Notices

Copyright Notice
© Keysight Technologies 2009-2019
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies as governed by United States and international copyright laws.

Manual Part Number
34972-90001
Edition
Edition 6, November 2019
Printed in: Printed in Malaysia
Published by:
Keysight Technologies
Bayan Lepas Free Industrial Zone,
11900 Penang, Malaysia

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Declaration of Conformity
Declarations of Conformity for this product and for other Keysight products may be downloaded from the Web. Go to http://www.keysight.com/find/sweula. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of those rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

U.S. Government Rights
The Software is “commercial computer software,” as defined by Federal Acquisition Regulation (“FAR”) 2.101. Pursuant to FAR 12.212 and 27.408-3 and Department of Defense FAR Supplement (“DFARS”) 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR OF ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT SHALL CONTROL.

Safety Information

CAUTION
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Software Updates/Licenses

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates and the latest documentation for your product, go to the product page at:

www.keysight.com/find/34970A
www.keysight.com/find/34972A

A portion of the software in this product is licensed under terms of the General Public License Version 2 ("GPLv2"). The text of the license and source code can be found at:

www.keysight.com/find/GPLV2

This product utilizes Microsoft Windows CE. Keysight highly recommends that all Windows-based computers connected to Windows CE instruments utilize current anti-virus software. For more information, go to the product page at:

www.keysight.com/find/34970A
www.keysight.com/find/34972A

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Keysight Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.
Safety Symbols

The following symbols on the instrument and in the documentation indicate precautions which must be taken to maintain safe operation of the instrument.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternating current (AC)</td>
</tr>
<tr>
<td></td>
<td>Frame or chassis (ground) terminal</td>
</tr>
<tr>
<td></td>
<td>Standby supply. Unit is not completely disconnected from AC mains when switch is off.</td>
</tr>
<tr>
<td></td>
<td>Caution, risk of electric shock</td>
</tr>
<tr>
<td></td>
<td>Caution, risk of danger (refer to this manual for specific Warning or Caution information)</td>
</tr>
<tr>
<td></td>
<td>Protective earth (ground) terminal</td>
</tr>
<tr>
<td></td>
<td>IEC Measurement</td>
</tr>
</tbody>
</table>
Safety Considerations

Read the information below before using this instrument.

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards for design, manufacture, and intended use of the instrument. Keysight Technologies assumes no liability for the customer’s failure to comply with these requirements.

General

Do not use this product in any manner not specified by the manufacturer. The protective features of this product may be impaired if it is used in a manner not specified in the operation instructions.

Before applying power

Verify that all safety precautions are taken. Make all connections to the unit before applying power and select the appropriate power line voltage on the fuse module.

Ground the instrument

This product is provided with protective earth terminals. To minimize shock hazard, the instrument must be connected to the ac power mains through a grounded power cable, with the ground wire firmly connected to an electrical ground (safety ground) at the power outlet. Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury.

Do not operate in an explosive atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Do not remove the instrument cover

Only qualified, service-trained personal who are aware of the hazards involved should remove instrument covers. Always disconnect the power cable and any external circuits before removing the instrument cover.

Do not modify the instrument

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Keysight Sales and Service Office for service and repair to ensure that safety features are maintained.

In case of damage

Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel.

CAUTION

Unless otherwise noted in the specifications, this instrument or system is intended for indoor use in an installation category II, pollution degree 2 environment per IEC 61010-1 and 664 respectively. It is designed to operate at a maximum relative humidity of 20% to 80% at 40 °C or less (non-condensing). This instrument or system is designed to operate at altitudes up to 2000 meters, and at temperatures between 0 °C and 55 °C.

NOTE

Maximum transients on all inputs are limited to 1500 Vpk, referenced to earth. Measurement is rated for CAT ‘others’, and terminals are not to be connected directly to mains. Do not use this equipment to measure circuits where transient overvoltages could exceed this level.
Regulatory Markings

<table>
<thead>
<tr>
<th>Mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The CE mark is a registered trademark of the European Community. This CE mark shows that the product complies with all the relevant European Legal Directives.</td>
</tr>
<tr>
<td></td>
<td>The CSA mark is a registered trademark of the Canadian Standards Association.</td>
</tr>
<tr>
<td></td>
<td>The RCM mark is a registered trademark of the Australian Communications and Media Authority.</td>
</tr>
<tr>
<td></td>
<td>This symbol indicates the time period during which no hazardous or toxic substance elements are expected to leak or deteriorate during normal use. Forty years is the expected useful life of the product.</td>
</tr>
<tr>
<td></td>
<td>ICES/NMB-001 indicates that this ISM device complies with the Canadian ICES-001. Cet appareil ISM est conforme à la norme NMB-001 du Canada.</td>
</tr>
<tr>
<td></td>
<td>The CE mark is a registered trademark of the European Community. This CE mark shows that the product complies with all the relevant European Legal Directives.</td>
</tr>
<tr>
<td>![ISM GRP 1-A](https://example.com/ism grp 1-a.png)</td>
<td>ISM GRP 1 Class A indicates that this is an Industrial Scientific and Medical Group 1 Class A product.</td>
</tr>
</tbody>
</table>

This instrument complies with the WEEE Directive (2002/96/EC) marking requirement. This affixed product label indicates that you must not discard this electrical or electronic product in domestic household waste.

Product category

With reference to the equipment types in the WEEE directive Annex 1, this instrument is classified as a “Monitoring and Control Instrument” product. The affixed product label is as shown below.

Do not dispose in domestic household waste.

To return this unwanted instrument, contact your nearest Keysight Service Center, or visit http://about.keysight.com/en/companyinfo/environment/takeback.shtml for more information.

Sales and Technical Support

To contact Keysight for sales and technical support, refer to the support links on the following Keysight websites:

- www.keysight.com/find/34970A
- www.keysight.com/find/34972A
 (product-specific information and support, software and documentation updates)
- www.keysight.com/find/assist
 (worldwide contact information for repair and service)
The Keysight Technologies 34970A/34972A combines precision measurement capability with flexible signal connections for your production and development test systems. Three module slots are built into the rear of the instrument to accept any combination of data acquisition or switching modules. The combination of data logging and data acquisition features makes this instrument a versatile solution for your testing requirements now and in the future.

Convenient Data Logging Features

- Direct measurement of thermocouples, RTDs, thermistors, DC voltage, AC voltage, resistance, DC current, AC current, frequency, and period
- Interval scanning with storage of up to 50,000 time-stamped readings
- Independent channel configuration with function, Mx+B scaling, and alarm limits available on a per-channel basis
- Intuitive user interface with knob for quick channel selection, menu navigation, and data entry from the front panel
- Portable, ruggedized case with non-skid feet
- BenchLink Data Logger 3 Software for Microsoft® Windows ® included

Flexible Data Acquisition/Switching Features

- 6½-digit multimeter accuracy, stability, and noise rejection
- Up to 60 channels per instrument (120 single-ended channels)
- Reading rates up to 500 readings per second on a single channel and scan rates up to 250 channels per second
- Choice of multiplexing, matrix, general-purpose Form C switching, RF switching, digital I/O, totalize, and 16-bit analog output functions

Unless otherwise indicated, this manual applies to all serial numbers.
- GPIB (IEEE-488) interface and RS-232 interface are standard on the 34970A. Local Area Network (LAN) and Universal Serial Bus (USB) are standard on the 34972A.
- SCPI (Standard Commands for Programmable Instruments) compatibility
The Front Panel at a Glance

1 State Storage / Remote Interface Menus
2 Scan Start / Stop Key
3 Measurement Configuration Menu
4 Scaling Configuration Menu
5 Alarm / Alarm Output Configuration Menu
6 Scan-to-Scan Interval Menu
7 Scan List Single Step / Read Key
8 Advanced Measurement / Utility Menus
9 Low-Level Module Control Keys
10 Single-Channel Monitor On / Off Key
11 View Scanned Data, Alarms, Errors Menu
12 Shift / Local Key
13 Knob
14 Navigation Arrow Keys

Denotes a menu key. See the next page for details on menu operation.
The Front-Panel Menu at a Glance

Several of the front-panel keys guide you through menus to configure various parameters of the instrument (see previous page). The following steps demonstrate the menu structure using the key.

1. Press the menu key. You are automatically guided to the first level of the menu. Rotate the knob to view the other choices on the first level of the menu.

 The menu will automatically time out after about 20 seconds of inactivity. You will be returned to the operation in progress prior to entering the menu.

2. Press the same menu key again to move to the next item of the menu. Typically, this is where you choose parameter values for the selected operation.
3 Rotate the knob to view the choices on this level of the menu. When you reach the end of the list, rotate the knob in the opposite direction to view all of the other choices.

*Tip: To review the current configuration of a specific menu, press the menu key several times. A message **NO CHANGES** is displayed when you exit the menu.*

4 Press the same menu key again to accept the change and exit the menu. A brief confirmation message is displayed.
Display Annunciators

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCAN</td>
<td>Scan is in progress or enabled. Press and hold again to turn off.</td>
</tr>
<tr>
<td>MON</td>
<td>Monitor mode is enabled. Press again to turn off.</td>
</tr>
<tr>
<td>VIEW</td>
<td>Scanned readings, alarms, errors, or relay cycles are being viewed.</td>
</tr>
<tr>
<td>CONFIG</td>
<td>Channel configuration is in progress on displayed channel.</td>
</tr>
<tr>
<td>✱</td>
<td>Measurement is in progress.</td>
</tr>
<tr>
<td>ADRS</td>
<td>Instrument is addressed to listen or talk over the remote interface.</td>
</tr>
<tr>
<td>RMT</td>
<td>Instrument is in remote mode (remote interface).</td>
</tr>
<tr>
<td>ERROR</td>
<td>Hardware or remote interface errors are detected. Press to read errors.</td>
</tr>
<tr>
<td>EXT</td>
<td>Instrument is configured for an external scan interval.</td>
</tr>
<tr>
<td>ONCE</td>
<td>Scan Once mode is enabled. Press to initiate and hold key to disable.</td>
</tr>
<tr>
<td>MEM (34970A)</td>
<td>Reading memory overflow; new readings will overwrite the oldest readings.</td>
</tr>
<tr>
<td>MEM (34972A)</td>
<td>A USB drive is connected to the instrument (annunciator on), or data is being written to or read from the USB drive (annunciator flashing).</td>
</tr>
<tr>
<td>AUTO (34972A)</td>
<td>USB logging is active.</td>
</tr>
<tr>
<td>LAST</td>
<td>Viewed data is the last reading stored during most recent scan.</td>
</tr>
<tr>
<td>MIN</td>
<td>Viewed data is the minimum reading stored during most recent scan.</td>
</tr>
<tr>
<td>MAX</td>
<td>Viewed data is the maximum reading stored during most recent scan.</td>
</tr>
<tr>
<td>SHIFT</td>
<td>has been pressed. Press again to turn off.</td>
</tr>
<tr>
<td>4W</td>
<td>4-wire function is in use on displayed channel.</td>
</tr>
<tr>
<td>OC</td>
<td>Offset compensation is enabled on displayed channel.</td>
</tr>
<tr>
<td></td>
<td>Alarms are enabled on displayed channel.</td>
</tr>
<tr>
<td></td>
<td>Mx+B scaling is enabled on displayed channel.</td>
</tr>
<tr>
<td></td>
<td>HI or LO alarm condition has occurred on indicated alarms.</td>
</tr>
</tbody>
</table>

To review the display annunciators, hold down the key as you turn on the instrument.
The 34970A Rear Panel at a Glance

1 Slot Identifier (100, 200, 300)
2 Ext Trig Input / Alarm Outputs / Channel Advance Input / Channel Closed Output (for pinouts, see page 113 and page 157)
3 RS-232 Interface Connector
4 Power-Line Fuse-Holder Assembly
5 Power-Line Voltage Setting
6 Chassis Ground Screw
7 GPIB (IEEE-488) Interface Connector

Use the **Menu** to:
- Select the GPIB or RS-232 interface (see Chapter 2).
- Set the GPIB address (see Chapter 2).
- Set the RS-232 baud rate, parity, and flow control mode (see Chapter 2).

WARNING
For protection from electrical shock, the power cord ground must not be defeated. If only a two-contact electrical outlet is available, connect the instrument’s chassis ground screw (see above) to a good earth ground.
The 34972A Rear Panel at a Glance

For serial number MY59000100 & SG59000100 and below.

Use the Menu to:
- Select and configure the LAN and USB interfaces (see Chapter 2).

[a] Under some conditions, while using the USB interface with the 34972A, you may experience connection or data loss in the presence of an electrical transient from the main power line. You can re-establish the USB communication by performing a reboot (cycle power) on the instrument. You can make the USB connection less susceptible to a potential power line transient by inserting a USB hub in the connection between the computer and the instrument.

WARNING
For protection from electrical shock, the power cord ground must not be defeated. If only a two-contact electrical outlet is available, connect the instrument’s chassis ground screw (see above) to a good earth ground.
For serial number MY59000101 & SG59000101 and above.

Use the [] Menu to:
- Select and configure the LAN and USB interfaces (see Chapter 2).

WARNING
For protection from electrical shock, the power cord ground must not be defeated. If only a two-contact electrical outlet is available, connect the instrument's chassis ground screw (see above) to a good earth ground.
BenchLink Data Logger 3 at a Glance

The Keysight BenchLink Data Logger 3 software provides a convenient way to collect and analyze your data. The software uses a familiar spreadsheet environment, streamlining your data gathering needs. Simply identify the measurements you want to acquire, initiate the process, and see the data displayed on the computer screen. Use one of the many options to analyze and display your data—strip charts, histograms with statistical analysis, bar and scatter charts, individual channel results, and more.

A sample of the BenchLink Data Logger 3 features include:

- Tab based user interface, simple menu structure.
- A data manager that manages all configurations and data logs; simplifies opening, renaming, deleting, and editing; easy access to data export.
- A data log name template.
- Automatic data export with preconfigured preferences; control of the decimal character and field separator; control of the export contents.
- Graph configurations saved and restored automatically the next time Data Logger 3 is opened.
- Graph preferences to allow easy control of graph look and feel.
- Split graphs for easy viewing of independent measurements.
- Import Data Logger I and Data Logger II configurations.
- Configure up to four 34970A/34972As for simultaneous scanning.

NOTE

To install the software, refer to “BenchLink Data Logger 3 software installation procedure” on page 36.

To learn more about the software and its capabilities, refer to the On-Line Help System for BenchLink Data Logger 3.

For increased capabilities, purchase the optional Keysight BenchLink Data Logger Pro software. This software provides advanced data logging and decision making with no programming required.
The Plug-In Modules at a Glance

For complete specifications on each plug-in modules, refer to the module sections in Chapter 8.

34901A 20-Channel Armature Multiplexer
- 20 channels of 300 V switching
- Two channels for DC or AC current measurements (100 nA to 1A)
- Built-in thermocouple reference junction
- Switching speed of up to 60 channels per second
- Connects to the internal multimeter
- For detailed information and a module diagram, see page 210.

Each of the 20 channels switches both HI and LO inputs, thus providing fully isolated inputs to the internal multimeter. The module is divided into two banks of 10 two-wire channels each. When making four-wire resistance measurements, channels from Bank A are automatically paired with channels from Bank B. Two additional fused channels are included on the module (22 channels total) for making calibrated DC or AC current measurements with the internal multimeter (external shunt resistors are not required). You can close multiple channels on this module only if you have not configured any channels to be part of the scan list. Otherwise, all channels on the module are break-before-make.
34902A 16-Channel Reed Multiplexer

- 16 channels of 300 V switching
- Built-in thermocouple reference junction
- Switching speed of up to 250 channels per second
- Connects to the internal multimeter
- For detailed information and a module diagram, see page 213.

Use this module for high-speed scanning and high-throughput automated test applications. Each of the 16 channels switches both HI and LO inputs, thus providing fully isolated inputs to the internal multimeter. The module is divided into two banks of eight two-wire channels each. When making four-wire resistance measurements, channels from Bank A are automatically paired with channels from Bank B. You can close multiple channels on this module only if you have not configured any channels to be part of the scan list. Otherwise, all channels on the module are break-before-make.

34903A 20-Channel Actuator / General-Purpose Switch

- 300 V, 1 A actuation and switching
- SPDT (Form C) latching relays
- Breadboard area for custom circuits
- For detailed information and a module diagram, see page 216.

Use this module for those applications that require high-integrity contacts or quality connections of non-multiplexed signals. This module can switch 300 V, 1 A (50 W maximum switch power) to your device under test or to actuate external devices. Screw terminals on the module provide access to the Normally-Open, Normally-Closed, and Common contacts for each of the 20 switches. A breadboard area is provided near the screw terminals to implement custom circuitry, such as simple filters, snubbers, or voltage dividers.

New serial number prefixes start with MY59000101 and SG59000101
34904A 4x8 Two-Wire Matrix Switch
- 32 two-wire crosspoints
- Any combination of inputs and outputs can be connected at a time
- 300 V, 1 A switching
- *For detailed information and a module diagram, see page 219.*
Use this module to connect multiple instruments to multiple points on your
device under test at the same time. You can connect rows and columns between
multiple modules to build larger matrices such as 8x8 and 4x16, with up to 96
crosspoints in a single mainframe.

34905/6A Dual 4-Channel RF Multiplexers
- 34905A (50Ω) / 34906A (75Ω)
- 2 GHz bandwidth with on-board SMB connections
- 1 GHz bandwidth with SMB-to-BNC adapter cables provided
- *For detailed information and a module diagram, see page 222.*
These modules offer wideband switching capabilities for high frequency and
pulsed signals. Each module is organized in two independent banks of 4-to-1
multiplexers. Both modules offer low crosstalk and excellent insertion loss
performance. To create larger RF multiplexers, you can cascade multiple banks
together. Only one channel in each bank may be closed at a time.

34907A Multifunction Module
- Two 8-bit Digital Input/Output ports, 400 mA sink, 42 V open collector
- 100 kHz Totalize input with 1 Vpp sensitivity
- Two 16-bit, ±12 V Calibrated Analog Outputs
- *For detailed information and module block diagrams, see page 223.*
Use this module to sense status and control external devices such as solenoids,
power relays, and microwave switches. For greater flexibility, you can read digital
inputs and the count on the totalizer during a scan.
34908A 40-Channel Single-Ended Multiplexer

- 40 channels of 300 V single-ended (common LO) switching
- Built-in thermocouple reference junction
- Switching speed of up to 60 channels per second
- Connects to the internal multimeter
- For detailed information and a module diagram, see page 227.

Use this module for high-density switching applications which require single-wire inputs with a common LO. All relays are break-before-make to ensure that only one relay is connected at any time.
Table of Contents

Software Updates/Licenses ... 3
Restricted Rights Legend .. 3
Safety Symbols ... 4
Safety Considerations ... 5
General ... 5
Before applying power .. 5
Ground the instrument ... 5
Do not operate in an explosive atmosphere 5
Do not remove the instrument cover 6
Do not modify the instrument ... 6
In case of damage ... 6
Regulatory Markings ... 7
 EC ... 8
 Product category ... 8
Sales and Technical Support .. 8
Keysight 34970A/34972A Data Acquisition / Switch Unit 9
The Front Panel at a Glance .. 11
The Front-Panel Menu at a Glance 12
Display Annunciators ... 14
The 34970A Rear Panel at a Glance 15
The 34972A Rear Panel at a Glance 16
BenchLink Data Logger 3 at a Glance 17
The Plug-In Modules at a Glance 18

1 Quick Start
 To Prepare the Instrument for Use 34
 BenchLink Data Logger Software 36
 BenchLink Data Logger 3 software installation procedure 36
 On-Line help system ... 37
To Connect Wiring to a Module .. 38
To Set the Time and Date ... 40
To Configure a Channel for Scanning 42
To Copy a Channel Configuration .. 45
To Close a Channel ... 47
If the Instrument Does Not Turn On 49
To Adjust the Carrying Handle .. 52
To Rack Mount the Instrument .. 53

2 Front-Panel Overview
Front-Panel Menu Reference .. 56
To Monitor a Single Channel .. 59
To Set a Scan Interval .. 60
To Apply Mx+B Scaling to Measurements 61
To Configure Alarm Limits .. 62
To Read a Digital Input Port .. 64
To Write to a Digital Output Port .. 65
To Read the Totalizer Count ... 66
To Output a DC Voltage .. 67
To Configure the Remote Interface - 34970A 68
To Configure the Remote Interface - 34972A 71
To Store the Instrument State .. 74

3 System Overview
Data Acquisition System Overview ... 76
 The computer and interface cable (34970A only) 77
 Measurement software .. 78
 The 34970A/34972A Data Acquisition / Switch Unit 80
 Plug-In modules .. 81
 System cabling .. 83
 Transducers and sensors .. 84
 Alarm limits ... 85
4 Features and Functions

SCPI Language Conventions .. 103

- Rules for using a channel list ... 103

Scanning ... 104

- Rules for scanning ... 104
- Power failure .. 107
- Adding channels to a scan list .. 108
- Scan interval .. 110
- Scan count ... 117
- Reading format .. 118
- Channel delay ... 119
- Automatic channel delays ... 120
- Viewing readings stored in memory 122

Scanning with External Instruments .. 125

General Measurement Configuration .. 129

- Measurement range ... 129
- Measurement resolution ... 131
- Custom A/D integration time .. 133
- Autozero ... 135

Temperature Measurement Configuration 136

- Measurement units ... 136
- Thermocouple measurements .. 137
- RTD measurements ... 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCPI commands</td>
<td>183</td>
</tr>
<tr>
<td>Folder and file structure</td>
<td>183</td>
</tr>
<tr>
<td>Contents of data files</td>
<td>185</td>
</tr>
<tr>
<td>USB Drive Front Panel - 34972A</td>
<td>187</td>
</tr>
<tr>
<td>Setting up automatic logging</td>
<td>187</td>
</tr>
<tr>
<td>Exporting readings</td>
<td>187</td>
</tr>
<tr>
<td>Formatting readings</td>
<td>187</td>
</tr>
<tr>
<td>Importing an instrument configuration</td>
<td>188</td>
</tr>
<tr>
<td>Remote Interface Configuration - 34970A</td>
<td>189</td>
</tr>
<tr>
<td>GPIB address</td>
<td>189</td>
</tr>
<tr>
<td>Remote interface selection</td>
<td>190</td>
</tr>
<tr>
<td>Baud rate selection (RS-232)</td>
<td>190</td>
</tr>
<tr>
<td>Parity selection (RS-232)</td>
<td>191</td>
</tr>
<tr>
<td>Flow control selection (RS-232)</td>
<td>192</td>
</tr>
<tr>
<td>Remote Interface Configuration - 34972A</td>
<td>194</td>
</tr>
<tr>
<td>Enabling and disabling LAN connectivity</td>
<td>194</td>
</tr>
<tr>
<td>Determining the status of LAN connectivity</td>
<td>194</td>
</tr>
<tr>
<td>Resetting the LAN</td>
<td>194</td>
</tr>
<tr>
<td>Enabling and disabling DHCP</td>
<td>195</td>
</tr>
<tr>
<td>Setting the IP address</td>
<td>195</td>
</tr>
<tr>
<td>Setting the subnet mask</td>
<td>196</td>
</tr>
<tr>
<td>Setting the default gateway</td>
<td>196</td>
</tr>
<tr>
<td>Setting the DNS server</td>
<td>196</td>
</tr>
<tr>
<td>Viewing the MAC address</td>
<td>197</td>
</tr>
<tr>
<td>Calibration Overview</td>
<td>198</td>
</tr>
<tr>
<td>Calibration security</td>
<td>198</td>
</tr>
<tr>
<td>Calibration message</td>
<td>201</td>
</tr>
<tr>
<td>Calibration count</td>
<td>202</td>
</tr>
<tr>
<td>Factory Reset State</td>
<td>203</td>
</tr>
<tr>
<td>Instrument Preset State</td>
<td>205</td>
</tr>
<tr>
<td>Multiplexer Module Default Settings</td>
<td>207</td>
</tr>
<tr>
<td>Module Overview</td>
<td>209</td>
</tr>
<tr>
<td>34901A 20-Channel Multiplexer</td>
<td>210</td>
</tr>
</tbody>
</table>
34902A 16-Channel Multiplexer ... 213
34903A 20-Channel Actuator ... 216
34904A 4x8 Matrix Switch .. 219
34905A/6A Dual 4-Channel RF Multiplexers 222
34907A Multifunction Module ... 225
34908A 40-Channel Single-Ended Multiplexer 227

5 Error Messages
Error Messages ... 232
Execution Errors ... 233
Instrument Errors ... 238
Self-Test Errors ... 246
Calibration Errors ... 248
Plug-In Module Errors .. 251

6 Application Programs
Application Programs .. 254
Example Programs for Excel 7.0 .. 255
 Excel 7.0 Example: takeReadings Macro 256
 Excel 7.0 Example: Port Configuration Macro 258
 Excel 7.0 Example: ScanChannels Macro 260
Example Programs for C and C++ ... 263
 C/C++ Example: dac_out.c .. 264
 C/C++ Example: stat_reg.c .. 265

7 Tutorial
System Cabling and Connections ... 268
 Cable Specifications ... 268
 Grounding Techniques ... 270
 Shielding Techniques ... 271
 Separation of High-Level and Low-Level Signals 271
 Sources of System Cabling Errors ... 272
Measurement Fundamentals ... 276
The Internal DMM .. 276
Temperature Measurements .. 278
Sources of Error in Thermocouple Measurements 286
DC Voltage Measurements .. 288
Sources of Error in DC Voltage Measurements 289
AC Voltage Measurements ... 294
Sources of Error in AC Voltage Measurements 297
Current Measurements ... 302
Sources of Error in DC Current Measurements 303
Sources of Error in AC Current Measurements 303
Resistance Measurements .. 304
Sources of Error in Resistance Measurements 307
Strain Gage Measurements .. 308
Frequency and Period Measurements 312
Low-Level Signal Multiplexing and Switching 314
One-Wire (Single-Ended) Multiplexers 315
Two-Wire Multiplexers .. 316
Four-Wire Multiplexers .. 317
Signal Routing and Multiplexing 318
Sources of Error in Multiplexing and Switching 319
Actuators and General-Purpose Switching 321
Snubber Circuits .. 322
RC Protection Networks .. 322
Using Varistors .. 323
Using Attenuators .. 324
Matrix Switching ... 325
Combining Matrices ... 326
RF Signal Multiplexing .. 327
Sources of Error in RF Switching 328
Multifunction Module ... 329
Digital Input ... 329
Digital Output ... 330
Using an External Pull-Up ... 331
Driving External Switches ... 332
8 Specifications
List of Tables

Table 4-1 DC Voltage, Thermocouple, DC Current (for all ranges) 116
Table 4-2 Resistance, RTD, Thermistor (2- and 4-wire) 116
Table 4-3 AC Voltage, AC Current (for all ranges) 116
Table 4-4 Frequency, Period 117
Table 4-5 Digital Input, Totalize 117
1 Quick Start

This chapter is divided into the following sections:
- To Prepare the Instrument for Use 34
- BenchLink Data Logger Software 36
- To Connect Wiring to a Module 38
- To Set the Time and Date 40
- To Configure a Channel for Scanning 42
- To Copy a Channel Configuration 45
- To Close a Channel 47
- If the Instrument Does Not Turn On 49
- To Adjust the Carrying Handle 52
- To Rack Mount the Instrument 53

One of the first things to do with your instrument is to become acquainted with the front panel. We have written the exercises in this chapter to prepare the instrument for use and help you get familiar with some of its front-panel operations.

The front panel has several groups of keys to select various functions and operations. A few keys have a *shifted* function printed in blue below the key. To perform a shifted function, press (the *SHIFT* annunciator will turn on). Then, press the key that has the desired label below it. For example, to select the Utility Menu, press .

If you accidentally press , just press it again to turn off the *SHIFT* annunciator.
To Prepare the Instrument for Use

1 Check the list of supplied items.
Verify that you have received the following items with your instrument. If anything is missing, contact your nearest Keysight Technologies Sales Office or Keysight authorized reseller.
- One power cord.
- This User's Guide.
- One Service Guide.
- Certificate of Calibration (if you ordered the internal DMM).
- BenchLink Data Logger 3 Software on CD-ROM.
 To install the software, see page 36.
- Quick Start Package (if you ordered the internal DMM):
 One RS-232 cable (34970A only).
 One J-type thermocouple and a flatblade screwdriver.
- Any plug-in modules that you ordered are delivered in a separate shipping container.

2 Verify that the fuse on the back is set to the proper voltage range for your AC power.

WARNING
Note that this switch is Standby only.
To disconnect the mains from the instrument, remove the power cord.
3 Connect the power cord and turn on the instrument.

The front-panel display will light up briefly while the instrument performs its power-on self-test. The instrument initially powers up with all measurement channels turned off. To review the power-on display with all annunciators turned on, hold down \(\text{ } \) as you turn on the instrument. Note that a battery must be installed in the unit in order for it to boot up. The battery is installed when you receive the unit from the factory; this is only a consideration if you remove the battery for some reason. If the instrument does not turn on properly, see page 49.

4 Perform a complete self-test.

The complete self-test performs a more extensive set of tests than those performed at power-on. Hold down \(\text{ } \) as you turn on the instrument and hold down the key until you hear a long beep. The self-test will begin when you release the key following the beep.

If the self-test fails, see the 34970A/34972A Service Guide for instructions on returning the instrument to Keysight for service.
BenchLink Data Logger Software

The Keysight BenchLink Data Logger 3 software comes standard with the 34970A/34972A (if the internal DMM is ordered) and provides the basic data logger capabilities. Or, for increased capabilities, purchase the optional Keysight BenchLink Data Logger Pro software. This application provides advanced data logging and decision making with no programming required.

For system requirements and additional details on the features of the software, refer to the specifications in Chapter 8.

BenchLink Data Logger 3 software installation procedure

Microsoft Windows Vista/XP/2000

1. Insert the 34825A Product CD-ROM into your drive.
2. From the Product CD-ROM window that is displayed, locate “Keysight BenchLink Data Logger 3 Software” in the Software group.
3. Click on Install and follow the instructions as prompted by the installation utility.

