen, NMT mode, 4-172
buffer overflow error, 4-151
Bursts
Signaling Encoder screen, AMPS-TACS mode, 4-102
Signaling Encoder screen, CDCSS mode, 4-91
Signaling Encoder screen, Digi Page mode, 4-94
Signaling Encoder screen, DTMF mode, 4-86
Signaling Encoder screen, LTR mode, 4-112
Signaling Encoder screen, NAMP-NTAC mode, 4-102
Signaling Encoder screen, Tone Seq mode, 4-83
Busy/Idle
Signaling Encoder screen, AMPS-TACS mode, 4-101
Signaling Encoder screen, NAMP-NTAC mode, 4-101
busy state, 4-101
C

cables
power, 6-7
calibration
spectrum analyzer, 4-68
Calling Channel Number
Signaling Encoder screen, NMT mode, 4-172, 4-173
Calling Name
Tests (External Devices) screen, 4-242
CANCEL key, 5-18
card
procedure location, 4-228, 4-237
carrier
effect on RX/TX screen, 4-220
Carrier
Configure screen, 4-220
Carrier Ref
Adjacent Channel Power screen, 4-262
CC, calling channel, 4-166
CCIR1
radio standard, 4-83
CCIR2
radio standard, 4-83
CCITT
radio standard, 4-83
CDCSS decoder mode
AF analyzer settings, 4-147
AF Anl In, 4-148
Arm Meas, 4-148
Code (oct), 4-148
Data (bin), 4-148
Data Rate, 4-148
Input Level, 4-149
Polarity, 4-149
Single/Cont, 4-149
Stop Meas, 4-149
Trig Level, 4-149
view of, 4-147
CDCSS encoder mode
AFGen2 To, 4-91
Audio Out, 4-91
Bursts, 4-91
Code, 4-91
Data Rate, 4-91
FM Coupling, 4-91
Polarity, 4-92
Send, 4-92
Send Mode, 4-92
Standard, 4-92
Stop, 4-92
TOC Time, 4-92
view of, 4-89

cellular adapter
connectors, 5-5
cellular telephone, 4-96
Center Freq
Spectrum Analyzer screen, 4-70
center frequency
for notch filter, 4-55
for spectrum analyzer, 4-70
RF signal, 4-17, 4-28, 4-45, 4-265
spectrum analyzer marker, 4-75
channel
access, NMT, 4-172
assignments, NMT, 4-172
bandwidth, ACP measurement, 4-262
calling, NMT, 4-172
changing, 4-111
number, NMT encoder, 4-172
offset, ACP measurement, 4-263
spacing, user defined, 4-211
traffic, NMT, 4-172
trunked home, receiver, 4-109
trunked home, transmitter, 4-110
tuning, 4-217
Channel
Signaling Decoder screen, AMPS-TACS mode, 4-158
Signaling Decoder screen, NAMPS-NTACS mode, 4-158
Signaling Encoder screen, AMPS-TACS mode, 4-102
Signaling Encoder screen, NAMP-NTAC mode, 4-102
Channel BW
Adjacent Channel Power screen, 4-262
channel power
level, 4-261
measurement, 4-260
measuring, 4-260
to ratio, 4-261
channel standard
 AMPS (MS, LS), 4-216
 ETACS (MS, LS), 4-216
 JTACS (MS, LS), 4-216
 LTR800/900 (MS, LS), 4-216
 NAMPS (MSL, MSM, MSU, LSL, LSM, LSU), 4-216
 NTACS (MS, LS), 4-216
 TACS (MS, LS), 4-216
 USER-DEF, 4-216

Chan Space
 Configure screen, 4-211

chassis ground, 5-3

Check
 Tests (Pass/Fail Limits) screen, 4-235

Ch Offset
 Adjacent Channel Power screen, 4-263

choosing screens, 1-3

Clear
 global user key assignment, 3-22
 local user key assignment, 3-21
 RAM, 4-249
 register contents, 3-18, 4-249

clock
 time-of-day, 4-220

Clr Scr
 Tests (IBASIC Controller) screen, 4-247

Cntg. External Devices
 Tests (Main Menu) screen, 4-227

co-channel interference, 4-171

Code
 Signaling Encoder screen, CDCSS mode, 4-91

Code Location
 Tests (Save/Delete Procedure) screen, 4-236

Code (oct)
 Signaling Decoder screen, CDCSS mode, 4-148

code word
 CDCSS decoder, 4-148

CONFIG key, 5-17

configuration
 radio interface inputs, 4-206
 serial port, 3-24
 test set, 2-1

Configure screen
 Antenna In, 4-210
 Base Freq, 4-210
 Beeper, 2-3, 4-211
 Carrier, 4-220
 Chan Space, 4-211
 Date, 2-2, 4-212
 Duplex Out, 4-212
 Firmware, 4-213
 (Gen)-(Anl), 4-213
 Intensity, 2-1, 4-214
 Low Battery, 2-3, 4-214
 Notch Coupl, 4-214

Index-12
PTT, 4-220
Range Hold, 4-215
RF Chan Std, 4-216
RF Display, 4-217
RF Gen Volts, 4-218
RFGen Volts, 2-2
RF In/Out, 4-218
RF Level Offset, 4-219
RF Offset, 4-219
RX/TX Cntl, 4-220
Serial No., 4-220
Time, 2-2, 4-220
Total RAM, 4-220
User Def Base Freq, 4-210
view of, 4-209
connect
DUT to test set, 1-7
radio to test set, 1-7
connectors
10 MHz REF INPUT, 5-15
10 MHz REF OUTPUT, 5-15
114.3 MHz IF OUT, 5-5
ANT IN, 5-1
AUDIO IN, 5-2
AUDIO MONITOR OUTPUT, 5-3
AUDIO OUT, 5-3
cellular adapters, 5-5
Control I/O, 5-5
CRT VIDEO OUTPUT, 5-3
CW RF OUT, 5-5
DC CURRENT MEASUREMENT, 5-4
DC INPUT, 5-4
DET OUT, 5-5
digital testing, 5-5
DUPLEX OUT, 5-5
EXT SCOPE TRIGGER, 5-6
HEADPHONE, 5-6
HP-IB, 5-6
IQ RF IN, 5-5
MIC/ACC, 5-7
MODULATION INPUT, 5-9
Parallel Port, 5-9
parts kit, 5-4
RADIO INTERFACE, 5-10
RF IN/OUT, 5-12
SERIAL PORT, 5-13
Continue
Tests (Execution Conditions) screen, 4-239
Tests (IBASIC Controller) screen, 4-247
Tests (Main Menu) screen, 4-227
Tests (Printer Setup) screen, 4-244
continuous digital controlled squelch system
decoder, 4-147
coder, 4-89
control
characters, 3-25
filler, 4-103
message, 4-103
remote, 3-24
status, 4-120
Control Channel
Signaling Encoder screen, MPT 1327 mode, 4-125
control channel decoder
AMPS-TACS/NAMPS-NTACS, 4-153
Control Channel, Number
Signaling Encoder screen, EDACS mode, 4-118
Control Channel, RX Frequency
Signaling Encoder screen, EDACS mode, 4-118
Control Channel, TX Frequency
Signaling Encoder screen, EDACS mode, 4-118
Control I/O connector
description, 5-5
Controls
Oscilloscope screen, 4-59
Spectrum Analyzer screen, 4-68
Cont/Single
Oscilloscope screen, 4-63
counter
AF, 4-51
RF, 4-42
Counter Connection
Service screen, 4-221
coupling
ac, 4-25, 4-27, 4-35, 4-81, 4-82, 4-83, 4-86, 4-91, 4-93, 4-94, 4-101, 4-103, 4-112, 4-118, 4-119, 4-171, 4-173
dc, 4-25, 4-27, 4-35, 4-60, 4-81, 4-82, 4-83, 4-86, 4-91, 4-93, 4-94, 4-101, 4-103, 4-112, 4-118, 4-119, 4-171, 4-173
notch frequency, 4-214
CRT VIDEO OUTPUT connector
description, 5-3
current
measurement, dc, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
Current
AF Analyzer screen, 4-56
Duplex Test screen, 4-24
RF Analyzer screen, 4-44
RF Generator screen, 4-36
RX Test screen, 4-9
TX Test screen, 4-13
cursor control, 5-19
CW RF OUT connector
description, 5-5
dashes
meaning of, ACP level measurement, 4-261
meaning of, squelch, 4-43
meaning of, tone sequence decoding, 4-138
meaning of, TX power measurement, 3-5, 4-18, 4-29, 4-37, 4-46, 4-57,
4-261, 4-266

Data
Signaling Decoder screen, EDACS mode, 4-199
Signaling Decoder screen, LTR mode, 4-193

Data (bin)
Signaling Decoder screen, CDCSS mode, 4-148
data buffer
capacity, 4-159

Data Display
Signaling Decoder screen, Digi Page mode, 4-150
DATA FUNCTIONS keys, 5-16

Data (hex)
Signaling Decoder screen, AMPS-TACS mode, 4-158
DATA keys
uses for, 5-16

Data Length
I/O Configure screen, 4-254

Data Level
Signaling Encoder screen, AMPS-TACS mode, 4-102
Signaling Encoder screen, NAMP-NTAC mode, 4-102
data rate
code rate, 4-97

Data Rate
Signaling Decoder screen, CDCSS mode, 4-148
Signaling Decoder screen, Digi Page mode, 4-151
Signaling Decoder screen, LTR mode, 4-193
Signaling Decoder screen, MPT 1327 mode, 4-203
Signaling Encoder screen, AMPS-TACS mode, 4-102
Signaling Encoder screen, CDCSS mode, 4-91
Signaling Encoder screen, Digi Page mode, 4-94
Signaling Encoder screen, EDACS mode, 4-118
Signaling Encoder screen, LTR mode, 4-112
Signaling Encoder screen, NAMP-NTAC mode, 4-102
Signaling Encoder screen, NMT mode, 4-173
data stream
CDCSS, 4-90
outputting, 4-92
outputting digital paging, 4-95
rate, 4-91
data type
pager, 4-150

Date
Configure screen, 2-2, 4-212
date and time, 2-2
dBM
displaying results in, 3-7
dBµV
displaying results in, 3-7
dc
power, grounding for safety, 5-3
power, source, 5-18
supply, connector, 5-4
dc bias
going offsetting, 4-35
dc coupling, 4-60
input, 4-27, 4-35, 4-81, 4-83, 4-86, 4-91, 4-94, 4-103, 4-112, 4-119, 4-173
offsetting bias, 4-35
output, 4-25, 4-35, 4-81, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171
dc current
measurement, 3-6
zeroing measurement offset, 4-52
DC Current
AF Analyzer screen, 4-52
DC CURRENT MEASUREMENT connector
description, 5-4
DCFM, 4-27, 4-35, 4-81, 4-83, 4-86, 4-91, 4-94, 4-103, 4-112, 4-173
DC FM zero, 4-35
DC INPUT connector
description, 5-4
dc level
measurement, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
DC Level
AF Analyzer screen, 4-56
Duplex Test screen, 4-24
RF Analyzer screen, 4-44
RF Generator screen, 4-36
RX Test screen, 4-9
TX Test screen, 4-13
dc wave
function generator, 4-81
D (direction)
Signaling Decoder screen, NMT mode, 4-179
decimal format, 3-8
decoder
AMPS-TACS, 4-153
CDCSS, 4-147
digital paging, 4-150
DTMF, 4-144
EDACS, 4-195
function generator, 4-138
input attenuator, 4-41, 4-54
LTR, 4-190
MPT 1327, 4-201
NAMPS-NTACS, 4-153
narrowband, 4-200
NMT, 4-178
selecting, 4-137
set up for, 4-137
squelch effects, 4-43
tone sequence, 4-141
wideband, 4-200
decrement
changing setting, 3-9
De-Emp Gain
AF Analyzer screen, 4-52
de-emphasis
 bypassing, 4-14, 4-25, 4-52
 effect on DTMF frequency, 4-145
 filter, description, 4-145
 gain, 4-52
 input level, 4-139, 4-142, 4-145, 4-149, 4-159
 off for digital paging, 4-151
 off for NMT decoder, 4-180
 selecting, 4-14, 4-25, 4-52

De-Emphasis
 AF Analyzer screen, 4-52
 Duplex Test screen, 4-25
 TX Test screen, 4-14

default settings
 base, 3-19
 changing, 3-18, 3-19
 power-on, 3-18

delay
 busy/idle, 4-101
 first bit, 4-101
 word sync, 4-101

delete
 global user key assignment, 3-22
 local user key assignment, 3-21
 RAM contents, 4-249
 register contents, 3-18, 4-249

Delete Ch
 Tests (Channel Information) screen, 4-229

Delete Ins
 Tests (External Devices) screen, 4-242

Delet Stp
 Tests (Order of Tests) screen, 4-233

depth
 AM, 3-6

Description
 Tests (Main Menu) screen, 4-227

detector
 peak, 4-15, 4-26, 4-53, 4-55
 rms, 4-15, 4-26, 4-53
 selecting, 4-15, 4-26, 4-53

Detector
 AF Analyzer screen, 4-53
 Duplex Test screen, 4-26
 TX Test screen, 4-15