A representative screen of the software is shown below.
On-Line help system

The software is shipped with an extensive on-line Help system to help you learn the features of the software as well as troubleshoot any problems that might arise as you are using the software. As you are installing the software, you will notice that the on-line Help system is available in several languages.
To Connect Wiring to a Module

1. Remove the module cover.

2. Connect wiring to the screw terminals.

3. Route wiring through strain relief.

4. Replace the module cover.

5. Install the module into mainframe.

Wiring Hints...
- For detailed information on each module, refer to the section starting on page 209.
- To reduce wear on the internal DMM relays, wire like functions on adjacent channels.
- For information on grounding and shielding, see page 270.
- The diagrams on page 38 show how to connect wiring to a multiplexer module for each measurement function.
<table>
<thead>
<tr>
<th>Thermocouple</th>
<th>DC Voltage / AC Voltage / Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple Types: B, E, J, K, N, R, S, T See page 280 for thermocouple color codes.</td>
<td>Ranges: 100 mV, 1 V, 10 V, 100 V, 300 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-Wire Ohms / RTD / Thermistor</th>
<th>4-Wire Ohms / RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranges: 100, 1 k, 10 k, 100 k, 1 M, 10 M, 100 MW RTD Types: 0.00385, 0.00391 Thermistor Types, 2.2 k, 5 k, 10 k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC Current / AC Current</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid only on channels 21 and 22 on the 34901A Ranges: 10 mA, 100 mA, 1A</td>
<td></td>
</tr>
</tbody>
</table>

Channel n (source) is automatically paired with Channel $n +10$ (sense) on the 34901A, or Channel $n +8$ (sense) on the 34902A. Ranges: 100, 1 k, 10 k, 100 k, 1 M, 10 M, 100 MW RTD Types: 0.00385, 0.00391
To Set the Time and Date

All readings during a scan are automatically time stamped and stored in non-volatile memory. In addition, alarm data is time stamped and stored in a separate non-volatile memory queue.

1 Set the time of day.

Use ▼ and ▲ to select the field to modify and turn the knob to change the value. You can also edit the AM/PM field.

TIME 03:45 PM

2 Set the date.

Use ▼ and ▲ to select the field to modify and turn the knob to change the value.

JUN 01 2009

WARNING TO PREVENT ELECTRICAL SHOCK

To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

WARNING CAUTION WITH MULTIPLE SIGNALS

To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.
CAUTION WITH HAZARDOUS VOLTAGES

When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.

ENVIRONMENTAL HEALTH AND SAFETY

When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
To Configure a Channel for Scanning

Any channel that can be “read” by the instrument can also be included in a scan. This includes readings on multiplexer channels, a read of a digital port, or a read of the count on a totalizer channel. Automated scanning is not allowed with the RF multiplexer, matrix, actuator, digital output, or voltage output (DAC) modules.

1. Select the channel to be added to the scan list.
 Turn the knob until the desired channel is shown on the right side of front-panel display. The channel number is a three-digit number; the left-most digit represents the slot number (100, 200, or 300) and the two digits on the right indicate the channel number (102, 110, etc.).

 NOTE
 You can use ← and → to skip to the beginning of the previous or next slot.

For this example, assume that you have the 34901A multiplexer installed in slot 100 and select channel 103.

2. Select the measurement parameters for the selected channel.
 Use the knob to scroll through the measurement choices on each level of the menu. When you press → to make your selection, the menu automatically guides you through all relevant choices to configure a measurement on the selected function. When you have finished configuring the parameters, you are automatically exited from the menu.

 The current selection (or default) is displayed in full bright for easy identification. When you make a different selection, the new choice is shown in full bright and it becomes the default selection. The order of the choices always remains the same; however, you always enter the menu at the current (full bright) setting for each parameter.

 NOTE
 The menu will time-out after about 20 seconds of inactivity and any changes made previously will take effect.
For this example, configure channel 103 to measure a J-type thermocouple with 0.1 °C of display resolution.

NOTE
Press [pry] to sequentially step through the scan list and take a measurement on each channel (readings are not stored in memory). This is an easy way to verify your wiring connections before initiating the scan.

3 Run the scan and store the readings in non-volatile memory.

The instrument automatically *scans the configured channels in consecutive order* from slot 100 through slot 300 (the SCAN annunciator turns on). Channels that are not configured are skipped during the scan. In the default configuration, the instrument continuously scans the configured channels at a 10-second interval.

Press and hold [pry] to stop the scan.

4 View the data from the scan.

All readings taken during a scan are automatically time stamped and stored in non-volatile memory. During the scan, the instrument calculates and stores the minimum, maximum, and average on all channels in the scan list. You can read the contents of memory at any time, even during a scan.

From the front panel, data is available for the last 100 readings on each channel readings taken during a scan (all of the data is available from the remote interface). From the View menu, select **READINGS** and press [pry] again. Then press [pry] and [pry] to choose the data you want to view for the selected channel as shown in the table below.
<table>
<thead>
<tr>
<th>Select Channel</th>
<th>Last Reading on Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time of Last Reading</td>
</tr>
<tr>
<td></td>
<td>Minimum Reading on Channel</td>
</tr>
<tr>
<td></td>
<td>Time of Minimum Reading</td>
</tr>
<tr>
<td></td>
<td>Maximum Reading on Channel</td>
</tr>
<tr>
<td></td>
<td>Time of Maximum Reading</td>
</tr>
<tr>
<td></td>
<td>Average of Readings on Channel</td>
</tr>
<tr>
<td></td>
<td>Second Most Recent Reading on Channel</td>
</tr>
<tr>
<td></td>
<td>Third Most Recent Reading on Channel</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>99th Most Recent Reading on Channel</td>
</tr>
</tbody>
</table>
To Copy a Channel Configuration

After configuring a channel to be included in the scan list, you can copy that same configuration to other channels in the instrument (including digital channels on the multifunction module). This feature makes it easy to configure several channels for the same measurement. When you copy the configuration from one channel to another, the following parameters are automatically copied to the new channel:

- Measurement configuration.
- Mx+B scaling configuration.
- Alarm configuration.
- Advanced measurement configuration.

New serial number prefixes start with MY59000101 and SG59000101.
1 Select the channel to copy the configuration from.
Turn the knob until the desired channel is shown on the right side of front-panel display. For this example, let's copy the configuration from channel 103.

2 Select the copy function.
Use the knob to scroll through the measurement choices until you see COPY CONFIG. When you press \(\text{COPY} \) to make your selection, the menu automatically guides you to the next step.

3 Select the channel to copy the configuration to.
Turn the knob until the desired channel is shown on the right side of front-panel display. For this example, let's copy the configuration to channel 105.

4 Copy the channel configuration to the selected channel.

NOTE
To copy the same configuration to other channels, repeat this procedure.
To Close a Channel

On the multiplexer and switch modules, you can close and open individual relays on the module. However, note that if you have already configured any multiplexer channels for scanning, you cannot independently close and open individual relays on that module.

1. Select the channel.

 Turn the knob until the desired channel is shown on the right side of front-panel display. For this example, select channel 213.

2. Close the selected channel.

3. Open the selected channel.

NOTE will sequentially open all channels on the module in the selected slot.
The table below shows the low-level control operations available for each of the plug-in modules.

<table>
<thead>
<tr>
<th>Plug-In Module</th>
<th>Close</th>
<th>Open</th>
<th>Read</th>
<th>Write</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>34901A 20-Channel Mux</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>34902A 16-Channel Mux</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>34908A 40-Channel Single-Ended Mux(^a)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>34903A 20-Channel Actuator</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34904A 4x8 Matrix</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34905A Dual 4-Channel RF Mux (50Ω(^b))</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34906A Dual 4-Channel RF Mux (75Ω(^b))</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34907A Multifunction Module (DIO)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>34907A Multifunction Module (Totalizer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34907A Multifunction Module (DAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

\(^a\) Only one channel can be closed at a time on this module.

\(^b\) Only one channel in each bank can be closed at a time on this module.
If the Instrument Does Not Turn On

Use the following steps to help solve problems you might encounter when turning on the instrument. If you need more help, refer to the 34970A/34972A Service Guide for instructions on returning the instrument to Keysight for service.

1 Verify that there is AC power to the instrument.
 First, verify that the power cord is firmly plugged into the power receptacle on the rear panel of the instrument. You should also make sure that the power source you plugged the instrument into is energized. Then, verify that the instrument is turned on.

 The On/Standby switch is located on the lower left side of the front panel.

2 Verify that there is a battery in the instrument
 A battery must be present for the instrument to boot up.

3 Verify the power-line voltage setting.
 The line voltage is set to the proper value for your country when the instrument is shipped from the factory. Change the voltage setting if it is not correct. The settings are: 100, 120, 220, or 240 VAC.

 - For 127 VAC operation, use the 120 VAC setting.
 - For 230 VAC operation, use the 220 VAC setting.

 See the next page if you need to change the line voltage setting.

4 Verify that the power-line fuse is good.
 The instrument is shipped from the factory with a 500 mA fuse installed. This is the correct fuse for all line voltages.

 See the next page if you need to replace the power-line fuse.

To replace the 500 mA, 250 V fuse, order Keysight part number 2110-0458.
Quick Start

1. **Remove the power cord.** Remove the fuse-holder assembly from the rear panel.

2. **Remove the line voltage selector from the assembly.**

 ![Diagram](image1)

 - Fuse: 500 mA (for all line voltages)
 - Keysight Part Number: 2110-0458

3. **Rotate the line-voltage selector until the correct voltage appears in the window.**

4. **Replace the fuse-holder assembly in the rear panel.**

 ![Diagram](image2)

 - 100, 120 (127), 220 (230), or 240 VAC
1. Remove the power cord. Remove the fuse-holder assembly from the rear panel.

2. Remove the line voltage selector from the assembly.

 - Fuse: 250 mA\(\text{AT} \) (for all line voltages)
 - Keysight Part Number: 2110-1704

3. Replace the fuse-holder assembly in the rear panel.

New serial number prefixes start with MY59000101 and SG59000101.
To Adjust the Carrying Handle

To adjust the position, grasp the handle by the sides and pull outward. Then, rotate the handle to the desired position.

Bench-top viewing position

Carrying position
To Rack Mount the Instrument

You can mount the instrument in a standard 19-inch rack cabinet using one of three optional kits available. Instructions and mounting hardware are included with each rack-mounting kit. Any Keysight System II instrument of the same size can be rack-mounted beside the 34970A/34972A.

NOTE

Remove the carrying handle, and the front and rear rubber bumpers, before rack-mounting the instrument.

To remove the handle, rotate it to the vertical position and pull the ends outward.

To remove the rubber bumper, stretch a corner and then slide it off.
To rack mount a single instrument, order adapter kit 5063-9240.

To rack mount two instruments side-by-side, order lock-link kit 5061-9694 and flange kit 5063-9212. Be sure to use the support rails inside the rack cabinet.

To install one or two instruments in a sliding support shelf, order shelf 5063-9255, and slide kit 1494-0015 (for a single instrument, also order filler panel 5002-3999).
2 Front-Panel Overview

Front-Panel Menu Reference 56
To Monitor a Single Channel 59
To Set a Scan Interval 60
To Apply Mx+B Scaling to Measurements 61
To Configure Alarm Limits 62
To Read a Digital Input Port 64
To Write to a Digital Output Port 65
To Read the Totalizer Count 66
To Output a DC Voltage 67
To Configure the Remote Interface - 34970A 68
To Configure the Remote Interface - 34972A 71
To Store the Instrument State 74

This chapter introduces you to the front-panel keys and menu operation. This chapter does not give a detailed description of every front-panel key or menu operation. It does, however, give you an overview of the front-panel menus and many front-panel operations. See Chapter 4, "Features and Functions", for a complete discussion of the instrument’s capabilities and operation.
Front-Panel Menu Reference

This section gives an overview of the front-panel menus. The menus are designed to automatically guide you through all parameters required to configure a particular function or operation. The remainder of this chapter contains examples of using the front-panel menus.

Configure the measurement parameters on the displayed channel.

- Select the measurement function (dc volts, ohms, etc.) on the displayed channel.
- Select transducer type for temperature measurements.
- Select units (°C, °F, or K) for temperature measurements.
- Select measurement range or autorange.
- Select measurement resolution.
- Copy and paste measurement configuration to other channels.

Configure the scaling parameters for the displayed channel.

- Set the gain ("M") and offset ("B") value for the displayed channel.
- Make a null measurement and store it as the offset value.
- Specify a custom label (RPM, PSI, etc.) for the displayed channel.

Configure alarms on the displayed channel.

- Select one of four alarms to report alarm conditions on the displayed channel.
- Configure a high limit, low limit, or both for the displayed channel.
- Configure a bit pattern that will generate an alarm (digital input only).

Configure the four Alarm Output hardware lines.

- Clear the state of the four alarm output lines.
- Select the “Latch” or “Track” mode for the four alarm output lines.
- Select the slope (rising or falling edge) for the four alarm output lines.
Configure the event or action that controls the scan interval.
- Select the scan interval mode (interval, manual, external, or alarm).
- Select the scan count.

Configure the advanced measurement features on displayed channel.
- Set the integration time for measurements on the displayed channel.
- Set the channel-to-channel delay for scanning.
- Enable/disable the thermocouple check feature (T/C measurements only).
- Select the reference junction source (T/C measurements only).
- Set the low frequency limit (ac measurements only).
- Enable/disable offset compensation (resistance measurements only).
- Select the binary or decimal mode for digital operations (digital input/output only).
- Configure the totalizer reset mode (totalizer only).
- Select which edge is detected (rising or falling) for totalizer operations.

Configure system-related instrument parameters.
- Set the real-time system clock and calendar.
- Query the firmware revisions for the mainframe and installed modules.
- Select the instrument's power-on configuration (last or factory reset).
- Enable/disable the internal DMM.
- Secure/unsecure the instrument for calibration.

View readings, alarms, and errors.
- View the last 100 scanned readings from memory (last, min, max, and average).
- View the first 20 alarms in the alarm queue (reading and time alarm occurred).
- View up to 10 errors (34970A) or 20 errors (34972A) in the error queue.
- Read the number of cycles for the displayed relay (relay maintenance feature).
Front-Panel Overview

Store and recall instrument states.
- Store up to five instrument states in non-volatile memory.
- Assign a name to each storage location.
- Recall stored states, power-down state, factory reset state, or preset state.

Configure the remote interface (34970A).
- Select the GPIB address.
- Configure the RS-232 interface (baud rate, parity, and flow control).

Configure the remote interface (34972A).
- Configure the LAN settings (IP Address, Hostname, DHCP, etc.)
- Configure the USB settings (Enable, USB ID, etc.)
- Configure and use the USB drive (Logging, etc.)
To Monitor a Single Channel

You can use the Monitor function to continuously take readings on a single channel, even during a scan. This feature is useful for troubleshooting your system before a test or for watching an important signal.

1. Select the channel to be monitored.
 Only one channel can be monitored at a time but you can change the channel being monitored at any time by turning the knob.

2. Enable monitoring on the selected channel.
 Any channel that can be "read" by the instrument can be monitored (the MON annunciator turns on). This includes any combination of temperature, voltage, resistance, current, frequency, or period measurements on multiplexer channels. You can also monitor a digital input port or the totalizer count on the multifunction module.

 To disable monitoring, press again.
To Set a Scan Interval

You can set the instrument’s internal timer to automatically scan at a specific interval (e.g., start a new scan sweep every 10 seconds) or when an external TTL trigger pulse is received. You can configure the instrument to scan continuously or to stop after sweeping through the scan list a specified number of times.

1. Select the interval scan mode.
 For this example, select the *Interval Scan* mode which allows you to set the time from the start of one scan sweep to the start of the next scan sweep. Set the interval to any value between 0 and 99 hours.

 INTERVAL SCAN

2. Select the scan count.
 You can specify the number of times that the instrument will sweep through the scan list (the default is continuous). When the specified number of sweeps have occurred, the scan stops. Set the scan count to any number between 1 and 50,000 scans (or continuous).

 00020 SCANS
To Apply Mx+B Scaling to Measurements

The scaling function allows you to apply a gain and offset to all readings on a specified multiplexer channel during a scan. In addition to setting the gain (“M”) and offset (“B”) values, you can also specify a custom measurement label for your scaled readings (RPM, PSI, etc.).

1. Configure the channel.
 You must configure the channel (function, transducer type, etc.) before applying any scaling values. If you change the measurement configuration, scaling is turned off on that channel and the gain and offset values are reset (M=1 and B=0).

2. Set the gain and offset values.
 The scaling values are stored in non-volatile memory for the specified channels. A Factory Reset turns off scaling and clears the scaling values on all channels. An Instrument Preset or Card Reset does not clear the scaling values and does not turn off scaling.

 ![Set Gain](+1.000,000)
 ![Set Offset](+0.000,000 VDC)

3. Select the custom label.
 You can specify an optional three-character label for your scaled readings (RPM, PSI, etc.). The default label is the standard engineering unit for the selected function (VDC, OHM, etc.).

 ![Label as LBS](LABEL AS LBS)

4. Run the scan and store the scaled readings in memory.
To Configure Alarm Limits

The instrument has four alarms which you can configure to alert you when a reading exceeds specified limits on a channel during a scan. You can assign a high limit, a low limit, or both to any configured channel in the scan list. You can assign multiple channels to any of the four available alarms (numbered 1 through 4).

1 Configure the channel.
 You must configure the channel (function, transducer type, etc.) before setting any alarm limits. If you change the measurement configuration, alarms are turned off and the limit values are cleared. If you plan to use Mx+B scaling on a channel which will also use alarms, be sure to configure the scaling values first.

2 Select which of the four alarms you want to use.

3 Select the alarm mode on the selected channel
 You can configure the instrument to generate an alarm when a measurement exceeds the specified HI or LO limits (or both) on a measurement channel.

4 Set the limit value.
 The alarm limit values are stored in non-volatile memory for the specified channels. The default values for the high and low limits are “0”. The low limit must always be less than or equal to the high limit, even if you are using only one of the limits. A Factory Reset clears all alarm limits and turns off all alarms. An Instrument Preset or Card Reset does not clear the alarm limits and does not turn off alarms.

+0.250,000 °C
5 Run the scan and store the readings in memory.

If an alarm occurs on a channel as it is being scanned, then that channel's alarm status is stored in reading memory as the readings are taken. Each time you start a new scan, the instrument clears all readings (including alarm data) stored in reading memory from the previous scan. As alarms are generated, they are also logged in an alarm queue, which is separate from reading memory. Up to 20 alarms can be logged in the alarm queue. Reading the alarm queue using the View menu clears the alarms in the queue.
To Read a Digital Input Port

The multifunction module (34907A) has two non-isolated 8-bit input/output ports which you can use for reading digital patterns. You can read the live status of the bits on the port or you can configure a scan to include a digital read.

1. Select the Digital Input port.
 Select the slot containing the multifunction module and continue turning the knob until **DIN** is displayed (channel 01 or 02).

2. Read the specified port.
 You can specify whether you want to use binary or decimal format. Once you have selected the number base, it is used for all input or output operations on the same port. To change the number base, press the **key** and select **USE BINARY** or **USE DECIMAL**.

 The bit pattern read from the port will be displayed until you press another key, turn the knob, or until the display times out.

NOTE

To add a digital input channel to a scan list, press **key** and select the **DIO READ** choice.
To Write to a Digital Output Port

The multifunction module (34907A) has two non-isolated 8-bit input/output ports which you can use for outputting digital patterns.

1 Select the Digital Output port.
 Select the slot containing the multifunction module and continue turning the knob until DIN is displayed (channel 01 or 02).

2 Enter the bit pattern editor.
 Notice that the port is now converted to an output port (DOUT).

 00000000 DOUT

 Binary Display Shown

3 Edit the bit pattern.
 Use the knob and or keys to edit the individual bit values. You can specify whether you want to use binary or decimal format. Once you have selected the number base, it is used for all input or output operations on the same port. To change the number base, press the \textit{USE BINARY} or \textit{USE DECIMAL}.

 240 DOUT

 Decimal Display Shown

4 Output the bit pattern to the specified port.
 The specified bit pattern is latched on the specified port. To cancel an output operation in progress, wait for the display to time out.
To Read the Totalizer Count

The multifunction module (34907A) has a 26-bit totalizer which can count pulses at a 100 kHz rate. You can manually read the totalizer count or you can configure a scan to read the count.

1. Select the totalizer channel
 Select the slot containing the multifunction module and continue turning the knob until **TOTALIZE** is displayed (channel 03).

2. Configure the totalize mode.
 The internal count starts as soon as you turn on the instrument. You can configure the totalizer to reset the count to "0" after being read or it can count continuously and be manually reset.

3. Read the count.
 The count is read once each time you press **READ + RESET**; the count does not update automatically on the display. As configured in this example, the count is automatically reset to "0" each time you read it.

 The count will be displayed until you press another key, turn the knob, or until the display times out. To manually reset the totalizer count, press **READ + RESET**.

NOTE

To add a totalizer channel to a scan list, press **READ + RESET** and select the **TOT READ** choice.
To Output a DC Voltage

The multifunction module (34907A) has two analog outputs capable of outputting calibrated voltages between ±12 volts.

1. Select a DAC Output channel.
 Select the slot containing the multifunction module and continue turning the knob until DAC is displayed (channel 04 or 05).

2. Enter the output voltage editor.

3. Set the desired output voltage.
 Use the knob and – or + keys to edit the individual digits.

4. Output the voltage from the selected DAC.
 The output voltage will be displayed until you press another key or turn the knob. To manually reset the output voltage to 0 volts, press .
To Configure the Remote Interface - 34970A

The 34970A is shipped with both an GPIB (IEEE-488) interface and an RS-232 interface. Only one interface can be enabled at a time. The GPIB interface is selected when the instrument is shipped from the factory.

1. Select the GPIB interface.

2. Select the GPIB address.
 You can set the instrument’s address to any value between 0 and 30. The factory setting is address “9”.

3. Save the change and exit the menu.

NOTE
Your computer’s GPIB interface card has its own address. Be sure to avoid using the computer’s address for any instrument on the interface bus. Keysight’s GPIB interface cards generally use address “21”.

GPIB Configuration

GPIB / 488

ADDRESS 09
1. Select the RS-232 interface

2. Select the baud rate.
 Select one of the following: 1200, 2400, 4800, 9600, 19200, 38400, 57600 (factory setting), or 115200 baud.

3. Select the parity and number of data bits.
 Select one of the following: None (8 data bits, factory setting), Even (7 data bits), or Odd (7 data bits). When you set the parity, you are also indirectly setting the number of data bits.

4. Select the flow control method.
 Select one of the following: None (no flow control), RTS/CTS, DTR/DSR, XON/XOFF (factory setting), or Modem.

5. Save the changes and exit the menu.
WARNING TO PREVENT ELECTRICAL SHOCK
To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

WARNING CAUTION WITH MULTIPLE SIGNALS
To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

WARNING CAUTION WITH HAZARDOUS VOLTAGES
When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.

WARNING ENVIRONMENTAL HEALTH AND SAFETY
When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
To Configure the Remote Interface - 34972A

The instrument is shipped with both a Local Area Network (LAN) interface and a Universal Serial Bus (USB) interface. Both interfaces can be enabled at the same time and both interfaces are selected when the instrument is shipped from the factory.

1. Select the LAN interface.

2. Enable the LAN.
 - This is enabled by default.

3. Configure the instrument LAN settings according to the instructions provided by your LAN administrator.
Front-Panel Overview

1. Select the USB interface.

 USB INTERFACE

2. Enable or disable the USB interface.
 Select either USB ENABLED or USB DISABLED.

 USB ENABLED

3. View the USB ID String
 The instrument will display its USB identification (USB ID) string. This is helpful in identifying the device on the USB network. Use the left and right arrows above the knob to view the full string.

 USB0::2391::8199::MY01023529::0::INSTR

4. Save the changes and exit the menu.
TO PREVENT ELECTRICAL SHOCK
To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

CAUTION WITH MULTIPLE SIGNALS
To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

CAUTION WITH HAZARDOUS VOLTAGES
When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.

ENVIRONMENTAL HEALTH AND SAFETY
When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
To Store the Instrument State

You can store the instrument state in one of five non-volatile storage locations. A sixth storage location automatically holds the power-down configuration of the instrument. When power is restored, the instrument can automatically return to its state before power-down (a scan in progress before power-down will also be resumed).

1. Select the storage location.
 From the front panel, you have the ability to assign names (up to 12 characters) to each of the five stored states.

 NAME STATE

 1: TEST_RACK_2

 The storage locations are numbered 1 through 5. The power-down state is automatically stored and can be recalled from the front panel (the state is named LAST PWR DOWN).

 STORE STATE

 2: STATE2

2. Store the instrument state
 The instrument stores all channel configurations, alarm values, scaling values, scan interval setups, and advanced measurement configurations.

 CHANGE SAVED
3 System Overview

Data Acquisition System Overview 76
Signal Routing and Switching 86
Measurement Input 90
Control Output 98

This chapter provides an overview of a computer-based system and describes the parts of a data acquisition system.
Data Acquisition System Overview

You can use the Keysight 34970A/34972A as a stand-alone instrument, but there are many applications where you will want to take advantage of the built-in PC connectivity features. A typical data acquisition system is shown below.

The configuration on the previous page offers the following advantages:

- You can use the 34970A/34972A to perform data storage, data reduction, mathematical calculations, and conversion to engineering units. You can use the PC to provide easy configuration and data presentation.

- You can remove the analog signals and measurement sensors from the noisy PC environment and electrically isolate them from both the PC and earth ground.

- You can use a single PC to monitor multiple instruments and measurement points while performing other PC-based tasks.
The computer and interface cable (34970A only)

Computers and operating systems are not discussed in this chapter. In addition to the computer and operating system, you will need a serial port (RS-232) or GPIB port (IEEE-488) and an interface cable.

<table>
<thead>
<tr>
<th>Serial (RS-232)</th>
<th>GPIB (IEEE-488)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>Often built into the computer; no additional hardware is required.</td>
<td>Cable length is limited to 45 ft (15 m).[a]</td>
</tr>
<tr>
<td>Drivers usually included in the operating system.</td>
<td>Only one instrument or device can be connected per serial port</td>
</tr>
<tr>
<td>Cables readily available and inexpensive.</td>
<td>Cabling is susceptible to noise, causing slow or lost communications.</td>
</tr>
<tr>
<td>The 34970A is shipped with a serial cable (if internal DMM is ordered).</td>
<td>Varying connector ys and styles</td>
</tr>
<tr>
<td></td>
<td>Data transfers up to 85,000 characters/sec.</td>
</tr>
</tbody>
</table>

[a] You can overcome these cable length limitation using special communications hardware. For example, you can use the Keysight E5810A LAN-to-GPIB Gateway interface or a serial modem.
Measurement software

A variety of software is available to configure your data acquisition hardware and manipulate and display your measurement data.

One particularly useful feature is 34972A’s Web Interface. Simply enter the IP address of your instrument in your browser’s navigation bar to launch the Web Interface.

The remote control page of the Web Interface, shown below, allows you to monitor your instrument, set up and initiate scans, save data to the USB drive, and much more. For help, simply click on the large question mark on the far left side of the screen.
Data logging and monitoring

Keysight BenchLink Data Logger 3, which is included with your 34970A/34972A is a Windows®-based application that makes it easy to use the instrument with your PC for gathering and analyzing measurements. Use this software to set up your test, acquire and archive measurement data, and perform real-time display and analysis of your measurements.

The Keysight BenchLink Data Logger Pro option, available at additional cost, provides advanced data logging and decision making with no programming required.

Automated Testing with Multiple Instruments
- Keysight VEE
- TransEra HTBASIC® for Windows
- National Instruments LabVIEW
- Microsoft® Visual Basic or Visual C++
The 34970A/34972A Data Acquisition / Switch Unit

As shown below, the logic circuitry for the 34970A/34972A is divided into two sections: earth-referenced and floating. These two sections are isolated from each other in order to maintain measurement accuracy and repeatability (for more information on ground loops, see page 273).

The earth-referenced and floating circuitry communicate with each other via an optically-isolated data link. The earth-referenced section communicates with the floating section to provide PC connectivity. The 34970A is shipped with both an GPIB (IEEE-488) interface and an RS-232 interface. Only one interface can be enabled at a time. The 34972A is shipped with Local Area Network (LAN) and Universal Serial Bus (USB) connectivity.

The earth-referenced section also provides four hardware alarm outputs and external trigger lines. You can use the alarm output lines to trigger external alarm lights, sirens, or send a TTL pulse to your control system.
The floating section contains the main system processor and controls all of the basic functionality of the instrument. This is where the instrument communicates with the plug-in modules, scans the keyboard, controls the front-panel display, and controls the internal DMM. The floating section also performs Mx+B scaling, monitors alarm conditions, converts transducer measurements to engineering units, time stamps scanned measurements, and stores data in non-volatile memory.

Plug-In modules

The 34970A/34972A offers a complete selection of plug-in modules to give you high-quality measurement, switching, and control capabilities. The plug-in modules communicate with the floating logic via the internal isolated digital bus. The multiplexer modules also connect to the internal DMM via the internal analog bus. Each module has its own microprocessor to offload the mainframe processor and minimize backplane communications for faster throughput. The table below shows some common uses for each plug-in module.

For more information on each module, refer to the module sections in chapter 4, starting on page 209.
<table>
<thead>
<tr>
<th>Model number</th>
<th>Module name</th>
<th>Common uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34901A</td>
<td>20-Channel Mux with T/C Compensation</td>
<td>Scanning and direct measurement of temperature, voltage, resistance, frequency, and current (34901A only) using the internal DMM.</td>
</tr>
<tr>
<td>34902A</td>
<td>16-Channel Reed Mux with T/C Compensation</td>
<td></td>
</tr>
<tr>
<td>34908A</td>
<td>40-Channel Single-Ended Mux with T/C Compensation</td>
<td>Scanning and direct measurement of temperature, voltage, and resistance using the internal DMM.</td>
</tr>
<tr>
<td>34907A</td>
<td>Multifunction Module</td>
<td>Digital Input, Event Counting.</td>
</tr>
<tr>
<td>Signal routing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34901A</td>
<td>20-Channel Mux with T/C Compensation</td>
<td>Multiplexing of signals to or from external instruments.</td>
</tr>
<tr>
<td>34902A</td>
<td>16-Channel Reed Mux with T/C Compensation</td>
<td></td>
</tr>
<tr>
<td>34908A</td>
<td>40-Channel Single-Ended Mux with T/C Compensation</td>
<td></td>
</tr>
<tr>
<td>34904A</td>
<td>4x8 Matrix Switch</td>
<td>32 Crosspoint Matrix switching.</td>
</tr>
<tr>
<td>34905A</td>
<td>Dual 4-Channel RF Mux (50Ω)</td>
<td>50Ω high-frequency applications (<2 GHz).</td>
</tr>
<tr>
<td>34906A</td>
<td>Dual 4-Channel RF Mux (75Ω)</td>
<td>75Ω high-frequency applications (<2 GHz).</td>
</tr>
<tr>
<td>Control output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34903A</td>
<td>20-Channel Actuator</td>
<td>General-purpose switching and control using Form C (SPDT) switches.</td>
</tr>
<tr>
<td>34907A</td>
<td>Multifunction Module</td>
<td>Digital Output, Voltage (DAC) Outputs.</td>
</tr>
</tbody>
</table>
System cabling

The plug-in modules have screw-terminal connectors to make it easy to connect your system cabling. The type of cabling that you use to connect your signals, transducers, and sensors to the module is critical to measurement success. Some types of transducers, such as thermocouples, have very specific requirements for the type of cable that can be used to make connections. Be sure to consider the usage environment when choosing wire gauge and insulation qualities. Wire insulation typically consists of materials such as PVC or Teflon®. The table below lists several common cable types and describes their typical uses.

NOTE Wiring insulation and usage is described in more detail in System Cabling and Connections starting on page 268.

<table>
<thead>
<tr>
<th>Cable type</th>
<th>Common uses</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple Extension Wire</td>
<td>Thermocouple measurements.</td>
<td>Available in specific thermocouple types. Also available in a shielded cable for added noise immunity.</td>
</tr>
<tr>
<td>Twisted Pair, Shielded Twisted Pair</td>
<td>Measurement inputs, voltage outputs, switching, counting.</td>
<td>Most common cable for low-frequency measurement inputs. Twisted pair reduces common mode noise. Shielded-twisted pair provides additional noise immunity.</td>
</tr>
<tr>
<td>Flat Ribbon, Twisted pair Ribbon</td>
<td>Digital Input/Output</td>
<td>Often used with mass termination connectors. These cables provide little noise immunity.</td>
</tr>
</tbody>
</table>

Teflon is a registered trademark of E.I. duPont deNemours and Company.
Transducers and sensors

Transducers and sensors convert a physical quantity into an electrical quantity. The electrical quantity is measured and the result is then converted to engineering units. For example, when measuring a thermocouple, the instrument measures a DC voltage and mathematically converts it to a corresponding temperature in °C, °F, or K.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Typical transducer types</th>
<th>Typical transducer output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Thermocouple</td>
<td>0 mV to 80 mV</td>
</tr>
<tr>
<td></td>
<td>RTD</td>
<td>2-wire or 4-wire resistance from 5Ω to 500Ω</td>
</tr>
<tr>
<td></td>
<td>Thermistor</td>
<td>2-wire resistance from 10Ω to 1 MΩ</td>
</tr>
<tr>
<td>Pressure</td>
<td>Solid State</td>
<td>+/-10 VDC</td>
</tr>
<tr>
<td>Flow</td>
<td>Rotary Type</td>
<td>4 mA to 20 mA</td>
</tr>
<tr>
<td></td>
<td>Thermal Type</td>
<td></td>
</tr>
<tr>
<td>Strain</td>
<td>Resistive Elements</td>
<td>4-wire resistance from 10Ω to 10 kΩ</td>
</tr>
<tr>
<td>Events</td>
<td>Limit Switches</td>
<td>0V or 5V Pulse Train</td>
</tr>
<tr>
<td></td>
<td>Optical Counters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotary Encoder</td>
<td></td>
</tr>
<tr>
<td>Digital</td>
<td>System Status</td>
<td>TTL Levels</td>
</tr>
</tbody>
</table>
Alarm limits

The 34970A/34972A has four alarm outputs which you can configure to alert you when a reading exceeds specified limits on a channel during a scan. You can assign a high limit, a low limit, or both to any configured channel in the scan list. You can assign multiple channels to any of the four available alarms (numbered 1 through 4). For example, you can configure the instrument to generate an alarm on Alarm 1 when a limit is exceeded on any of channels 103, 205, or 320.

You can also assign alarms to channels on the multifunction module. For example, you can generate an alarm when a specific bit pattern or bit pattern change is detected on a digital input channel or when a specific count is reached on a totalizer channel. With the multifunction module, the channels do not have to be part of the scan list to generate an alarm.
Signal Routing and Switching

The switching capabilities of the plug-in modules available with the 34970A/34972A provide test system flexibility and expandability. You can use the switching plug-in modules to route signals to and from your test system or multiplex signals to the internal DMM or external instruments.

Relays are electromechanical devices which are subject to wear-out failure modes. The life of a relay, or the number of actual operations before failure, is dependent upon how it is used – applied load, switching frequency, and environment. The 34970A/34972A Relay Maintenance System automatically counts the cycles of each relay in the instrument and stores the total count in non-volatile memory on each switch module. Use this feature to track relay failures and to predict system maintenance requirements. For more information on using this feature, refer to “Relay cycle count” on page 177.

Switching topologies

Several switching plug-in modules are available with different topologies for various applications. The following switching topologies are available:

- Multiplexer (34901A, 34902A, 34905A, 34906A, 34908A)
- Matrix (34904A)
- Form C – Single Pole, Double Throw (34903A)

The following sections describe each of these switching topologies.

Multiplexer switching

Multiplexers allow you to connect one of multiple channels to a common channel, one at a time. A simple 4-to-1 multiplexer is shown below. When you combine a multiplexer with a measurement device, like the internal DMM, you create a scanner. For more information on scanning, see page 92.
Multiplexers are available in several types:

- **One-Wire (Single-Ended) Multiplexers** for common LO measurements. *For more information, see page 315.*

- **Two-Wire Multiplexers** for floating measurements. *For more information, see page 316.*

- **Four-Wire Multiplexers** for resistance and RTD measurements. *For more information, see page 317.*

- **Very High Frequency (VHF) Multiplexers** for switching frequencies up to 2.8 GHz. *For more information, see page 327.*
Matrix switching

A matrix switch connects multiple inputs to multiple outputs and therefore offers more switching flexibility than a multiplexer. Use a matrix for switching low-frequency (less than 10 MHz) signals only. A matrix is arranged in rows and columns. For example, a simple 3x3 matrix could be used to connect three sources to three test points as shown below.

Any one of the signal sources can be connected to any one of the test inputs. Be aware that with a matrix, it is possible to connect more than one source at the same time. It is important to make sure that dangerous or unwanted conditions are not created by these connections.
Form C (SPDT) switching
The 34903A Actuator contains 20 Form C switches (also called *single-pole, double-throw*). You can use Form C switches to route signals but they are typically used to control external devices.

Channel Open
(NC Contact Connected)

- **NO** = Normally Open
- **NC** = Normally Closed

Channel Closed
(NO Contact Connected)

- **NO** = Normally Open
- **NC** = Normally Closed

![Diagram of Form C switches](image)
Measurement Input

The 34970A/34972A allows you to combine a DMM (either internal or external) with multiplexer channels to create a scan. During a scan, the instrument connects the DMM to the configured multiplexer channels one at a time and makes a measurement on each channel.

Any channel that can be “read” by the instrument can also be included in a scan. This includes any combination of temperature, voltage, resistance, current, frequency, or period measurements on multiplexer channels. A scan can also include a read of a digital port or a read of the totalizer count on the multifunction module.

The internal DMM

A transducer or sensor converts a physical quantity being measured into an electrical signal which can be measured by the internal DMM. To make these measurements, the internal DMM incorporates the following functions:

- Temperature (thermocouple, RTD, and thermistor)
- Voltage (dc and ac up to 300V)
- Resistance (2-wire and 4-wire up to 100 MΩ)
- Current (DC and AC up to 1A)
- Frequency and Period (up to 300 kHz)

The internal DMM provides a universal input front-end for measuring a variety of transducer types without the need for additional external signal conditioning. The internal DMM includes signal conditioning, amplification (or attenuation), and a high resolution (up to 22 bits) analog-to-digital converter. A simplified diagram of the internal DMM is shown below.
Signal conditioning, ranging, and amplification

Analog input signals are multiplexed into the internal DMM’s signal-conditioning section – typically comprising switching, ranging, and amplification circuitry. If the input signal is a DC voltage, the signal conditioner is composed of an attenuator for the higher input voltages and a DC amplifier for the lower input voltages. If the input signal is an AC voltage, a converter is used to convert the AC signal to its equivalent DC value (true RMS value). Resistance measurements are performed by supplying a known DC current to an unknown resistance and measuring the DC voltage drop across the resistor. The input signal switching and ranging circuitry, together with the amplifier circuitry, convert the input to a DC voltage which is within the measuring range of the internal DMM’s analog-to-digital converter (ADC).

You can allow the instrument to automatically select the measurement range using autoranging or you can select a fixed measurement range using manual ranging. Autoranging is convenient because the instrument automatically selects the range to use for each measurement based on the input signal. For fastest scanning operation, use manual ranging for each measurement (some additional time is required for autoranging since the instrument has to make a range selection).

Analog-to-Digital Conversion (ADC)

The ADC takes a prescaled DC voltage from the signal-conditioning circuitry and converts it to digital data for output and display on the front panel. The ADC governs some of the most basic measurement characteristics. These include measurement resolution, reading speed, and the ability to reject spurious noise. There are several analog-to-digital conversion techniques but they can be divided into two types: integrating and non-integrating. The integrating techniques measure the average input value over a defined time interval, thus rejecting many noise sources. The non-integrating techniques sample the instantaneous value of the input, plus noise, during a very short interval. The internal DMM uses an integrating ADC technique.

You can select the resolution and reading speed from 6 digits (22 bits) at 3 readings per second to 4 digits (16 bits) at up to 600 readings per second. The Advanced menu from the 34970A/34972A front panel allows you to control the integration period for precise rejection of noise signals.
Main processor

The main processor, located in the floating logic section, controls the input signal conditioning, ranging, and the ADC. The main processor accepts commands from, and sends measurement results to, the earth-referenced logic section. The main processor synchronizes measurements during scanning and control operations. The main processor uses a multi-tasking operating system to manage the various system resources and demands.

The main processor also calibrates measurement results, performs Mx+B scaling, monitors alarm conditions, converts transducer measurements to engineering units, time stamps scanned measurements, and stores data in non-volatile memory.

Scanning

The instrument allows you to combine a DMM (either internal or external) with multiplexer channels to create a scan. During a scan, the instrument connects the DMM to the configured multiplexer channels one at a time and makes a measurement on each channel.

Before you can initiate a scan, you must set up a scan list to include all desired multiplexer or digital channels. Channels which are not in the scan list are skipped during the scan. The instrument automatically scans the list of channels in ascending order from slot 100 through slot 300. Measurements are taken only during a scan and only on those channels which are included in the scan list.

You can store up to 50,000 readings in non-volatile memory during a scan. Readings are stored only during a scan and all readings are automatically time stamped. Each time you start a new scan, the instrument clears all readings stored in memory from the previous scan. Therefore, all readings currently stored in memory are from the most recent scan.
You can configure the event or action that controls the onset of each sweep through the scan list (a sweep is one pass through the scan list):

- You can set the instrument’s internal timer to automatically scan at a specific interval as shown below. You can also program a time delay between channels in the scan list.

- You can manually control a scan by repeatedly pressing \textcircled{6} from the front panel.
- You can start a scan by sending a software command from the remote interface.
- You can start a scan when an external TTL trigger pulse is received.
- You can start a scan when an alarm condition is logged on the channel being monitored.
Scanning with external instruments

If your application doesn’t require the built-in measurement capabilities of the 34970A/34972A, you can order it without the internal DMM. In this configuration, you can use the 34970A/34972A for signal routing or control applications. If you install a multiplexer plug-in module, you can use the 34970A/34972A for scanning with an external instrument. You can connect an external instrument (such as a DMM) to the multiplexer COM terminal.
To control scanning with an external instrument, two control lines are provided. When the 34970A/34972A and the external instrument are properly configured, you can synchronize a scan sequence between the two.
The multifunction module

The multifunction module (34907A) adds two additional measurement input capabilities to the system: **digital input** and **event totalize**.

The multifunction module also contains a dual voltage output (DAC) which is described in more detail on page 84.

Digital input

The multifunction module has two non-isolated 8-bit input/output ports which you can use for reading digital patterns. You can read the live status of the bits on the port or you can configure a scan to include a digital read. Each port has a separate channel number on the module and contains 8-bits. You can combine the two ports to read a 16-bit word.
Totalizer
The multifunction module has a 26-bit totalizer which can count pulses at a 100 kHz rate. You can manually read the totalizer count or you can configure a scan to read the count.

- You can configure the totalizer to count on the rising edge or falling edge of the input signal.
- The maximum count is 67,108,863 \((2^{26} - 1)\). The count rolls over to “0” after reaching the maximum allowed value.
- You can configure the totalizer to read without affecting the count or reset the count to zero without losing any counts.
Control Output

In addition to signal routing and measurement, you can also use the 34970A/34972A to provide simple control outputs. For example, you can control external high-power relays using the actuator module or a digital output channel.

The multifunction module

The multifunction module (34907A) adds two additional control output capabilities to the system: digital output and voltage (DAC) output.

The multifunction module also contains digital input and event totalizer capabilities which are described in more detail starting on page 96.

Digital Output

The multifunction module has two non-isolated 8-bit input/output ports which you can use to output digital patterns. Each port has a separate channel number on the module and contains 8-bits. You can combine the two ports to output a 16-bit word.
Voltage (DAC) output

The multifunction module has two analog outputs capable of outputting calibrated voltages between ±12 volts with 16 bits of resolution. Each DAC (Digital-to-Analog Converter) channel can be used as a programmable voltage source for analog input control of other devices. A simplified diagram is shown below.

- You can set the output voltage to any value between +12 VDC and -12 VDC, in 1 mV steps. Each DAC is earth referenced; it cannot float.
- Each DAC channel is capable of supplying 10 mA maximum current.

NOTE

You must limit the output current to 40 mA total for all three slots (six DAC channels).
The actuator / general purpose switch

You can think of the 34903A Actuator as a control output because it is often used to control external power devices. The actuator provides 20 independent, isolated Form C (SPDT) switches.

![Schema](image)

NO = Normally Open
NC = Normally Closed

Each channel can switch up to 300V DC or AC rms. Each switch can also switch up to 1 A DC or AC rms up to 50 W maximum. For example, the maximum current that you can switch at 120 V is 0.45 A as shown below.

![Graph](image)

For control applications, the actuator has the following advantages:

- Higher voltage and power rating than the digital output channels. The actuator switches can also be used to control power devices.
- When used with high-power devices, however, it is critical that you provide protection to the switch from capacitive and inductive loads to ensure maximum relay life (*for more information on attenuators, see the discussion on page 324*).
4 Features and Functions

SCPI Language Conventions 103
Scanning 104
Scanning with External Instruments 125
General Measurement Configuration 129
Temperature Measurement Configuration 136
Voltage Measurement Configuration 142
Resistance Measurement Configuration 144
Current Measurement Configuration 145
Frequency Measurement Configuration 147
Mx+B Scaling 148
Alarm Limits 151
Digital Input Operations 162
Totalizer Operations 164
Digital Output Operations 167
DAC Output Operations 169
System-Related Operations 170
Single-Channel Monitoring 179
Mass Memory (USB) Subsystem - 34972A 181
USB Drive Front Panel - 34972A 187
Remote Interface Configuration - 34970A 189
Remote Interface Configuration - 34972A 194
Calibration Overview 198
Factory Reset State 203
Instrument Preset State 205
Multiplexer Module Default Settings 207
Module Overview 209
34901A 20-Channel Multiplexer 210
34902A 16-Channel Multiplexer 213
You will find that this chapter makes it easy to look up all the details about a particular feature of the 34970A/34972A. Whether you are operating the instrument from the front panel or over the remote interface, this chapter will be useful.
SCPI Language Conventions

Throughout this manual, the following conventions are used for SCPI command syntax for remote interface programming:

- Square brackets ([]) indicate optional keywords or parameters.
- Braces ({ }) enclose parameter choices within a command string.
- Triangle brackets (< >) separate parameters for which you must substitute a value
- A vertical bar (|) separates multiple parameter choices.

Rules for using a channel list

Many of the SCPI commands for the 34970A/34972A include a scan_list or ch_list parameter, which allow you to specify one or more channels. The channel number has a form (@sscc), where s is the slot number (100, 200, or 300) and cc is the channel number. You can specify a single channel, multiple channels, or a range of channels as shown below.

- The following command configures a scan list to include only channel 10 on the module in slot 300.
 \[\text{ROUTe:SCAN (@310)} \]

- The following command configures a scan list to include multiple channels on the module in slot 200. The scan list now contains only channels 10, 12, and 15 (the scan list is redefined each time you send a new ROUTe:SCAN command).
 \[\text{ROUTe:SCAN (@210, 212, 215)} \]

- The following command configures a scan list to include a range of channels. When you specify a range of channels, the range may contain invalid channels (they are ignored), but the first and last channel in the range must be valid. The scan list now contains channels 5 through 10 (slot 100) and channel 15 (slot 200).
 \[\text{ROUTe:SCAN (@105:110, 215)} \]
Scanning

The instrument allows you to combine a DMM (either internal or external) with multiplexer channels to create a scan. During a scan, the instrument connects the DMM to the configured multiplexer channels one at a time and makes a measurement on each channel.

Any channel that can be “read” by the instrument can also be included in a scan. This includes any combination of temperature, voltage, resistance, current, frequency, or period measurements on multiplexer channels. A scan can also include a read of a digital port or a read of the totalizer count on the multifunction module. Scanning is allowed with the following modules:
- 34901A 20-Channel Multiplexer
- 34902A 16-Channel Multiplexer
- 34907A Multifunction Module (digital input and totalizer only)
- 34908A 40-Channel Single-Ended Multiplexer

Automated scanning is not allowed with the actuator module, the matrix module, or the RF multiplexer modules. In addition, a scan cannot include a write to a digital port or a voltage output from a DAC channel. However, you can write your own program to manually create a “scan” to include these operations.

Rules for scanning

- Before you can initiate a scan, you must set up a scan list to include all desired multiplexer or digital channels. Channels which are not in the scan list are skipped during the scan. The instrument automatically scans the list of channels in ascending order from slot 100 through slot 300. Measurements are taken only during a scan and only on those channels which are included in the scan list.
 The “ ◯ ” (sample) annunciator turns on during each measurement.

- You can store up to 50,000 readings in non-volatile memory during a scan. Readings are stored only during a scan and all readings are automatically time stamped. If memory overflows (the MEM annunciator will turn on), a status register bit is set and new readings will overwrite the first readings stored (the most recent readings are always preserved). You can read the contents of memory at any time, even during a scan. Reading memory is not cleared when you read it.
- Each time you start a new scan, the instrument clears all readings (including alarm data) stored in reading memory from the previous scan. Therefore, the contents of memory are always from the most recent scan.

- While a scan is running, the instrument automatically stores the minimum and maximum readings and calculates the average for each channel. You can read these values at any time, even during a scan.

- Mx+B scaling and alarm limits are applied to measurements during a scan and all data is stored in non-volatile memory. You can read the contents of reading memory or the alarm queue at any time, even during a scan.

- In the Monitor function, the instrument takes readings as often as it can on a single channel, even during a scan (see Single-Channel Monitoring on page 179). This feature is useful for troubleshooting your system before a test or for watching an important signal.

- If you abort a scan that is running, the instrument will complete the one measurement in progress (the entire scan will not be completed) and the scan will stop. You cannot resume the scan from where it left off. If you initiate a new scan, all readings are cleared from memory.

- When you add a multiplexer channel to a scan list, that entire module is dedicated to the scan. The instrument issues a Card Reset to open all channels on that module. You cannot perform low-level close or open operations on any channels on that module (even those channels that are not configured).

- While a scan is running, you can perform some low-level control operations on modules that do not contain channels in the scan list. For example, you can open or close channels or issue a Card Reset on switching modules that do not contain channels in the scan list. However, you cannot change any parameters that affect the scan (channel configuration, scan interval, scaling values, alarm limits, Card Reset, etc.) while a scan is running.

- When you add a digital read (multifunction module) to a scan list, that port is dedicated to the scan. The instrument issues a Card Reset to make that port an input port (the other port is not affected).

- While a scan is running, you can perform low-level control operations on any channels on the multifunction module that are not in the scan. For example, you can output a DAC voltage or write to a digital port (even if the totalizer is part of the scan list). However, you cannot change any parameters that affect the scan (channel configuration, scan interval, Card Reset, etc.) while a scan is running.
- If a scan includes a read of the totalizer, multifunction module, the count is reset each time it is read during the scan only when the totalizer reset mode is enabled (TOTalize:TYPE RRESET command or the Advanced menu for the totalizer).

- If you install a module while a scan is running, the instrument will cycle power and resume scanning. If you remove a module while a scan is running, the instrument will cycle power, and it will not resume scanning when the reboot completes. If you are logging to a USB drive, the instrument will not log any scans that occur between the removal of the module and the reboot of the instrument.

- You can use either the internal DMM or an external DMM to make measurements of your configured channels. However, the instrument allows only one scan list at a time; you cannot scan some channels using the internal DMM and others using an external DMM. Readings are stored in 34970A/34972A memory only when the internal DMM is used.

- If the internal DMM is installed and enabled, the instrument will automatically use it for scanning. For externally-controlled scans, you must either remove the internal DMM from the 34970A/34972A or disable it (see “Internal DMM Disable” on page 157).
Power failure

- When shipped from the factory, the instrument is configured to automatically recall the power-down state when power is restored. In this configuration, the instrument will automatically recall the instrument state at power-down and resume a scan in progress. If you do not want the power-down state to be recalled when power is restored, send the \texttt{MEMORY:STATE:RECALL:AUTO OFF} command (also see the \textit{Utility} menu); a Factory Reset (\texttt{*RST command}) is then issued when power is restored.

- If the instrument is in the middle of a scan sweep when power fails, all readings from that partially completed sweep will be discarded (a sweep is one pass through the scan list). For example, assume that your scan list includes four multiplexer channels and you want to sweep through the scan list three times (see diagram). A power failure occurs after the second reading in the third scan sweep. The instrument will discard the last two of the 10 readings and will resume scanning at the beginning of the third scan sweep.

- If you remove a module or move a module to a different slot while power is off, the scan \textit{will not} resume when power is restored. No error is generated.

- If you replace a module with a module of the same type while power is off, the instrument will continue scanning when power is restored. No error is generated.
Adding channels to a scan list

Before you can initiate a scan, you must configure the channels to be scanned and set up a scan list (these two operations occur simultaneously from the front panel). The instrument automatically scans the configured channels in ascending order from slot 100 through slot 300.

To build a scan list from the front panel:

To add the active channel to the scan list, press \[\text{Add}\]. Select the function, range, resolution, and other measurement parameters for this channel. You can also press \[\text{Shift}\] to sequentially step through the scan list and take a measurement on each channel (readings are not stored in memory). This is an easy way to verify your wiring connections and channel configuration (also valid during a scan).

- When you reconfigure a channel and add it to the scan list, it is important to note that the previous configuration on that channel is lost. For example, assume that a channel is configured for DC voltage measurements. When you reconfigure that channel for thermocouple measurements, the previous range, resolution, and channel delay are set to their Factory Reset (\[^{*}\text{RST}\] command) state.

- To remove the active channel from the scan list, press \[\text{Remove}\] and select CHANNEL OFF. If you decide to add that channel back to the scan list with the same function, the original channel configuration (including scaling and alarm values) is still present.

- To initiate a scan and store all readings in memory, press \[\text{Scan}\] (the SCAN annunciator will turn on). Each time you initiate a new scan, the instrument clears all previously stored readings.

- To stop a scan, press and hold \[\text{Stop}\].
To build a scan list from the remote interface:

- The `MEASure?`, `CONFIGure`, and `ROUTe:SCAN` commands contain a `scan_list` parameter which defines the list of channels in the scan list. Note that each time you send one of these commands, it redefines the scan list. To determine which channels are currently in the scan list, you can send the `ROUTe:SCAN?` query command.

- To initiate a scan, execute the `MEASure?`, `READ?`, or `INITiate` command. The `MEASure?` and `READ?` commands send readings directly to the instrument’s output buffer but readings are not stored in memory. The `INITiate` command stores readings in memory. Use the `FETCh?` command to retrieve stored readings from memory.

 See the Keysight 34970A/34972A Programmer’s Reference Help for more information on using these commands.

- When you reconfigure a channel and add it to the scan list using `MEASure?` or `CONFIGure`, it is important to note that the previous configuration on that channel is lost. For example, assume that a channel is configured for DC voltage measurements. When you reconfigure that channel for thermocouple measurements, the previous range, resolution, and channel delay are set to their Factory Reset (`*RST` command) state.

- Each time you initiate a new scan, the instrument clears all previously stored readings.

- To stop a scan, execute the `ABORt` command.
Scan interval

You can configure the event or action that controls the onset of each sweep through the scan list (a sweep is one pass through the scan list):

- You can set the instrument’s internal timer to automatically scan at a specific interval. You can also program a time delay between channels in the scan list.

- You can manually control a scan by repeatedly pressing [Start] from the front panel.

- You can start a scan by sending a software command from the remote interface (MEASURE? or INITIATE command).

- You can start a scan when an external TTL trigger pulse is received.

- You can start a scan when an alarm event is logged on the channel being monitored.

Interval scanning

In this configuration, you control the frequency of scan sweeps by selecting a wait period from the start of one sweep to the start of the next sweep (called the scan-to-scan interval). The countdown time is shown on the front-panel display between one scan sweep and the start of the next sweep. If the scan interval is less than the time required to measure all channels in the scan list, the instrument will scan continuously, as fast as possible (no error is generated).

Scan Count
1 to 50,000 scans, or continuous)

Scan List (1 sweep)

Scan-to-Scan interval
(0 to 99:59:59 hours)

- You can set the scan interval to any value between 0 seconds and 99:59:59 hours (359,999 seconds), with 1 ms resolution.
Once you have initiated the scan, the instrument will continue scanning until you stop it or until the scan count is reached. See “Scan Count” on page 117 for more information.

Mx+B scaling and alarm limits are applied to measurements during a scan and all data is stored in non-volatile memory.

The MEASURE? and CONFIGURE commands automatically set the scan interval to immediate (0 seconds) and the scan count to 1 sweep.

From the front panel, a Factory Reset (Sto/Rcl menu) sets the scan interval to 10 seconds and the scan count to continuous. From the remote interface, a Factory Reset (*RST command) sets the scan interval to immediate (0 seconds) and the scan count to 1 sweep.

Front-Panel Operation: To select interval scanning and set a scan interval time (hour:minutes:seconds), choose the following item.

INTERVAL SCAN

To initiate the scan and store all readings in memory, press SCAN (the SCAN annunciator will turn on). Between scan sweeps, the count-down time is shown on the front-panel (00:04 TO SCAN).

NOTE

To stop a scan, press and hold SCAN.

Remote Interface Operation: The following program segment configures the instrument for an interval scan.

TRIG:SOURCE TIMER Select the interval timer configuration
TRIG:TIMER 5 Set the scan interval to 5 seconds
TRIG:COUNT 2 Sweep the scan list 2 times
INIT Initiate the scan

NOTE

To stop a scan, send the ABORT command.
Scan once

In this configuration, the instrument waits for either a front-panel key press or a remote interface command before sweeping through the scan list.

- All readings from the scan are stored in non-volatile memory. Readings accumulate in memory until the scan is terminated (until the scan count is reached or until you abort the scan).
- You can specify a scan count which sets the number of front-panel key presses or scan trigger commands that will be accepted before terminating the scan. See “Scan Count” on page 117 for more information.
- Mx+B scaling and alarm limits are applied to measurements during a Scan Once operation and all data is stored in non-volatile memory.
- **Front-Panel Operation:**

 ![MANUAL SCAN](image)

 To initiate the scan and store all readings in memory, press the MANUAL SCAN button. The **ONCE** annunciator turns on as a reminder that a Scan Once operation is in progress.

NOTE

To stop a scan, press and hold the [key].

- **Remote Interface Operation:** The following program segment configures the instrument for a Scan Once operation.

```
TRIG:SOURCE BUS  Select the bus (once) configuration
TRIG:COUNT 2      Sweep the scan list 2 times
INIT              Initiate the scan
```
Then, send the \texttt{*TRG} (trigger) command to begin each scan sweep. You can also trigger the instrument from the GPIB interface by sending the IEEE-488 Group Execute Trigger (\texttt{GET}) message. The following statement shows how to send a \texttt{GET} message.

\textbf{TRIGGER 709} \quad \textit{Group Execute Trigger}

\textbf{NOTE}

To stop a scan, send the \texttt{ABORt} command.

\section*{External scanning}

In this configuration, the instrument sweeps through the scan list once each time a low-going TTL pulse is received on the rear-panel Ext Trig Input line (pin 6).

- You can specify a scan count which sets the number of external pulses the instrument will accept before terminating the scan. See “Scan Count” on page 117 for more information.
- If the instrument receives an external trigger before it is ready to accept one, it will buffer one trigger before generating an error.
- All readings from the scan are stored in non-volatile memory. Readings accumulate in memory until the scan is terminated (until the scan count is reached or until you abort the scan).
- Mx+B scaling and alarm limits are applied to measurements during the scan and all data is stored in non-volatile memory.
- **Front-Panel Operation:**

 ![EXTERNAL SCAN](image)

 To initiate the scan, press \(\text{EXIT}\). The \(\text{EXT}\) annunciator turns on as a reminder that an External Scan is in progress. When a TTL pulse is received, the scan starts and readings are stored in memory. To stop scan, press and hold \(\text{EXIT}\).

- **Remote Interface Operation:** The following program segment configures the instrument for an External Scan.

  ```
  TRIG:SOURCE EXT
  TRIG:COUNT 2
  INIT
  ```

 Select the external trigger configuration
 Sweep the scan list 2 times
 Initiate the scan

 NOTE

 To stop a scan, send the `ABOR`t command.

Scanning on alarm

In this configuration, the instrument sweeps the scan list once each time a reading crossing an alarm limit on a channel. You can also assign alarms to channels on the multifunction module. For example, you can generate an alarm when a specific bit pattern is detected or when a specific count is reached.

NOTE

For complete details on configuring and using alarms, refer to “Alarm Limits” starting on page 151.

- In this scan configuration, you may use the Monitor function to continuously take readings on a selected channel and wait for an alarm on that channel. The monitored channel can be part of the scan list but you can also use a channel on the multifunction module (which does not have to be part of the scan list and you do not have to use the Monitor function). For example, you can generate an alarm on a totalizer channel which will initiate a scan when a specific count is reached.
- You can specify a scan count which sets the number of alarms that will be allowed before terminating the scan. See “Scan Count” on page 117 for more information.

- All readings from the scan are stored in non-volatile memory. Readings accumulate in memory until the scan is terminated (until the scan count is reached or until you abort the scan).

- Mx+B scaling and alarm limits are applied to measurements during the scan and all data is stored in non-volatile memory.

- **Front-Panel Operation:**

 ![SCAN ON ALARM]

 To enable the Monitor function select the desired channel and then press ![Scan Enable]. To initiate the scan, press ![Scan]. When an alarm event occurs, the scan starts and readings are stored in memory.

 NOTE

 To stop a scan, press and hold ![Scan].

- **Remote Interface Operation:** The following program segment configures the instrument to scan when an alarm occurs.
TRIG:SOURCE ALARM1
Select the alarm configuration

TRIG:COUNT 2
Sweep the scan list 2 times

CALC:LIM:UPPER 5,(@103)
Set the upper limit

CALC:LIM:UPPER:STATE ON,(@103)
Enable the upper limit

OUTPUT:ALARM1:SOURCE (@103)
Report alarms on Alarm 1

ROUT:MON (@103)
Select monitor channel

ROUT:MON:STATE ON
Enable monitoring

INIT
Initiate the scan

NOTE
To stop a scan, send the ABORt command.
Scan count

You can specify the number of times the instrument will sweep through the scan list. When the specified number of sweeps have occurred, the scan stops.