DET OUT connector
 description, 5-5

deviation
 FM, 3-6, 4-16, 4-27

device-under-test
 connecting, 1-7
 for NMT encoder, 4-173

diagram
 AF Analyzer functional block, 4-49
 Duplex Test functional block, 4-21
 functional, 1-9
overall instrument block, 1-8
RF Analyzer functional block, 4-39
RF Generator functional block, 4-32
RX Test functional block, 4-4
TX Test functional block, 4-12
Digital Paging decoder mode
 AF Anl In, 4-150
 Arm Meas, 4-150
 Data Display, 4-150
 Data Rate, 4-151
 Display Page, 4-151
 Gate Time, 4-151
 Input Level, 4-151
 Number of Pages, 4-151
 Polarity, 4-152
 Single/Cont, 4-152
 Standard, 4-152
 Stop Meas, 4-152
 Trig Level, 4-152
 view of, 4-150
Digital Paging encoder mode
 AFGen2 To, 4-93
 Audio Out, 4-93
 Bursts, 4-94
 Data Rate, 4-94
 Error Bit, 4-94
 FM Coupling, 4-94
 Function, 4-94
 Mssg Length, 4-94
 Pager Alpha-Numeric Message, 4-94
 Pager Code, 4-95
 Pager Numeric Message, 4-95
 Pager Type, 4-95
 Polarity, 4-95
 Send, 4-95
 Send Mode, 4-95
 Standard, 4-95
 Stop, 4-95
 view of, 4-93
digital signaling tone, 4-157, 4-159
digital supervisory audio tone, 4-157, 4-159
digital test connections, 5-5
disarm
 measurement, 4-200
 radio interface interrupt, 4-206
disk
 procedure location, 4-228, 4-237
Display Page
 Signaling Decoder screen, Digi Page mode, 4-151
Distn
 AF Analyzer screen, 4-56
 Duplex Test screen, 4-24
 RF Analyzer screen, 4-44
 RF Generator screen, 4-36
 RX Test screen, 4-9
TX Test screen, 4-13
distortion, 3-6
 measurement, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
 measurement, amplifier, 4-55
 measurement, variable notch filter, 4-55
dotting bits, 4-103
down arrow key, 5-16
downloading programs, 4-186
DSAT, 4-157, 4-159
 Signaling Encoder screen, NAMP-NTAC mode, 4-102
DST, 4-157, 4-159
DTMF, 4-157, 4-159
DTMF decoder mode
 AF Anl In, 4-145
 Arm Meas, 4-145
 Gate Time, 4-145
 Hi Tone, 4-146
 Input Level, 4-145
 Lo Tone, 4-146
 Off Time, 4-146
 On Time, 4-146
 Single/Cont, 4-146
 Stop Meas, 4-146
 Sym, 4-146
 view of, 4-144
DTMF sequence
 outputting, 4-87
DTMF Sequence encoder mode
 AFGen2 To, 4-86
 Audio Out, 4-86
 Bursts, 4-86
 FM Coupling, 4-86
 Off Time, 4-86
 On Time, 4-86
 Pre-Emp, 4-87
 Send, 4-87
 Send Mode, 4-87
 Standard, 4-87
 Stop, 4-87
 Symbol Frequencies (Hz), 4-88
 Twist, 4-88
 view of, 4-85
dual-tone
 frequency pair, 4-146, 4-157
dual-tone multi-frequency
 decoder, 4-144
 encoder, 4-85
dual-tone multi-frequency tone pair, 4-157
dump graphics, 3-11, 5-17
DUPLEX key, 5-17
Duplex Out
 Configure screen, 4-212
DUPLEX OUT connector
 avoiding damage, 4-8, 4-28, 4-36, 4-72
 description, 5-5
gain at, 4-212
loss at, 4-212
Duplex Test screen
AC Level, 4-23
AF Anl In, 4-23
AF Freq, 4-24
AFGen1 Freq, 4-24
AFGen1 To, 4-24
Amplitude, 4-25
Atten Hold, 4-25
Audio Out, 4-25
Current, 4-24
DC Level, 4-24
De-emphasis, 4-25
Detector, 4-26
Distn, 4-24
Ext TX key, 4-26
FM Coupling, 4-27
FM Deviation, 4-27
functional block diagram, 4-21
IF Filter, 4-27
Input Port, 4-27
Output Port, 4-28
RF Gen Freq, 4-28
SINAD, 4-24
SNR, 4-24
Tune Freq, 4-28
Tune Mode, 4-28
TX Freq Error, 4-29
TX Frequency, 4-29
TX Power, 4-29
view of, 4-21
DUT
connecting, 1-7
definition for NMT, 4-164
Signaling Encoder screen, NMT mode, 4-173

E
EDACS decoder mode
AF Anl In, 4-199
Arm Meas, 4-199
Data, 4-199
Input Level, 4-199
Polarity, 4-199
Radio/Repeater, 4-199
RX Test, 4-199
Single/Cont, 4-200
Standard, 4-200
Stop Meas, 4-200
view of, 4-195
EDACS encoder mode
AFGen2 To, 4-118
Audio Out, 4-118
Control Channel, Number, 4-118
Control Channel, RX Frequency, 4-118
Control Channel, TX frequency, 4-118
Data Rate, 4-118
FM Coupling, 4-119
Group ID, 4-119
Handshake, 4-119
Logical ID, 4-119
Polarity, 4-119
RX Test, 4-120
Signaling Dev, 4-120
Site ID, 4-120
Standard, 4-120
Status, 4-120
Stop, 4-121
Sub-Audible Dev, 4-121
view of, 4-114
Working Channel, Number, 4-121
Working Channel, RX frequency, 4-121
Working Channel, TX frequency, 4-121
edt
 tone sequence, 4-84
EEX key, 5-16
EIA
 radio standard, 4-83
equipment call, 4-195
emf voltage, 4-218
encoder
 AMPS-TACS, 4-96
CDSCC, 4-89
data rate, 4-97
digital paging, 4-93
DTMF, 4-85
EDACS, 4-114
function generator, 4-80
LTR, 4-108
modes, 4-97
MPT 1327, 4-122
NAMPS-NTACS, 4-96
narrowband, 4-120
NMT, 4-107, 4-167
selecting, 4-79
set up for, 4-79
tone sequence, 4-82
turning off AF Gen 1, 4-79
wideband, 4-120
encoder/decoder
 interactions, 4-97
enhanced digital access communications system
 decoder, 4-195
 encoder, 4-114
ENTER key, 5-16
Enter Procedure Filename
 Tests (Save/Delete Procedure) screen, 4-236
equivalent front-panel control characters, 3-25
Error Bit
 Signaling Encoder screen, Digi Page mode, 4-94
error detection code
 CDCSS encoder, 4-90
error message
 buffer overflow, 4-151
error messages, Messages-1
 IBASIC, 4-254
 operation, Messages-5
ESC characters, 3-25
Euro
 radio standard, 4-83
Exec Execution Cond
 Tests (Main Menu) screen, 4-227
Exit Status
 Signaling Decoder screen, NMT mode, 4-180
exponents
 entering numbers, 5-16
external AM
 input, 4-35
External Disk Specification
 Tests (External Devices) screen, 4-242
external FM
 input, 4-35
external load resistance, 3-6, 4-5, 4-8, 4-54
external modulation
 input, 4-35
external monitor, 6-3
Ext Load R, 3-6
 AF Analyzer screen, 4-54
 effect of Audio In Lo, 4-54
 RX Test screen, 4-5, 4-8
EXT SCOPE TRIGGER connector
 description, 5-6
Ext TX key
 Duplex Test screen, 4-26
 RF Analyzer screen, 4-41
 TX Test screen, 4-15
EXT TX key
 Adjacent Channel Power screen, 4-263

FF at End
 Print Configure screen, 4-257
 Tests (Printer Setup) screen, 4-244
FF at Start
 Print Configure screen, 4-257
 Tests (Printer Setup) screen, 4-244
fields
 changing settings, 1-4
 control channel (FOCC), 4-97
 definition of, 1-3
 interactions, 3-1
 priority settings, 3-2
 types of, 1-4
 voice channel (FVC), 4-97
filename
procedure to load, 4-228
procedure to save, 4-236
files
savings, 4-236
securing, 4-249
selecting, 4-228
filler data
FOCC, AMPS-TACS/NAMPS-NTACS, 4-98
Filter 1 and Filter 2
AF Analyzer screen, 4-54
RX Test screen, 4-8
TX Test screen, 4-16
filters
IF bandwidth, 4-16, 4-27, 4-41
IF, for ACP measurements, 4-265
selecting, 4-8, 4-16, 4-54
settings for CDCSS decoder, 4-147
variable notch, 4-55
firmware
upgrading, 6-3
Firmware
Configure screen, 4-213
First Frame
Signaling Decoder screen, NMT mode, 4-180
floating input
at AUDIO IN LO, 4-52
FM
development, 3-6
development measurement, 4-16, 4-27
input, 4-35
RF generator, 4-6, 4-24, 4-33, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101,
4-112, 4-118, 4-171, 4-261
FM Coupling
duplex test screen, 4-27
RF Generator screen, 4-35
Signaling Encoder screen, AMPS-TACS mode, 4-103
Signaling Encoder screen, CDCSS mode, 4-91
Signaling Encoder screen, Digi Page mode, 4-94
Signaling Encoder screen, DTMF mode, 4-86
Signaling Encoder screen, EDACS mode, 4-119
Signaling Encoder screen, Func Gen mode, 4-81
Signaling Encoder screen, LTR mode, 4-112
Signaling Encoder screen, NAMP-NTAC mode, 4-103
Signaling Encoder screen, NMT mode, 4-173
Signaling Encoder screen, Tone Seq mode, 4-83
FM Deviation
duplex test screen, 4-27
TX Test screen, 4-16
FOCC
AMPS-TACS/NAMPS-NTACS, 4-98
data rate, 4-102
filler data, AMPS-TACS/NAMPS-NTACS, 4-98
menu, 4-102
outputting, 4-105
FOCC message
data format, AMPS-TACS/NAMPS-NTACS, 4-98
form feed, 4-257
forward control channel, 4-97
 AMPS-TACS/NAMPS-NTACS, 4-98
 filler data format, AMPS-TACS/NAMPS-NTACS, 4-98
 message data format, AMPS-TACS/NAMPS-NTACS, 4-98
forward voice channel, 4-97
 AMPS-TACS, 4-99
 message data format, AMPS-TACS, 4-99
 message data format, NAMPS-NTACS, 4-100
 NAMPS-NTACS, 4-100
four dashes
 meaning of, ACP level measurement, 4-261
 meaning of, squelch, 4-43
 meaning of, tone sequence decoding, 4-138
 meaning of, TX power measurement, 3-5, 4-18, 4-29, 4-37, 4-46, 4-57, 4-261, 4-266
Frame Digits
 Signaling Decoder screen, NMT mode, 4-179
frames
 definition for NMT, 4-164
 NMT information, 4-179
 number viewed, 4-180, 4-181
 suffixes, 4-166
Free 1
 Signaling Encoder screen, LTR mode, 4-112
Free 2
 Signaling Encoder screen, LTR mode, 4-112
Freq
 Signaling Decoder screen, Tone Seq mode, 4-142
Freq Channel Information
 Tests (Main Menu) screen, 4-227
Freq Error
 Signaling Decoder screen, Tone Seq mode, 4-142
Freq (marker)
 Spectrum Analyzer screen, 4-69
frequency
 AFGen1, 4-5, 4-14, 4-24, 4-33, 4-261
 AFGen2, 4-5, 4-33, 4-80
 carrier, ACP measurement, 4-262
 center, for notch filter, 4-55
 center, for spectrum analyzer, 4-70
 center, RF signal, 4-17, 4-28, 4-45, 4-265
 decoded signal, 4-139
 effects of RF offset, 4-219
 for DTMF sequence, 4-88
 for tone sequence, 4-84
 measurement, 4-17, 4-29, 4-37, 4-45, 4-57, 4-265
 offset receiver/transmitter, 4-213
 offset RF generator/analyser, 4-213
 range, for DTMF decoder, 4-144
 RF generator, 4-9
 RF generator, reference, 4-210
 setting, 4-28, 4-36, 4-217
 span, 4-71
spectrum analyzer, 4-69
symbol, 4-142
transmitter, 3-5
tuning, 4-17, 4-28, 4-45, 4-265

Frequency
Service screen, 4-221
Signaling Decoder screen, Func Gen mode, 4-139
frequency error
measurement, 4-17, 4-29, 4-37, 4-45, 4-57, 4-265
symbol, 4-142
transmitter, 3-5
frequency offset, 3-23
tracking generator, 4-73

frequency pair
DTMF, high tone, 4-146
DTMF, low, 4-146, 4-157

Function
Signaling Encoder screen, Digi Page mode, 4-94
functional diagram, 1-9
AF Analyzer, 4-49
Duplex Test screen, 4-21
overall instrument, 1-8
RF Analyzer, 4-39
RF Generator, 4-32
RX Test, 4-4
TX Test, 4-12
functional test
for verifying operation, 1-6

function generator
waveform, 4-81

Function Generator decoder mode
AF Anl In, 4-139
Arm Meas, 4-139
Frequency, 4-139
Gate Time, 4-139
Input Level, 4-139
Single/Cont, 4-140
Stop Meas, 4-140
Trig Level, 4-140
view of, 4-138

Function Generator encoder mode
AFGen2 Freq, 4-80
AFGen2 To, 4-80
Audio Out, 4-81
FM Coupling, 4-81
Sine Units, 4-81
view of, 4-80
Waveform, 4-81

FVC
AMPS-TACS, 4-99
data rate, 4-102
menu, 4-102
NAMPS-NTACS, 4-100
outputting, 4-105
FVC message
data format, AMPS-TACS, 4-99
data format, NAMPS-NTACS, 4-100

gain
automatic control, 4-54
between ANT IN and device-under-test, 4-210
between DUPLEX OUT and device-under-test, 4-212
between RF IN/OUT and device-under-test, 4-218
de-emphasis, 4-52
input, 4-55
manual control, 4-54
notch filter, 4-55
Gain Ctrl
AF Analyzer screen, 4-54
gate time, 4-51
decoder, 4-139, 4-142, 4-145, 4-151, 4-158, 4-193
RF counter, 4-42
Gate Time
Service screen, 4-221
Signaling Decoder screen, AMPS-TACS mode, 4-158
Signaling Decoder screen, Digi Page mode, 4-151
Signaling Decoder screen, DTMF mode, 4-145
Signaling Decoder screen, Func Gen mode, 4-139
Signaling Decoder screen, LTR mode, 4-193
Signaling Decoder screen, NAMPS-NTACS mode, 4-158
Signaling Decoder screen, Tone Seq mode, 4-142
Gaussian noise
function generator, 4-81
(Gen)-(Anl)
Configure screen, 4-213
generator
CDCSS, 4-89
DTMF, 4-85
tone sequence, 4-82
generator, AF
amplitude, 4-6, 4-24, 4-33, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171, 4-261
frequency, 4-5, 4-14, 4-24, 4-33, 4-80, 4-261
level, 4-14
generator, RF
ac level, 4-33
amplitude, 4-7, 4-25
frequency, 4-9, 4-28
output port, 4-8, 4-28, 4-72, 4-74
reference frequency, 4-210
generator, tracking
amplitude, 4-73
frequency, 4-70
frequency offset, 4-73
output port, 4-74
RF offset, 4-73
sweep, 4-74
sweep frequency range, 4-71
use with spectrum analyzer, 4-73

Index-26
Golay sequential code, 4-95
Goto 1
 Signaling Encoder screen, LTR mode, 4-112
Goto 2
 Signaling Encoder screen, LTR mode, 4-112
grounded input
 at AUDIO IN LO, 4-52
grounding, 5-3
group call, 4-195
Group ID
 Signaling Encoder screen, EDACS mode, 4-119
GSC
 data rates, 4-94
 radio standard, 4-95

Handshake
 Signaling Encoder screen, EDACS mode, 4-119
hardware
 modifications, 6-1
heading
 for printout, 4-245, 4-258
HEADPHONE connector
 description, 5-6
HELP key, 5-17
Help screen
 view of, 4-251
hexadecimal format, 3-8
hexadecimal numbers
 for tone sequence, 4-84
high limit
 removing, 3-13
 setting, 3-12
HI indicator, 3-12
HI LIMIT key, 5-16
Hi Tone
 Signaling Decoder screen, DTMF mode, 4-146
Hold All
 Range Hold, 4-215
HOLD key, 5-17
Home 1
 Signaling Encoder screen, LTR mode, 4-112
Home 2
 Signaling Encoder screen, LTR mode, 4-112
horizontal sweep
 oscilloscope, 4-62
HP 11807A software, running, 4-225
HP-IB
 address, external devices, 4-242
 address, printer, 4-245, 4-258
 address, test set, 4-254, 5-17
HP-IB Address
 I/O Configure screen, 4-254
HP-IB connector
 description, 5-6

Index-27
HP-IB control, 3-24
HP-IB operation
squelch effects, 4-43

| IBASIC controller
| configuring, 4-256
| IBASIC Echo
| I/O Configure screen, 4-254
| IBASIC IBASIC Ctrl
| Tests (Main Menu) screen, 4-227
| IBASIC programs
| running, 3-24
| IB_UTIL, 4-249
| ID 1
| Signaling Encoder screen, LTR mode, 4-113
| ID 2
| Signaling Encoder screen, LTR mode, 4-113
| identification
| mobile station subscriber, 4-174
| mobile telephone exchange, 4-171
| subscriber identity security challenge, 4-175
| subscriber identity security response, 4-175
| identification code
| radio, 4-91
| identifications
| base station, 4-172
| idle
| state, 4-101
| status, 4-120
| IF Filter
| Duplex Test screen, 4-27
| RF Analyzer screen, 4-41
| TX Test screen, 4-16
| IF filter bandwidth
| selecting, 4-16, 4-27, 4-41
| IF Unit-Under-Test Fails
| Tests (Execution Conditions) screen, 4-239
| impedance
| input, 5-2
| INCR ÷10 key, 5-16
| increment
| changing setting, 3-10
| INCR SET key, 5-16
| INCR x10 key, 5-16
| indicators
| oscilloscope input, 4-60
| status, 4-92
| individual call, 4-195
| information bits, 4-103
| input
| AF analyzer, 4-139, 4-141, 4-145, 4-148, 4-150, 4-158, 4-180, 4-193, 4-199
| analyzer, 4-70
| audio, 600 ohm impedance, 4-52
| audio, floating, 4-52
audio, grounded, 4-52
configuring, radio interface, 4-206
coupling, 4-27, 4-35, 4-81, 4-83, 4-86, 4-91, 4-94, 4-103, 4-112, 4-119, 4-173
gain, 4-55
oscilloscope, 4-60
RF, 4-16, 4-27, 4-42, 4-264
spectrum analyzer, 4-70
types of, 4-13, 4-23, 4-51
Input Attenuation
Adjacent Channel Power screen, 4-263
RF Analyzer screen, 4-41
Spectrum Analyzer screen, 4-76
input attenuation, 4-76
automatic control, 4-41, 4-76, 4-263
manual control, 4-41, 4-76, 4-263
setting, 4-41, 4-263
input attenuator
decoder interference, 4-41, 4-54
oscilloscope interference, 4-41, 4-54
Input Data
Radio Interface screen, 4-206
Input Gain
AF Analyzer screen, 4-55
input impedance
selecting, 5-2
Input Power
Signaling Decoder screen, AMPS-TACS mode, 4-159
Signaling Decoder screen, CDCSS mode, 4-149
Signaling Decoder screen, Digi Page mode, 4-151
Signaling Decoder screen, DTMF mode, 4-145
Signaling Decoder screen, EDACS mode, 4-199
Signaling Decoder screen, Func Gen mode, 4-139
Signaling Decoder screen, LTR Seq mode, 4-194
Signaling Decoder screen, NAMPS-NTACS mode, 4-159
Signaling Decoder screen, NMT mode, 4-180
Signaling Decoder screen, Tone Seq mode, 4-142
Input Port
Adjacent Channel Power screen, 4-264
Duplex Test screen, 4-27
RF Analyzer screen, 4-42
TX Test screen, 4-16
Insert Ch
Tests (Channel Information) screen, 4-229
Insert Stp
Tests (External Devices) screen, 4-242
Tests (Order of Tests) screen, 4-233
Inst#
Tests (External Devices) screen, 4-242
Inst Echo
I/O Configure screen, 4-254
INSTRUMENT STATE Keys, 5-17
intensity
setting, 2-1
Intensity
Configure screen, 2-1, 4-214
interactions
between fields, 3-1
between screens, 3-1
encoder/decoder, AMPS-TACS/NAMPS-NTACS, 4-97, 4-154
dercoder and decoder radio standards, 4-142
high-power/low-power measurements, 4-19, 4-266
Range Hold and other fields, 4-215
RF generator/analyzer, RF offset, 4-219
RX/TX screen automatic changes, 4-220
spectrum analyzer with RF generator, 4-72
spectrum analyzer with tracking generator, 4-73
twist and pre-emphasis, 4-88
interference
co-channel, 4-171
Internal
Oscilloscope screen, 4-63
internal clock
date, 4-212
Interrupt 1
Radio Interface screen, 4-206
inverted data, 4-92, 4-95, 4-104, 4-113, 4-119, 4-149, 4-152, 4-159, 4-194
I/O Config
Radio Interface screen, 4-206
I/O Configure screen
Data Length, 4-254
HP-IB Address, 4-254
IBASIC Echo, 4-254
Inst Echo, 4-254
Mode, 4-254
Parity, 4-254
Rcv Pace, 4-255
Save/Recall, 4-255
Serial Baud, 4-255
Serial In, 4-256
Stop Length, 4-256
view of, 4-253
Xmt Pace, 4-256
IQ RF IN connector
description, 5-5

J

JTACS
radio standard, 4-106

K

k1' through k3', 3-20
k1 through k5, 3-20
keyboard
external, 4-256
keying
effect on amplitude, 4-7, 4-25, 4-34, 4-72, 4-73
external transmitter, 4-15, 4-26, 4-41, 4-263
keys
ADRS, 5-17
backspace, 5-18
<-, 5-18
CANCEL, 5-18
CONFIG, 5-17
DATA, 5-16
DATA FUNCTIONS, 5-16
DUPLEX, 5-17
EEX, 5-16
ENTER, 5-16
front-panel, 5-16
HELP, 5-17
HI LIMIT, 5-16
HOLD, 5-17
INCR ÷10, 5-16
INCR SET, 5-16
INCR x10, 5-16
LOCAL, 5-17
LO LIMIT, 5-16
MEAS RESET, 5-17
MSSG, 5-17
NO, 5-16
ON/OFF, 5-16
POWER, 5-18
PRESET, 5-17
PREV, 5-17
PRINT, 5-17
RECALL, 5-17
REF SET, 5-16
RX, 5-17
SAVE, 5-17
SCREEN CONTROL, 5-17
SHIFT, 5-18
TESTS, 5-17
TX, 5-17
unit-of-measure, 5-16
YES, 5-16
key sequences
for front-panel controls, 3-25, 3-26
knob
CURSOR CONTROL, 5-19
SQUELCH, 5-19
VOLUME, 5-19

Latch
Service screen, 4-222
leakage
ACP measurement, 4-265
left arrow key, 5-18
level
ac, 3-6
ACP, 4-261
AF analyzer, 4-139, 4-142, 4-145, 4-149, 4-151, 4-159, 4-180, 4-194, 4-199
AF generator 1, 4-14
data, 4-102
oscilloscope, 4-61
reference for spectrum analyzer, 4-70
spectrum analyzer, 4-69
supervisory audio tone, 4-105
triggering, 4-140, 4-143, 4-149, 4-152, 4-160, 4-182, 4-194
Level (div)
Oscilloscope screen, 4-63
Library
Tests (Main Menu) screen, 4-227
limits
example, 3-13
indicators, 3-12
pass/fail, 3-12
removing, 3-13
setting, 3-12
Lines/Page
Print Configure screen, 4-257
Tests (Printer Setup) screen, 4-245
load
external resistance, 3-6, 4-5, 4-8, 4-54
Load Test
Signaling Decoder screen, NMT mode, 4-181
LOCAL key, 5-17
Logical ID
Signaling Encoder screen, EDACS mode, 4-119
logic trunked radio
decoder, 4-190
coder, 4-108
LO indicator, 3-12
LO LIMIT key, 5-16
loss
between ANT IN and device-under-test, 4-210
between DUPLEX OUT and device-under-test, 4-212
between RF IN/OUT and device-under-test, 4-218
Lo Tone
Signaling Decoder screen, DTMF mode, 4-146
Low Battery
Configure screen, 2-3, 4-214
low battery setting, 2-3, 4-214
Lower Limit
Tests (Pass/Fail Limits) screen, 4-235
low-level RF power measurements, 4-16, 4-18, 4-27, 4-29, 4-37, 4-42, 4-46, 4-57, 4-266
low limit
removing, 3-13
setting, 3-12
LTR
radio standard, 4-113, 4-194
LTR decoder mode
AF Anl In, 4-193
Arm Meas, 4-193
Data, 4-193
Data Rate, 4-193
Gate Time, 4-193
Input Level, 4-194
Polarity, 4-194
Single/Cont, 4-194
Standard, 4-194
Stop Meas, 4-194
Trig Level, 4-194
view of, 4-190
LTR encoder mode
AFGen2 To, 4-112
Area 1, 4-112
Area 2, 4-112
Audio Out, 4-112
Bursts, 4-112
Data Rate, 4-112
FM Coupling, 4-112
Free 1, 4-112
Free 2, 4-112
Goto 1, 4-112
Goto 2, 4-112
Home 1, 4-112
Home 2, 4-112
ID 1, 4-113
ID 2, 4-113
LTR message, 4-113
Polarity, 4-113
Send, 4-113
Send Mode, 4-113
Standard, 4-113
Stop, 4-113
view of, 4-108
LTR message
Signaling Encoder screen, LTR mode, 4-113
LTR tests
setup, 4-191
Lvl (marker)
Oscilloscope screen, 4-61
Spectrum Analyzer, 4-60
LVL_MTR, 4-248

Main Menu
Tests (Channel Information) screen, 4-230, 4-231
Tests (Execution Conditions) screen, 4-239
Tests (External Devices) screen, 4-242
Tests (IBASIC Controller) screen, 4-247
Tests (Order of Tests) screen, 4-233
Tests (Pass/Fail Limits) screen, 4-235
Tests (Printer Setup) screen, 4-245
Tests (Save/Delete Procedure) screen, 4-237
main traffic area, 4-176
main traffic channel
tnumber, 4-177
power, 4-177
manuals, 6-5
manual tuning, 4-17, 4-28, 4-45, 4-265
marker
spectrum analyzer, position, 4-75

Index-33
markers
 frequency, 4-69
 level, 4-61, 4-69
 oscilloscope, 4-65
 oscilloscope, peak+, 4-65
 oscilloscope, peak-, 4-65
 spectrum analyzer, 4-75
 spectrum analyzer, center frequency, 4-75
 spectrum analyzer, peak, 4-75
 spectrum analyzer, reference level, 4-75
 time, 4-61
 triggering, 4-61
Marker To
 Oscilloscope screen, 4-65
 Spectrum Analyzer screen, 4-75
mass storage
 loading NMT test from, 4-181
Meas Ch #
 Signaling Encoder screen, NMT mode, 4-173
Meas Field Strength
 Signaling Encoder screen, NMT mode, 4-174
MEAS RESET key, 5-17
Measure
 Signaling Decoder screen, NAMPS-NTACS mode, 4-159
measurement
 arming, analyzer, 4-140, 4-143, 4-146, 4-149, 4-152, 4-160, 4-181, 4-194, 4-200
 averaging, 3-14
 disarming, analyzer, 4-200
 limit indicators, 3-12
 removing limits, 3-13
 saving and recalling setups, 3-16
 setting a reference, 3-15
 setting limits, 3-12
 settling, 4-56
 speed, ACP measurement, 4-265
 stopping, analyzer, 4-194
 units, 3-7
measurement accuracy
 gain control for, 4-54
 zeroing for, 4-52
 zeroing power for, 4-19, 4-47, 4-266
measurements
 ac level, 3-6, 4-5, 4-23, 4-33, 4-41, 4-51
 ac level, peak detector, 4-55
 ACP reference, 4-262
 adjacent channel power, 4-260
 AF power, 3-6
 AM depth, 3-6
 arming decoder, 4-139, 4-141, 4-145, 4-148, 4-150, 4-158, 4-193, 4-199
 audio frequency, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
 audio power, 4-5
 beat frequency, 3-7
 CDCSS, 23-bit sequence, 4-148
 CDCSS code word, 4-148