- Select a scan count between 1 to 50,000 scan sweeps, or continuous.
- During an Interval Scan (see page 110), the scan count sets the number of times the instrument will sweep through the scan list and therefore determines the overall duration of the scan.
- During a Scan Once operation (see page 112), the scan count sets the number of front-panel key presses or scan trigger commands that will be accepted before terminating the scan.
- During an External Scan (see page 113), the scan count sets the number of external trigger pulses that will be accepted before terminating the scan.
- During an Alarm Scan (see page 114), the scan count sets the number of alarms that will be allowed before terminating the scan.
- You can store up to 50,000 readings in non-volatile memory during a scan. If you set a continuous scan and memory overflows (the MEM annunciator will turn on), a status register bit is set and new readings will overwrite the first readings stored (the most recent readings are always preserved).
- The MEASure? and CONFIGure commands automatically set the scan count to 1.
- From the front panel, a Factory Reset (Sto/Rcl menu) sets the scan count to continuous. From the remote interface, a Factory Reset (*RST command) sets the scan count to 1 sweep.
- Front-Panel Operation:

 The default is CONTINUOUS. To set the count to a value between 1 and 50,000 scans, turn the knob clockwise and enter a number.

- Remote Interface Operation:

 TRIG:COUNT 20

NOTE

To configure a continuous scan, send TRIG:COUNT INFINITY.
Reading format

During a scan, the instrument automatically adds a time stamp to all readings and stores them in non-volatile memory. Each reading is stored with measurement units, time stamp, channel number, and alarm status information. From the remote interface, you can specify which information you want returned with the readings (from the front panel, all of the information is available for viewing). The reading format applies to all readings being removed from the instrument from a scan; you cannot set the format on a per-channel basis.

- From the remote interface, the time stamp information is returned either in absolute time (time of day with date) or relative time (time since start of scan). Use the FORMat:READ:TIME:TYPE command to select absolute or relative time. From the front panel, the time stamp is always returned in absolute time.
- The MEASure? and CONFIGure commands automatically turn off the units, time, channel, and alarm information.
- A Factory Reset (*RST command) turns off the units, time, channel, and alarm information.
- Remote Interface Operation: The following commands select the format of readings returned from a scan.

 FORMat:READing:ALARm ON
 FORMat:READing:CHANnel ON
 FORMat:READing:TIME ON
 FORMat:READing:TIME:TYPE {ABSolute|RELative}
 FORMat:READing:UNIT ON

The following is an example of a reading stored in memory with all fields enabled (relative time is shown).

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading with Units (26.195 °C)</td>
<td>Channel Number</td>
<td>Time Since Start of Scan (17 ms)</td>
<td>Alarm Limit Threshold Crossed</td>
</tr>
<tr>
<td>0 = No Alarm, 1 = LO, 2 = HI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Channel delay

You can control the pace of a scan sweep by inserting a delay between multiplexer channels in the scan list (useful for high-impedance or high-capacitance circuits). The delay is inserted between the relay closure and the actual measurement on the channel. The programmed channel delay overrides the default channel delay that the instrument automatically adds to each channel.

- You can set the channel delay to any value between 0 seconds and 60 seconds, with 1 ms resolution. You can select a different delay for each channel. The default channel delay is automatic; the instrument determines the delay based on function, range, integration time, and AC filter setting (see “Automatic Channel Delays” on the next page).

- The MEASURE? and CONFIGURE commands set the channel delay to automatic. A Factory Reset (*RST command) also sets the channel delay to automatic.

- Front-Panel Operation:

 CH DELAY TIME

- Remote Interface Operation: The following command adds a 2-second channel delay to channel 101.

 ROUT:CHAN:DELAY 2,(@101)
Automatic channel delays

If you do not specify a channel delay, the instrument selects a delay for you. The delay is determined by function, range, integration time, and AC filter setting as shown below.

Table 4-1 DC Voltage, Thermocouple, DC Current (for all ranges)

<table>
<thead>
<tr>
<th>Integration time</th>
<th>Channel delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC > 1</td>
<td>2.0 ms</td>
</tr>
<tr>
<td>PLC ≤ 1</td>
<td>1.0 ms</td>
</tr>
</tbody>
</table>

Table 4-2 Resistance, RTD, Thermistor (2- and 4-wire)

<table>
<thead>
<tr>
<th>Range (for PLC > 1)</th>
<th>Channel delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Ω</td>
<td>2.0 ms</td>
</tr>
<tr>
<td>1 kΩ</td>
<td>2.0 ms</td>
</tr>
<tr>
<td>10 kΩ</td>
<td>2.0 ms</td>
</tr>
<tr>
<td>100 kΩ</td>
<td>25 ms</td>
</tr>
<tr>
<td>1 MΩ</td>
<td>30 ms</td>
</tr>
<tr>
<td>10 MΩ</td>
<td>200 ms</td>
</tr>
<tr>
<td>100 MΩ</td>
<td>200 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range (for PLC ≤ 1)</th>
<th>Channel delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Ω</td>
<td>1.0 ms</td>
</tr>
<tr>
<td>1 kΩ</td>
<td>1.0 ms</td>
</tr>
<tr>
<td>10 kΩ</td>
<td>1.0 ms</td>
</tr>
<tr>
<td>100 kΩ</td>
<td>20 ms</td>
</tr>
<tr>
<td>1 MΩ</td>
<td>25 ms</td>
</tr>
<tr>
<td>10 MΩ</td>
<td>200 ms</td>
</tr>
<tr>
<td>100 MΩ</td>
<td>200 ms</td>
</tr>
</tbody>
</table>

Table 4-3 AC Voltage, AC Current (for all ranges)

<table>
<thead>
<tr>
<th>AC filter</th>
<th>Channel delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow (3 Hz)</td>
<td>7.0 sec</td>
</tr>
<tr>
<td>Medium (20 Hz)</td>
<td>1.0 sec</td>
</tr>
<tr>
<td>Fast (200 Hz)</td>
<td>120 ms</td>
</tr>
</tbody>
</table>
- **Front-Panel Operation:**

 ![CH DELAY AUTO]

- **Remote Interface Operation:** The following command enables an automatic channel delay on channel 01.

 `ROUT:CHAN:DELAY:AUTO ON, (@101)`

Selecting a specific channel delay using the `ROUTe:CHANnel:DELay` command disables the automatic channel delay.

Table 4-4 | Frequency, Period

<table>
<thead>
<tr>
<th>AC filter</th>
<th>Channel delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow (3 Hz)</td>
<td>0.6 sec</td>
</tr>
<tr>
<td>Medium (20 Hz)</td>
<td>0.3 sec</td>
</tr>
<tr>
<td>Fast (200 Hz)</td>
<td>0.1 sec</td>
</tr>
</tbody>
</table>

Table 4-5 | Digital Input, Totalize

<table>
<thead>
<tr>
<th>Channel delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 sec</td>
</tr>
</tbody>
</table>
Viewing readings stored in memory

During a scan, the instrument automatically adds a time stamp to all readings and stores them in non-volatile memory. Readings are stored only during a scan. You can read the contents of memory at any time, even during a scan.

- You can store up to 50,000 readings in non-volatile memory during a scan. From the front panel, you can view the last 100 readings and all of the readings are available from the remote interface. If memory overflows (the MEM annunciator will turn on), a status register bit is set and new readings will overwrite the first readings stored (the most recent readings are always preserved).

- Each time you start a new scan, the instrument clears all readings (including alarm data) stored in reading memory from the previous scan. Therefore, the contents of memory are always from the most recent scan.

- The instrument clears all readings in memory after a Factory Reset (*RST command) or Instrument Preset (SYSTem:PRESet command). Reading memory is not cleared when you read it.

- While a scan is running, the instrument automatically stores the minimum and maximum readings and calculates the average for each channel. You can read these values at any time, even during a scan.

- Each reading is stored with measurement units, time stamp, channel number, and alarm status information. From the remote interface, you can specify which information you want returned with the readings (from the front panel, all of the information is available for viewing). For more information, see “Reading Format” on page 118.

- Readings acquired during a Monitor are not stored in memory (however, all readings from a scan in progress at the same time are stored in memory).

- The MEASure? and READ? commands send readings directly to the instrument’s output buffer but readings are not stored in memory. You will not be able to view these readings.

- The INITiate command stores readings in memory. Use the FETCH? command to retrieve stored readings from memory (the readings are not erased when you read them).
- **Front-Panel Operation**: From the front panel, data is available for the last 100 readings on each channel readings taken during a scan (all of the data is available from the remote interface). After turning the knob to the desired channel, press the \(\text{ } \) and \(\text{ } \) keys to choose the data that you want to view for the selected channel as shown below (the \text{LAST, MIN, MAX, and AVG} annunciators turn on to indicate what data is currently being viewed). Reading memory is not cleared when you read it. Note that you can view readings from the front panel even while the instrument is in remote.

<table>
<thead>
<tr>
<th>\text{Select Channel}</th>
<th>\text{HAND} and \text{AUTO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Reading on Channel</td>
<td>\text{LAST} reading</td>
</tr>
<tr>
<td>Time of Last Reading</td>
<td>\text{MIN} reading</td>
</tr>
<tr>
<td>Minimum Reading on Channel</td>
<td>\text{MAX} reading</td>
</tr>
<tr>
<td>Time of Minimum Reading</td>
<td>\text{AVG} reading</td>
</tr>
<tr>
<td>Maximum Reading on Channel</td>
<td>\text{SECOND} reading</td>
</tr>
<tr>
<td>Time of Maximum Reading</td>
<td>\text{THIRD} reading</td>
</tr>
<tr>
<td>Average of Readings on Channel</td>
<td>99th Most Recent Reading on Channel</td>
</tr>
</tbody>
</table>

- **Remote Interface Operation**: The following command retrieves stored readings from memory (the readings are not erased).

 \text{FETCH?}
Use the following commands to query the statistics on the readings stored in memory for a specific channel. These commands do not remove the data from memory.

CALC:AVER:MIN? (@305)
Minimum reading on channel

CALC:AVER:MIN:TIME? (@305)
Time minimum was logged

CALC:AVER:MAX? (@305)
Maximum reading on channel

CALC:AVER:MAX:TIME? (@305)
Time maximum was logged

CALC:AVER:AVER? (@305)
Average of all readings on channel

CALC:AVER:COUNT? (@305)
Number of readings taken on channel

CALC:AVER:PTPEAK? (@305)
Peak-to-peak (maximum-minimum)

The following command retrieves the last reading taken on channel 301 during a scan.

DATA:LAST? (@301)

The following command clears the contents of statistics memory for the selected channel.

CALC:AVER:CLEAR (@305)

Use the following command to determine the total number of readings stored in memory (all channels) from the most recent scan.

DATA:POINTS?

The following command reads and clears the specified number of readings from memory. This allows you to continue a scan without losing data stored in memory (if memory becomes full, new readings will overwrite the first readings stored). The specified number of readings are cleared from memory, starting with the oldest reading.

DATA:REMOVE? 12
Scanning with External Instruments

If your application doesn’t require the built-in measurement capabilities of the 34970A/34972A, you can order it without the internal DMM. In this configuration, you can use the 34970A/34972A for signal routing or control applications. If you install a multiplexer plug-in module, you can use the 34970A/34972A for scanning with an external instrument. You can connect an external instrument (such as a DMM) to the multiplexer COM terminal.
To control scanning with an external instrument, two control lines are provided. When the 34970A/34972A and the external instrument are properly configured, you can synchronize a scan sequence between the two.

In this configuration, you must set up a scan list to include all desired multiplexer or digital channels. Channels which are not in the list are skipped during the scan. The instrument automatically scans the list of channels in ascending order from slot 100 through slot 300.

For an externally-controlled scan, you must either remove the internal DMM from the 34970A/34972A or disable it (see "Internal DMM Disable" on page 175). Since the internal DMM is not used, readings from multiplexer channels are not stored in internal reading memory.

External connections are required to synchronize the scan sequence between the 34970A/34972A and the external instrument. The 34970A/34972A must notify the external instrument when a relay is closed and settled (including channel delay). The 34970A/34972A outputs a Channel Closed pulse from pin 5 on the rear-panel connector (see previous page). In response, the external instrument must notify the 34970A/34972A when it has finished its measurement and is ready to advance to the next channel in the scan list. The 34970A/34972A accepts a Channel Advance signal on the External Trigger input line (pin 6).
- You can configure the event or action that controls the onset of each sweep through the scan list (a sweep is one pass through the scan list). When the internal DMM is removed (or disabled), the default scan interval source is “timer.” For more information, refer to “Scan Interval” on page 94.

- You can configure the event or action that notifies the 34970A/34972A to advance to the next channel in the scan list. Note that the Channel Advance source shares the same sources as the scan interval. However, an error is generated if you attempt to set the channel advance source to the same source used for the scan interval.

- You can specify the number of times the instrument will sweep through the scan list. When the specified number of sweeps have occurred, the scan stops. For more information, refer to “Scan Count” on page 117.

- An externally-controlled scan can also include a read of a digital port or a read of the totalizer count on the multifunction module. When the channel advance reaches the first digital channel, the instrument scans through all of the digital channels in that slot and stores the readings in reading memory (only one channel advance signal is required).

- You can configure the list of channels for 4-wire external scanning without the internal DMM. When enabled, the instrument automatically pairs channel \(n \) with channel \(n+10 \) (34901A) or \(n+8 \) (34902A) to provide the source and sense connections.

- Front-Panel Operation: To select the channel advance source, choose from the following items.

 AUTO ADVANCE , EXT ADVANCE

 To initiate the scan, press \(\text{SCAN} \) (the SCAN annunciator will turn on).

 To configure the instrument for 4-wire external scanning, choose the following item.

 4W SCAN
Remote Interface Operation: The following program segment configures the instrument for an externally controlled scan.

- **TRIG:SOUR TIMER** Select the scan interval
- **ROUT:CHAN:ADV:SOUR EXT** Select the channel advance source
- **TRIG:TIMER 5** Set the scan interval to 5 seconds
- **TRIG:COUNT 2** Sweep the scan list 2 times
- **INIT** Initiate the scan

To configure the instrument for 4-wire external scanning, send the following command.

```
ROUTe:CHANnel:FWIRe {OFF|ON},[@<ch_list>]])
```
General Measurement Configuration

This section contains general information to help you configure the instrument for making measurements during a scan. Since these parameters are used by several measurement functions, the discussion is combined into one common section. Refer to the later sections in this chapter for more information on parameters that are specific to a particular measurement function.

NOTE

It is important that you select the measurement function before selecting other parameters on a given channel. When you change the function on a channel, all other settings (range, resolution, etc.) are reset to their default values.

Measurement range

You can allow the instrument to automatically select the measurement range using **autoranging** or you can select a fixed range using **manual ranging**. Autoranging is convenient because the instrument decides which range to use for each measurement based on the input signal. For fastest scanning operation, use manual ranging on each measurement (some additional time is required for autoranging since the instrument has to make a range selection).

- **Autorange thresholds:**
 - Down range at <10% of range
 - Up range at >120% of range
- If the input signal is greater than can be measured on the selected range, the instrument gives an *overload indication*: "±OVLD" from the front panel or "±9.90000000E+37" from the remote interface.
- For a complete list of the measurement ranges available for each function, refer to the instrument specifications in Chapter 8.
- For temperature measurements, the instrument internally selects the range; you cannot select which range is used. For thermocouple measurements, the instrument internally selects the 100 mV range. For thermistor and RTD measurements, the instrument autoranges to the correct range for the transducer resistance measurement.
For frequency and period measurements, the "range" parameter is used to compute a specific measurement resolution (see the Keysight 34970A/34972A Programmer’s Reference Help for details). When specifying a (non-default) resolution, both the range and resolution parameters must be specified within the **MEASure?** and **CONFigure** commands. Refer to the Keysight 34970A/34972A Programmer’s Reference Help for more information.

- The **MEASure?** and **CONFigure** commands contain an optional range parameter which allows you to specify the range or autoranging.

- The instrument returns to autoranging when the measurement function is changed and after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the range setting.

- **Front-Panel Operation**: First, select the measurement function on the active channel. You are automatically guided to the next level of the menu where you can select a specific range or autorange.

 - **100 mV RANGE**

- **Remote Interface Operation**: You can select the range using parameters in the **MEASure?** and **CONFigure** commands. For example, the following statement selects the 10 VDC range on channel 301.

  ```
  CONF:VOLT:DC 10,DEF,(@301)
  ```
Measurement resolution

Resolution is expressed in terms of number of digits the instrument can measure or display on the front panel. You can set the resolution to 4, 5, or 6 full digits, plus a “½” digit which can only be a “0” or “1”. To increase your measurement accuracy and improve noise rejection, select 6½ digits. To increase your measurement speed, select 4½ digits.

10.216,5 VDC

This is the 10 VDC range, 5½ digits are displayed.

-045.23 mVDC

This is the 100 mVDC range, 4½ digits are displayed.

113.325,6 OHM

This is the 100 ohm range, 6½ digits are displayed.

- For temperature measurements taken from the remote interface, the resolution is fixed at 6½ digits. From the front panel, you can set the resolution in terms of the number of digits displayed past the decimal point (Measure menu).
- For AC voltage measurements, the resolution is fixed at 6½ digits. The only way to control the reading rate for AC measurements is by changing the channel delay (see page 119) or by setting the AC filter to the highest frequency limit (see page 143).
- The specified resolution is used for all measurements on the selected channel. If you have applied Mx+B scaling or have assigned alarms to the selected channel, those measurements are also made using the specified resolution. Measurements taken during the Monitor function also use the specified resolution.
Changing the number of digits does more than just change the resolution of the instrument. It also changes the integration time, which is the period the instrument’s analog-to-digital (A/D) converter samples the input signal for a measurement. See Custom A/D Integration Time, on page 133 for more information.

The MEASure? and CONFIGure commands contain an optional resolution parameter which allows you to specify the resolution.

The instrument returns to 5½ digits when the measurement function is changed and after a Factory Reset (RST command). An Instrument Preset (SYSTEM:PRESet command) or Card Reset (SYSTEM:CPON command) does not change the resolution setting.

Front-Panel Operation: First, select the measurement function on the active channel. You are automatically guided to the next level of the menu where you can select the number of digits. The default is 5½ digits.

6 1/2 DIGITS

For temperature measurements, go to the menu and select the number of digits displayed past the decimal point on the selected channel.

DISPLAY 1 °C

Remote Interface Operation: Specify the resolution in the same units as the measurement function, not in number of digits. For example, if the function is DC volts, specify the resolution in volts. For frequency, specify the resolution in hertz.

You can select the resolution using parameters in the MEASure? and CONFIGure commands. For example, the following statement selects the 10 VDC range with 4½ digits of resolution on channel 301.

CONF:VOLT:DC 10,0.001,(@301)

The following statement selects the 1 A range with 6½ digits of resolution on channel 221.

MEAS:CURR:AC? 1,1E-6,(@221)

You can also select the resolution using the SENSE commands. For example, the following statement specifies a 4-wire ohms measurement with 100Ω of resolution on channel 103.

SENS:FRES:RES 100,(@103)
Custom A/D integration time

Integration time is the period of time that the instrument’s analog-to-digital (A/D) converter samples the input signal for a measurement. Integration time affects the measurement resolution (for better resolution, use a longer integration time) and measurement speed (for faster measurements, use a shorter integration time).

- Integration time is specified in number of power line cycles (PLCs). Select from 0.02, 0.2, 1, 2, 10, 20, 100, or 200 power line cycles. The default is 1 PLC.

- Only the integral number of power line cycles (1, 2, 10, 20, 100, or 200 PLCs) provide normal mode (line frequency noise) rejection.

- You can also specify integration time directly in seconds (this is called aperture time). Select a value between 400 µs and 4 seconds, with 10 µs resolution.

- The only way to control the reading rate for AC measurements is by changing the channel delay (see page 119) or by setting the AC filter to the highest frequency limit (see page 143).

- The specified integration time is used for all measurements on the selected channel. If you have applied Mx+B scaling or have assigned alarms to the selected channel, those measurements are also made using the specified integration time. Measurements taken during the Monitor function also use the specified integration time.

- The following table shows the relationship between integration time, measurement resolution, number of digits, and number of bits.

<table>
<thead>
<tr>
<th>Integration Time</th>
<th>Resolution</th>
<th>Digits</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02 PLC</td>
<td><0.0001 x Range</td>
<td>4½ Digits</td>
<td>15</td>
</tr>
<tr>
<td>0.2 PLC</td>
<td><0.00001 x Range</td>
<td>5½ Digits</td>
<td>18</td>
</tr>
<tr>
<td>1 PLC</td>
<td><0.000003 x Range</td>
<td>5½ Digits</td>
<td>20</td>
</tr>
<tr>
<td>2 PLC</td>
<td><0.0000022 x Range</td>
<td>6½ Digits</td>
<td>21</td>
</tr>
<tr>
<td>10 PLC</td>
<td><0.000001 x Range</td>
<td>6½ Digits</td>
<td>24</td>
</tr>
<tr>
<td>20 PLC</td>
<td><0.0000008 x Range</td>
<td>6½ Digits</td>
<td>25</td>
</tr>
<tr>
<td>100 PLC</td>
<td><0.0000003 x Range</td>
<td>6½ Digits</td>
<td>26</td>
</tr>
<tr>
<td>200 PLC</td>
<td><0.00000022 x Range</td>
<td>6½ Digits</td>
<td>26</td>
</tr>
</tbody>
</table>
- The instrument selects 1 PLC when the measurement function is changed and after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the integration time setting.

- Front-Panel Operation: First, select the measurement function on the active channel. Then, go to the Advanced menu and select one of the choices in PLCs for the active channel.

 ![INTEG 2 PLC]

 To select the aperture time, select INTEGRATE T from the Advanced menu and then specify a value in seconds for the active channel.

 ![INTEGRATE T]

- Remote Interface Operation: You can set the integration time using the SENSE commands. For example, the following statement specifies an integration time of 10 PLC for DC voltage measurements on channel 301.

  ```plaintext
  SENS:VOLT:DC:NPLC 10,(@301)
  ```

 You can also select an aperture time using the SENSE commands. For example, the following statement specifies an aperture time of 2 ms for resistance measurements on channel 104.

  ```plaintext
  SENS:RES:APER 0.002,(@104)
  ```
Autozero

When autozero is enabled (default), the instrument internally disconnects the input signal following each measurement, and takes a zero reading. It then subtracts the zero reading from the preceding reading. This prevents offset voltages present on the instrument’s input circuitry from affecting measurement accuracy.

When autozero is disabled, the instrument takes one zero reading and subtracts it from all subsequent measurements. It takes a new zero reading each time you change the function, range, or integration time.

- Applies to temperature, DC voltage, 2-wire ohms, and DC current measurements only. Autozero is enabled when you select 4-wire ohms measurements.
- The autozero mode is set indirectly when you set the resolution and integration time. Autozero is automatically turned off when you select an integration time less than 1 PLC.
- You can set autozero from the remote interface only; you cannot directly set autozero from the front panel.
- The autozero setting is stored in non-volatile memory, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).
- Remote Interface Operation: The OFF and ONCE parameters have a similar effect. Autozero OFF does not issue a new zero measurement. Autozero ONCE issues an immediate zero measurement.

```
ZERO:AUTO {OFF|ONCE|ON}[,(@<ch_list>)]
```
Temperature Measurement Configuration

This section contains information to help you configure the instrument for making temperature measurements. For more information on the types of temperature transducers, see “Temperature Measurements” starting on page 278.

The instrument supports direct measurement of thermocouples, RTDs, and thermistors. The instrument supports the following specific types of transducers in each category:

<table>
<thead>
<tr>
<th>Thermocouples Supported</th>
<th>RTDs Supported</th>
<th>Thermistors Supported</th>
</tr>
</thead>
</table>
| B, E, J, K, N, R, S, T | R₀ = 49Ω to 2.1 kΩ
α = 0.00385 (DIN/IEC 751)
α = 0.00391 | 2.2 kΩ, 5 kΩ, 10 kΩ, 44000 Series |

Measurement units

- The instrument can report temperature measurements in °C (Celsius), °F (Fahrenheit), or K (Kelvin). You can mix temperature units on different channels within the instrument and on the same module.
- The instrument selects Celsius when the probe type is changed and after a Factory Reset (\(*RST\) command). An Instrument Preset (\(SYSTem:PRESet\) command) or Card Reset (\(SYSTem:CPON\) command) does not change the units setting.
- Setting the Mx+B measurement label to °C, °F, or K has no effect on the temperature measurement units currently selected.
- **Front-Panel Operation:** First, select the temperature function on the active channel. Then, select the temperature units.

 ![UNITS °F](image)

- **Remote Interface Operation:**

 \(UNIT:TEMP F, (@103)\)
Thermocouple measurements

To connect a thermocouple to the module’s screw terminals, see page 39.

- The instrument supports the following thermocouple types:
 The default is a J-Type thermocouple.

- Thermocouple measurements require a reference junction temperature. For
 the reference junction temperature, you can use an internal measurement on
 the module, an external thermistor or RTD measurement, or a known fixed
 junction temperature.

- If you select an external reference, the instrument automatically reserves
 channel 01 on the multiplexer in the lowest slot as the reference channel
 (thermistor or RTD measurement). If you have more than one multiplexer
 installed, channel 01 on the module in the lowest slot is used as the reference
 for the entire instrument.

- Before configuring a thermocouple channel with an external reference, you
 must configure the reference channel (channel 01) for a thermistor or RTD
 measurement. An error is generated if you attempt to select the external
 reference source before configuring the reference channel. An error is also
 generated if you change the function on the reference channel after selecting
 the external reference for a thermocouple channel.

- If you select a fixed reference temperature, specify a value between
 -20 °C and +80 °C (always specify the temperature in °C regardless of the
 temperature units currently selected).

- The accuracy of the measurement is highly dependent upon the thermocouple
 connections and the type of reference junction used. Use a fixed temperature
 reference for the highest accuracy measurements. The internal isothermal
 block reference provides the lowest accuracy measurements. For more
 information on reference junction temperature measurements and associated
 errors, see the sections on pages 278 and 286.

- The *thermocouple check* feature allows you to verify that your thermocouples
 are properly connected to the screw terminals for measurements. If you enable
 this feature, the instrument measures the channel resistance after each
 thermocouple measurement to ensure a proper connection. If an open
 connection is detected (greater than 5 kΩ on the 10 kΩ range), the instrument
 reports an overload condition for that channel (or displays “OPEN T/C” on the
 front panel).
Front-Panel Operation: To select the thermocouple function on the active channel, choose the following items.

- TEMPERATURE , THERMOCOUPLE

To select the thermocouple type for the active channel, choose the following item.

- J TYPE T/C

To enable the thermocouple check feature on the active channel (opens are reported as “OPEN T/C”), choose the following item.

- T/C CHECK ON

To select the reference junction source for the active channel, choose one of the following items.

- INTERNAL REF , EXTERNAL REF , FIXED REF

NOTE

Before selecting an external source, be sure to configure channel 01 in the lowest slot for a thermistor or RTD measurement.

Remote Interface Operation: You can use the MEASure? or CONFigure command to select the probe type and thermocouple type. For example, the following statement configures channel 301 for a J-type thermocouple measurement.

- CONF:TEMP TC,J,(@301)

You can also use the SENSe command to select the probe type and thermocouple type. For example, the following statement configures channel 203 for a J-type thermocouple measurement.

The following statements use the SENSe command to set a fixed reference junction temperature of 40 degrees (always in °C) on channel 203.

- SENS:TEMP:TRAN:TC:RJUN 40,(@203)

The following statement enables the thermocouple check feature on the specified channels (opens are reported as “+9.90000000E+37”).

- SENS:TEMP:TRAN:TC:CHECK ON,(@203,301)
RTD measurements

To connect an RTD to the module’s screw terminals, see page 39.

- The instrument supports RTDs with $\alpha = 0.00385$ (DIN / IEC 751) using ITS-90 software conversions or $\alpha = 0.00391$ using IPTS-68 software conversions. The default is $\alpha = 0.00385$.

- The resistance of an RTD is nominal at 0 °C and is referred to as R_0. The instrument can measure RTDs with R_0 values from 49 Ω to 2.1 kΩ. The default is $R_0 = 100$ Ω.

- “PT100” is a special label that is sometimes used to refer to an RTD with $\alpha = 0.00385$ and $R_0 = 100$ Ω.

- You can measure RTDs using a 2-wire or 4-wire measurement method. The 4-wire method provides the most accurate way to measure small resistances. Connection lead resistance is automatically removed using the 4-wire method.

- For 4-wire RTD measurements, the instrument automatically pairs channel n with channel $n+10$ (34901A) or $n+8$ (34902A) to provide the source and sense connections. For example, make the source connections to the HI and LO terminals on channel 2 and the sense connections to the HI and LO terminals on channel 12.

- Front-Panel Operation: To select the 2-wire or 4-wire RTD function for the active channel, choose the following items.

 ![TEMPERATURE , RTD , RTD 4W]

 To select the nominal resistance (R_0) for the active channel, choose the following item.

 ![R_0:100.000,0 OHM]

 To select the RTD type ($\alpha = 0.00385$ or 0.00391) for the active channel, choose the following item.

 ![ALPHA 0.00385]

- Remote Interface Operation: You can use the MEASure? or CONFigure command to select the probe type and RTD type. For example, the following statement configures channel 301 for 2-wire measurements of an RTD with $\alpha = 0.00385$ (use “85” to specify $\alpha = 0.00385$ or “91” to specify $\alpha = 0.00391$).

 CONF:TEMP RTD,85,(@301)
You can also use the SENSE command to select the probe type, RTD type, and nominal resistance. For example, the following statement configures channel 103 for 4-wire measurements of an RTD with $\alpha = 0.00391$ (channel 103 is automatically paired with channel 113 for the 4-wire measurement).

```
SENS:TEMP:TRAN:FRTD:TYPE 91,(@103)
```

The following statement sets the nominal resistance (R_0) to 1000Ω on channel 103.

```
SENS:TEMP:TRAN:FRTD:RES 1000,(@103)
```
Thermistor measurements

To connect a thermistor to the module's screw terminals, see page 39

- The instrument supports 2.2 kΩ (44004), 5 kΩ (44007), and 10 kΩ (44006) thermistors.

- Front-Panel Operation: To select the thermistor function for the active channel, choose the following items.
 - TEMPERATURE, THERMISTOR

To select the thermistor type for the active channel, choose from the following items.
 - TYPE 2.2 KOHM, TYPE 5 KOHM, TYPE 10 KOHM

- Remote Interface Operation: You can use the MEASure? or CONFigure command to select the probe type and thermistor type. For example, the following statement configures channel 301 for measurements of a 5 kΩ thermistor:
 - CONF:TEMP THER,5000,(@301)

You can also use the SENSE command to select the probe type and thermistor type. For example, the following statement configures channel 103 for measurements of a 10 kΩ thermistor:
 - SENS:TEMP:TRAN:THERM:TYPE 10000,(@103)
Voltage Measurement Configuration

To connect voltage sources to the module’s screw terminals, see page 39.
This section contains information to help you configure the instrument for making voltage measurements. The instrument can measure DC and true RMS ac-coupled voltages on the measurement ranges shown below.

| 100 mV | 1V | 10V | 100V | 300V | Autorange |

DC input resistance

Normally, the instrument’s input resistance is fixed at 10 MΩ for all DC voltage ranges to minimize noise pickup. To reduce the effects of measurement loading errors, you can set the input resistance to greater than 10 GΩ for the 100 mVDC, 1 VDC, and 10 VDC ranges.

 Applies to DC voltage measurements only.

<table>
<thead>
<tr>
<th>Input Resistance Setting</th>
<th>Input Resistance 100 mV, 1V, 10 V ranges</th>
<th>Input Resistance 100 V, 300 V ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input R Auto OFF</td>
<td>10 MΩ</td>
<td>10 MΩ</td>
</tr>
<tr>
<td>Input R Auto ON</td>
<td>>10 GΩ</td>
<td>10 MΩ</td>
</tr>
</tbody>
</table>

- The instrument selects 10 MΩ (fixed input resistance on all DC voltage ranges) when the measurement function is changed or after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the input resistance setting.
- Front-Panel Operation: First, select the DC voltage function on the active channel. Then, go to the Advanced menu and select 10 MΩ (fixed resistance for all DC voltage ranges) or >10 GΩ. The default is 10 MΩ.
Remote Interface Operation: You can enable or disable the automatic input resistance mode on the specified channels. With AUTO OFF (default), the input resistance is fixed at 10 MΩ for all ranges. With AUTO ON, the input resistance is set to >10 GΩ for the three lowest DC voltage ranges. The MEASure? and CONFIGure commands automatically select AUTO OFF.

INPUT:IMPEDANCE:AUTO ON, (@103)

AC low frequency filter

The instrument uses three different AC filters which enable you to either optimize low frequency accuracy or achieve faster AC settling times. The instrument selects the slow, medium, or fast filter based on the input frequency that you specify for the selected channels.

Applies to AC voltage and AC current measurements only.

<table>
<thead>
<tr>
<th>Input frequency</th>
<th>Default settling delay</th>
<th>Minimum settling delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hz to 300 kHz (Slow)</td>
<td>7 seconds / reading</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>20 Hz to 300 kHz (Medium)</td>
<td>1 second / reading</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>200 Hz to 300 kHz (Fast)</td>
<td>0.12 seconds / reading</td>
<td>0.02 seconds</td>
</tr>
</tbody>
</table>

- The instrument selects the medium filter (20 Hz) when the function is changed or after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the setting.

- Front-Panel Operation: First, select the AC voltage (or AC current) function on the active channel. Then, go to the Advanced menu and select the slow filter (3 Hz), medium filter (20 Hz), or fast filter (200 Hz) for the active channel. The default is the medium filter.

- Remote Interface Operation: Specify the lowest frequency expected in the input signal on the specified channels. The instrument selects the appropriate filter based on the frequency you specify (see table above). The MEASure? and CONFIGure commands automatically select the 20 Hz (medium) filter.

SENS:VOLT:AC:BAND 3,(@203) Select the slow filter (3 Hz)
Resistance Measurement Configuration

To connect resistances to the module's screw terminals, see page 39. This section contains information to help you configure the instrument for making resistance measurements. Use the 2-wire method for ease of wiring and higher density or the 4-wire method for improved measurement accuracy. The measurement ranges are shown below.

Offset compensation

Offset compensation removes the effects of any DC voltages in the circuit being measured. The technique involves taking the difference between two resistance measurements on the specified channels, one with the current source turned on and one with the current source turned off.

Applies only to 2-wire and 4-wire ohms measurements on the 100Ω, $1\ k\Omega$, and $10\ k\Omega$ ranges.

- For detailed information about offset compensation, see page 306.
- The instrument disables offset compensation when the measurement function is changed or after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the setting.
- Front-Panel Operation: First, select the 2-wire or 4-wire ohms function on the active channel. Then, go to the Advanced menu and enable or disable offset compensation.

 ![OCOMP ON]

 - Remote Interface Operation:

 `RES:OCOM ON, (@208)`

 `FRES:OCOM ON, (@208)`

 For 4-wire measurements, specify the paired channel in the lower bank (source) as the `<ch_list>` parameter.
Current Measurement Configuration

To connect a current source to the module’s screw terminals, see page 39.

This section contains information to help you configure the instrument for making current measurements on the 34901A multiplexer module. This module has two fused channels for direct DC and AC current measurements on the measurement ranges shown below.

<table>
<thead>
<tr>
<th>Range</th>
<th>Default settling delay</th>
<th>Minimum settling delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA</td>
<td>7 seconds / reading</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>100 mA</td>
<td>1 second / reading</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>1 A</td>
<td>0.12 seconds / reading</td>
<td>0.02 seconds</td>
</tr>
</tbody>
</table>

NOTE

Current measurements are allowed only on channels 21 and 22 on the 34901A module.

AC low frequency filter

The instrument uses three different AC filters which enable you to either optimize low frequency accuracy or achieve faster AC settling times. The instrument selects the slow, medium, or fast filter based on the input frequency that you specify for the selected channels.

Applies to AC current and AC voltage measurements only.

- The instrument selects the medium filter (20 Hz) when the function is changed or after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the setting.
- **Front-Panel Operation**: First, select the AC current (or AC voltage) function on the active channel. Then, go to the Advanced menu and select the slow filter (3 Hz), medium filter (20 Hz), or fast filter (200 Hz) for the active channel. *The default is the medium filter.*

 ![LF 3 HZ:SLOW](image)

- **Remote Interface Operation**: Specify the lowest frequency expected in the input signal on the specified channels. The instrument selects the appropriate filter based on the frequency you specify (see table on previous page). The **MEASure?** and **CONFigure** commands automatically select the 20 Hz (medium) filter.

  ```sensitive
  SENS:VOLT:AC:BAND 3,(203)
  Select the slow filter (3 Hz)
  ```
Frequency Measurement Configuration

To connect an AC source to the module’s screw terminals, see page 39.

Low frequency timeout

The instrument uses three different timeout ranges for frequency measurements. The instrument selects a slow, medium, or fast timeout based on the input frequency that you specify for the selected channels.

<table>
<thead>
<tr>
<th>Input frequency</th>
<th>Default settling delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hz to 300 kHz (Slow)</td>
<td>1 s</td>
</tr>
<tr>
<td>20 Hz to 300 KHz (Medium)</td>
<td>100 ms</td>
</tr>
<tr>
<td>200 Hz to 300 kHz (Fast)</td>
<td>10 ms</td>
</tr>
</tbody>
</table>

- The instrument selects the medium timeout (20 Hz) when the function is changed or after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the setting.
- Front Panel Operation. First, select the frequency function on the active channel. Then, go to the Advanced menu and select the slow timeout (3 Hz), medium timeout (20 Hz), or fast timeout (200 Hz) for the active channel. The default is the medium timeout value.

 LF 3 HZ:SLOW

- Remote Interface Operation: Specify the lowest frequency expected in the input signal on the specified channels. The instrument selects the appropriate timeout based on the frequency you specify (see table above). The MEASURE? and CONFIGure commands automatically select the 20 Hz (medium) timeout.

 SENS:FREQ:RANG:LOW 3,(@203) Select the slow timeout (3 Hz)
Mx+B Scaling

The scaling function allows you to apply a gain and offset to all readings on a specified multiplexer channel during a scan. In addition to setting the gain ("M") and offset ("B") values, you can also specify a custom measurement label for your scaled readings (RPM, PSI, etc.). You can apply scaling to any multiplexer channels and for any measurement function. Scaling is not allowed with any of the digital channels on the multifunction module.

- Scaling is applied using the following equation:
 \[\text{Scaled Reading} = (\text{Gain} \times \text{Measurement}) + \text{Offset} \]

- You must configure the channel (function, transducer type, etc.) before applying any scaling values. If you change the measurement configuration, scaling is turned off on that channel and the gain and offset values are reset (M=1 and B=0). Scaling is also turned off when you change the temperature probe type, temperature units, or disable the internal DMM.

- If you plan to use scaling on a channel which will also use alarms, be sure to configure the scaling values first. If you attempt to assign the alarm limits first, the instrument will turn off alarms and clear the limit values when you enable scaling on that channel. If you specify a custom measurement label with scaling, it is automatically used when alarms are logged on that channel.

- If you remove a channel from the scan list (by selecting CHANNEL OFF from the front panel or by redefining the scan list from the remote interface), scaling is turned off for that channel but the gain and offset values are not cleared. If you decide to add that channel back to the scan list (without changing the function), the original gain and offset values are restored and scaling is turned back on. This makes it easy to temporarily remove a channel from the scan list without entering the scaling values again.

- You can make a null measurement on a channel and store it as the offset ("B") for subsequent measurements. This allows you to adjust for voltage or resistive offsets through your wiring to the point of the measurement.

- During a Monitor operation, the gain and offset values are applied to all readings on the specified channel.
– You can specify a custom label with up to three characters. You can use letters (A-Z), numbers (0-9), an underscore (_), or the "#" character which displays a degree symbol (°) on the front panel (displayed as a blank space in an output string from the remote interface). The first character must be a letter or the "#" character (the "#" character is allowed only as the leftmost character in the label). The remaining two characters can be letters, numbers, or an underscore.

NOTE If you set the measurement label to °C, °F, or K, note that this has no effect on the temperature units set in the Measure menu.

– Although the instrument does not directly support strain gage measurements, you can measure a strain gage using a 4-wire resistance measurement with scaling. For more information, refer to “Strain Gage Measurements” on page 308.

NOTE Keysight BenchLink Data Logger 3 software has built-in strain gage measurement capability.

Use the following equations to calculate the gain and offset.

\[
M = \frac{1}{GF 	imes R_0} \quad B = -\frac{1}{GF}
\]

Where \(GF \) is the gage factor and \(R_0 \) is the unstrained gage resistance. For example, a 350Ω strain gage with a gage factor of 2 would use the following gain and offset values: \(M=0.001428571, B=-0.5 \) (be sure to use 6½ digits of resolution for this measurement).

– The maximum gain allowed is ±1E+15 and the maximum offset allowed is ±1E+15.

– The MEASure? and CONFIGure commands automatically set the gain ("M") to 1 and offset ("B") to 0.

– A Factory Reset (*RST command) turns off scaling and clears the scaling values on all channels. An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not clear the scaling values and does not turn off scaling.
4 Features and Functions

- **Front-Panel Operation**: The menu automatically guides you through the gain, offset, and measurement label settings.

 - SET GAIN , SET OFFSET , SET LABEL

 To reset the gain, offset, and measurement label to their defaults, go to the corresponding level in the menu and turn the knob. To turn scaling off (without clearing the gain and offset values), go to the first level in the menu and select SCALING OFF.

 - SET GAIN TO 1 , SET OFST TO 0 , DEFAULT LABEL

 To make a null measurement and store it as the offset, go to SET OFFSET in the menu and turn the knob.

- **Remote Interface Operation**: Use the following commands to set the gain, offset, and custom measurement label.

 - `CALC:SCALE:GAIN 1.2, (@101)`
 - `CALC:SCALE:OFFSET 10, (@101)`
 - `CALC:SCALE:UNIT 'PSI', (@101)`

 After setting the gain and offset values, send the following command to enable the scaling function on the specified channel.

 - `CALC:SCALE:STATE ON, (@101)`

 To make a null measurement and store it as the offset, send the following command.

 - `CALC:SCALE:OFFSET:NULL (@101)`
Alarm Limits

The instrument has four alarms which you can configure to alert you when a reading exceeds specified limits on a channel during a scan. You can assign a high limit, a low limit, or both to any configured channel in the scan list. You can assign multiple channels to any of the four available alarms (numbered 1 through 4). For example, you can configure the instrument to generate an alarm on the Alarm 1 output when a limit is exceeded on any of channels 103, 205, or 320.

You can also assign alarms to channels on the multifunction module. For example, you can generate an alarm when a specific bit pattern or bit pattern change is detected on a digital input channel or when a specific count is reached on a totalizer channel. With the multifunction module, the channels do not have to be part of the scan list to generate an alarm. For complete details, see “Using Alarms With the Multifunction Module” on page 159.

Alarm data can be stored in one of two locations depending on whether a scan is running when the alarm occurs.

1. If an alarm event occurs on a channel as it is being scanned, that channel's alarm status is stored in reading memory as the readings are taken. Each reading outside the specified alarm limits is logged in memory. You can store up to 50,000 readings in memory during a scan. You can read the contents of reading memory at any time, even during a scan. Reading memory is not cleared when you read it.

2. As alarm events are generated, they are also logged in an alarm queue, separate from reading memory. This is the only place where non-scanned alarms get logged (alarms during a monitor, alarms generated by the multifunction module, etc.). Up to 20 alarms can be logged in the alarm queue. If more than 20 alarm events are generated, only the first 20 alarms are saved). Even if the alarm queue is full, the alarm status is still stored in reading memory during a scan. The alarm queue is cleared by the *CLS (clear status) command, when power is cycled, and by reading all of the entries. A Factory Reset (*RST command) does not clear the alarm queue.

- You can assign an alarm to any configured channel and multiple channels can be assigned to the same alarm number. However, you cannot assign alarms on a specific channel to more than one alarm number.
When an alarm occurs, the instrument stores relevant information about the alarm in the queue. This includes the reading that caused the alarm, the time of day and date of the alarm, and the channel number on which the alarm occurred. The information stored in the alarm queue is always in absolute time format and is not affected by the `FORMat:READing:TIME:TYPE` command setting.

You must configure the channel (function, transducer type, etc.) before setting any alarm limits. If you change the measurement configuration, alarms are turned off and the limit values are cleared. Alarms are also turned off when you change the temperature probe type, temperature units, or disable the internal DMM.

If you plan to use alarms on a channel which will also use scaling, be sure to configure the scaling values first. If you attempt to assign the alarm limits first, the instrument will turn off alarms and clear the limit values when you enable scaling on that channel. If you specify a custom measurement label with scaling, it is automatically used when alarms are logged on that channel.

If you remove a channel from the scan list (by selecting `CHANNEL OFF` from the front panel or by redefining the scan list from the remote interface), alarms are no longer evaluated on that channel (during a scan) but the limit values are not cleared. If you decide to add that channel back to the scan list (without changing the function), the original limit values are restored and alarms are turned back on. This makes it easy to temporarily remove a channel from the scan list without entering the alarm values again.

Each time you start a new scan, the instrument clears all readings (including alarm data) stored in reading memory from the previous scan. Therefore, the contents of reading memory are always from the most recent scan.
– Alarms are logged in the alarm queue only when a reading crosses a limit, not while it remains outside the limit and not when it returns to within limits.

![Alarms Diagram]

– Four TTL alarm outputs are available on the rear-panel alarms connector. You can use these hardware outputs to trigger external alarm lights, sirens, or send a TTL pulse to your control system. You can also initiate a scan sweep (no external wiring required) when an alarm event is logged on a channel. For complete details, refer to “Using the Alarm Output Lines” on page 157.

– The following table shows the different combinations of front-panel annunciators that may appear while using alarms.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Bell]</td>
<td>An alarm is enabled on the displayed channel.</td>
</tr>
<tr>
<td>![Hi] ![Lo]</td>
<td>The indicated Hi or LO limit is being configured on the indicated alarm (shown while in the Alarm menu).</td>
</tr>
<tr>
<td>![Alarm] ![Square]</td>
<td>An alarm has occurred on one or more channels. The behavior of the alarm output lines tracks the alarm annunciators on the front panel.</td>
</tr>
<tr>
<td>![Alarm] ![Clear]</td>
<td>The alarm output lines have been cleared but alarms remain in the queue.</td>
</tr>
</tbody>
</table>

– In addition to being stored in reading memory, alarms are also recorded in their own SCPI status system. You can configure the instrument to use the status system to generate a Service Request (SRQ) when alarms are generated. See the Keysight 34970A/34972A Programmer’s Reference Help for more information.
The default values for the upper and lower alarm limits are “0”. The lower limit must always be less than or equal to the upper limit, even if you are using only one of the limits.

For details on configuring alarms on the multifunction module, see “Using Alarms With the Multifunction Module” on page 159.

A Factory Reset (*RST command) clears all alarm limits and turns off all alarms. An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not clear the alarm limits and does not turn off alarms.

Front-Panel Operation: To select the alarm for use on the active channel, choose from the following items.

- NO ALARM
- USE ALARM 1
- ... USE ALARM 4

Then, choose from the following alarm conditions.

- HI+LO ALARMS
- HI ALARM ONLY
- LO ALARM ONLY

Then, set the desired limit values and exit the menu. Note that the instrument does not start evaluating the alarm conditions until you exit the Alarm menu.

Remote Interface Operation: To assign the alarm number to report any alarm conditions on the specified channels, use the following command (if not assigned, all alarms on all channels are reported on Alarm 1 by default).

```
OUTPUT:ALARM2:SOURCE (@103,212)
```

To set the upper and lower alarm limits on the specified channels, use the following commands.

```
CALC:LIMIT:UPPER 5.25,(@103,212)
CALC:LIMIT:LOWER 0.025,(@103,212)
```

To enable the upper and lower alarm limits on the specified channels, use the following commands.

```
CALC:LIMIT:UPPER:STATE ON,(@103,212)
CALC:LIMIT:LOWER:STATE ON,(@103,212)
```
Viewing stored alarm data

If an alarm occurs on a channel as it is being scanned, then that channel’s alarm status is stored in reading memory as the readings are taken. As alarm events are generated, they are also logged in an alarm queue, which is separate from reading memory. This is the only place where non-scanned alarms get logged (alarms during a monitor, alarms generated by the multifunction module, etc.).

- You can store up to 50,000 readings in memory during a scan. You can read the contents of reading memory at any time, even during a scan. Reading memory is not cleared when you read it.

- Each time you start a new scan, the instrument clears all readings (including alarm data) stored in reading memory from the previous scan. Therefore, the contents of memory are always from the most recent scan.

- Up to 20 alarms can be logged in the alarm queue. If more than 20 alarms are generated, they will be lost (only the first 20 are saved).

- The alarm queue is cleared by the *CLS (clear status) command, when power is cycled, and by reading all of the entries. A Factory Reset (*RST command) or Instrument Preset (SYSTem:PRESet command) does not clear the alarm queue.

- Front-Panel Operation: From the front panel, you can view the first 20 alarms in the queue. After turning the knob to the desired channel, press < and > to view either the alarm reading or the time that the alarm occurred. Notice that the annunciators indicate which alarm is being viewed.

- Remote Interface Operation: The following command reads data from the alarm queue (one alarm event is read and cleared each time this command is executed).

 SYSTEM:ALARM?
The following is an example of an alarm stored in the alarm queue (if no alarm data is in the queue, the command returns "0" for each field).

```
3.1009000E+01 C, 1997,04,01, 14,39,40,058, 101, 2, 1
```

1 1 Reading with Units (31.009 °C) 4 4 Channel Number
2 2 Date (May 1, 1997) 5 5 Limit Threshold Crossed
3 3 Time (2:39:40.058 PM) (0 = No Alarm, 1 = LO, 2 = HI)

6 6 Alarm Number Reported
 (1, 2, 3, or 4)

The following command retrieves scanned readings and alarm data from reading memory (the readings are not erased).

`FETCH?`
Using the alarm output lines

Four TTL alarm outputs are available on the rear-panel Alarms connector. You can use these hardware outputs to trigger external alarm lights, sirens, or send a TTL pulse to your control system. You can assign an alarm to any configured channel and multiple channels can be assigned to the same alarm number. Each alarm output line represents the logical “OR” of all channels assigned to that alarm number (an alarm on any of the associated channels will pulse the line).

You can configure the behavior of the alarm output lines as described below. The behavior of the alarm annunciators on the front panel also tracks the alarm output configuration. The configuration that you select is used for all four alarm output lines. A Factory Reset (*RST command) clears all four alarm outputs but does not clear the alarm queue in either configuration.

- **Latch Mode**: In this mode, the corresponding output line is latched true when the first alarm occurs and remains asserted until you clear it by initiating a new scan or cycling power. You can manually clear the output lines at any time (even during a scan) and the alarm data in memory is not cleared (however, data is cleared when you initiate a new scan).

- **Track Mode**: In this mode, the corresponding output line is asserted only when a reading crosses a limit and remains outside the limit. When a reading returns to within limits, the output line is automatically cleared. You can manually clear the output lines at any time (even during a scan) and the alarm data in memory is not cleared (however, data is cleared when you initiate a new scan). The alarm outputs are also cleared when you initiate a new scan.
You can control the slope of the pulse from the alarm outputs (the selected configuration is used for all four outputs). In the falling edge mode, 0V (TTL low) indicates an alarm. In the rising edge mode, +5V (TTL high) indicates an alarm. A Factory Reset (*RST command) will reset the slope to falling edge.

NOTE
Changing the slope of the output lines may cause the lines to change state.

Front-Panel Operation: To specify if you want to manually clear all four alarm outputs, choose from the following items.

- DO NOT CLEAR, CLEAR OUTPUTS

To select the output configuration for all four output lines, choose from the following items.

- LATCH ON FAIL, TRACK PASS/F

To configure the slope of all four output lines, choose from the following items.

- FAIL = HIGH, FAIL = LOW

Remote Interface Operation: To clear the specified output lines (or to clear all four lines), use one of the following commands.

- OUTPUT:ALARM2:CLEAR
 Clear alarm output line 2

- OUTPUT:ALARM:CLEAR:ALL
 Clear all four alarm outputs

To select the output configuration for all four output lines, use the following command:

- OUTPUT:ALARM:MODE {LATch|TRACk}

To configure the slope of all four output lines, use the following command.

- OUTPUT:ALARM:SLOPe {NEGative|POSitive}
Using alarms with the multifunction module

You can configure the instrument to generate an alarm when a specific bit pattern or bit pattern change is detected on a digital input channel or when a specific count is reached on a totalizer channel. These channels do not have to be part of the scan list to generate an alarm. Alarms are evaluated continuously as soon as you enable them.

- The digital input channels are numbered "s01" (lower byte) and "s02" (upper byte), where s represents the slot number. The totalizer channel is numbered "s03".
- Alarms are evaluated continuously on the multifunction module, but alarm data is stored in reading memory only during a scan.
- Each time you start a new scan, the instrument clears all readings (including alarm data) stored in reading memory from the previous scan. However, alarm data stored in the alarm queue from the multifunction module is not cleared. Therefore, although the contents of reading memory are always from the most recent scan, the alarm queue may contain data that occurred during previous scans or while the instrument was not scanning.
- Front-Panel Operation: To configure an alarm on a digital input channel, choose from the following items and then set the desired bit pattern. Set each bit to "0", "1", or "X" (don't care). You can either specify that an alarm will occur when certain bits change or when a specific 8-bit pattern is read.

![Binary Pattern](image)

To configure an alarm on a totalizer channel, select a high limit and then set the desired count for the selected alarm.
Remote Interface Operation (Digital Input Channel): To assign the alarm number to report any alarm conditions on the specified digital input channels, use the following command.

```
OUTPut:ALARM[1|2|3|4]:SOURce (@<ch_list>)
```

To configure alarms on the specified digital input channel, use the following commands (also see the example on the following page).

```
CALCulate
  :COMPare:TYPE {EQUal|NEQual}[,(@<ch_list>)]
  :COMPare:DATA <data>[,(@<ch_list>)]
  :COMPare:MASK <mask>[,(@<ch_list>)]
```

Select **EQUal** to generate an alarm when the data read from the port is equal to **CALC:COMP:DATA** after being masked by **CALC:COMP:MASK**. Select **NEQual** (not equal) to generate an alarm when the data read from the port is *not* equal to **CALC:COMP:DATA** after being masked by **CALC:COMP:MASK**.

Use **CALC:COMP:MASK** to designate the “don’t care” bits. Bits that you set to “0” in the mask are ignored.

To enable the specified alarm mode, send the following command.

```
CALCulate:COMPare:STATe ON [,(@<ch_list>)]
```

Example: Configuring an Alarm on a Digital Input

Assume that you want to generate an alarm when a binary pattern of “1000” is read on the upper four bits of port 1. Send the following commands to configure the port for an alarm.

```
CALC:COMP:TYPE EQUAL (@301)
CALC:COMP:DATA 128 (@301)
CALC:COMP:MASK 240 (@301)
OUTPUT:ALARM2:SOURCE (@301)
CALC:COMP:STATE ON (@301)
```
Here are the calculations used to evaluate the alarm (assume that a decimal 146 was read from the port):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>X-OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 0</th>
<th>Data read from port (decimal 146)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 1 0 1</td>
<td>D A T A command (decimal 128)</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0 0 0</td>
<td>"X-OR" result</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 0 1 0</td>
<td>C A L C: C O M P: M A S K command (decimal 240)</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0</td>
<td>"AND" result (no alarm generated)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>AND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Since the calculations produce a non-zero result (decimal 16), an alarm is not generated in this example.

- **Remote Interface Operation** (Totalizer Channel): To assign the alarm number to report any alarm conditions on the specified totalizer channels, use the following command.

 OUTPut:ALARm[1|2|3|4]:SOURce (@<ch_list>)

To configure an alarm on a totalizer channel, specify the desired count as the upper limit using the following command.

 CALCulate:LIMit:UPPer <count>[@<ch_list>]

To enable the upper limit on the specified totalizer channel, use the following command.

 CALCulate:LIMit:UPPer:STATe ON [@<ch_list>]
Digital Input Operations

The multifunction module (34907A) has two non-isolated 8-bit input/output ports which you can use for reading digital patterns. You can read the live status of the bits on the port or you can configure a scan to include a digital read.

- The digital input channels are numbered "s01" (lower byte) and "s02" (upper byte), where s represents the slot number.
- You can generate an alarm when a specific bit pattern or bit pattern change is detected on an input channel. With the multifunction module, the channels do not have to be part of the scan list to generate an alarm. For more information, see "Using Alarms With the Multifunction Module" on page 159.
- When you add a digital read to a scan list, that port is dedicated to the scan. The instrument issues a Card Reset to make that port an input port (the other port is not affected). While included in the scan list, you can still perform low-level read operations on the port, but you cannot perform write operations on the port.
- From the front panel, you can read data from only one 8-bit input port at a time. From the remote interface, you can read both ports simultaneously as a 16-bit word only if neither port is in the scan list. If one or both ports are included in the scan list, you can read only one 8-bit port at a time. However, if you have included both ports in the scan list, the data will be read from both ports simultaneously and will have the same time stamp. Therefore, you can externally combine the two 8-bit quantities into a 16-bit quantity.
- From the front-panel only, you can specify whether you want to use binary or decimal format (readings are always stored in memory in decimal format). Once you have selected the number base, it is used for all input or output operations on the same port.
- You can monitor a digital input channel even if the channel is not part of the scan list (the internal DMM is not required either).
- A Factory Reset (*RST command), Instrument Preset (SYSTem:PRESet command), and Card Reset (SYSTem:CPON command) from the remote interface will reconfigure both ports as input ports.

NOTE

Note that a [RESET] from the front panel resets only the port currently selected (both ports are not reset).
- **Front-Panel Operation**: After selecting the port, press the button to read the bit pattern (the least significant bit is on the right). The bit pattern read from the port will be displayed until you press another key, turn the knob, or until the display times out.

To add a digital read to a scan list, choose the following item.

- **DIO READ**

From the front-panel only, you can specify whether you want to use binary or decimal format.

- **USE DECIMAL**, **USE BINARY**

- **Remote Interface Operation**: From the remote interface, you can read an 8-bit byte from one port or a 16-bit word from both ports using the following commands. If you are going to read both ports simultaneously, you must send the command to port 01 and neither port can be included in the scan list.

 - `SENS:DIG:DATA:BYTE? (@302)` *Read port 02*
 - `SENS:DIG:DATA:WORD? (@301)` *Read both ports together*

To redefine the scan list to include a digital read (8-bit read only), send the following command.

- `CONF:DIG:BYTE (@302)` *Add port 02 read to scan list*
Totalizer Operations

The multifunction module has a 26-bit totalizer which can count TTL pulses at a 100 kHz rate. You can manually read the totalizer count or you can configure a scan to read the count.

- The totalizer channel is numbered “s03”, where s represents the slot number.
- You can configure the instrument to count on the rising edge or falling edge of the input signal.
- You can control when the totalizer actually records counts by providing a gate signal (G and \overline{G} terminals on the module). A TTL high signal applied to the “G” terminal enables counting and a low signal disables counting. A TTL low signal applied to the “\overline{G}” terminal enables counting and a high signal disables counting. The totalizer only counts when both terminals are enabled. You can use either the G terminal, the \overline{G} terminal, or both. When a gate is not connected, the gate terminal floats to the enabled state, effectively creating a “gate always” condition.

- Using the hardware jumper labeled “Totalize Threshold” on the module, you can control the threshold at which an edge is detected. Move the jumper to the “AC” position to detect changes through 0 volts. Move the jumper to the “TTL” position (factory setting) to detect changes through TTL threshold levels.
The maximum count is 67,108,863 ($2^{26} -1$). The count rolls over to “0” after reaching the maximum allowed value.

- You can configure the totalizer to reset its count after it is read without losing any counts (TOTalize:TYPE RReset command). Then, if the totalizer is included in a scan list, the count will be reset on every scan sweep. The count is also reset whenever it is read directly by pressing [] from the front panel or when sending the SENSE:TOTalize:DATA? command.

- You can configure the instrument to generate an alarm when a specific count is reached on a totalizer channel. These channels do not have to be part of the scan list to generate an alarm. Alarms are evaluated continuously as soon as you enable them. For more information, see “Using Alarms With the Multifunction Module” on page 159.

- You can monitor a totalizer channel even if the channel is not part of the scan list (the internal DMM is not required either). The count on a totalizer channel is not reset when it is being monitored (the Monitor ignores the totalizer reset mode).

- A Factory Reset (*RST command), Instrument Preset (SYStem:PRESet command), and Card Reset (SYStem:CPON command) reset the count to “0”.

- Front-Panel Operation: After selecting the totalizer, press [] to read the count. If you have selected the READ+ RESET mode, the count is reset each time it is read. The count is displayed until you press another key, turn the knob, or until the display times out.

To configure the totalizer reset mode, choose from the following items.

- READ, READ+ RESET

To configure the totalizer to count on the falling edge or rising edge of the input signal, choose from the following items.

- COUNT FALLING, COUNT RISING

- To add a totalizer read to a scan list, choose the following item.

- TOT READ
Remote Interface Operation: To read the count from the specified totalizer channel, send the following command. The count may be returned with time stamp, channel number, and alarm status information depending on the FORMat:READing command setting (see “Reading Format” on page 118 for more information).