Index-34
CDCSS data rate, 4-148
current, dc, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
DC current, 3-6
dc level, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
decoded frequency, 4-139
digital paging data rate, 4-151
distortion, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
DTMF decoder limits, 4-144
EDACS transmitter, 4-198
FM deviation, 3-6, 4-16, 4-27
frequency, DTMF, 4-146
frequency error, DTMF, 4-146
frequency error, transmitter, 4-17, 4-29, 4-37, 4-45, 4-57, 4-265
frequency, transmitter, 4-17, 4-29, 4-37, 4-45, 4-57, 4-265
LTR data rate, 4-193
mobile station receiver, 4-117
NMT data rate, 4-173
RECC, AMPS-TACS/NAMPS-NTACS, 4-156
RF, 3-5
RF power, 4-18, 4-29, 4-37, 4-46, 4-57, 4-266
rms potential, 4-5
RVC, AMPS-TACS, 4-156
RVC, NAMPS-NTACS, 4-157
signal/noise ratio, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
SINAD, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56, 4-109
SNR, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
stopping analyzer, 4-140, 4-143, 4-146, 4-149, 4-152, 4-160, 4-200
transmitter frequency, 3-5
transmitter frequency error, 3-5
transmitter power, 3-5, 4-18, 4-29, 4-37, 4-46, 4-57, 4-266
voltage, 4-5
memory
cards, 3-24
considerations, 3-19
total RAM, 4-220
memory overflow error, 3-19
message
beeper alert, 4-211
detection, 4-203
error, buffer overflow, 4-151
FOCC, AMPS-TACS/NAMPS-NTACS, 4-98
FVC, AMPS-TACS, 4-99
FVC, NAMPS-NTACS, 4-100
output, FOCC, 4-105
output, FVC, 4-105
query, 4-203
Message
Signaling Encoder screen, AMPS-TACS mode, 4-103
Signaling Encoder screen, NAMP-NTAC mode, 4-103
Message 1
LTR encoder, 4-108
Message 2
LTR encoder, 4-108
Message/DST
Signaling Encoder screen, NAMP-NTAC mode, 4-104
messages
 digital paging, 4-94
 error, Messages-1
 IBASIC error, 4-254
 operation, Messages-5
 types of, Messages-1
Message screen
 view of, 4-223
meter
 analog, 3-7
 changing display, 3-7
 changing settings, 3-7
 dc current, 5-4
 signal strength, 4-248
METER, 5-16
Mgmt/Maint
 Signaling Encoder screen, NMT mode, 4-174
MIC/ACC connector
 description, 5-7
 for keying external transmitter, 4-15, 4-26, 4-41, 4-263
Mic Pre-Emp
 RF Generator screen, 4-35
microphone, 4-25, 4-34
 keying, 4-7, 4-72, 4-73
 pre-emphasis, 4-35
 push-to-talk, 4-220
 use of, 5-7
mobile radio
 decoding LTR data, 4-191
mobile station
 connecting to test set, 4-116
 control channel, 4-116
 receiver testing, 4-115
 receiver test procedure, 4-116
 transmitter testing, 4-115
mobile subscriber number, 4-174
Mode
 I/O Configure screen, 4-254
 Signaling Decoder screen, AMPS-TACS, 4-153
 Signaling Decoder screen, CDCSS, 4-147
 Signaling Decoder screen, Digi Page, 4-150
 Signaling Decoder screen, DTMF, 4-144
 Signaling Decoder screen, EDACS, 4-195
 Signaling Decoder screen, Func Gen, 4-138
 Signaling Decoder screen, LTR, 4-190
 Signaling Decoder screen, MPT 1327, 4-201
 Signaling Decoder screen, NAMPS-NTACS, 4-153
 Signaling Decoder screen, NMT, 4-178
 Signaling Decoder screen, Tone Seq, 4-141
 Signaling Encoder screen, AMPS-TACS mode, 4-96
 Signaling Encoder screen, CDCSS, 4-89
 Signaling Encoder screen, Digi Page, 4-93
 Signaling Encoder screen, DTMF, 4-85
 Signaling Encoder screen, EDACS, 4-114
 Signaling Encoder screen, Func Gen, 4-80
Signaling Encoder screen, LTR, 4-108
Signaling Encoder screen, MPT 1327, 4-122
Signaling Encoder screen, NAMPS-NTACS mode, 4-96
Signaling Encoder screen, NMT, 4-107, 4-167
Signaling Encoder screen, Tone Seq, 4-82

Model
Print Configure screen, 3-11, 4-258
Tests (External Devices) screen, 4-243
Tests (Printer Setup) screen, 4-245

Modifications
hardware, 6-1

Mod In To
RF Generator screen, 4-35

Modulation
ACP for AM transmitter, 4-262
ACP for FM transmitter, 4-262
AM, 4-6, 4-24, 4-33, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118,
4-171, 4-261
carrier, ACP reference measurement, 4-262
external AM, 4-35
external, FM, 4-35
external, input, 4-35
FM, 4-6, 4-24, 4-33, 4-34, 4-80, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118,
4-171, 4-261
input, 4-35
input, coupling, 4-27, 4-35, 4-81, 4-83, 4-86, 4-91, 4-94, 4-103, 4-112,
4-119, 4-173
LTR encoder, 4-113
sensitivity, input, 4-35
turning off, 4-121

MODULATION INPUT connector
coupling, 4-27, 4-35, 4-81, 4-83, 4-86, 4-91, 4-94, 4-103, 4-112, 4-119,
4-173
description, 5-9
for modulating RF generator, 4-35

Monitor
external, 6-3

More
using More menu, 1-3

MPT 1327 decoder mode
Data Rate, 4-203
Timing, 4-203
view of, 4-201

MPT 1327 encoder mode
Address Qualifier, 4-126
Aloha Number, 4-126
Control Channel, 4-125
Delay Parameter, 4-127
FCC Msg and Buffers, 4-128
Msg Structures, 4-135
Radio Unit Under Test, 4-124
Simulated Calling Unit, 4-124
System Identity, 4-124
Test Mode, 4-125
Traffic Chan. Msg., 4-133
Traffic Channel, 4-125
undisplayed controls, 4-127
view of, 4-122
MPT 1327 tests
manual, 4-201
MS
definition, 4-164
MSN
Signaling Encoder screen, NMT mode, 4-174
MSSG key, 5-17
Msg Length
Signaling Encoder screen, Digi Page mode, 4-94
MTX
definition, 4-164
mW (milliwatt)
displaying results in, 3-7

N
names
printout, 4-245, 4-258
registers, 3-18
NAMPS-NTACS
control channel decoder, 4-153
forward control channel, 4-98
forward voice channel, 4-100
radio standard, 4-106
reverse control channel, 4-154
reverse voice channel, 4-155
voice channel decoder, 4-154
NAMPS-NTACS decoder mode
AF Anl In, 4-158
Arm Meas, 4-158
Channel, 4-158
Gate Time, 4-158
Input Level, 4-159
Measure, 4-159
Num of Bits, 4-159
Polarity, 4-159
RECC Data, 4-160
Single/Cont, 4-160
Stop Meas, 4-160
Trigger Pattern (bin), 4-161
Trig Level, 4-160
view of, 4-153
NAMPS-NTACS encoder mode
AFGen2 To, 4-101, 4-103, 4-105
Audio Out, 4-101
B/I Delay, 4-101
Bursts, 4-102
Busy/Idle, 4-101
Channel, 4-102
Data Level, 4-102
Data Rate, 4-102
DSAT, 4-102
FM Coupling, 4-103
Message, 4-103
Message/DST, 4-104
Polarity, 4-104
Send, 4-105
Send DSAT, 4-105
Send Mode, 4-106
Standard, 4-106
Stop, 4-106
Stop DSAT, 4-106
Stop Filler, 4-106
view of, 4-96
narrowband
 decoder, signaling standard, 4-200
 encoder, signaling standard, 4-120
 for 900 MHz system, 4-118
narrow-band advanced mobile phone service
 decoder, 4-153
narrowband advanced mobile phone service
 encoder, 4-96
narrow-band total access communication system
 decoder, 4-153
narrowband total access communication system
 encoder, 4-96
NATEL
 radio standard, 4-83
negative edge
 triggering, 4-63
NMT
 radio standard, 4-175, 4-182
NMT decoder mode
 AF Anl In, 4-180
 basic operation, 4-162
 D (direction), 4-179
 Exit Status, 4-180
 First Frame, 4-180
 Frame Digits, 4-179
 Input Level, 4-180
 Load Test, 4-181
 Num, 4-179
 Num Frames, 4-181
 Run Test, 4-181
 Single/Cont, 4-181
 Standard, 4-182
 Stop Test, 4-181
 Time, 4-179
 Trig Level, 4-182
 Type, 4-179
 view of, 4-178
NMT ENCODER
 Calling Channel Power, 4-173
NMT encoder mode
 Access Channel Number, 4-169
 Access Channel Power, 4-169
 Add Info, 4-170
 AFGen2 To, 4-171
Alarm Level High, 4-171
Alarm Level Low, 4-171
Area #, 4-171
Audio Out, 4-171
basic operation, 4-162
Batt Save, 4-172
BS Identity, 4-172
Calling Channel Number, 4-172, 4-173
Data Rate, 4-173
DUT, 4-173
FM Coupling, 4-173
Meas Ch #, 4-173
Meas Field Strength, 4-174
Mgmt/Maint, 4-174
MSN, 4-174
Password, 4-174
Phi Signal, 4-174
Pre-Emp, 4-174
SIS Challenge, 4-175
SIS Response, 4-175
Standard, 4-175
TCl, 4-176
Traffic Area, Alt, 4-176
Traffic Area, Main, 4-176
Traffic Channel (Alt), Number, 4-176
Traffic Channel (Alt), Power, 4-177
Traffic Channel (Main), Number, 4-177
Traffic Channel (Main), Power, 4-177
view of, 4-107, 4-167
NMT tests
automated with software, 4-164
base station, 4-168
creating, 4-183
manual, 4-163
mobile station, 4-168
mobile telephone exchange, 4-168
programming, 4-183
programming commands, 4-187
programming example, 4-184, 4-185
programming file format, 4-183
required settings, 4-165
saving, 4-183
stopping, 4-181
terms and abbreviations, 4-164
using external computer, 4-185
using RAM, 4-184
NO key, 5-16
No Pk/Avg
Spectrum Analyzer screen, 4-77
Nordic mobile telephone
decoder, 4-178
coder, 4-107, 4-167
Normalize
Spectrum Analyzer screen, 4-76
Notch Coupl
Configure screen, 4-214
used with variable notch, 4-55
notch filter
gain, 4-55
variable, 4-55
Notch Freq
AF Analyzer screen, 4-55
Notch Gain
AF Analyzer screen, 4-55
NPC
defined, 4-148
Num
Signaling Decoder screen, NMT mode, 4-179
Number of Pages
Signaling Decoder screen, Digi Page mode, 4-151
numbers
changing, 3-8
decimal format, 3-8
entering, 3-8
hexadecimal format, 3-8
scientific notation, 5-16
system, 3-8
numeric entries, 3-8
Num Frames
Signaling Decoder screen, NMT mode, 4-181
Num of Bits
Signaling Decoder screen, AMPS-TACS mode, 4-159
Signaling Decoder screen, NAMPS-NTACS mode, 4-159
octal code
for CDCSS encoder, 4-91
offset
example, 3-23
for dc bias, 4-35
frequency, receiver/transmitter, 4-213
frequency, RF generator/analyzer, 4-213
frequency, tracking generator, 4-73
measurement, zeroing, 4-52
RF generator/analyzer, 4-219
RF level, 4-219
setting, frequency, 3-23
tracking generator, 4-73
vertical, oscilloscope, 4-61, 4-62
Offset Freq (Tracking Gen)
Spectrum Analyzer screen, 4-73
off-the-air measurements, 4-16, 4-27, 4-42, 4-264, 5-1
Off Time
Signaling Decoder screen, DTMF mode, 4-146
Signaling Decoder screen, Tone Seq mode, 4-142
Signaling Encoder screen, DTMF mode, 4-86
Tone Sequence encoder, 4-84
ON/OFF key, 5-16
On Time
Signaling Decoder screen, DTMF mode, 4-146
Signaling Decoder screen, Tone Seq mode, 4-142
Signaling Encoder screen, DTMF mode, 4-86
tone sequence, 4-84
operating basics, 3-1
operation messages, Messages-5
options
adding, 6-1
Options
Tests (External Devices) screen, 4-243
oscilloscope
display, 4-65
input, 4-60
input attenuator, 4-41, 4-54
level, markers, 4-61
markers, level, 4-61
marker types, 4-65
resolution, 4-55
scale, 4-65
signal source, 4-55
squelch effects, 4-43
triggering display, 4-64
Oscilloscope screen
Auto/Norm, 4-63
Controls, 4-59
Cont/Single, 4-63
Internal, 4-63
Level (div), 4-63
Lvl (marker), 4-61
Main menu, 4-62
Marker menu, 4-65
Marker To, 4-65
Position, 4-65
Pre-Trig, 4-64
Time/div, 4-62
Time (marker), 4-61
Trig-Delay, 4-64
Trigger menu, 4-63
Vert/div, 4-62
Vert Offset, 4-62
view of, 4-59
output
coupling, 4-25, 4-35, 4-81, 4-82, 4-86, 4-91, 4-93, 4-101, 4-112, 4-118, 4-171
data, radio interface, 4-207
data stream, 4-92
digital paging data stream, 4-95
F0CC, 4-105
FVC, 4-105
RF, 4-8, 4-28, 4-36, 4-72, 4-74
tone sequence, 4-83, 4-87
tracking generator, 4-74
Output Data
Radio Interface screen, 4-207
Output Heading
Tests (Execution Conditions) screen, 4-239
Tests (Printer Setup) screen, 4-245
Output Port
 Duplex Test screen, 4-28
 RF Generator screen, 4-36
 RX Test screen, 4-8
 Spectrum Analyzer screen, 4-72
Output Results For
 Tests (Execution Conditions) screen, 4-239
 Tests (Printer Setup) screen, 4-245
Output Results To
 Tests (Execution Conditions) screen, 4-239
 Tests (Printer Setup) screen, 4-245
overpower
 at ANT IN, 3-5, 5-1
 at RF IN/OUT connector, 4-16, 4-27, 4-42, 4-264
damage, 1-7
damage, at ANT IN connector, 4-16, 4-18, 4-27, 4-29, 4-37, 4-42, 4-46,
 4-57, 4-70, 4-264
damage, at DUPLEX OUT, 4-8, 4-28, 4-36, 4-72
warning, 4-16, 4-27, 4-42, 4-264
overview of operation, 3-1