SENS:TOT:DATA? (@303)

To configure the totalizer reset mode, send either of the following commands (RRESet means “read and reset”).

SENS:TOT:TYPE {READ|RRESet},[@<ch_list>]
CONFigure:TOT:alize {READ|RRESet},[@<scan_list>]

To configure the totalizer to count on the falling edge (negative) or rising edge (positive) of the input signal, send the following command.

SENS:TOT:alize:SLOPe {NEG|POS},[@<ch_list>]

To immediately clear the count on the specified totalizer channel (whether scanning or not), send the following command.

SENS:TOT:alize:CLEar:IMMediate [@<ch_list>]}
Digital Output Operations

The multifunction module (34907A) has two non-isolated 8-bit input/output ports which you can use for outputting digital patterns.

- The digital output channels are numbered “s01” (lower byte) and “s02” (upper byte), where s represents the slot number.
- You cannot configure a port for output operations if that port is already configured to be part of the scan list (digital input).
- From the front panel, you can write to one 8-bit output port at a time. From the remote interface, you can write to both ports simultaneously.
- From the front-panel only, you can specify whether you want to use binary or decimal format. Once you have selected the number base, it is used for all input or output operations on the same port.
- A Factory Reset (*RST command), Instrument Preset (SYSTem:PRESet command), and Card Reset (SYSTem:CPON command) from the remote interface will reconfigure both ports as input ports.

NOTE

A *RST from the front panel resets only the port currently selected (both ports are not reset).

- **Front-Panel Operation:** After selecting the output port, press to edit the bit pattern or decimal value (the least significant bit is on the right). Press again to output the bit pattern. To cancel an output operation in progress, wait for the display to time out.

From the front-panel only, you can specify whether you want to use binary or decimal format.

USE DECIMAL, USE BINARY
Remote Interface Operation: From the remote interface, you can output an 8-bit byte to one port or a 16-bit word to both ports simultaneously using the following commands. You must specify a decimal value (binary data is not accepted). If you are going to read both ports simultaneously, you must send the command to port 01.

\begin{verbatim}
SOUR:DIG:DATA:BYTE 10 ,(@302) Write to port 02
SOUR:DIG:DATA:WORD 10327 ,(@301) Write to both ports
\end{verbatim}
DAC Output Operations

The multifunction module (34907A) has two low-noise analog outputs capable of outputting calibrated voltages between ±12 volts with 16 bits of resolution. Each DAC (Digital-to-Analog Converter) channel can be used as a programmable voltage source for analog input control of other devices.

- On the multifunction module, the DAC channels are numbered “s04” and “s05”, where s represents the slot number.
- You can set the output voltage to any value between +12 VDC and -12 VDC, in 1 mV steps. Each DAC is earth referenced; it cannot float.
- Each DAC channel is capable of 10 mA maximum output current.

NOTE

You must limit the output current to 40 mA total for all three slots (six DAC channels).

- A Factory Reset (*RST command), Instrument Preset (SYSTem:PRESet command), and Card Reset (SYSTem:CPON command) from the remote interface will reset both DACs to 0 VDC.

NOTE

A (C) from the front panel resets only the DAC currently selected (both channels are not reset).

- Front-Panel Operation: After selecting the desired DAC, press (V) to edit the output voltage. Press (A) again to output the specified voltage from the DAC channel.
- Remote Interface Operation: The following command outputs +2.5 VDC from the DAC on channel 05.

 SOURCE:VOLT 2.5, (@305)
System-Related Operations

This section gives information on system-related topics such as storing instrument states, reading errors, running a self-test, displaying messages on the front panel, setting the system clock, disabling the internal DMM, reading the firmware revisions, and reading the relay cycle count.

State storage

The instrument has six storage locations in non-volatile memory to store instrument states. The locations are numbered 0 through 5. The instrument uses location “0” to automatically hold the state of the instrument at power down. You can also assign a name to each of the locations (1 through 5) for use from the front panel.

- You can store the instrument state in any of the six locations. However, you can only recall a state from a location that contains a previously stored state. You can use location “0” to store a sixth instrument state. However, keep in mind that location “0” is automatically overwritten when power is cycled.
- The instrument stores the state of all modules including all channel configurations, scanning setups, alarm values, and scaling values.
- When shipped from the factory, storage locations “1” through “5” are empty (location “0” has the power-on state).
- When shipped from the factory, the instrument is configured to automatically recall the power-down state (state “0”) when power is restored. You can change the factory configuration such that a Factory Reset (*RST command) is issued when power is restored.
- Before recalling a stored state, the instrument verifies that the same module types are installed in each slot. If a different module type is installed, the instrument will perform the equivalent of a Card Reset (SYSTem:CPON command) on that slot.
- You can assign a name to the storage locations (you cannot assign a name to location “0”). You can name a location from the front panel or over the remote interface but you can only recall a named state from the front panel. From the remote interface, you can only recall a stored state using a number (0 through 5).
- The name can contain up to 12 characters. The first character must be a letter (A-Z), but the remaining 11 characters can be letters, numbers (0-9), or the underscore character (“_”). Blank spaces are not allowed. An error is generated if you specify a name with more than 12 characters.
- A Factory Reset (*RST command) does not affect the configurations stored in memory. Once a state is stored, it remains until it is overwritten or specifically deleted.

Front-Panel Operation:

[34970A/34972A User's Guide]

- After recalling a stored state, you will notice that a new choice (UNDO RECALL) is added under RECALL STATE. This allows you to cancel the last recall operation and revert to the previous state. You can also select LAST PWR DOWN to recall the state of the instrument at the power-down.

To configure the instrument to recall the power-down state or issue a Factory Reset when power is restored, select from the following.

Remote Interface Operation: Use the following commands to store and recall instrument states (state “0” is the state of the instrument at power down).

*SAV {0|1|2|3|4|5}
*RCL {0|1|2|3|4|5}

To assign a name to a stored state to be recalled from the front panel, send the following command. From the remote interface, you can only recall a stored state using a number (0 through 5).

MEM:STATE:NAME 1,TEST_RACK_1

To configure the instrument to automatically issue a Factory Reset (*RST command) when power is restored, send the following command.

MEM:RY:STATE:RECall:AUTO OFF
Error conditions

When the front-panel **ERROR** annunciator turns on, one or more command syntax or hardware errors have been detected. A record of up to 10 errors (34970A) or 20 errors (34972A) is stored in the instrument’s error queue. See Chapter 5 for a complete listing of the errors.

- Errors are retrieved in first-in-first-out (FIFO) order. The first error returned is the first error that was stored. Errors are cleared as you read them. When you have read all errors from the queue, the **ERROR** annunciator turns off and the errors are cleared. The instrument beeps once each time an error is generated.

- If more than 10 errors (34970A) or 20 errors (34972A) have occurred, the last error stored in the queue (the most recent error) is replaced with “Error queue overflow”. No additional errors are stored until you remove errors from the queue. If no errors have occurred when you read the error queue, the instrument responds with “No error”.

- The error queue is cleared by the *CLS (clear status) command or when power is cycled. The errors are also cleared when you read the queue. The error queue is not cleared by a Factory Reset (*RST command) or an Instrument Preset (SYSTem:PRESet command).

- **Front-Panel Operation**:

 ![ERRORS]

 If the **ERROR** annunciator is on, press ![up] to view the error. Use the knob to scroll through the error numbers. Press ![right] to view the text of the error message. Press ![left] again to increase the scrolling speed (the final key press cancels the scroll). All errors are cleared when you exit the menu.

- **Remote Interface Operation**:

 SYSTem:ERRor?

 Read and clear one error from the queue

Errors have the following format (the error string may contain up to 80 characters):

-113,"Undefined header"
Self-test

A power-on self-test occurs automatically when you turn on the instrument. This limited test assures you that the instrument and all installed plug-in modules are operational. This self-test does not perform the extensive set of tests that are included as part of the complete self-test described below.

A complete self-test runs a series of tests and takes approximately 20 seconds to execute. If all tests pass, you can have a high confidence that the instrument and all installed plug-in modules are operational.

- If the complete self-test is successful, PASS is displayed on the front panel. If the self-test fails, FAIL is displayed and the ERROR annunciator turns on. See the 34970A/34972A Service Guide for instructions on returning the instrument to Keysight for service.

- Front-Panel Operation: To perform the complete front-panel self-test, hold down as you turn on the instrument and hold down the key until you hear a long beep. The self-test will begin when you release the key following the beep.

- Remote Interface Operation:
 *TST?
 Returns “0” if the self-test is successful or “1” if it fails.
Display control

For security reasons or for a slight increase in scanning rates, you may want to turn off the front-panel display. From the remote interface, you can also display a 13-character message on the front-display.

- You can only disable the front-panel display by sending a command from the remote interface (you cannot disable the front panel while in local operation).
- When disabled, the entire front-panel display goes blank and all display annunciators except ERROR are disabled. All keys except [Lock] are locked out when the display is disabled.
- The display is automatically enabled when power is cycled, after a Factory Reset (*RST command), or when you return to local by pressing [Local].
- You can display a message on the front panel by sending a command from the remote interface. The instrument can display up to 13 characters on the front panel; if you attempt to send more than 13 characters, an error is generated. You can use letters (A-Z), numbers (0-9), and special characters like “@”, “%”, “*”, etc. Use the “#” character to display a degree symbol (°). Commas, periods, and semicolons share a display space with the preceding character, and are not considered individual characters. While a message is displayed on the front panel, readings from a scan or monitor are not sent to the display.
- Sending a message to the display from the remote interface overrides the display state; this means that you can display a message even if the display is turned off.

Remote Interface Operation: The following command turns off the front panel display.

DISPLAY OFF

The following command displays a message on the front panel and turns on the display if disabled.

DISP:TEXT ’SCANNING ...’

To clear the message displayed on the front panel (without changing the display state), send the following command.

DISPLAY:TEXT:CLEAR
Real-time system clock

During a scan, the instrument stores all readings and alarms with the current time and date. The instrument stores the time and date information in non-volatile memory.

- When shipped from the factory, the instrument is set to the current time and date (U.S. Mountain Time).

- **Front-Panel Operation:**

 - TIME 03:45 PM
 - JUN 01 1997

- **Remote Interface Operation:** Use the following commands to set the time and date.

  ```
  SYST:TIME 15,45,00  // Set time to 3:45 PM
  SYST:DATE 1997,06,01 // Set date to June 1, 1997
  ```

Internal DMM disable

You can scan through the configured channels using either the internal DMM or an external instrument. For externally-controlled scans, you must either remove the internal DMM from the instrument or

- For information on controlling a scan with an external instrument, refer to "Scanning with External Instruments" on page 125.

- When shipped from the factory, the internal DMM is enabled. When you change the state of the internal DMM, the instrument issues a Factory Reset (*RST command).

- A Factory Reset (*.RST command) or Instrument Preset (SYSTEM: PRESet command) does not affect the internal DMM configuration.

- **Front-Panel Operation:**

 - DMM ENABLED , DMM DISABLED

- **Remote Interface Operation:**

  ```
  INSTrument:DMM {OFF|ON}
  ```
Firmware revision query

The instrument has three microprocessors for control of various internal systems. Each plug-in module also has its own on-board microprocessor. You can query the instrument and each module to determine which revision of firmware is installed for each microprocessor.

- The instrument returns three revision numbers. The first number is the firmware revision number for the measurement processor; the second is the input/output processor; and the third is the front-panel display processor. For each plug-in module, the instrument returns one revision number for the on-board processor.

- **Front-Panel Operation:**

  ```
  REV X.X-Y.Y-Z.Z (for 34970A)
  REV X.XX-Y.YY-Z (for 34972A)
  ```

 Turn the knob to read the firmware revision number for the module installed in each of the three slots. If a slot does not contain a module, EMPTY SLOT is displayed.

- **Remote Interface Operation:** Use the following command to read the system firmware revision numbers (be sure to dimension a string variable with at least 40 characters).

  ```
  *IDN?
  ```

 The above command returns a string in the form:

 - Keysight Technologies,34970A,0,X.X-Y.Y-Z.Z
 - Keysight Technologies,34972A,0,II-O.OO-FP-FPGA

 See the **Keysight 34970A/34972A Programmer’s Reference Help** for details.

 Use the following command to read the firmware revision number of the module in the specified slot (be sure to dimension a string variable with at least 30 characters).

  ```
  SYSTem:CTYPe? {100|200|300}
  ```

 This command returns a string in the form:

 - Keysight Technologies,34901A,0,X.X (for 34970A)
 - Keysight Technologies,0,0,0 (for 34970A)

 See the **Keysight 34970A/34972A Programmer’s Reference Help** for details.
Relay cycle count

The instrument has a Relay Maintenance System to help you predict relay end-of-life. The instrument counts the cycles on each relay in the instrument and stores the total count in non-volatile memory on each switch module. You can use this feature on any of the relay modules and the internal DMM.

- In addition to the channel relays, you can also query the count on backplane relays and bank relays. Note that you cannot control the state of these relays from the front panel but you can query the count. For more information on channel numbering and layout, refer to "Module Overview" starting on page 209.

- You can also query the state of the three relays on the internal DMM. These relays are numbered "1", "2", and "3" (which correspond to relays K102, K103, and K104 respectively). These relays open or close when a function or range is changed on a module.

- The 34908A multiplexer contains 40 channels which are switched (HI only) using only 20 relays. Each relay is used to switch HI on two different channels (and only one channel can be closed at a time). The channels are arranged such that channels 01 and 21 use different contacts on the same relay. The remaining channels are also paired in the same manner (channels 02 and 22, channels 03 and 23, etc.). Therefore, when you query the relay count on a channel, the number reflects the number of times that the relay was closed. For example, the relay count will always be the same on channels 01 and 21.

- You can reset the count (allowed only from remote) but the instrument must be unsecured (see “Calibration Overview” on page 198 to unsecure the instrument).

- For more information on relay life and load considerations, refer to "Relay Life and Preventive Maintenance" starting on page 337.

- Front-Panel Operation: To read the count on the active channel, choose the following item and then turn the knob. To read the count on the internal DMM relays, turn the knob counterclockwise beyond the lowest numbered channel in the instrument. To read the “hidden” backplane and bank relays, turn the knob clockwise beyond the highest numbered channel in the current slot.
- Remote Interface Operation: To read the relay count on either the internal DMM (all three relays) or the specified module channels, send the following commands.

 `DIAG:DMM:CYCLES?`
 `DIAG:RELAY:CYCLES? (@305, 399)`

To clear the count on either the specified internal DMM relay or the specified module channels (the instrument must be unsecured), send the following commands.

 `DIAG:DMM:CYCLES:CLEAR 2`
 `DIAG:RELAY:CYCLES:CLEAR (@305, 399)`
Single-Channel Monitoring

In the Monitor function, the instrument takes readings as often as it can on a single channel, even during a scan. This feature is useful for troubleshooting your system before a test or for watching an important signal.

Any channel that can be "read" by the instrument can be monitored. This includes any combination of temperature, voltage, resistance, current, frequency, or period measurements on multiplexer channels. You can also monitor a digital input port or the totalizer count on the multifunction module. Monitoring is not allowed with the actuator module, the matrix module, or the RF multiplexer modules.

- The Monitor function is equivalent to making continuous measurements on a single channel with an infinite scan count. Only one channel can be monitored at a time but you can change the channel being monitored at any time.
- Readings acquired during a Monitor are not stored in memory but they are displayed on the front panel (however, all readings from a scan in progress at the same time are stored in memory).
- Mx+B scaling and alarm limits are applied to the selected channel during a Monitor and all alarm data is stored in the alarm queue (which will be cleared if power fails).
- A scan in progress always has priority over the Monitor function. The instrument will take at least one monitor reading per scan sweep and will take more as time permits.
- You can monitor a multiplexer channel only if the internal DMM is installed and enabled (see “Internal DMM Disable” on page 175). The channel must also be configured to be part of the scan list.
- You can monitor a digital input channel or totalizer channel even if the channel is not part of the scan list (the internal DMM is not required either). The count on a totalizer channel is not reset when it is being monitored (the Monitor ignores the totalizer reset mode).
- In the Alarm Scan configuration (see “Scanning on Alarm” on page 114), the instrument sweeps the scan list once each time a reading crosses an alarm limit on a channel. In this configuration, you may use the Monitor function to continuously take readings on a selected channel and wait for an alarm on that channel. The monitored channel can be part of the scan list but you can also use a channel on the multifunction module (which does not have to be part of the scan list and you do not have to use the Monitor function).
– **Front-Panel Operation:** To start a Monitor, press the Monitor button. Turn the knob to advance to the desired channel. The instrument begins monitoring after you pause for a few seconds on a configured channel.

– To stop a Monitor press the Monitor button again. Note that while the instrument is in the remote mode, you can still turn on the Monitor function and select the desired channel.

– **Remote Interface Operation:** The following program segment selects the channel to be monitored (specify only one channel) and enables the Monitor function.

```
ROUT:MON (@101)
ROUT:MON:STATE ON
```

To read the monitor data from the selected channel, send the following command. This command returns the reading only; the units, time, channel, and alarm information are not returned (the FORMat:READing commands do not apply to monitor readings).

```
ROUT:MON:DATA?
```

SCPI language version query

The instrument complies with the rules and conventions of the present version of SCPI (Standard Commands for Programmable Instruments). You can determine the SCPI version with which the instrument is in compliance by sending a command from the remote interface.

You cannot query the SCPI version from the front panel.

– The following command returns the SCPI version.

```
SYSTem:VERSion?
```

Returns a string in the form “YYYY.V”, where “YYYY” represents the year of the version, and “V” represents a version number for that year (for example, 1994.0).
Mass Memory (USB) Subsystem - 34972A

This section gives information on the mass memory subsystem (34972A only). The mass memory subsystem enables you to capture data to, or import an instrument configuration from a USB drive connected to the instrument’s USB port.

General capabilities

The mass memory subsystem supports the following capabilities:

1 Automatic streaming of scanned data to USB drive during scan.
 - Files are automatically named.
 - Data is logged to USB drive and reading memory simultaneously. Most internal operations of the instrument continue to operate on reading memory.
 - If you are using TRIGger:COUNT INFINITY and capturing more than 50,000 readings, reading memory will fill and then overflow, discarding the oldest data. The USB streaming will continue after reading memory overflows, allowing you to capture all of the data (up to 2^{32} sweeps, or up to the limits imposed by the USB drive).

2 Copying of data from reading memory to USB drive
 - Files are automatically named.
 - After a scan finishes, you can export reading memory to your USB drive (up to 50,000 readings).

3 Setup of your instrument based on channel configurations specified in Keysight BenchLink Data Logger.
 - Keysight BenchLink Data Logger allows you save configuration (BLCFG) files on the USB drive. You can then import the file on the USB drive into your instrument.

There are two annunciators related to the USB drive:

MEM (on) - Indicates that a USB drive is connected to the 34972A.

MEM (flashing) - Indicates the USB drive is either streaming data to USB (logging), copying from reading memory to USB (exporting), or importing a configuration from Keysight BenchLink Data Logger.
AUTO (on) - Indicates that logging is active.

- To avoid data loss or incomplete instrument configuration, do not remove the USB drive while MEM is flashing.

4 Management of files on the USB drive via File Transfer Protocol (FTP). You would typically use FTP to download and delete files from the USB drive attached to the 34972A. A typical FTP session is shown below.

- **Remote Interface Operation:** The FTP status is OFF by default. To enable FTP, send the following command.

  ```diagnostic security, on```

- From a command prompt, enter `FTP AAA.BBB.CCC.DDD` to start the FTP session. Use the numbers of your instrument’s IP address in place of `AAA.BBB.CCC.DDD`.

- The software will ask for a user name and password. The user name is *Anonymous*, and the password is any string, such as *xyz*.

- Enter the command `cd DATA` to log onto the USB drive.

- Enter the command `dir` to obtain a directory of the USB drive.

- Enter the command `cd MY00012345/20091210_134523123` to change to the directory containing the data you wish to download from the USB drive to your local computer. Of course, the exact directory name will vary.

- Enter the command `ascii` to ensure that you transfer the appropriate file type.

- Enter the command `get dat00001.csv` to download that specific file, or enter `mget *.csv` to download all files ending in CSV. The MEM annunciator will not flash during the download.

- Enter the command `delete data00001.csv` to delete a specific file, or `mdelete *.csv` to delete all files ending in CSV.

- Enter the command `quit` to leave the FTP session.

Refer to your computer’s FTP documentation for further details.
SCPI commands

This section concentrates on the features available from the front panel; you can also control the mass memory subsystem with the following SCPI commands:

- `MMEMory:FORMat:READing:CSEParator <column_separator>`
- `MMEMory:FORMat:READing:CSEParator?`
- `MMEMory:FORMat:READing:RLIMit <row_limit>`
- `MMEMory:FORMat:READing:RLIMit?`
- `MMEMory:LOG[:ENABle] <state>`
- `MMEMory:LOG[:ENABle]?`
- `MMEMory:EXPort?`
- `MMEMory:IMPort:CONFiguration? "<configuration_file>"`
- `MMEMory:IMPort:CATalog?`

For more information on the SCPI commands available to program the instrument over the remote interface, see the MMEMory commands in the Keysight 34970A/34972A Programmer's Reference Help.

Folder and file structure

*Folder description*

Each saved scan will be stored in a top-level folder named:

/34972A/data/[instrument_SN]/[yyyymmdd_hhmmssmmm]

The square brackets ([ ]) are not actually part of the directory name, and the yyyymmdd_hhmmssmmm is a timestamp indicating the approximate start of the scan. The format is year (yyyy), month (mm), day (dd), underscore (_), hours (hh), minutes (mm), seconds (ss), and milliseconds (mmm).

For example, the folder named:

/34972A/data/MY00012345/20091210_134523123

would indicate a scan on instrument number MY00012345 that started approximately 23.123 seconds after 1:45 pm (13:45) on December 10, 2009.
File descriptions

The top level folder described above will contain two types of files. The first is a file named as follows:

`config.csv`

This is a text file that documents the instrument configuration for this scan. The timestamp is as described above. This file lists the configuration of the instrument in a human readable form.

In addition to the `config.csv` file, you will have one or more data files named as follows:

`dat#####.csv`

If you use the command `MMEMory:FORMat:READing:RLIMit OFF`, all of the data will be stored in one file, named `dat00001.csv`.

You can issue the command `MMEMory:FORMat:READing:RLIMit ON` to limit the data to 64K - 1 (65,535) sweeps per file, in which case the sweeps are stored in multiple files, named `dat00001.csv`, `dat00002.csv`, `dat00003.csv`, and so on. This is helpful for importing data into spreadsheet or other data analysis software. Note that some spreadsheet or data analysis software may import the data more easily if you change the extension from `csv` to `txt`. If your software does not import the file correctly, try changing the extension on the data file.
Contents of data files

Logging into data files is only supported for channels that are in the scan list. The possible channels are shown in the table below; note that s stands for the slot number, which is 1, 2, or 3.

For example, the 34901A module supports could have channels 101-120, 201-220, or 301-320.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>34901A</td>
<td>20-channel, 2-wire armature multiplexer</td>
<td>s01-s20</td>
</tr>
<tr>
<td>34902A</td>
<td>16 channel, 2-wire reed multiplexer</td>
<td>s01-s16</td>
</tr>
<tr>
<td>34907A</td>
<td>2-channel DIO input</td>
<td>s01-s02</td>
</tr>
<tr>
<td>34907A</td>
<td>1-channel totalizer</td>
<td>s03</td>
</tr>
<tr>
<td>34908A</td>
<td>40-channel, 1-wire armature multiplexer</td>
<td>s01-s40</td>
</tr>
</tbody>
</table>

The format for all USB data files is similar to what Keysight BenchLink Data Logger produces by default. The default field separator is a comma, but you can use the following command to specify a different separator.

```
MMEemory:FORMat:READing:CSEParator {TAB|COMMa|SEmicolon}
```
A sample file is shown below.

<table>
<thead>
<tr>
<th>Sweep #</th>
<th>Time</th>
<th>Chan 201 (VDC)</th>
<th>Chan 202 (VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01/26/2009 08:07:12:237</td>
<td>0.36823663</td>
<td>1.23895216</td>
</tr>
<tr>
<td>2</td>
<td>01/26/2009 08:07:13:237</td>
<td>0.62819233</td>
<td>0.98372939</td>
</tr>
<tr>
<td>3</td>
<td>01/26/2009 08:07:14:237</td>
<td>0.38238212</td>
<td>0.39382906</td>
</tr>
<tr>
<td>4</td>
<td>01/26/2009 08:07:15:237</td>
<td>0.46773299</td>
<td>0.55543345</td>
</tr>
<tr>
<td>5</td>
<td>01/26/2009 08:07:16:237</td>
<td>1.32323567</td>
<td>0.21213335</td>
</tr>
</tbody>
</table>

- The channel numbers and the associated units are shown in the header row.
- If the row limit feature is ON and the data spills over into multiple files, scan numbering continues where it left off in the previous file. Thus, the first scan in the second data file would be number 65,536, the first scan in the third data file would be number 131,071, and so on.
USB Drive Front Panel - 34972A

This section gives information on configuring the USB drive with the front panel. For more information about using the USB drive, see “Mass Memory (USB) Subsystem - 34972A” on page 181. For more information on the SCPI commands available to configure the USB drive over the remote interface, see the MMEMory Subsystem in the Keysight 34970A/34972A Programmer’s Reference Help.

Setting up automatic logging

You can set up the USB drive for automatic logging of readings.

Front-Panel Operation:

- LOG READINGS AUTO/OFF

Exporting readings

You can export readings from reading memory onto the USB drive.

- EXPORT READNG YES/NO

Formatting readings

You can control how readings are formatted on the USB drive. In particular, you can choose whether the readings are stored in one large file (ROWS/FILE:AUTO) or in a series of files with 64K - 1 rows per file (ROWS/FILE:64K). You can also choose whether the files are formatted with a tab, comma or semicolon between columns.

- FORMAT READNG ROWS/FILE:AUTO
- FORMAT READNG ROWS/FILE:64K
- FORMAT READNG SEP: TAB
- FORMAT READNG SEP: COMMA
- FORMAT READNG SEP: SEMICOLON
Importing an instrument configuration

You can import an instrument configuration stored in a Keysight BenchLink Data Logger configuration (BLCFG) file in the root directory of your USB drive.

- **Front-Panel Operation:**

  ![IMPORT CONFIG Button](image-url)
Remote Interface Configuration - 34970A

This section gives information on configuring the 34970A for remote interface communication. For more information on configuring the instrument from the front panel, see “To Configure the Remote Interface” starting on page 68. For more information on the SCPI commands available to program the instrument over the remote interface, see the Keysight 34970A/34972A Programmer’s Reference Help.

GPIB address

Each device on the GPIB (IEEE-488) interface must have a unique address. You can set the instrument’s address to any value between 0 and 30. The address is set to “9” when the instrument is shipped from the factory. The GPIB address is displayed at power-on.

You can set the GPIB address from the front panel only.

- The address is stored in non-volatile memory, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).
- Your computer’s GPIB interface card has its own address. Be sure to avoid using the computer’s address for any instrument on the interface bus. Keysight’s GPIB interface cards generally use address “21”.

- Front-Panel Operation:

  ![ADDRESS 09]
Remote interface selection

The 34970A is shipped with both an GPIB (IEEE-488) interface and an RS-232 interface. Only one interface can be enabled at a time. The GPIB interface is selected when the instrument is shipped from the factory.

- The interface selection is stored in non-volatile memory, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).
- If you select the GPIB interface, you must select a unique address for the instrument. The GPIB address is displayed on the front panel when you turn on the instrument.
- If you select the RS-232 interface, you must also set the baud rate, parity, and flow control mode for the instrument. "RS-232" is displayed on the front panel when you turn on the instrument.

Front-Panel Operation:

GPIB / 488, RS-232

Remote Interface Operation:

SYSTem:INTerface {GPIB|RS232}

Baud rate selection (RS-232)

You can select one of eight baud rates for RS-232 operation. The rate is set to 57,600 baud when the instrument is shipped from the factory.

You can set the baud rate from the front panel only.

- Select one of the following: 1200, 2400, 4800, 9600, 19200, 38400, 57600 (factory setting), or 115200 baud.
- The baud rate selection is stored in non-volatile memory, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).

Front-Panel Operation:

19200 BAUD
Parity selection (RS-232)

You can select the parity for RS-232 operation. The instrument is configured for no parity with 8 data bits when shipped from the factory.

You can set the parity from the front panel only.

- Select one of the following: None (8 data bits), Even (7 data bits), or Odd (7 data bits). When you set the parity, you are also indirectly setting the number of data bits.

- The parity selection is stored in non-volatile memory, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).

- Front-Panel Operation:

  ![Front Panel](EVEN, 7 BITS)
Flow control selection (RS-232)

You can select one of several flow control methods to coordinate the transfer of data between the instrument and your computer or modem. The method that you select will be determined by the flow method used by your computer or modem.

You can select the flow control method from the front panel only.

- Select one of the following: None (no flow control), XON/XOFF (factory setting), DTR/DSR, RTS/CTS, or Modem.

- **None**: In this mode, data is sent and received over the interface without any flow control used. When using this method, use a slower baud rate (< 9600 baud) and avoid sending more than 128 characters without stopping or reading a response.

- **XON/XOFF**: This mode uses special characters embedded in the data stream to control the flow. If the instrument is addressed to send data, it continues sending data until the “XOFF” character (13H) is received. When the “XON” character (11H) is received, the instrument resumes sending data.

- **DTR/DSR**: In this mode, the instrument monitors the state of the DSR (data set ready) line on the RS-232 connector. When the line goes true, the instrument sends data over the interface. When the line goes false, the instrument stops sending information (typically within six characters). The instrument sets the DTR line false when the input buffer is almost full (approximately 100 characters) and releases the line when space is available again.

- **RTS/CTS**: This mode operates the same as the DTR/DSR mode but uses the RTS (request to send) and CTS (clear to send) lines on the RS-232 connector instead. When the CTS line goes true, the instrument sends data over the interface. When the line goes false, the instrument stops sending information (typically within six characters). The instrument sets the RTS line false when the input buffer is almost full (approximately 100 characters) and releases the line when space is available again.
– **Modem**: This mode uses the **DTR/DSR** and **RTS/CTS** lines to control the flow of data between the instrument and a modem. When the RS-232 interface is selected, the instrument sets the **DTR** line true. The **DSR** line is set true when the modem is on-line. The instrument sets the **RTS** line true when it is ready to receive data. The modem sets the **CTS** line true when it is ready to accept data. The instrument sets the **RTS** line false when the input buffer is almost full (approximately 100 characters) and releases the line when space is available again.

– The flow control selection is stored in **non-volatile memory**, and does not change when power has been off, after a Factory Reset (**RST** command), or after an Instrument Preset (**SYSTem:PRESet** command).

– **Front-Panel Operation:**

  ![Flow RTS/CTS](image)
Remote Interface Configuration - 34972A

This section gives information on configuring the instrument for remote interface communication. For more information on configuring the instrument from the front panel, see "To Configure the Remote Interface" starting on page 68. For more information on the SCPI commands available to program the instrument over the remote interface, see the Keysight 34970A/34972A Programmer's Reference Help.

All of these menu items are accessed under the top-level menu:

- **LAN INTERFACE**

### Enabling and disabling LAN connectivity

You can enable or disable the LAN connectivity. If you are not controlling the instrument via LAN, it is a good idea to disable LAN connectivity in order to prevent others from connecting to your instrument over the LAN.

- **Front-Panel Operation:**
  - **LAN ENABLED/DISABLED**

### Determining the status of LAN connectivity

You can determine whether you are connected to the LAN. This menu item simply indicates the status; it does not allow you to connect. If your instrument loses LAN connectivity, it may take up to 30 seconds for the LXI FAULT message to appear.

- **Front-Panel Operation:**
  - **STAT:CONNECTED/LXI FAULT**

### Resetting the LAN

You can reset the instrument's LAN settings to their default values.

- **Front-Panel Operation:**
  - **RESET LAN: NO/YES**
Enabling and disabling DHCP

You can enable or disable Dynamic Host Configuration Protocol (DHCP). When DHCP is enabled (factory setting), the instrument will try to obtain an IP address from a DHCP server. If a DHCP server is found, it will assign a dynamic IP address, Subnet Mask, and Default Gateway to the instrument.

If a DHCP server is not found, the instrument uses AutoIP to automatically configure its IP setting in the Automatic Private IP Addressing range (169.254.xxx.xxx).

When DHCP is disabled, the instrument will use the static IP address, Subnet Mask, Default Gateway and DNS Server during power-on.

- **Front-Panel Operation:**
  
  ![DHCP Enabled/Disabled](image)

Setting the IP address

You can set the IP address for your 34972A. This menu option assigns the static IP address for the instrument. You must disable DHCP in order to set this on the front panel.

The static IP address is applied when DHCP is disabled. If DHCP is enabled, DHCP will auto-assign the IP address. This auto-assigned IP address takes precedence over the static IP address assigned with this feature.

- **Front-Panel Operation:**
  
  ![IP Address](image)
Setting the subnet mask

You can set the subnet mask for your LAN connection. This menu option assigns a Subnet Mask for the instrument. The instrument uses the Subnet Mask to determine whether a client IP address is on the same local subnet. You must disable DHCP in order to set this on the front panel.

When a client IP address is on a different subnet, all packets must be sent to the Default Gateway. Contact your network administrator to determine whether subnetting is being used and for the correct Subnet Mask.

– Front-Panel Operation:

  ![SUBNET MASK]

Setting the default gateway

You can set the default gateway for your LAN connection. Contact your network administrator to determine whether subnetting is being used and for the correct address. If DHCP is enabled, DHCP will auto-assign the gateway. This auto-assigned gateway takes precedence over the static gateway assigned with this menu option. You must disable DHCP in order to set this on the front panel.

– Front-Panel Operation:

  ![DEF GATEWAY]

Setting the DNS server

You can set the address of the DNS server for your LAN connection. Contact your network administrator to determine whether DNS is being used and for the correct address. If DHCP is available and enabled, DHCP will auto-assign the DNS address. This auto-assigned DNS address takes precedence over the static DNS address assigned with this menu option. You must disable DHCP in order to set this on the front panel.

– Front-Panel Operation:

  ![DNS SERVER]
Viewing the MAC address

You can view the MAC address of your 34972A. This address is of the form ###:###:###:###:###:###, where each # is a hexadecimal digit (0-9 or A-F). The LAN relies on every device attached to the network having a unique MAC address. The MAC address for each instrument is set at the factory and cannot be changed.

- Front-Panel Operation:

  ![MAC ADDRESS button]
Calibration Overview

This section gives a brief introduction to the calibration features of the instrument and plug-in modules. For a more detailed discussion of the calibration procedures, see chapter 4 in the 34970A/34972A Service Guide.

Calibration security

This feature allows you to enter a security code to prevent accidental or unauthorized calibrations of the instrument. When you first receive your instrument, it is secured. Before you can calibrate the instrument, you must unsecure it by entering the correct security code.

If you forget your security code, you can disable the security feature by adding a jumper inside the instrument. See the 34970A/34972A Service Guide for more information.

- The security code is set to either “KT034970” or “KT034972”, depending on the product number, when the instrument is shipped from the factory. The security code is stored in non-volatile memory on the mainframe, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).
- The security code may contain up to 12 alphanumeric characters. The first character must be a letter, but the remaining characters can be letters, numbers, or an underscore (_). You do not have to use all 12 characters but the first character must always be a letter.
To unsecure for calibration

You can unsecure the instrument either from the front panel or over the remote interface. The instrument is secured when shipped from the factory and the security code is set to “KT034970” or “KT034972”, depending on the product number.

- Once you enter a security code, that code must be used for both front-panel and remote operation. For example, if you secure the instrument from the front panel, you must use that same code to unsecure it from the remote interface.

- **Front-Panel Operation:**
  
  ![UNSECURE CAL](image)

  When you first enter the Utility menu, the calibration entries toggle between **CAL SECURED** and **UNSECURE CAL**. To unsecure the instrument, select **UNSECURE CAL** and press ![enter button](image). After entering the correct security code, press ![enter button](image) again. When you return to the menu, you will see new choices **CAL UNSECURED** and **SECURE CAL**.

- **Remote Interface Operation:** To unsecure the instrument, send the following command with the correct security code.

  \[
  \text{CAL:SECURE:STATE OFF,KT034970}
  \]
To secure against calibration

You can secure the instrument either from the front panel or over the remote interface. The instrument is secured when shipped from the factory and the security code is set to “KT034970” or “KT034972”, depending on the product number.

– Once you enter a security code, that code must be used for both front-panel and remote operation. For example, if you secure the instrument from the front panel, you must use that same code to unsecure it from the remote interface.

– **Front-Panel Operation:**

  ![Secure Calibration Icon]

  When you enter the *Utility* menu, the calibration entries toggle between **CAL UNSECURED** and **SECURE CAL**. To secure the instrument, select **SECURE CAL** and press **[Enter]**. After entering the desired security code, press **[Enter]** again. When you return to the menu, you will see new choices **CAL SECURED** and **UNSECURE CAL**.

– **Remote Interface Operation:** To secure the instrument, send the following command with the desired security code.

  `CAL:SECURE:STATE ON,KT034970`

To change the security code

To change the security code, you must first unsecure the instrument, and then enter a new code. Make sure you have read the security code rules described on page 198 before attempting to change the security code.

– **Front-Panel Operation:** To change the security code, first make sure that the instrument is unsecured. Go to the **SECURE CAL** entry, enter the new security code, and press **[Enter]** (the instrument is now secured with the new code). Changing the code from the front panel also changes the code as seen from the remote interface.

– **Remote Interface Operation:** To change the security code, first unsecure the instrument using the old security code. Then, enter the new code as shown below.

  `CAL:SECURE:STATE OFF, KT034970`  *Unsecure with old code*

  `CAL:SECURE:CODE ZZ007943`  *Enter new code*
Calibration message

The instrument allows you to store one message in calibration memory in the mainframe. For example, you can store such information as the date when the last calibration was performed, the date when the next calibration is due, the instrument’s serial number, or even the name and phone number of the person to contact for a new calibration.

- You can record a calibration message only from the remote interface and only when the instrument is unsecured. You can read the message from either the front-panel or over the remote interface. You can read the calibration message whether the instrument is secured or unsecured.

- The calibration message may contain up to 40 characters. From the front panel, you can view 13 characters of the message at a time. Press to scroll through the text of the message. Press again to increase the scrolling speed.

- Storing a calibration message will overwrite any message previously stored in memory.

- The calibration message is stored in non-volatile memory in the mainframe, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).

- **Front-Panel Operation:**
  
  
  - **Remote Interface Operation:** To store the calibration message, send the following command.
    
    \[ \text{CAL:STRING 'CAL: 06-01-98'} \]
Calibration count

You can query the instrument to determine how many calibrations have been performed. Note that your instrument was calibrated before it left the factory. When you receive your instrument, be sure to read the count to determine its initial value.

- The calibration count is stored in non-volatile memory in the mainframe, and does not change when power has been off, after a Factory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).

- The calibration count increments up to a maximum of 65,535 after which it rolls over to "0". Since the value increments by one for each calibration point, a complete calibration may increase the value by many counts.

- The calibration count is also incremented with calibrations of the DAC channels on the multifunction module.

- **Front-Panel Operation:**
  
  CAL COUNT

- **Remote Interface Operation:**
  
  CALibration:COUNt?
Factory Reset State

The table below shows the state of the instrument after a **FACTORY RESET** from the *Sto/Rcl* menu or **RST** command from the remote interface.

<table>
<thead>
<tr>
<th>Measurement Configuration</th>
<th>Factory Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>DC Volts</td>
</tr>
<tr>
<td>Range</td>
<td>Autorange</td>
</tr>
<tr>
<td>Resolution</td>
<td>5½ digits</td>
</tr>
<tr>
<td>Integration Time</td>
<td>1 PLC</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10 MΩ (fixed for all DCV ranges)</td>
</tr>
<tr>
<td>Channel Delay</td>
<td>Automatic Delay</td>
</tr>
<tr>
<td>Totalizer Reset Mode</td>
<td>Count Not Reset When Read</td>
</tr>
<tr>
<td>Totalizer Edge Detect</td>
<td>Rising Edge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scanning Operation</th>
<th>Factory Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan List</td>
<td>Empty</td>
</tr>
<tr>
<td>Reading Memory</td>
<td>All Readings are Cleared</td>
</tr>
<tr>
<td>Min, Max, and Average</td>
<td>Not Changed</td>
</tr>
<tr>
<td>Scan Trigger Source</td>
<td>Immediate</td>
</tr>
<tr>
<td>Scan Interval (used with TRIGger:SOURce TIMer)</td>
<td>10 Seconds</td>
</tr>
<tr>
<td>Scan Count</td>
<td>1</td>
</tr>
<tr>
<td>Scan Reading Format</td>
<td>Reading Only (No Units, Channel, Time)</td>
</tr>
<tr>
<td>Monitor in Progress</td>
<td>Stopped</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mx+B Scaling</th>
<th>Factory Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Factor (&quot;M&quot;)</td>
<td>1</td>
</tr>
<tr>
<td>Scale Factor (&quot;B&quot;)</td>
<td>0</td>
</tr>
<tr>
<td>Scale Label</td>
<td>VDC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm Limits</th>
<th>Factory Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Queue</td>
<td>Not Cleared</td>
</tr>
<tr>
<td>Alarm State</td>
<td>Off</td>
</tr>
<tr>
<td>HI and LO Alarm Limits</td>
<td>0</td>
</tr>
<tr>
<td>Alarm Output</td>
<td>Alarm 1</td>
</tr>
<tr>
<td>Alarm Output Configuration</td>
<td>Latched Mode</td>
</tr>
<tr>
<td>Alarm Output State</td>
<td>Output Lines are Cleared</td>
</tr>
<tr>
<td>Alarm Output Slope</td>
<td>Fail = Low</td>
</tr>
</tbody>
</table>
### Module Hardware
- 34901A, 34902A, 34908A
- 34903A, 34904A
- 34905A, 34906A
- 34907A

### Factory Reset State
- All Channels Open
- All Channels Open
- Channels s11 and s21 Selected
- Both DIO Ports = Input,
  Totalizer Count = 0, Both DACs = 0 VDC

### System-Related Operations
- Display State
- Error Queue
- Stored States

### Factory Reset State
- On
- Errors Not Cleared
- No Change
### Instrument Preset State

The table below shows the state of the instrument after a **PRES**ET from the **Sto/Rcl** menu or **SYSTem:**PRESet command from the remote interface.

<table>
<thead>
<tr>
<th>Measurement Configuration</th>
<th>Instrument Preset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>No Change</td>
</tr>
<tr>
<td>Range</td>
<td>No Change</td>
</tr>
<tr>
<td>Resolution</td>
<td>No Change</td>
</tr>
<tr>
<td>Advanced Settings</td>
<td>No Change</td>
</tr>
<tr>
<td>Totalizer Reset Mode</td>
<td>Count Not Reset When Read</td>
</tr>
<tr>
<td>Totalizer Edge Detect</td>
<td>Rising Edge</td>
</tr>
<tr>
<td>Scanning Operation</td>
<td><strong>Instrument Preset State</strong></td>
</tr>
<tr>
<td>Scan List</td>
<td>No Change</td>
</tr>
<tr>
<td>Reading Memory</td>
<td>All Readings are Cleared</td>
</tr>
<tr>
<td>Min, Max, and Average</td>
<td>No Change</td>
</tr>
<tr>
<td>Scan Interval Source</td>
<td>No Change</td>
</tr>
<tr>
<td>Scan Interval</td>
<td>No Change</td>
</tr>
<tr>
<td>Scan Count</td>
<td>No Change</td>
</tr>
<tr>
<td>Scan Reading Format</td>
<td>No Change</td>
</tr>
<tr>
<td>Monitor in Progress</td>
<td>Stopped</td>
</tr>
<tr>
<td>Mx+B Scaling</td>
<td><strong>Instrument Preset State</strong></td>
</tr>
<tr>
<td>Gain Factor (&quot;M&quot;)</td>
<td>No Change</td>
</tr>
<tr>
<td>Scale Factor (&quot;B&quot;)</td>
<td>No Change</td>
</tr>
<tr>
<td>Scale Label</td>
<td>No Change</td>
</tr>
<tr>
<td>Alarm Limits</td>
<td><strong>Instrument Preset State</strong></td>
</tr>
<tr>
<td>Alarm Queue</td>
<td>No Change</td>
</tr>
<tr>
<td>Alarm State</td>
<td>No Change</td>
</tr>
<tr>
<td>HI and LO Alarm Limits</td>
<td>No Change</td>
</tr>
<tr>
<td>Alarm Output Configuration</td>
<td>No Change</td>
</tr>
<tr>
<td>Alarm Output State</td>
<td>No Change</td>
</tr>
<tr>
<td>Alarm Output Slope</td>
<td>Output Lines are Cleared</td>
</tr>
<tr>
<td></td>
<td>No Change</td>
</tr>
</tbody>
</table>
### Module Hardware
- 34901A, 34902A, 34908A
- 34903A, 34904A
- 34905A, 34906A
- 34907A

### Instrument Preset State
- All Channels Open
- Channels s11 and s21 Selected
- Both DIO Ports = Input, Totalizer Count = 0, Both DACs = 0 VDC

### System-Related Operations
- Display State
- Error Queue
- Stored States

### Instrument Preset State
- No Change
- Errors Not Cleared
- No Change
Multiplexer Module Default Settings

The table below shows the default settings for each measurement function on the multiplexer modules. When you configure a channel for a particular function, these are the default settings.

<table>
<thead>
<tr>
<th><strong>Temperature Measurements</strong></th>
<th><strong>Default Setting</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Units</td>
<td>°C</td>
</tr>
<tr>
<td>Integration Time</td>
<td>1 PLC</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>0.1°C</td>
</tr>
<tr>
<td>Thermocouple Type</td>
<td>Type J</td>
</tr>
<tr>
<td>Open T/C Detection</td>
<td>Off</td>
</tr>
<tr>
<td>Reference Junction Source</td>
<td>Internal</td>
</tr>
<tr>
<td>RTD Type</td>
<td>( \alpha = 0.00385 )</td>
</tr>
<tr>
<td>RTD Reference Resistance</td>
<td>( R_0 = 100 \Omega )</td>
</tr>
<tr>
<td>Thermistor Type</td>
<td>5 k( \Omega )</td>
</tr>
<tr>
<td>Channel Delay</td>
<td>Automatic Delay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Voltage Measurements</strong></th>
<th><strong>Default Setting</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Autorange</td>
</tr>
<tr>
<td>Resolution</td>
<td>5½ digits</td>
</tr>
<tr>
<td>Integration Time</td>
<td>1 PLC</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>10 M( \Omega ) (fixed for all DCV ranges)</td>
</tr>
<tr>
<td>AC Low Frequency Filter</td>
<td>20 Hz (medium)</td>
</tr>
<tr>
<td>Channel Delay</td>
<td>Automatic Delay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Resistance Measurements</strong></th>
<th><strong>Default Setting</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Autorange</td>
</tr>
<tr>
<td>Resolution</td>
<td>5½ digits</td>
</tr>
<tr>
<td>Integration Time</td>
<td>1 PLC</td>
</tr>
<tr>
<td>Offset Compensation</td>
<td>Off</td>
</tr>
<tr>
<td>Channel Delay</td>
<td>Automatic Delay</td>
</tr>
</tbody>
</table>
### Frequency/Period Measurements

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Autorange</td>
</tr>
<tr>
<td>Resolution</td>
<td>5½ digits (frequency), 6½ digits (period)</td>
</tr>
<tr>
<td>AC Low Frequency Filter</td>
<td>20 Hz (medium)</td>
</tr>
<tr>
<td>Channel Delay</td>
<td>Automatic Delay</td>
</tr>
</tbody>
</table>

### Current Measurements

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Autorange</td>
</tr>
<tr>
<td>Resolution</td>
<td>5½ digits</td>
</tr>
<tr>
<td>Integration Time</td>
<td>1 PLC</td>
</tr>
<tr>
<td>AC Low Frequency Filter</td>
<td>20 Hz (medium)</td>
</tr>
<tr>
<td>Channel Delay</td>
<td>Automatic Delay</td>
</tr>
</tbody>
</table>
Module Overview

This section gives a description of each plug-in module, including simplified schematics and block diagrams. A wiring log is also included to make it easy to document your wiring configuration for each module.

For complete specifications on each plug-in module, refer to the module sections in Chapter 8.

“34901A 20-Channel Multiplexer” on page 210
“34902A 16-Channel Multiplexer” on page 213
“34903A 20-Channel Actuator” on page 216
“34904A 4x8 Matrix Switch” on page 219
“34905A/6A Dual 4-Channel RF Multiplexers” on page 222
“” on page 223
“34908A 40-Channel Single-Ended Multiplexer” on page 227
34901A 20-Channel Multiplexer

This module is divided into two banks of 10 channels each. Two additional fused channels are available for making direct, calibrated DC or AC current measurements with the internal DMM (external shunts are not required). All 22 channels switch both HI and LO inputs, thus providing fully isolated inputs to the internal DMM or an external instrument. When making 4-wire resistance measurements, the instrument automatically pairs channel \( n \) with channel \( n+10 \) to provide the source and sense connections. The module has a built-in thermocouple reference junction to minimize errors due to thermal gradients when measuring thermocouples.

**WARNING**

**TO PREVENT ELECTRICAL SHOCK**

To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

**WARNING**

**CAUTION WITH MULTIPLE SIGNALS**

To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

**WARNING**

**CAUTION WITH HAZARDOUS VOLTAGES**

When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.
WARNING ENVIRONMENTAL HEALTH AND SAFETY

When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.

NOTE

Only one of channels 21 and 22 can be connected to the internal DMM and/or Com at a time; connecting one channel will close the other (thus shorting the input “I” to “LO”).

If any channels are configured to be part of the scan list, you cannot close multiple channels; closing one channel will open the previously closed channel.

Connections to AC line are not recommended unless you provide external transient suppression.
4W Sense Channels are paired to Channel (n-10).

Refer to the diagrams on page 38 to connect wiring to the module.

Maximum Input Voltage: 300 V (CAT 1)
Maximum Input Current: 1 A
Maximum Switching Power: 50 W

**WARNING:** To prevent electrical shock, use only wire that is rated for the highest voltage applied to any channel. Before removing a module cover, turn off all power to external devices connected to the module.
34902A 16-Channel Multiplexer

This module is divided into two banks of eight channels each. All 16 channels switch both HI and LO inputs, thus providing fully isolated inputs to the internal DMM or an external instrument. When making 4-wire resistance measurements, the instrument automatically pairs channel \( n \) with channel \( n+8 \) to provide the source and sense connections. The module has a built-in thermocouple reference junction to minimize errors due to thermal gradients when measuring thermocouples.

- If any channels are configured to be part of the scan list, you cannot close multiple channels; closing one channel will open the previously closed channel.
- Current measurements on this module will require external shunt resistors.
- Connections to AC line are not recommended unless you provide external transient suppression.
WARNING TO PREVENT ELECTRICAL SHOCK
To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

WARNING CAUTION WITH MULTIPLE SIGNALS
To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

WARNING CAUTION WITH HAZARDOUS VOLTAGES
When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.

WARNING ENVIRONMENTAL HEALTH AND SAFETY
When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
### WIRING LOG

<table>
<thead>
<tr>
<th>Slot Number:</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ch</th>
<th>Name</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H COM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L COM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H COM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L COM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*4W Sense Channels are paired to Channel (n-8).

Refer to the diagrams on page 38 to connect wiring to the module.

- Maximum Input Voltage: 300 V (CAT 1)
- Maximum Input Current: 50 mA
- Maximum Switching Power: 2 W

**WARNING**: To prevent electrical shock, use only wire that is rated for the highest voltage applied to any channel. Before removing a module cover, turn off all power to external devices connected to the module.
34903A 20-Channel Actuator

This module contains 20 independent, SPDT (Form C) latching relays. Screw terminals on the module provide access to the Normally-Open, Normally-Closed, and Common contacts for each switch. This module does not connect to the internal DMM.

A breadboard area is provided near the screw terminals to implement custom circuitry, such as simple filters, snubbers, and voltage dividers. The breadboard area provides the space necessary to insert your own components but there are no circuit board traces here. You must add your own circuitry and signal routing.

- You can close multiple channels at the same time on this module.
- The channel CLOSE and OPEN commands control the state of the Normally Open (NO) to COM connection on each channel. For example, CLOSE 201 connects the Normally Open contact to COM on channel 01.
TO PREVENT ELECTRICAL SHOCK

To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

CAUTION WITH MULTIPLE SIGNALS

To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

CAUTION WITH HAZARDOUS VOLTAGES

When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.

ENVIRONMENTAL HEALTH AND SAFETY

When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
### Wiring Log

<table>
<thead>
<tr>
<th>Slot Number:</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch</td>
<td>NO</td>
<td>NC</td>
<td>COM</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NO** = Normally Open, **NC** = Normally Closed

Refer to the diagrams on page 38 to connect wiring to the module.

- **Maximum Input Voltage:** 300 V (CAT 1)
- **Maximum Input Current:** 1 A
- **Maximum Switching Power:** 50 W

---

**WARNING:**
To prevent electrical shock, use only wire that is rated for the highest voltage applied to any channel. Before removing a module cover, turn off all power to external devices connected to the module.
34904A 4x8 Matrix Switch

This module contains 32 two-wire crosspoints organized in a 4-row by 8-column configuration. You can connect any combination of inputs and outputs at the same time. This module does not connect to the internal DMM. Each crosspoint relay has its own unique channel label representing the row and column. For example, channel 32 represents the crosspoint connection between row 3 and column 2 as shown below.

NOTE
You can close multiple channels at the same time on this module.
WARNING TO PREVENT ELECTRICAL SHOCK
To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

WARNING CAUTION WITH MULTIPLE SIGNALS
To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

WARNING CAUTION WITH HAZARDOUS VOLTAGES
When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.

WARNING ENVIRONMENTAL HEALTH AND SAFETY
When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
### WIRING LOG

**Slot Number:** □100 □200 □300

<table>
<thead>
<tr>
<th>Row</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: Channel 32 represents Row 3 and Column 2.

Refer to the diagrams on page 38 to connect wiring to the module.

- **Maximum Input Voltage:** 300 V (CAT 1)
- **Maximum Input Current:** 1 A
- **Maximum Switching Power:** 50 W

---

**WARNING:** To prevent electrical shock, use only wire that is rated for the highest voltage applied to any channel. Before removing a module cover, turn off all power to external devices connected to the module.
34905A/6A Dual 4-Channel RF Multiplexers

These modules consist of two independent 4-to-1 multiplexers. The channels in each bank are organized in a “tree” structure to provide high isolation and low VSWR. Both banks have a common earth ground. This module does not connect to the internal DMM. You can connect your signals directly to the on-board SMB connectors or to the SMB-to-BNC cables provided with the module.

- The 34905A is used for 50W applications. The 34906A is used for 75W applications (mini SMBs).
- You can close only one channel per bank at a time on these modules; closing one channel in a bank will open the previously closed channel. One channel in each bank is always connected to COM.
- This module responds only to the CLOSE command (OPEN does not apply). To OPEN a channel, send the CLOSE command to another channel in the same bank.
WIRING LOG

<table>
<thead>
<tr>
<th>Slot Number:</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch</td>
<td>Name</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer to the diagrams on page 38 to connect wiring to the module.

Maximum Input Voltage: 42 V
Maximum Input Current: 700 mA
Maximum Switching Power: 20 W

Ten color-coded cables are included with the module. To order additional cables, use the following cable kit part numbers (10 cables are included):

34905-60001 (50Ω cables)
34906-60001 (75Ω cables)
WARNING TO PREVENT ELECTRICAL SHOCK
To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

WARNING CAUTION WITH MULTIPLE SIGNALS
To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

WARNING CAUTION WITH HAZARDOUS VOLTAGES
When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.

WARNING ENVIRONMENTAL HEALTH AND SAFETY
When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
34907A Multifunction Module

This module combines two 8-bit ports of digital input/output, a 100 kHz totalizer, and two ±12V analog outputs. For greater flexibility, you can read digital inputs and the totalizer count during a scan.

Digital Input/Output

The DIO consists of two 8-bit ports with TTL-compatible inputs and output. The open-drain outputs can sink up to 400 mA. From the front panel, you can read data from only one 8-bit input port at a time. From the remote interface, you can read both ports simultaneously as a 16-bit word only if neither port is in the scan list.

Totalize Input

The 26-bit totalizer can count pulses at a 100 kHz rate. You can configure the totalizer to count on the rising edge or falling edge of the input signal. A TTL high signal applied to the "G" terminal enables counting and a low signal disables counting. A TTL low signal applied to the "-G" terminal enables counting and a high signal disables counting. The totalizer only counts when both terminals are enabled. Move the Totalize Threshold jumper to the "AC" position to detect changes through 0 volts. Move the jumper to the "TTL" position (factory setting) to detect changes through TTL threshold levels.

Analog Output (DAC)

The two analog outputs are capable of outputting calibrated voltages between ±12 volts with 16 bits of resolution. Each DAC channel is capable of 10 mA maximum current. You must limit the DAC output current to 40 mA total for all three slots (six DAC channels).
Threshold Jumper Position: rTTL  rAC

Refer to the diagrams on page 38 to connect wiring to the module.

**Digital Input/Output:**

- \( V_{\text{in}} (L) \): \(< 0.8V \) (TTL)
- \( V_{\text{in}} (H) \): \( > 2.0V \) (TTL)
- \( V_{\text{out}} (L) \): \(< 0.8V \) @ \( I_{\text{out}} = -400 \text{ mA} \)
- \( V_{\text{out}} (H) \): \( > 2.4V \) @ \( I_{\text{out}} = 1 \text{ mA} \)
- \( V_{\text{in}} (H) \) Max: \(< 42V \) with external open-drain pull-up

**Totalizer:**

- Maximum Count: 67,108,863 (226 - 1)
- Totalize Input: 100 kHz (max)
- Signal Level: 1 Vp-p (min), 42 Vpk (max)

**DAC Output:**

- \( \pm 12V \), non-isolated
- \( I_{\text{out}} \): 10 mA max per DAC; 40 mA max per mainframe
34908A 40-Channel Single-Ended Multiplexer

The module is divided into two banks of 20 channels each. All of the 40 channels switch HI only, with a common LO for the module. The module has a built-in thermocouple reference junction to minimize errors due to thermal gradients when measuring thermocouples.

NOTE
- Refer to the diagrams on page 38 to connect wiring to the module.