page
 selecting, 4-151
pager
 address, 4-150
 alpha-numeric format, 4-94, 4-95
code (address), 4-150
 data type, 4-150
numeric format, 4-95
 signal type, 4-150
testing, 4-93, 4-150
tone-only format, 4-95
Pager Alpha-Numeric Message
 Signaling Encoder screen, Digi Page mode, 4-94
Pager Code
 Signaling Encoder screen, Digi Page mode, 4-95
Pager Numeric Message
 Signaling Encoder screen, Digi Page mode, 4-95
Pager Type
 Signaling Encoder screen, Digi Page mode, 4-95
Parallel Data In
 Radio Interface screen, 4-207
Parallel Port connector
 description, 5-9
Parity
 I/O Configure screen, 4-254
 parity bits, 4-103
Parm Test Parameters
 Tests (Main Menu) screen, 4-227
 pass/fail limits, 3-12
password, 4-249
Password
 Signaling Encoder screen, NMT mode, 4-174

Index-43
Pass Word
Tests (Save/Delete Procedure) screen, 4-237
peak
hold, spectrum analyzer, 4-77
spectrum analyzer marker, 4-75
units, 4-6, 4-34, 4-80, 4-81
peak+
osilloscope marker, 4-65
peak detector, 4-15, 4-26, 4-53, 4-55
signal source, 4-55
peak−
osilloscope marker, 4-65
Phi Signal
Signaling Encoder screen, NMT mode, 4-174
Pk Det To
AF Analyzer screen, 4-55
Pk Hold
Spectrum Analyzer screen, 4-77
POCSAG
data rates, 4-94
radio standard, 4-95
polarity
radio interface strobe, 4-207
Polarity
Signaling Decoder screen, AMPS-TACS mode, 4-159
Signaling Decoder screen, CDCSS mode, 4-149
Signaling Decoder screen, Digi Page mode, 4-152
Signaling Decoder screen, EDACS mode, 4-199
Signaling Decoder screen, LTR mode, 4-194
Signaling Decoder screen, NAMP-NTAC mode, 4-159
Signaling Encoder screen, AMPS-TACS mode, 4-104
Signaling Encoder screen, CDCSS mode, 4-92
Signaling Encoder screen, Digi Page mode, 4-95
Signaling Encoder screen, EDACS mode, 4-119
Signaling Encoder screen, LTR mode, 4-113
Signaling Encoder screen, NAMP-NTAC mode, 4-104
Port/Sweep (Tracking Gen)
Spectrum Analyzer screen, 4-74
Position
Oscilloscope screen, 4-65
Spectrum Analyzer screen, 4-75
positive edge
triggering, 4-63
power
access channel, NMT encoder, 4-169
AF, 3-6
transmitter, 3-5
zero reference, 4-19, 4-47, 4-266
power cables, 6-7
POWER key, 5-18
power meter
zeroing, 4-19, 4-47, 4-266
power-on settings
changing, 3-18
power source
ac, 5-18
dc, 5-18
power switch, 5-18

Pre-Emp
- Signaling Encoder screen, DTMF mode, 4-87
- Signaling Encoder screen, NMT mode, 4-174
- Signaling Encoder screen, Tone Seq mode, 4-83

pre-emphasis
- 750 μs, 4-83, 4-87
- automatic control, 4-35
- bypassing, 4-35, 4-83, 4-87
- manual control, 4-35
- microphone, 4-35
- NMT encoder, 4-174
- tone sequence encoder, 4-83, 4-87

PRESET key, 5-17

preset state
- changing, 3-19
- default, 3-19

Pre-Trig
- Oscilloscope screen, 4-64

PREV key, 5-17

print
- screens, 3-11, 5-17

Print All
- Tests (Channel Information) screen, 4-230, 4-231
- Tests (External Devices) screen, 4-243
- Tests (Order of Tests) screen, 4-233
- Tests (Pass/Fail Limits) screen, 4-235

Print Configure screen
- Abort Print, 4-257
- FF at End, 4-257
- FF at Start, 4-257
- Lines/Page, 4-257
- Model, 3-11, 4-258
- Print Data Destination, 4-258
- Printer Address, 3-11, 4-258
- Printer Port, 3-11, 4-258
- Print Title, 3-11, 4-258
- settings, 3-11
- view of, 4-257

Print Data Destination
- Print Configure screen, 4-258

printer
- connecting, 4-245, 4-258
- model, 4-245, 4-258

Printer Address
- Print Configure screen, 3-11, 4-258
- Tests (Printer Setup) screen, 4-245

Printer Port
- Print Configure screen, 3-11, 4-258
- Tests (Printer Setup) screen, 4-245

printing
- aborting, 4-257
- form feed, 4-244, 4-257
lines per page, 4-245, 4-257
printer address, 4-245, 4-258
printer model, 4-245, 4-258
screens, 4-257
selecting printer port, 4-258
title, 4-245, 4-258
PRINT key, 5-17
Print Printer Setup
Tests (Main Menu) screen, 4-228
Print Title
Print Configure screen, 3-11, 4-258
priority fields, 3-2, 4-6, 4-7, 4-9, 4-13, 4-14, 4-15, 4-23, 4-24, 4-25, 4-26,
4-33, 4-34, 4-36, 4-44, 4-51, 4-52, 4-53, 4-56, 4-72, 4-139, 4-141, 4-145,
4-148, 4-158, 4-180, 4-261
Procedure Library
Tests (Save/Delete Procedure) screen, 4-237
Proc Save/Delete Procedure
Tests (Main Menu) screen, 4-228
Program
Tests (Main Menu) screen, 4-228
Programmer’s Guide, 3-24
programming
downloading, 4-186
NMT tests, 4-183
programming example
NMT test, external controller, 4-185
NMT test, internal controller, 4-184
programs
language, 4-225
running from memory card, 3-24
PTT
Configure screen, 4-220
push to talk, 4-220
radio
connecting, 1-7
LTR trunking data, 4-193
test software, 6-6
RADIO INTERFACE connector
description, 5-10
Radio Interface screen
Input Data, 4-206
Interrupt 1, 4-206
I/O Config, 4-206
Output Data, 4-207
Parallel Data In, 4-207
Send data, 4-207
Strobe Pol, 4-207
view of, 4-205
Radio Repeater
Signaling Decoder screen, EDACS mode, 4-199
radio standard
AMPS, 4-96, 4-153
AMPS-TACS, 4-106
Bell, 4-87
CCIR1, 4-83
CCIR2, 4-83
CCITT, 4-83
CDCSS, 4-92
digital paging decoder, 4-152
DTMF, 4-87
EDACS, 4800, 4-120, 4-200
EDACS, 9600, 4-120, 4-200
EIA, 4-83
EIA, 4-83
European, 4-83
GSC, 4-95
JTACS, 4-96, 4-106, 4-153
LTR, 4-113, 4-194
NAMPS, 4-96, 4-153
NAMPS-NTACS, 4-106
NATEL, 4-83
NMT, 4-175, 4-182
NMT, STD450, 4-163, 4-175
NMT, STD900, 4-163, 4-175
NTACS, 4-96, 4-153
POCSAG, 4-95
TACS, 4-96, 4-153
tone sequence, 4-83
ZVE11, 4-83
ZVE12, 4-83
Radio Unit Under Test
Signaling Encoder screen, MPT 1327 mode, 4-124
RAM
for NMT decoder tests, 4-184
procedure location, 4-228, 4-237
total available, 4-220
RAM Initialize
Service screen, 4-222
RAM_MNG, 4-249
ramp wave
function generator, 4-81
Range Hold
Configure screen, 4-215
Rcv Pace
I/O Configure screen, 4-255
recall
example, 3-16
instrument setups, 3-16
saved register with hardware change, 3-19
settings, 3-16
RECALL key, 5-17
using, 3-16
RECC
AMPS-TACS/NAMPS-NTACS, 4-154
measurements, AMPS-TACS/NAMPS-NTACS, 4-156
RECC Data
Signaling Decoder screen, NAMPS-NTACS mode, 4-160
receive pace, 4-255
Index-47
reference
 carrier, ACP, 4-262
 external input, 5-15
 external output, 5-15
 frequency, ACP measurement, 4-262
 level, spectrum analyzer, 4-70
 setting, 3-15, 4-61
 transmitter power, zero, 4-19, 4-47, 4-266
Ref indicator, 3-15
Ref Level
 Spectrum Analyzer screen, 4-70
REF SET, 3-15
REF SET key, 5-16
registers
 clearing, 3-18
 naming, 3-18
release
 global user key assignment, 3-22
 local user key assignment, 3-21
RELEASE, 3-21, 3-22
remote control, 3-24
remote operation, 3-24
 mode, 4-254
 squelch effects, 4-43
remove
 register contents, 3-18
 remove high/low limits, 3-13
 remove pass/fail limits, 3-13
repeater
 decoding LTR data, 4-192
 LTR system, 4-193
 simulating, EDACS, 4-114
Res BW
 Adjacent Channel Power screen, 4-265
resolution
 bandwidth, ACP measurement, 4-265
 bandwidth, spectrum analyzer, 4-68
 oscilloscope, 4-55
response timing
 MPT 1327 decoder, 4-204
reverse control channel, 4-97
AMPS-TACS/NAMPS-NTACS, 4-154
 decoding, AMPS-TACS/NAMPS-NTACS, 4-158
 measurements, AMPS-TACS/NAMPS-NTACS, 4-156
reverse RF power, 4-8, 4-28, 4-36, 4-72
reverse voice channel, 4-97
 AMPS-TACS, 4-155
 decoding, AMPS-TACS/NAMPS-NTACS, 4-158
 DSAT, NAMPS-NTACS, 4-159
 DST, NAMPS-NTACS, 4-159
 DTMF, NAMPS-NTACS, 4-159
 measurements, AMPS-TACS, 4-156
 measurements, NAMPS-NTACS, 4-157
 NAMPS-NTACS, 4-155
revision number

Index-48
firmware, 4-213
RF Analyzer screen
AC Level, 4-41, 4-51
Current, 4-44
DC Level, 4-44
Distn, 4-44
Ext TX key, 4-41
functional block diagram, 4-39
IF Filter, 4-41
Input Atten, 4-41
Input Port, 4-42
RF Cnt Gate, 4-42
Sensitivity, 4-43
SINAD, 4-44
SNR, 4-44
Squelch, 4-43
Tune Freq, 4-45
Tune Mode, 4-45
TX Freq Error, 4-45
TX Frequency, 4-45
TX Power, 4-46
TX Pwr Meas (8920B), 4-46
TX Pwr Zero, 4-47
view of, 4-39
RF auto-tuning, 4-17, 4-28, 4-45, 4-265
RF Chan Std
Configure screen, 4-216
RF Cnt Gate
RF Analyzer screen, 4-42
RF counter
sampling, 4-42
RF Display
Configure screen, 4-217
RF generator
amplitude, 4-7, 4-25, 4-34, 4-72
frequency, 4-9, 4-28, 4-36
microphone modulation, 5-7
output, 4-8, 4-36, 4-74
output port, 4-28, 4-36, 4-72
use with spectrum analyzer, 4-72
RF Generator screen
AC Level, 4-33
AF Freq, 4-36
AFGen1 Freq, 4-33
AFGen1 To, 4-33
AFGen2 Freq, 4-33
AFGen2 To, 4-34
Amplitude, 4-34
Atten Hold, 4-34
Audio Out, 4-35
Current, 4-36
DC Level, 4-36
Distn, 4-36
FM Coupling, 4-35
functional block diagram, 4-32
Mic Pre-Emp, 4-35
Mod In To, 4-35
Output Port, 4-36
RF Gen Freq, 4-36
SINAD, 4-36
SNR, 4-36
TX Freq Error, 4-37
TX Frequency, 4-37
TX Power, 4-37
view of, 4-31
RF Gen Freq
 Duplex Test screen, 4-28
 RF Generator screen, 4-36
 RX Test screen, 4-9
 Spectrum Analyzer screen, 4-72
RF Gen Volts
 Configure screen, 4-218
RFGen Volts
 Configure Screen, 2-2
RF In/Ant
 Spectrum Analyzer screen, 4-70
RF In/Out
 Configure screen, 4-218
RF IN/OUT connector
 connecting to, 1-7
 description, 5-12
 for ACP level measurements, 4-260, 4-261, 4-264
 for ACP ratio measurements, 4-260, 4-261
 for measuring high-power devices, 4-74
 for measuring transmitter power, 4-16, 4-18, 4-27, 4-29, 4-37, 4-42, 4-46, 4-57, 4-264
 for RF measurements, 4-16, 4-27, 4-42, 4-264
 for testing tranceivers, 4-72
 for testing transceivers, 4-8, 4-28, 4-36
 gain at, 4-218
 input attenuation, 4-41, 4-76, 4-263
 loss at, 4-218
 power measured at, 4-18, 4-29, 4-37, 4-46, 4-57, 4-266
RF input
 selecting port, 4-16, 4-27, 4-42, 4-264
RF Level Offset
 Configure screen, 4-219
RF measurements, 3-5
RF offset
 example, 3-23
 setting, 3-23
RF Offset
 Configure screen, 4-219
RF output
 selecting port, 4-8, 4-28, 4-36, 4-72, 4-74
RF power
 exceeding limits, 4-16, 4-27, 4-42, 4-264
 measurement, 4-18, 4-29, 4-37, 4-46, 4-57, 4-266
 zero reference, 4-19, 4-47, 4-266
RF voltage
setting, 2-2

rms
dectector, 4-15, 4-26, 4-53
measurement, 4-5
units, 4-6, 4-34, 4-80, 4-81

ROM
procedure location, 4-228, 4-237

ROM program
IB_UTIL, 4-249
RAM_MNG, 4-249

Run
Tests (Printer Setup) screen, 4-247

Run Test
Signaling Decoder screen, NMT mode, 4-181
Tests (Execution Conditions) screen, 4-240
Tests (Main Menu) screen, 4-228
Tests (Printer Setup) screen, 4-245

RVC
AMPS-TACS, 4-155
measurements, AMPS-TACS, 4-156
measurements, NAMPS-NTACS, 4-157
NAMPS-NTACS, 4-155

RX key, 5-17

RX Test
Signaling Decoder screen, EDACS mode, 4-199
Signaling Encoder screen, EDACS mode, 4-120

RX Test screen
AC Level, 4-5
AF Freq, 4-9
AFGen1 Freq, 4-5
AFGen1 To, 4-6
AFGen2 Freq, 4-5
AFGen2 To, 4-6
Amplitude, 4-7
Atten Hold, 4-7
Current, 4-9
DC Level, 4-9
Distn, 4-9
Ext Load R, 4-8
Filter 1 and Filter 2, 4-8
functional block diagram, 4-4
Output Port, 4-8
priority settings, 3-2
RF Gen Freq, 4-9
SINAD, 4-9
SNR, 4-9
view of, 4-3
RX/TX Cntl
Configure screen, 4-220
sampling
 AF counter, 4-51
 RF counter, 4-42
SAT Freq
 Signaling Encoder screen, AMPS-TACS mode, 4-105
save
 example, 3-16
 instrument setups, 3-16
 settings, 3-16
SAVE key, 5-17
 using, 3-16
Save/Recall
 I/O Configure screen, 4-255
 saving instrument setups, 3-16
 saving settings, 3-16
 S, battery save, 4-166
scale
 for oscilloscope, 4-65
scientific notation
 entering numbers, 5-16
scope
 horizontal sweep, 4-62
 input, 4-60
 level, markers, 4-61
 markers, 4-61
 triggering display, 4-64
 vertical offset, 4-62
Scope To
 AF Analyzer screen, 4-55, 4-60
screen control keys, 1-2
SCREEN CONTROL keys, 5-17
screen dump, 3-11, 4-257, 5-17
screens
 accessing, 1-2
 choosing which to use, 1-3
 controlling, 1-3
 go to previous, 5-17
 interactions, 3-1
 printing, 3-11, 4-257, 5-17
 RX/TX screen interactions, 4-220
 setting intensity, 2-1, 4-214
 using screen control keys, 1-2
SECURE..IT, 4-249
securing files, 4-249
Select Procedure Filename
 Tests (Main Menu) screen, 4-228
Select Procedure Location
 Tests (Main Menu) screen, 4-228
 Tests (Save/Delete Procedure) screen, 4-237
Send
 Signaling Encoder screen, AMPS-TACS mode, 4-105
 Signaling Encoder screen, CDCSS mode, 4-92
 Signaling Encoder screen, Digi Page mode, 4-95
 Signaling Encoder screen, DTMF mode, 4-87
 Signaling Encoder screen, LTR mode, 4-113

Index-52
Signaling Encoder screen, NAMP-NTAC mode, 4-105
Signaling Encoder screen, Tone Seq mode, 4-83
Send Data
 Radio Interface screen, 4-207
Send DSAT
 Signaling Encoder screen, NAMP-NTAC mode, 4-105
Send Filler
 Signaling Encoder screen, AMPS-TACS mode, 4-105
 Signaling Encoder screen, NAMP-NTAC mode, 4-105
Send Mode
 Signaling Encoder screen, AMPS-TACS mode, 4-106
 Signaling Encoder screen, CDCSS mode, 4-92
 Signaling Encoder screen, Digi Page mode, 4-95
 Signaling Encoder screen, DTMF mode, 4-87
 Signaling Encoder screen, LTR mode, 4-113
 Signaling Encoder screen, NAMP-NTAC mode, 4-106
 Signaling Encoder screen, Tone Seq mode, 4-83
sensitivity
 adverse effects on measurements, 4-43, 4-78
 ANT IN, 4-43, 4-78
 modulation input, 4-35
Sensitivity
 RF Analyzer screen, 4-43
 Spectrum Analyzer screen, 4-78
Seq Order Of Tests
 Tests (Main Menu) screen, 4-228
Seq Num
 tone sequence, 4-84
sequence
 CDCSS, 4-89
 DTMF, 4-85
 tone, 4-82
Serial Baud
 I/O Configure screen, 4-255
serial data word
 bits, 4-254
Serial In
 I/O Configure screen, 4-256
Serial No.
 Configure screen, 4-220
serial port
 configuring, 3-24
SERIAL PORT connector
 description, 5-13
Service screen
 Counter Connection, 4-221
 Frequency, 4-221
 Gate Time, 4-221
 Latch, 4-222
 RAM Initialize, 4-222
 Value, 4-222
 view of, 4-221
 Voltage, 4-222
 Voltmeter Connection, 4-222
settings
base, 3-19
beeper volume, 2-3
changing, field, 1-4
date, 2-2
default, 3-18, 3-19
meter, 3-7
power-on, 3-18
recalling, 3-16
RF voltage, 2-2
saving, 3-16
time, 2-2
Settling
 AF Analyzer screen, 4-56.
settling time
 AF measurements, 4-56
setups
 recalling, 3-16
 saving, 3-16
SHIFT key, 5-18
shock hazard, avoiding, 5-3
signaling decoder
 selecting, 4-137
Signaling Decoder screen
 Mode, AMPS-TACS, 4-153
 Mode, CDCSS, 4-147
 Mode, Digi Page, 4-150
 Mode, DTMF, 4-144
 Mode, EDACS, 4-195
 Mode, Func Gen, 4-138
 Mode, LTR, 4-190
 Mode, MPT 1327, 4-201
 Mode, NAMPS-NTACS, 4-153
 Mode, NMT, 4-178
 Mode, Tone Seq, 4-141
Signaling Decoder screen, AMPS-TACS mode
 AF Anl In, 4-158
 Arm Meas, 4-158
 Channel, 4-158
 Data (hex), 4-158
 Gate Time, 4-158
 Input Level, 4-159
 Num of Bits, 4-159
 Polarity, 4-159
 Single/Cont, 4-160
 Stop Meas, 4-160
 Trigger Pattern (bin), 4-161
 Trig Level, 4-160
Signaling Decoder screen, CDCSS mode
 AF Anl In, 4-148
 Arm Meas, 4-148
 Code (oct), 4-148
 Data (bin), 4-148
 Data Rate, 4-148
 Polarity, 4-149
 Stop Meas, 4-149
Trig Level, 4-149

Signaling Decoder screen, CSCSS mode
Input Level, 4-149
Single/Cont, 4-149

Signaling Decoder screen, Digi Page mode
AF Anl In, 4-150
Arm Mens, 4-150
Data Display, 4-150
Data Rate, 4-151
Display Page, 4-151
Gate Time, 4-151
Input Level, 4-151
Number of Pages, 4-151
Polarity, 4-152
Single/Cont, 4-152
Standard, 4-152
Stop Meas, 4-152
Trig Level, 4-152

Signaling Decoder screen, DTMF mode
AF Anl In, 4-145
Arm Mens, 4-145
Gate Time, 4-145
Hi Tone, 4-146
Input Level, 4-145
Lo Tone, 4-146
Off Time, 4-146
On Time, 4-146
Single/Cont, 4-146
Stop Meas, 4-146
Sym, 4-146

Signaling Decoder screen, EDACS mode
AF Anl In, 4-199
Arm Mens, 4-199
Data, 4-199
Input Level, 4-199
Polarity, 4-199
Radio/Repeater, 4-199
RX Test, 4-199
Single/Cont, 4-200
Standard, 4-200
Stop Meas, 4-200

Signaling Decoder screen, Func Gen mode
AF Anl In, 4-139
Arm Mens, 4-139
Frequency, 4-139
Gate Time, 4-139
Input Level, 4-139
Single/Cont, 4-140
Stop Meas, 4-140
Trig Level, 4-140

Signaling Decoder screen, LTR mode
AF Anl In, 4-193
Arm Mens, 4-193
Data, 4-193
Data Rate, 4-193
Gate Time, 4-193
Input Level, 4-194
Polarity, 4-194
Single/Cont, 4-194
Standard, 4-194
Stop Meas, 4-194
Trig Level, 4-194
Signaling Decoder screen, MPT 1327 mode
 Data Rate, 4-203
 Timing, 4-203
Signaling Decoder screen, NAMP-NTAC mode
 Polarity, 4-159
Signaling Decoder screen, NAMPS-NTACS mode
 AF A11 In, 4-158
 Arm Meas, 4-158
 Channel, 4-158
 Input Level, 4-159
 Measure, 4-159
 Num of Bits, 4-159
 RECC Data, 4-160
 Single/Cont, 4-160
 Stop Meas, 4-160
 Trigger Pattern (bin), 4-161
 Trig Level, 4-160
Signaling Decoder screen, NAMPS-NTACS Seq mode
 Gate Time, 4-158
Signaling Decoder screen, NMT mode
 AF A11 In, 4-180
 D (direction), 4-179
 Exit Status, 4-180
 First Frame, 4-180
 Frame Digits, 4-179
 Input Level, 4-180
 Load Test, 4-181
 Num, 4-179
 Num Frames, 4-181
 Run Test, 4-181
 Single/Cont, 4-181
 Standard, 4-182
 Stop Test, 4-181
 Time, 4-179
 Trig Level, 4-182
 Type, 4-179
Signaling Decoder screen, Tone Seq mode
 AF A11 In, 4-141
 Arm Meas, 4-141
 Freq, 4-142
 Freq Error, 4-142
 Gate Time, 4-142
 Input Level, 4-142
 Off Time, 4-142
 On Time, 4-142
 Single/Cont, 4-143
 Stop Meas, 4-143
 Sym, 4-143
Trig Level, 4-143
Signal Dev
Signal Encoder screen, EDACS mode, 4-120
signal encoder
selecting, 4-79
Signal Encoder screen
Mode, AMPS-TACS, 4-96
Mode, CDCSS, 4-89
Mode, Digi Page, 4-93
Mode, DTMF, 4-85
Mode, EDACS, 4-114
Mode, Func Gen, 4-80
Mode, LTR, 4-108
Mode, MPT 1327, 4-122
Mode, NAMPS-NTACS, 4-96
Mode, NMT, 4-107, 4-167
Mode, Tone Seq, 4-82
Signal Encoder screen, AMPS-TACS mode
AFGen2 To, 4-101, 4-103
Audio Out, 4-101
B/I Delay (FOCC), 4-101
Bursts, 4-102
Busy/Idle, 4-101
Channel, 4-102
Data Level, 4-102
Data Rate, 4-102
FM Coupling, 4-103
Message, 4-103
Polarity, 4-104
SAT Freq, 4-105
Send, 4-105
Send Filler, 4-105
Send Mode, 4-106
Standard, 4-106
Stop, 4-106
Stop Filler, 4-106
Signal Encoder screen, CDCSS mode
AFGen2 To, 4-91
Audio Out, 4-91
Bursts, 4-91
Code, 4-91
Data Rate, 4-91
FM Coupling, 4-91
Polarity, 4-92
Send, 4-92
Send Mode, 4-92
Standard, 4-92
Stop, 4-92
TOC Time, 4-92
Signal Encoder screen, Digi Page mode
AFGen2 To, 4-93
Audio Out, 4-93
Bursts, 4-94
Data Rate, 4-94
Error Bit, 4-94
FM Coupling, 4-94
Function, 4-94
Msgg Length, 4-94
Pager Alpha-Numeric Message, 4-94
Pager Code, 4-95
Pager Numeric Message, 4-95
Pager Type, 4-95
Polarity, 4-95
Send, 4-95
Send Mode, 4-95
Standard, 4-95
Stop, 4-95

Signaling Encoder screen, DTMF mode
AFGen2 To, 4-86
Audio Out, 4-86
Bursts, 4-86
FM Coupling, 4-86
Off Time, 4-86
On Time, 4-86
Pre-Emp, 4-87
Send, 4-87
Send Mode, 4-87
Standard, 4-87
Stop, 4-87
Symbol Frequencies, 4-88
Twist, 4-88

Signaling Encoder screen, EDACS mode
AFGen2 To, 4-118
Audio Out, 4-118
Control Channel, Number, 4-118
Control Channel, RX Frequency, 4-118
Control Channel, TX Frequency, 4-118
Data Rate, 4-118
FM Coupling, 4-119
Group ID, 4-119
Handshake, 4-119
Logical ID, 4-119
Polarity, 4-119
RX Test, 4-120
Signaling Dev, 4-120
Site ID, 4-120
Standard, 4-120
Status, 4-120
Stop, 4-121
Sub-Audible Dev, 4-121
Working Channel, Number, 4-121
Working Channel, RX Frequency, 4-121
Working Channel, TX Frequency, 4-121

Signaling Encoder screen, Func Gen mode
AFGen2 Freq, 4-80
AFGen2 To, 4-80
Audio Out, 4-81
FM Coupling, 4-81
Sine Units, 4-81
Waveform, 4-81

Index-58
Signaling Encoder screen, LTR mode
AFGen2 To, 4-112
Area 1, 4-112
Area 2, 4-112
Audio Out, 4-112
Bursts, 4-112
Data Rate, 4-112
FM Coupling, 4-112
Free 1, 4-112
Free 2, 4-112
Goto 1, 4-112
Goto 2, 4-112
Home 1, 4-112
Home 2, 4-112
ID 1, 4-113
ID 2, 4-113
LTR message, 4-113
Polarity, 4-113
Send, 4-113
Send Mode, 4-113
Standard, 4-113
Stop, 4-113

Signaling Encoder screen, MPT 1327 mode
Address Qualifier, 4-126
Aloha Number, 4-126
Control Channel, 4-125
Radio Unit Under Test, 4-124
Simulated Calling Unit, 4-124
System Identity, 4-124
Test Mode, 4-125
Traffic Channel, 4-125
undisplayed controls, 4-127

Signaling Encoder screen, NAMP-NTAC mode
AFGen2 To, 4-101, 4-103
Audio Out, 4-101
B/I Delay (FOCC), 4-101
Bursts, 4-102
Busy/Idle, 4-101
Channel, 4-102
Data Level, 4-102
Data Rate, 4-102
DSAT, 4-102
FM Coupling, 4-103
Message, 4-103
Message/DST, 4-104
Polarity, 4-104
Send, 4-105
Send DSAT, 4-105
Send Filler, 4-105
Send Mode, 4-106
Standard, 4-106
Stop, 4-106
Stop DSAT, 4-106
Stop Filler, 4-106

Signaling Encoder screen, NMT mode
Access Channel Number, 4-169
Access Channel Power, 4-169
Add Info, 4-170
AFGen2 To, 4-171
Alarm Level High, 4-171
Alarm Level Low, 4-171
Area #, 4-171
Audio Out, 4-171
Batt Save, 4-172
BS Identity, 4-172
Calling Channel Number, 4-172, 4-173
Data Rate, 4-173
DUT, 4-173
FM Coupling, 4-173
Meas Ch #, 4-173
Meas Field Strength, 4-174
Mgmt/Maint., 4-174
MSN, 4-174
Password, 4-174
Phi Signal, 4-174
Pre-Emp, 4-174
SIS Challenge, 4-175
SIS Response, 4-175
Standard, 4-175
TCI, 4-176
Traffic Area, Alt, 4-176
Traffic Area, Main, 4-176
Traffic Channel (Alt), Number, 4-176
Traffic Channel (Alt), Power, 4-177
Traffic Channel (Main), Number, 4-177
Traffic Channel (Main), Power, 4-177
Signaling Encoder screen, Tone Seq mode
AFGen2 To, 4-82
Audio Out, 4-82
Bursts, 4-83
FM Coupling, 4-83
Pre-Emp, 4-83
Send, 4-83
Send Mode, 4-83
Standard, 4-83
Stop, 4-83
Symbol Definition, 4-84
Symbol Sequence, 4-84
signaling format
AMPS, 4-96, 4-153
JTACS, 4-96, 4-153
NAMPS, 4-96, 4-153
NTACS, 4-96, 4-153
TACS, 4-96, 4-153
signaling standard
narrowband, 4-120, 4-200
wideband, 4-120, 4-200
signal level
data, 4-102
signal/noise ratio
measurement, 3-6
operation, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
signal strength
 Phi signal, 4-174
signal strength meter, 4-248
signal type
 pager, 4-150
Simulated Calling Unit
 Signaling Encoder screen, MPT 1327 mode, 4-124
SINAD
 AF Analyzer screen, 4-56
 Duplex Test screen, 4-24
 measurement, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
 measurement, amplifier, 4-55
 measurement, variable notch filter, 4-55
 RF Analyzer screen, 4-44
 RF Generator screen, 4-36
 RX Test screen, 4-9
 TX Test screen, 4-13
Sine Units
 Signaling Encoder screen, Func Gen mode, 4-81
sine wave
 function generator, 4-5, 4-81
Single/Cont
 Signaling Decoder screen, AMPS-TACS mode, 4-160
 Signaling Decoder screen, CDCSS mode, 4-149
 Signaling Decoder screen, Digi Page mode, 4-152
 Signaling Decoder screen, DTMF mode, 4-146
 Signaling Decoder screen, EDACS mode, 4-200
 Signaling Decoder screen, Func Gen mode, 4-140
 Signaling Decoder screen, LTR mode, 4-194
 Signaling Decoder screen, NAMPS-NTACS mode, 4-160
 Signaling Decoder screen, NMT mode, 4-181
 Signaling Decoder screen, Tone Seq mode, 4-143
SIS Challenge
 Signaling Encoder screen, NMT mode, 4-175
SIS Response
 Signaling Encoder screen, NMT mode, 4-175
Site ID
 Signaling Encoder screen, EDACS mode, 4-120
slot timing
 MPT 1327 decoder, 4-203
Sngl Step
 Tests (IBASIC Controller) screen, 4-247
SNR
 AF Analyzer screen, 4-56
 Duplex Test screen, 4-24
 measurement, 3-6, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
 operation, 4-9, 4-13, 4-24, 4-36, 4-44, 4-56
 RF Analyzer screen, 4-44
 RF Generator screen, 4-36
 RX Test screen, 4-9
 TX Test screen, 4-13
software
 automated testing, 6-6
for automated testing, 4-96
running, 4-225
source
oscilloscope, 4-55
peak detector, 4-55
span
effect on AF analyzer, 4-71
spectrum analyzer, 4-68
Span
Spectrum Analyzer screen, 4-71
speaker
ALC, 4-57
disabling, 4-57
volume control, 4-57
Speaker ALC
AF Analyzer screen, 4-57
Speaker Vol
AF Analyzer screen, 4-57
Spec#
Tests (Order of Tests) screen, 4-235
specifications
setting limits, 4-234
Spec Pass/Fail Limits
Tests (Main Menu) screen, 4-228
spectrum analyzer
calibration, 4-68
frequency, markers, 4-69
input port, 4-70
level, markers, 4-69
marker position, 4-75
markers, 4-75
markers, frequency, 4-69
markers, level, 4-69
measuring low-level RF power, 4-16, 4-18, 4-27, 4-29, 4-37, 4-42, 4-46,
4-57, 4-266
resolution bandwidth, 4-68
span, 4-68
squelch effects, 4-43
sweep rate, 4-68
tratces, 4-76
upgrade kit, 4-78
use of, 4-16, 4-18, 4-27, 4-29, 4-37, 4-42, 4-46, 4-57, 4-266
use with RF generator, 4-72
use with tracking generator, 4-73
Spectrum Analyzer screen
Amplitude, 4-72
Amplitude (Tracking Gen), 4-73
Auxiliary menu, 4-76
Avg 1-100, 4-77
Center Freq, 4-70
Controls, 4-68
Freq (marker), 4-69
Input Atten, 4-76
Lvl (marker), 4-69
Main menu, 4-70

Index-62
Marker menu, 4-75
Marker To, 4-75
No Pk/Avg, 4-77
Normalize, 4-76
Offset Freq (Tracking Gen), 4-73
Output Port (RF Gen), 4-72
Pk Hold, 4-77
Port/Sweep (Tracking Gen), 4-74
Position, 4-75
Ref Level, 4-70
RF Gen Freq, 4-72
RF In/Ant, 4-70
Sensitivity, 4-78
Span, 4-71
view of, 4-67

spurs
ACP measurement, 4-265

square wave
function generator, 4-81

squelch
CDCSS, 4-89
digital decoding, 4-147
effects on decoder, 4-43
effects on HP-IB operation, 4-43
effects on oscilloscope, 4-43
effects on remote operation, 4-43
effects on spectrum analyzer, 4-43
fixed level, 4-43
manual control, 4-43
off, 4-43
using attenuator hold, 4-7, 4-25, 4-34

Squelch
RF Analyzer screen, 4-43
squelch control, 5-19

Standard
Signaling Decoder screen, Digi Page mode, 4-152
Signaling Decoder screen, EDACS mode, 4-200
Signaling Decoder screen, LTR mode, 4-194
Signaling Decoder screen, NMT mode, 4-182
Signaling Encoder screen, AMPS-TACS mode, 4-106
Signaling Encoder screen, CDCSS mode, 4-92
Signaling Encoder screen, Digi Page mode, 4-95
Signaling Encoder screen, DTMF mode, 4-87
Signaling Encoder screen, EDACS mode, 4-120
Signaling Encoder screen, LTR mode, 4-113
Signaling Encoder screen, NAMP-NTAC mode, 4-106
Signaling Encoder screen, NMT mode, 4-175
Signaling Encoder screen, Tone Seq mode, 4-83

status
control, 4-120
idle, 4-120
indicators, 4-92
working, 4-120

Status
Signaling Encoder screen, EDACS mode, 4-120
STD450 NMT radio standard, 4-163, 4-175
STD900 NMT radio standard, 4-163, 4-175

Step#
Tests (Order of Tests) screen, 4-233

Stop
 Signaling Encoder screen, AMPS-TACS mode, 4-106
 Signaling Encoder screen, CDCSS mode, 4-92
 Signaling Encoder screen, Digi Page mode, 4-95
 Signaling Encoder screen, DTMF mode, 4-87
 Signaling Encoder screen, EDACS mode, 4-121
 Signaling Encoder screen, LTR mode, 4-113
 Signaling Encoder screen, NAMP-NTAC mode, 4-106
 Signaling Encoder screen, Tone Seq mode, 4-83
stop bit, 4-256

Stop DSAT
 Signaling Encoder screen, NAMP-NTAC mode, 4-106

Stop Filler
 Signaling Encoder screen, AMPS-TACS mode, 4-106
 Signaling Encoder screen, NAMP-NTAC mode, 4-106

Stop Length
 I/O Configure screen, 4-256

Stop Meas
 Signaling Decoder screen, AMPS-TACS mode, 4-160
 Signaling Decoder screen, CDCSS mode, 4-149
 Signaling Decoder screen, Digi Page mode, 4-152
 Signaling Decoder screen, DTMF mode, 4-146
 Signaling Decoder screen, EDACS mode, 4-200
 Signaling Decoder screen, Func Gen mode, 4-140
 Signaling Decoder screen, LTR mode, 4-194
 Signaling Decoder screen, NAMP-NTACS mode, 4-160
 Signaling Decoder screen, Tone Seq mode, 4-143

Stop Test
 Signaling Decoder screen, NMT mode, 4-181

Strobe Pol
 Radio Interface screen, 4-207

Sub-Audible Dev
 Signaling Encoder screen, EDACS mode, 4-121
subscriber identity security challenge, 4-175
subscriber identity security response, 4-175
subscriber number, 4-174
support, 6-12
sweep
 frequency range, tracking generator, 4-71
 oscilloscope, 4-62
 rate, spectrum analyzer, 4-68
 time per division, 4-62
 tracking generator, 4-74

Sym
 Signaling Decoder screen, DTMF mode, 4-146
 Signaling Decoder screen, Tone Seq mode, 4-143
symbol
 for tone sequence, 4-84, 4-143, 4-146
 frequency, 4-142, 4-143, 4-146
 frequency error, 4-142
 hexadecimal number, 4-84
Symbol Definition
 Signaling Encoder screen, Tone Seq mode, 4-84
Symbol Frequencies
 Signaling Encoder screen, DTMF mode, 4-88
Symbol Sequence
 Signaling Encoder screen, Tone Seq mode, 4-84
sync delay
 word, 4-101
synchronization sequence
 decoder, MPT 1327, 4-202
syntax
 NMT programming, 4-187
System Identity
 Signaling Encoder screen, MPT 1327 mode, 4-124

TA1, main traffic area, 4-166
TA2, alternate traffic area, 4-166
talk & listen, 4-254
tariff class information, 4-176
TC1, main traffic channel, 4-166
TC2, alternate traffic channel, 4-166
TCI
 Signaling Encoder screen, NMT mode, 4-176
terminal, ASCII, 3-24
Test Mode
 Signaling Encoder screen, MPT 1327 mode, 4-125
Test Name
 Tests (Order of Tests) screen, 4-233
Test Procedure Run Mode
 Tests (Execution Conditions) screen, 4-240
Tests (Channel Information) screen, 4-226
 Delete Ch, 4-229
 Insert Ch, 4-229
 Main Menu, 4-230, 4-231
 Print All, 4-230, 4-231
 view of, 4-229
test set
 configuring, 2-1
Tests (Execution Conditions) screen, 4-226
 Autostart Test Procedure on Power-Up, 4-238
 Continue, 4-239
 If Unit-Under-Test Fails, 4-239
 Main Menu, 4-239
 Output Heading, 4-239
 Output Results For, 4-239
 Output Results To, 4-239
 Run Test, 4-240
 Test Procedure Run Mode, 4-240
 view of, 4-238
Tests (External Devices) screen, 4-226
 Addr, 4-242
 Calling Name, 4-242
 Delet Ins, 4-242
 External Disk Specification, 4-242
Insr Ins, 4-242
Inst#, 4-242
Main Menu, 4-242
Model, 4-243
Options, 4-243
Output Heading, 4-243
view of, 4-241
Tests (IBASIC Controller) screen, 4-226
Clr Scr, 4-247
Continue, 4-247
Main Menu, 4-247
Sngl Step, 4-247
view of, 4-246
TESTS key, 5-17
Tests (Main Menu) screen, 4-226
Cnfg External Devices, 4-227
Continue, 4-227
Description, 4-227
Exec Execution Cond, 4-227
Freq Channel Information, 4-227
IBASIC IBASIC Ctrl, 4-227
Library, 4-227
Parm Test Parameters, 4-227
Pass/Fail Limits, 4-228
Print Printer Setup, 4-228
Proc Save/Delete Procedure, 4-228
Program, 4-228
Run Test, 4-228
Select Procedure Filename, 4-228
Select Procedure Location, 4-228
Seqn Order of Tests, 4-228
view of, 4-227
Tests (Order of Tests) screen, 4-226
All Chans?, 4-233
Delet Stp, 4-233
Insr Stp, 4-233
Main Menu, 4-233
Output Heading, 4-233
Spec#, 4-235
Step#, 4-233
Test Name, 4-233
view of, 4-232
Tests (Pass/Fail Limits) screen, 4-226
Check, 4-235
Lower Limit, 4-235
Main Menu, 4-235
Output Heading, 4-235
Units, 4-235
Upper Limit, 4-235
view of, 4-234
Tests (Printer Setup) screen, 4-226
Continue, 4-244
FF at End, 4-244
FF at Start, 4-244
Lines/Page, 4-245
Main Menu, 4-245
Model, 4-245
Output Heading, 4-245
Output Results For, 4-245
Output Results To, 4-245
Printer Address, 4-245
Printer Port, 4-245
Run, 4-247
Run Test, 4-245
view of, 4-244
Tests (Save/Delete Procedure) screen, 4-226
Code Location, 4-236
Enter Procedure Filename, 4-236
Main Menu, 4-237
Pass Word, 4-237
Select Procedure Location, 4-237
view of, 4-236
Tests (Test Parameters) screen, 4-226
view of, 4-231
test subsystem, 4-226
time
markers, 4-61
Time
Configure screen, 2-2, 4-220
Signaling Decoder screen, NMT mode, 4-179
time and date, 2-2
timebase
decoder, 4-137
external input, 5-15
external output, 5-15
Time/div
Oscilloscope screen, 4-62
Time (marker)
Oscilloscope screen, 4-61
timer
low battery, 2-3, 4-214
timing
response, MPT 1327 decoder, 4-204
slot, MPT 1327 decoder, 4-203
Timing
Signaling Decoder screen, MPT 1327 mode, 4-203
title
for printout, 4-245, 4-258
TOC
defined, 4-148
TOC Time
Signaling Encoder screen, CDCSS mode, 4-92
tone length
DTMF encoder, 4-86
tone sequence decoder, 4-142, 4-146
Tone Sequence encoder, 4-84
tone-only operation
digital paging, 4-94
tone sequence
burst, 4-83, 4-87, 4-92, 4-95, 4-106, 4-113
continuous, 4-83, 4-87, 4-95, 4-106, 4-113
editing, 4-84
entering, 4-84
outputting, 4-83
single, 4-83, 4-87, 4-92, 4-95, 4-106, 4-113
stepped, 4-83, 4-87, 4-106, 4-113
stopping, 4-83, 4-87, 4-92, 4-95, 4-106, 4-113
symbol frequency, 4-142
symbol frequency error, 4-142
using frequencies, 4-84
using hexadecimal numbers, 4-84
using relative amplitude, 4-84
Tone Sequence decoder mode
 AF Anl In, 4-141
 Arm Meas, 4-141
 Freq, 4-142
 Freq Error, 4-142
 Gate Time, 4-142
 Input Level, 4-142
 Off Time, 4-142
 On Time, 4-142
 Single/Cont, 4-143
 Stop Meas, 4-143
 Sym, 4-143
 Trig Level, 4-143
 view of, 4-141
Tone Sequence encoder mode
 AFGen2 To, 4-82
 Audio Out, 4-82
 Bursts, 4-83
 FM Coupling, 4-83
 Pre-Emp, 4-83
 Send, 4-83
 Send Mode, 4-83
 Standard, 4-83
 Stop, 4-83
 Symbol Definition, 4-84
 Symbol Sequence, 4-84
 view of, 4-82
To Screen
 using the To Screen menu, 1-3
total access communications systems
decoder, 4-153
encoder, 4-96
total access communication system for Japan
decoder, 4-153
encoder, 4-96
Total RAM
 Configure screen, 4-220
trace
 comparison, spectrum analyzer, 4-76
 spectrum analyzer, 4-76
tracking generator
 amplitude, 4-73
 frequency, 4-70
frequency offset, 4-73
offset, 4-73
output, 4-74
output port, 4-74
sweep, 4-74
use with spectrum analyzer, 4-73
Traffic Area, Alt
 Signaling Encoder screen, NMT mode, 4-176
Traffic Area, Main
 Signaling Encoder screen, NMT mode, 4-176
traffic channel
 channel number, NMT, 4-172
Traffic Channel
 Signaling Encoder screen, MPT 1327 mode, 4-125
Traffic Channel (Alt), Number
 Signaling Encoder screen, NMT mode, 4-176
Traffic Channel (Alt), Power
 Signaling Encoder screen, NMT mode, 4-177
Traffic Channel (Main), Number
 Signaling Encoder screen, NMT mode, 4-177
Traffic Channel (Main), Power
 Signaling Encoder screen, NMT mode, 4-177
training, 6-12
transmit pace, 4-256
transmitter
 keying, 4-15, 4-26, 4-41, 4-263
transmitter frequency, 3-5
 measurement, 4-17, 4-29, 4-37, 4-45, 4-57, 4-265
transmitter frequency error, 3-5
 measurement, 4-17, 4-29, 4-37, 4-45, 4-57, 4-265
transmitter power, 3-5
 fast (8920B), 4-46
 fast (HP 8920B), 4-18, 4-266
 measurement, 4-18, 4-29, 4-37, 4-46, 4-57, 4-266
 zero reference, 4-19, 4-47, 4-266
transmitter testing
 EDACS, 4-196
triangle wave
 function generator, 4-81
Trig-Delay
 Oscilloscope screen, 4-64
triggering
 automatic, 4-63
 bit position, 4-161
 continuous, 4-63
 decoder, AMPS-TACS/NAMPS-NTACS, 4-158, 4-160
 decoder, CDCSS, 4-148, 4-149
 decoder, digital paging, 4-150, 4-152
 decoder, DTMF, 4-145, 4-146
 decoder, EDACS, 4-199, 4-200
 decoder, function generator, 4-139, 4-140
 decoder, LTR, 4-193, 4-194
 decoder, MPT 1327, 4-202
 decoder, NMT, 4-181
 decoder, tone sequence, 4-141, 4-143
display, 4-64
encoder, oscilloscope, 4-63
external, oscilloscope, 4-63
gate time, 4-139, 4-142, 4-145, 4-151, 4-158, 4-193
input level, 4-139, 4-142, 4-145, 4-149, 4-151, 4-159, 4-180, 4-194, 4-199
internal, 4-63
internal, oscilloscope, 4-63
level, 4-63, 4-140, 4-143, 4-149, 4-152, 4-160, 4-182, 4-194
negative edge, 4-63
NMT alarm, 4-171
positive edge, 4-63
radio interface, 4-206
signal, 4-63
source, oscilloscope, 4-63
time, 4-61
Trigger Pattern (bin)
Signaling Decoder screen, AMPS-TACS mode, 4-161
Signaling Decoder screen, NAMPS-NTACS mode, 4-161
Trig Level
Signaling Decoder screen, AMPS-TACS mode, 4-160
Signaling Decoder screen, CDCSS mode, 4-149
Signaling Decoder screen, Digi Page mode, 4-152
Signaling Decoder screen, Func Gen mode, 4-140
Signaling Decoder screen, LTR mode, 4-194
Signaling Decoder screen, NAMPS-NTACS mode, 4-160
Signaling Decoder screen, NMT mode, 4-182
Signaling Decoder screen, Tone Seq mode, 4-143
troubleshooting, 4-221
trunked receiver channel
home channel, 4-109
trunked transmit channel
home channel, 4-110
trunking data, 4-108
trunking message, 4-108
Tune Freq
Adjacent Channel Power screen, 4-265
Duplex Test screen, 4-28
RF Analyzer screen, 4-45
TX Test screen, 4-17
Tune Mode
Adjacent Channel Power screen, 4-265
Duplex Test screen, 4-28
RF Analyzer screen, 4-45
TX Test screen, 4-17
tuning
automatic, 4-17, 4-28, 4-45, 4-265
channel, automatic, 4-217
manual, 4-17, 4-28, 4-45, 4-265
turning off squelch, 4-43
turn off code
CDCSS encoder, 4-90
frequency, 4-91
output time, 4-92
twist
recommended settings, 4-88
Twist
 Signaling Encoder screen, DTMF mode, 4-88
 twist and pre-emphasis
 interactions, 4-88
TX Freq Error
 Adjacent Channel Power screen, 4-265
 AF Analyzer screen, 4-57
 Duplex Test screen, 4-29
 RF Analyzer screen, 4-45
 RF Generator screen, 4-37
 TX Test screen, 4-17
TX Frequency
 Adjacent Channel Power screen, 4-265
 AF Analyzer screen, 4-57
 Duplex Test screen, 4-29
 RF Analyzer screen, 4-45
 RF Generator screen, 4-37
 TX Test screen, 4-17
TX key, 5-17
TX Power
 Adjacent Channel Power screen, 4-266
 AF Analyzer screen, 4-57
 Duplex Test screen, 4-29
 RF Analyzer screen, 4-46
 RF Generator screen, 4-37
 TX Test screen, 4-18
TX Pwr Meas (8920B)
 RF Analyzer screen, 4-46
TX Pwr Meas (HP 8920B)
 Adjacent Channel Power screen, 4-266
 TX Test screen, 4-18
TX Pwr Zero
 Adjacent Channel Power screen, 4-266
 RF Analyzer screen, 4-47
 TX Test screen, 4-19
TX Test screen
 AF Anl In, 4-13
 AF Freq, 4-13
 AFGen1 Freq, 4-14
 AFGen1 Lvl, 4-14
 Current, 4-13
 DC Level, 4-13
 De-emphasis, 4-14
 Detector, 4-15
 Distn, 4-13
 Ext TX key, 4-15
 Filter 1 and Filter 2, 4-16
 FM Deviation, 4-16
 functional block diagram, 4-12
 IF Filter, 4-16
 Input Port, 4-16
 priority settings, 3-2
 SINAD, 4-13
 SNR, 4-13
 Tune Freq, 4-17
Tune Mode, 4-17
TX Freq Error, 4-17
TX Frequency, 4-17
TX Power, 4-18
TX Pwr Meas (HP 8920B), 4-18
TX Pwr Zero, 4-19
TX Test Screen
view of, 4-11
Type
Signaling Decoder screen, NMT mode, 4-179
type bits, 4-103

Undisplayed controls
Signaling Encoder screen, MPT 1327 mode, 4-127
unit-of-measure
changing, 3-7, 3-9
converting, 3-7, 3-9
keys, 5-16
units
peak, 4-81
rms, 4-81
Units
Tests (Pass/Fail Limits) screen, 4-235
universal noise
function generator, 4-81
up arrow key, 5-16
upgrades
firmware, 6-3
hardware, 6-1
Upper Limit
Tests (Pass/Fail Limits) screen, 4-235
User Def Base Freq
Configure screen, 4-210
user keys
assigning global, 3-22
assigning, local, 3-21
clearing, global assignment, 3-22
clearing, local assignment, 3-21
deleting, global assignment, 3-22
deleting, local assignment, 3-21
example, 3-21
explanation, 3-20
global, assignment, 3-22
global, defined, 3-20
local, assignment, 3-21
local, defined, 3-20
preassigned, 3-20
releasing, global assignment, 3-22
releasing, local assignment, 3-21
setting, global, 3-22
setting, local, 3-21
V
Value
 Service screen, 4-222
 variable frequency notch filter, 4-55
version number
 firmware, 4-213
Vert/div
 Oscilloscope screen, 4-62
vertical offset
 oscilloscope, 4-61, 4-62
vertical sensitivity
 oscilloscope, 4-62
Vert Offset
 Oscilloscope screen, 4-62
video averaging
 spectrum analyzer, 4-77
 upgrade kit, 4-77
voice channel decoder
 AMPS-TACS, 4-153
 NAMPS-NTACS, 4-154
voice guard, 4-195
voltage
 measurement, 4-5
 RF, across 50 ohm load, 4-218
 RF, emf (open circuit), 4-218
 setting, 2-2
Voltage
 Service screen, 4-222
Voltmeter Connection
 Service screen, 4-222
volume
 beeper, 2-3, 4-211
 control, 5-19
 internal speaker, 4-57
V (volts)
 displaying results in, 3-7

W
waveform
 dc, 4-81
 Gaussian noise, 4-81
 selecting, 4-81
 sine, 4-81
 square, 4-81
 triangle, 4-81
 universal noise, 4-81
Waveform
 Signaling Encoder screen, Func Gen mode, 4-81
wideband
 decoder, signaling standard, 4-200
 encoder, signaling standard, 4-120
 word sync bits, 4-103
 word sync delay, 4-101
 working
 status, 4-120
Working Channel, Number
· Signaling Encoder screen, EDACS mode, 4-121
 Working Channel, RX Frequency
· Signaling Encoder screen, EDACS mode, 4-121
 Working Channel, TX Frequency
· Signaling Encoder screen, EDACS mode, 4-121
 W (watts)
 displaying results in, 3-7

X Xmt Pace
 I/O Configure screen, 4-256
 Xon/Xoff, 4-255, 4-256

Y YES key, 5-16

Z zero crossing
 detecting, 4-149
 zeroing
 DCFM, 4-35
 measurement offset, 4-52
 power meter, 4-19, 4-47, 4-266
 zero reference
 transmitter power, 4-19, 4-47, 4-266
ZVEII
 radio standard, 4-83
ZVEI2
 radio standard, 4-83