- Only one channel can be closed at a time; closing one channel will open the previously closed channel.
- This module cannot be used to directly measure current or any 4-wire measurements.
- When connecting thermocouples to the screw terminals on this module (not recommended due to the common LO configuration), be sure to provide electrical isolation between thermocouples to avoid current loops and subsequent measurement errors.
- Connections to AC line are not recommended unless you provide external transient
Maximum Input Voltage: 300 V (CAT I)
Maximum Input Current: 1 A
Maximum Switching Power: 50 W

⚠️ WARNING: To prevent electrical shock, use only wire that is rated for the highest voltage applied to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

**WARNING**

TO PREVENT ELECTRICAL SHOCK

To prevent electrical shock, use only wire that is rated for the highest voltage to any channel. Before removing a module cover, turn off all power to external devices connected to the module.

**WARNING**

CAUTION WITH MULTIPLE SIGNALS

To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

**WARNING**

CAUTION WITH HAZARDOUS VOLTAGES

When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous and all channel wiring in the module should be rated for the maximum voltage applied. Thermocouples attached to any other channel on the module should have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and should be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied. Do not mount, move, or remove any thermocouples when the device under test is connected to a supply source.
ENVIRONMENTAL HEALTH AND SAFETY

When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.
<table>
<thead>
<tr>
<th>Ch</th>
<th>Name</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1 COM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L COM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Error Messages

Error Messages 232
Execution Errors 233
Instrument Errors 238
Self-Test Errors 246
Calibration Errors 248
Plug-In Module Errors 251
Error Messages

- Errors are retrieved in first-in-first-out (FIFO) order. The first error returned is the first error that was stored. Errors are cleared as you read them. When you have read all errors from the queue, the **ERROR** annunciator turns off and the errors are cleared. The instrument beeps once each time an error is generated.

- If more than 10 errors (34970A) or 20 errors (34972A) have occurred, the last error stored in the queue (the most recent error) is replaced with “Error queue overflow”. No additional errors are stored until you remove errors from the queue. If no errors have occurred when you read the error queue, the instrument responds with “No error”.

- The error queue is cleared by the **CLS** (clear status) command or when power is cycled. The errors are also cleared when you read the queue. The error queue is not cleared by a Factory Reset (**RST** command) or an Instrument Preset (**SYSTem:PRESet** command).

- Front-Panel Operation:

  - If the **ERROR** annunciator is on, press **ERRORS** to view the errors. Use the knob to scroll through the error numbers. Press **ERRORS** to view the text of the error message. Press **ERRORS** again to increase the scrolling speed (the final key press cancels the scroll). All errors are cleared when you exit the menu.

- Remote Interface Operation:

  - **SYSTem:ERRor?** Read and clear one error from the queue

Errors have the following format (the error string may contain up to 80 characters):

-113,"Undefined header"
Execution Errors

-101 Invalid character
An invalid character was found in the command string. You may have used an invalid character such as #, $, or % in the command header or within a parameter. Example: `CONF:VOLT:DC {101}`

-102 Syntax error
Invalid syntax was found in the command string. You may have inserted a blank space before or after a colon in the command header, or before a comma. Or you may have omitted the "@" character in the channel list syntax. Examples: `ROUT:CHAN: DELAY 1` or `CONF:VOLT:DC (101)`

-103 Invalid separator
An invalid separator was found in the command string. You may have used a comma instead of a colon, semicolon, or blank space – or you may have used a blank space instead of a comma. Examples: `TRIG:COUNT,1` or `CONF:FREQ 1000 0.1`

-105 GET not allowed
A Group Execute Trigger (GET) is not allowed within a command string.

-108 Parameter not allowed
More parameters were received than expected for this command. You may have entered an extra parameter or added a parameter to a command that does not require a parameter. Example: `READ? 10`

-109 Missing parameter
Fewer parameters were received than expected for this command. You have omitted one or more parameters that are required for this command. Example: `ROUT:CHAN:DELAY`

-112 Program mnemonic too long
A command header was received which contained more than the maximum 12 characters allowed. Example: `CONFIGURATION:VOLT:DC`
-113 **Undefined header**
A command was received that is not valid for this instrument. You may have misspelled the command or it may not be a valid command. If you are using the shortened form of this command, remember that it may contain up to four letters. Or you may have inserted an extra colon where one is not required.
*Examples:* `TRIGG:COUN 3` or `CONF:VOLT:DC: (@101)`

-114 **Header suffix out of range**
A header suffix is the number that can be appended to the end of some command headers. This error is generated if an invalid number is used.
*Example:* `OUTP:ALARMS:SOURCE ("5" is not a valid alarm number)`

-121 **Invalid character in number**
An invalid character was found in the number specified for a parameter.
*Example:* `TRIG:TIMER 12..34`

-123 **Numeric overflow**
A numeric parameter was found whose exponent was too large for this command.
*Example:* `CALC:SCALE:GAIN 1E34000`

-124 **Too many digits**
A numeric parameter was found whose mantissa contained more than 255 digits, excluding leading zeros.

-128 **Numeric data not allowed**
The wrong parameter type was found in the command string. You may have specified a number where a string or expression was expected, or vice versa.
*Examples:* `DISP:TEXT 5.0` or `ROUT:CLOSE 101`

-131 **Invalid suffix**
A suffix was incorrectly specified for a numeric parameter. You may have misspelled the suffix.
*Example:* `ROUT:CHAN:DELAY 5 SECS`

-134 **Suffix too long**
A header suffix is the number that can be appended to the end of some command headers. This error is generated if the header suffix contains more than 12 characters.

-138 **Suffix not allowed**
A parameter suffix was specified when one was not allowed.
-148 **Character data not allowed**
A discrete parameter was received but a character string or a numeric parameter was expected. Check the list of parameters to verify that you have used a valid parameter type. *Examples:* ROUTE:CLOSE CH101 or DISP:TEXT TESTING (the string must be enclosed in quotes)

-151 **Invalid string data**
An invalid character string was received. Check to see if you have enclosed the character string in quotation marks and verify that the string contains valid ASCII characters. *Example:* DISP:TEXT ‘TESTING’ (the ending quote is missing)

-158 **String data not allowed**
A character string was received but is not allowed for this command. Check the list of parameters to verify that you have used a valid parameter type.
*Example:* CALC:SCALE:STATE ‘ON’

-168 **Block data not allowed**
Data was sent to the instrument in SCPI definite length block format but this command does not accept this format.
*Example:* SOUR:DIG:DATA #128

-178 **Expression data not allowed**
A channel list was received but is not allowed for this command.
*Example:* SYST:CTYPE? (@100)

-211 **Trigger ignored**
More than one trigger was received while the instrument was scanning. Triggers are occurring too frequently and you may need to slow them down. Also make sure that you have selected the proper trigger source.

-213 **INIT ignored**
An INITiate command was received but could not be executed because a scan was already in progress. Send an ABORT command or bus Device Clear to stop a scan in progress.

-214 **Trigger deadlock**
A trigger deadlock occurs when the trigger source is “BUS” and a READ? command is received.
5  Error Messages

-221  Settings conflict
An invalid configuration was requested. This error is most commonly generated when setting alarm limits. Note that the lower limit must always be less than or equal to the upper limit, even if you are using only one of the limits. This error is also generated if you send the \texttt{MEASure?} or \texttt{CONfigure} command with autorange enabled with a fixed resolution.

-222  Data out of range
A numeric parameter value is outside the valid range for this command. 
\textit{Example}: \texttt{TRIG:COUNT -3}

-223  Too much data
A character string was received but could not be executed because the string length was more than 12 characters. This error can be generated by the \texttt{CAL:STRing} and \texttt{DISPLAY:TEXT} commands.

-224  Illegal parameter value
A discrete parameter was received which was not a valid choice for this command. You may have used an invalid parameter choice. 
\textit{Example}: \texttt{TRIG:SOURCE ALARM (ALARM is not a valid choice)}

-230  Data stale
A \texttt{FETCh?} or \texttt{DATA:REMove?} command was received but internal reading memory was empty. The readings retrieved may be invalid.

-310  System error
A firmware defect has been found. \textit{This is not a fatal error but you should contact your nearest Keysight Service Center if this error is reported.}

-350  Error queue overflow
The error queue is full because more than 10 errors (34970A) or 20 errors (34972A) have occurred. No additional errors are stored until you remove errors from the queue. The error queue is cleared by the \texttt{*CLS} (clear status) command or when power is cycled. The errors are also cleared when you read the queue.

-410  Query INTERRUPTED
A command was received which sends data to the output buffer, but the output buffer contained data from a previous command (the previous data is not overwritten). The output buffer is cleared when power has been off or after a bus Device Clear.
-420  **Query UNTERMINATED**
The instrument was addressed to talk (i.e., send data over the interface) but a command has not been received which sends data to the output buffer. For example, you may have executed a `CONFigure` command (which does not generate data) and then attempted to read data from the remote interface.

-430  **Query DEADLOCKED**
A command was received which generates too much data to fit in the output buffer and the input buffer is also full. Command execution continues but all data is lost.

-440  **Query UNTERMINATED after indefinite response**
The `*IDN?` command must be the last query command within a command string. The `*IDN?` command returns an indefinite length string which cannot be combined with any other query command. *Example:* `*IDN?;*STB?`
Instrument Errors

111 Channel list: slot number out of range
The specified slot number is invalid. The channel number has the form (@scc), where \( s \) is the slot number (100, 200, or 300) and \( cc \) is the channel number.
*Example:* `CONF:VOLT:DC (@404)`

112 Channel list: channel number out of range
The specified channel number is invalid for the module in the selected slot. The channel number has the form (@scc), where \( s \) is the slot number (100, 200, or 300) and \( cc \) is the channel number.
*Example:* `ROUT:CLOSE (@134)`

113 Channel list: empty scan list
Before you can initiate a scan, you must set up a scan list which includes all configured multiplexer or digital channels in the instrument. Use the `MEASure?`, `CONFigure`, or `ROUTe:SCAN` commands to set up your scan list.

201 Memory lost: stored state
This error is reported at power-on to indicate that a stored state has become unusable. This error is most likely caused by a dead battery (memory is battery-backed). Refer to the 34970A/34972A Service Guide to replace the internal battery.

202 Memory lost: power-on state
This error is reported at power-on to indicate that the power-down state of the instrument (normally recalled when power is turned on) has become unusable. This error is most likely caused by a dead battery (memory is battery-backed). Refer to the 34970A/34972A Service Guide to replace the internal battery.

203 Memory lost: stored readings
This error is reported at power-on to indicate that readings stored in memory from a previous scan have been lost. This error is most likely caused by a dead battery (memory is battery-backed). Refer to the 34970A/34972A Service Guide to replace the internal battery.

204 Memory lost: time and date
This error is reported at power-on to indicate that the time and date settings have been lost (they are reset to JAN 1, 1996  00:00:00). This error is most likely caused by a dead battery (memory is battery-backed). Refer to the 34970A/34972A Service Guide to replace the internal battery.
221  **Settings conflict: calculate limit state forced off**  
If you plan to use scaling on a channel which will also use alarms, be sure to configure the scaling values first. This error is generated if you attempt to assign the alarm limits first and the instrument will turn off alarms and clear the limit values.

222  **Settings conflict: module type does not match stored state**  
Before recalling a stored state, the instrument verifies that the same module types are installed in each slot. The instrument has detected a different module type in one or more slots.

223  **Settings conflict: trig source changed to IMM**  
This error is generated if you attempt to set the channel advance source (ROUTE:CHAN:ADVance:SOURce command) to the same source used for the scan trigger (TRIGger:SOURce command). The command has been accepted and executed but the scan trigger source is reset to "IMMediate".

224  **Settings conflict: chan adv source changed to IMM**  
This error is generated if you attempt to set the scan trigger source (TRIGger:SOURce command) to the same source used for the channel advance source (ROUTE:CHAN:ADVance:SOURce command). The command has been accepted and executed but the channel advance source is reset to "IMMediate".

225  **Settings conflict: DMM disabled or missing**  
This command is valid only when the internal DMM is installed and enabled. Use the INSTrument:DMM? command to determine the state of the internal DMM. For more information, see "Internal DMM Disable" on page 175.

226  **Settings conflict: DMM enabled**  
When the internal DMM is enabled, the ROUTe:CHAN:ADVance:SOURce and ROUTe:CHAN:FWIRe commands are not allowed. Use the INSTrument:DMM? command to determine the state of the internal DMM. For more information, see "Internal DMM Disable" on page 175.

251  **Unsupported temperature transducer type**  
An invalid RTD or thermistor type has been specified. The following RTDs are supported: $\alpha = 0.00385$ ("85") and $\alpha = 0.00391$ ("91"). The following thermistors are supported: 2.2 k$\Omega$ ("2252"), 5 k$\Omega$ ("5000"), and 10 k$\Omega$ ("10000").

*Example:* CONF:TEMP RTD, 1, (@101)
Not able to execute while scan initiated
While a scan is running, you cannot change any parameters that affect the scan (channel configuration, scan interval, scaling values, alarm limits, issue a Card Reset, or recall a stored state). To stop a scan in progress, send the ABORT command or a bus Device Clear.

Not able to accept unit names longer than 3 characters
For Mx+B scaling, you can specify a custom label with up to three characters. You can use letters (A-Z), numbers (0-9), an underscore (_), or the “#” character which displays a degree symbol (°) on the front panel.

Not able to accept character in unit name
For Mx+B scaling, you can specify a custom label with up to three characters. The first character must be a letter or the “#” character (the “#” character is allowed only as the leftmost character in the label). The remaining two characters can be letters, numbers, or an underscore.

Not able to perform on more than one channel
You can perform this operation on only one channel at a time. Check the channel list that you sent with this command to see if it contains more than one channel. This error is generated by the ROUTe:MON and DATA:LAST? commands.

Not able to recall state: it is empty
You can only recall a state from a location that contains a previously stored state. The state location that you attempted to recall is empty. The storage locations are numbered 0 through 5.

Not able to recall state: DMM enable changed
The enable/disable state of the internal DMM has been changed since the instrument state was stored. Use the INStrument:DMM? command to determine the state of the internal DMM. For more information, see “Internal DMM Disable” on page 175.

Module currently committed to scan
When you add a multiplexer channel to a scan list, that entire module is dedicated to the scan. You cannot perform low-level close or open operations on any channels on that module (even those channels that are not configured). To stop a scan in progress, send the ABORT command or a bus Device Clear.

Module not able to perform requested operation
A command was received which is not valid for the specified module. This error is most commonly generated when you send a command intended for the multifunction module to a switching module.
305 **Not able to perform requested operation**
The requested operation is not valid for the specified channel. You may have tried to configure a channel for current measurements (valid only on channels 21 and 22 on the 34901A module). Or you may have tried to configure scaling on a module that does not connect to the internal DMM.

306 **Part of a 4-wire pair**
For 4-wire resistance measurements, the instrument automatically pairs channel \( n \) with channel \( n+10 \) (34901A) or \( n+8 \) (34902A) to provide the source and sense connections. To change the configuration on the upper channel in a 4-wire pair, you must first reconfigure the lower channel to a measurement function other than 4-wire resistance.

307 **Incorrectly configured ref channel**
For thermocouple measurements using an external reference, the instrument automatically reserves channel 01 on the multiplexer in the lowest slot as the reference channel. Before configuring a thermocouple channel with an external reference, you must configure the reference channel (channel 01) for a thermistor or RTD measurement.

This error is also generated if you change the function on the reference channel (channel 01) after selecting the external reference source on a thermocouple channel.

308 **Channel not able to perform requested operation**
The channel is unable to perform the requested operation.

309 **Incorrectly formatted channel list**
The channel list is not formatted correctly. Examples of proper formats are shown below.

- \((@321)\) - channel 21 on the module in slot 300.
- \((@221:222)\) - channels 21 through 22 on the module in slot 200.
- \((@121:122,222,321:322)\) - channels 21 and 22 on the module in slot 100, channel 22 on the module in slot 200, and channels 21-22 on the module in slot 300.

401 **Mass storage error: failed to create file**
The file was not created on the USB drive.

402 **Mass storage error: failed to open file**
The file was not opened on the USB drive.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>403</td>
<td>Mass storage error: failed to close file</td>
</tr>
<tr>
<td></td>
<td>The file was not closed on the USB drive.</td>
</tr>
<tr>
<td>404</td>
<td>Mass storage error: file write error</td>
</tr>
<tr>
<td></td>
<td>The file data was not written on the USB drive.</td>
</tr>
<tr>
<td>405</td>
<td>Mass storage error: file read error</td>
</tr>
<tr>
<td></td>
<td>File data was not read from the USB drive.</td>
</tr>
<tr>
<td>406</td>
<td>Mass storage error: file write error</td>
</tr>
<tr>
<td></td>
<td>File data was not flushed to the USB drive.</td>
</tr>
<tr>
<td>407</td>
<td>Mass storage error: failed to remove file</td>
</tr>
<tr>
<td></td>
<td>The instrument was unable to delete the file on the USB drive.</td>
</tr>
<tr>
<td>408</td>
<td>Mass storage error: failed to create directory</td>
</tr>
<tr>
<td></td>
<td>The instrument was unable to create the directory on the USB drive.</td>
</tr>
<tr>
<td>409</td>
<td>Mass storage error: failed to remove directory</td>
</tr>
<tr>
<td></td>
<td>The instrument was unable to remove the directory on the USB drive.</td>
</tr>
<tr>
<td>410</td>
<td>Not enough disk space</td>
</tr>
<tr>
<td></td>
<td>The external USB drive is full.</td>
</tr>
<tr>
<td>411</td>
<td>No external disk detected</td>
</tr>
<tr>
<td></td>
<td>The operation requires a USB drive, which is not detected.</td>
</tr>
<tr>
<td>412</td>
<td>External disk has been detached</td>
</tr>
<tr>
<td></td>
<td>The external USB drive has been unplugged.</td>
</tr>
<tr>
<td>413</td>
<td>File already exists</td>
</tr>
<tr>
<td></td>
<td>The instrument was unable to create new file because a file with that name already exists on the USB drive.</td>
</tr>
<tr>
<td>414</td>
<td>Directory already exists</td>
</tr>
<tr>
<td></td>
<td>The instrument was unable to create new directory because a directory with that name already exists on the USB drive.</td>
</tr>
<tr>
<td>415</td>
<td>File not found</td>
</tr>
<tr>
<td></td>
<td>The file does not exist on the USB drive.</td>
</tr>
<tr>
<td>416</td>
<td>Path not found</td>
</tr>
<tr>
<td></td>
<td>The directory does not exist on the USB drive.</td>
</tr>
<tr>
<td>417</td>
<td>File not opened for writing</td>
</tr>
<tr>
<td></td>
<td>The instrument failed to open the file for writing on the USB drive.</td>
</tr>
</tbody>
</table>
418  File not opened for reading
The instrument failed to open the file for reading from the USB drive.

450  Overrun during data collection: readings lost in USB transfer
Internal error: readings were collected too fast and were not buffered for output
to the USB drive.

451  Overrun during USB output: readings lost in USB transfer
Internal error: USB write operation was unable to keep up with data collection.

452  Reading memory export aborted due to measurement reconfig
The export of reading memory was aborted because of measurement
reconfiguration.

453  Not able to execute while logging data to USB
Operation can not be completed while data is being actively logged to USB.

454  Not able to execute while copying data to USB
Operation can not be completed while data is being exported to USB.

455  Not able to execute while importing a configuration from USB
Operation can not be completed while a measurement configuration is being
imported from USB.

457  Logging request ignored: USB device is busy
Logging was not started because USB is busy, but the scan will continue to run
normally, placing data in reading memory.

458  External USB drive is inaccessible
External USB drive can not be accessed; either the disk is full or else it may need
to be reformatted. The instrument will behave as if no drive is present. The
instrument was unable to find a valid partition to use for storing instrument data.

459  Logging to USB was stopped
Data logging was stopped prior to completion due to an abort or some other
error condition.

460  Logging to USB was stopped after 2^32 sweeps of data
Instrument is only able to capture 2^32 (~4.3 billion) sweeps worth of data on an
external USB drive

461  Memory lost: non-volatile settings; USB drive
Data in non-volatile memory was lost or corrupted. USB logging enable, row
limit and column separator will be set to defaults.
5 Error Messages

462 Configuration import aborted
Reconfiguration of the instrument was aborted.

463 Configuration import failed
This is a summary error that will be generated if ANY other errors were reported during configuration import.

464 Invalid import file
The instrument did not recognize the USB configuration import file.

465 Import file cardset does not match instrument
The current instrument configuration does not match the cardset expected by the USB import file.

466 Operation not allowed in a configuration import file
An illegal command was used inside the USB import file.

467 No readings to export
Reading memory is empty; nothing was exported to the USB drive.

468 Unable to fetch measurement config from internal processor
The instrument was unable to fetch measurement configuration data from the secondary processor due to a communications error.

469 Internal processor returned an invalid measurement config
Configuration data returned by secondary processor was bad. Measurement configuration could not be determined.

470 Measurement was reconfigured; Cannot save configuration data
Measurement configuration no longer agrees with the corresponding set of readings. Configuration data will not be saved to the USB drive.

471 USB operation aborted; Cannot save configuration data
An abort or device clear was received while fetching configuration data from secondary processor. Configuration data will not be saved to the USB drive.

472 One or more blcfg file names invalid; files inaccessible
Keysight BenchLink Data Logger BLCFG configuration files on the USB drive are limited to 40 character filenames (including the .blcfg extension), and all characters must be ANSI. Only legal filenames will be selectable for import.

473 Disk contains too many blcfg files; oldest files inaccessible
Instrument will only catalog the 50 most recently created Keysight BenchLink Data Logger BLCFG files. Older files will not be selectable for import.
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>I/O processor: isolator framing error</td>
</tr>
<tr>
<td>502</td>
<td>I/O processor: isolator overrun error</td>
</tr>
<tr>
<td>511</td>
<td>Communications: RS-232 framing error</td>
</tr>
<tr>
<td>512</td>
<td>Communications: RS-232 overrun error</td>
</tr>
<tr>
<td>513</td>
<td>Communications: RS-232 parity error</td>
</tr>
<tr>
<td>514</td>
<td>RS-232 only: unable to execute using HP-IB</td>
</tr>
<tr>
<td></td>
<td>(34970A only) The requested operation is not allowed because another I/O session has locked the instrument.</td>
</tr>
<tr>
<td>514</td>
<td>Not allowed; Instrument locked by another I/O session</td>
</tr>
<tr>
<td></td>
<td>(34972A only) The requested operation is not allowed because another I/O session has locked the instrument.</td>
</tr>
<tr>
<td>521</td>
<td>Communications: input buffer overflow</td>
</tr>
<tr>
<td>522</td>
<td>Communications: output buffer overflow</td>
</tr>
<tr>
<td>532</td>
<td>Not able to achieve requested resolution</td>
</tr>
<tr>
<td></td>
<td>The instrument cannot achieve the requested measurement resolution. You may have specified an invalid resolution in the <code>CONFIGure</code> or <code>MEASure?</code> command.</td>
</tr>
<tr>
<td>540</td>
<td>Not able to null channel in overload</td>
</tr>
<tr>
<td></td>
<td>The instrument cannot store an overload reading (9.90000000E+37) as the offset for Mx+B scaling using a null measurement.</td>
</tr>
<tr>
<td>550</td>
<td>Not able to execute command in local mode</td>
</tr>
<tr>
<td></td>
<td>The instrument has received a <code>READ?</code> or <code>MEASure?</code> command while in the local mode.</td>
</tr>
</tbody>
</table>
Self-Test Errors

The following errors indicate failures that may occur during a self-test. Refer to the 34970A/34972A Service Guide for more information.

- **601** Self-test: front panel not responding
- **602** Self-test: RAM read/write
- **603** Self-test: A/D sync stuck
- **604** Self-test: A/D slope convergence
- **605** Self-test/Cal: not able to calibrate rundown gain
- **606** Self-test/Cal: rundown gain out of range
- **607** Self-test: rundown too noisy
- **608** Self-test: serial configuration readback
- **609** Self-test: DC gain x1
- **610** Self-test: DC gain x10
- **611** Self-test: DC gain x100
- **612** Self-test: Ohms 500 nA source
- **613** Self-test: Ohms 5 uA source
- **614** Self-test: DC 300V zero
- **615** Self-test: Ohms 10 uA source
- **616** Self-test: DC current sense
- **617** Self-test: Ohms 100 uA source
- **618** Self-test: DC high voltage attenuator
- **619** Self-test: Ohms 1 mA source
- **620** Self-test: AC rms zero
- **621** Self-test: AC rms full scale
- **622** Self-test: frequency counter
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>623</td>
<td>Self-test: not able to calibrate precharge</td>
</tr>
<tr>
<td>624</td>
<td>Self-test: not able to sense line frequency</td>
</tr>
<tr>
<td>625</td>
<td>Self-test: I/O processor not responding</td>
</tr>
<tr>
<td>626</td>
<td>Self-test: I/O processor self-test</td>
</tr>
</tbody>
</table>
Calibration Errors

The following errors indicate failures that may occur during a calibration. Refer to the 34970A/34972A Service Guide for more information.

701 **Cal: security disabled by jumper**
The calibration security feature has been disabled with a jumper inside the instrument. When applicable, this error will occur at power-on to alert you that the instrument is unsecured.

702 **Cal: secured**
The instrument is secured against calibration.

703 **Cal: invalid secure code**
You have entered an invalid calibration security code. You must use the same security code to unsecure the instrument that was used to secure it, and vice versa. The security code may contain up to 12 alphanumeric characters. The first character must be a letter, but the remaining characters can be letters, numbers, or an underscore (_). You do not have to use all 12 characters but the first character must always be a letter. *The security code is set to “KT034970” or “KT034972” when the instrument is shipped from the factory.*

704 **Cal: secure code too long**
The security code may contain up to 12 alphanumeric characters. A security code was received which contained more than 12 characters.

705 **Cal: aborted**
A calibration in progress is aborted when you turn off the instrument or send a bus Device Clear.

706 **Cal: value out of range**
The specified calibration value (CALibration:VALue) is not valid for the present measurement function and range.

707 **Cal: signal measurement out of range**
The specified calibration value (CALibration:VALue) does not match the signal applied to the instrument.
708  **Cal: signal frequency out of range**  
The input signal frequency for an ac calibration does not match the required input frequency for this calibration.

709  **Cal: no cal for this function or range**  
You cannot perform calibrations for most ac current ranges, the 100 MΩ resistance range, and period.

---

**NOTE**  
The following error messages indicate possible hardware failures within the instrument. If any of the following errors occur, contact your nearest Keysight Service Center for repair.

710  **Cal: full scale correction out of range**
720  **Cal: DCV offset out of range**
721  **Cal: DCI offset out of range**
722  **Cal: RES offset out of range**
723  **Cal: FRES offset out of range**
724  **Cal: extended resistance self cal failed**
725  **Cal: 300V DC correction out of range**
730  **Cal: precharge DAC convergence failed**
731  **Cal: A/D turnover correction out of range**
732  **Cal: AC flatness DAC convergence failed**
733  **Cal: AC low frequency convergence failed**
734  **Cal: AC low frequency correction out of range**
735  **Cal: AC rms converter noise correction out of range**
736  **Cal: AC rms 100th scale correction out of range**
740  **Cal data lost: secure state**
741  **Cal data lost: string data**
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>742</td>
<td>Cal data lost: DCV corrections</td>
</tr>
<tr>
<td>743</td>
<td>Cal data lost: DCI corrections</td>
</tr>
<tr>
<td>744</td>
<td>Cal data lost: RES corrections</td>
</tr>
<tr>
<td>745</td>
<td>Cal data lost: FRES corrections</td>
</tr>
<tr>
<td>746</td>
<td>Cal data lost: AC corrections</td>
</tr>
<tr>
<td>747</td>
<td>Config data lost: HP-IB address</td>
</tr>
<tr>
<td>(34970A only)</td>
<td></td>
</tr>
<tr>
<td>747</td>
<td>Calibration failed</td>
</tr>
<tr>
<td>(34972A only)</td>
<td></td>
</tr>
<tr>
<td>748</td>
<td>Config data lost: RS-232</td>
</tr>
<tr>
<td>(34970A only)</td>
<td></td>
</tr>
<tr>
<td>748</td>
<td>Cal checksum failed internal data</td>
</tr>
<tr>
<td>(34972A only)</td>
<td></td>
</tr>
<tr>
<td>749</td>
<td>DMM relay count data lost</td>
</tr>
</tbody>
</table>
Plug-In Module Errors

NOTE

The following error messages indicate possible hardware failures within the instrument. If any of the following errors occur, contact your nearest Keysight Service Center for repair.

901   Module hardware: unexpected data received
902   Module hardware: missing stop bit
903   Module hardware: data overrun
904   Module hardware: protocol violation
905   Module hardware: early end of data
906   Module hardware: missing end of data
907   Module hardware: module srq signal stuck low
908   Module hardware: not responding
910   Module reported an unknown module type
911   Module reported command buffer overflow
912   Module reported command syntax error
913   Module reported nonvolatile memory fault
914   Module reported temperature sensor fault
915   Module reported firmware defect
916   Module reported incorrect firmware installed
6 Application Programs

Application Programs 254
Example Programs for Excel 7.0 255
Example Programs for C and C++ 263
Application Programs

This chapter contains several example programs to help you develop programs for your specific measurement application. See the Keysight 34970A/34972A Programmer’s Reference Help for details on the SCPI language for the instrument.

The examples in this chapter have been tested on a PC running on Windows 95. The examples are written for use over the GPIB interface and require a VISA (Virtual Instrument Software Architecture) library for use with your GPIB interface card in your PC. You will want to make sure that you have the visa32.dll file in your c:\windows\system directory for the examples to work properly.

These programs were written for the 34970A, but other than the connectivity, the principles and code should generally apply to the 34972A as well.

For programs specific to the 34972A, see the product page at www.keysight.com/find/34972A

NOTE The GPIB (IEEE-488) address is set to “09” when the instrument is shipped from the factory. The examples in this chapter assume an GPIB address of 09.
Example Programs for Excel 7.0

This section contains two example programs written using Excel macros (Visual Basic® for Applications) to control the 34970A/34972A. Using Excel, you can send SCPI commands to configure the instrument and then record measurement data on the Excel spreadsheet.

To write an Excel macro you must first open a module in Excel. Go to the Insert menu, choose Macro, and then Module. Name this module “Send Commands” by clicking on the tab with the right mouse button. Create another module and name it “Port Configuration”. You will use the “Port Configuration” module to configure all of the overhead required to communicate with the instrument over the interface. You will use the “Send Commands” module to send the SCPI commands to the instrument using the “Port Configuration” module.

Two Excel examples are included in this section. To enter the first example (“takeReadings”), type the text as shown on page 256 into the “Send Commands” module. Then type the text for configuring the interface as shown on page 258 into the “Port Configuration” module.

After entering the information for both modules, go to a spreadsheet and run the example program. Note that you must run the macro from a spreadsheet. With the cursor in the spreadsheet, select Macro from the Tools menu. Then double-click on the “takeReadings” macro in the Macro dialog box.

To run the second example (“ScanChannels”), type the text as shown on page 260 into the “Send Commands” module and reuse the “Port Configuration” module from the first example (page 258).

Make any changes necessary to suit your application in the “Send Commands” module. You must enter the information in the modules exactly as shown or an error will be generated. If several system errors occur while attempting to run a macro, you may have to reboot your PC to get the GPIB port to work properly.

NOTE

To use these examples with Windows 3.1, you will need to modify the declarations at the top of the “Port Configuration” module. Change visa32.dll to visa.dll in all declarations.
Excel 7.0 Example: takeReadings Macro

Option Explicit
Sub takeReadings()
    Columns(1).ClearContents
    Columns(2).ClearContents
    Dim I As Integer 'Used for counter in For-Next loop
    Dim numberMeasurements As Integer ' Number of readings
    Dim measurementDelay As Single ' Delay between relay closure and measurement
    Dim points As Integer
    ' To change the GPIB address, modify the variable 'VISAaddr' below.
    VISAaddr = "9"
    OpenPort ' Open communications on GPIB
    SendSCPI "*RST" ' Issue a Factory Reset to the instrument
    ' SET UP: Modify this section to select the number of readings, channel delay, 
    ' and channel number to be measured.
    numberMeasurements = 10 ' Number of readings
    measurementDelay = 0.1 ' Delay (in secs) between relay closure and measurement
    ' Configure the function, range, and channel
    SendSCPI "CONF:VOLT:DC (@103)" ' Configure channel 103 for DC voltage
    ' Select channel delay and number of readings
    SendSCPI "ROUT:CHAN:DELAY " & Str$(measurementDelay) & Str$(numberMeasurements)
    ' Set up the spreadsheet headings
    Cells(2, 1) = "Chan Delay:"
    Cells(2, 2) = measurementDelay
    Cells(2, 3) = "sec"
    Cells(3, 1) = "Reading #"
    Cells(3, 2) = "Value"
    SendSCPI "INIT" ' Start the readings and wait for instrument to put
    Do ' one reading in memory
        SendSCPI "DATA:POINTS?" ' Get the number of readings stored
        points = Val(getScpi())
    Loop Until points >> 1
    ' Remove one reading at a time from memory
For I = 1 To numberMeasurements
    SendSCPI "DATA:REMOVE? 1" ' Request 1 reading from memory
    Cells(I + 3, 1) = I ' The reading number
    Cells(I + 3, 2) = Val(getScpi()) ' The reading value
    Do ' Wait for instrument to put another reading in memory
        SendSCPI "DATA:POINTS?" ' Get the number of readings stored
        points = Val(getScpi())
    Loop Until points >= 1 Or I >= numberMeasurements
Next I
ClosePort ' Close communications on GPIB
End Sub
Excel 7.0 Example: Port Configuration Macro

Option Explicit
'
' Declarations for VISA.DLL
'
Private Declare Function viOpenDefaultRM Lib "VISA32.DLL" Alias "#141" (sesn As Long) As Long
Private Declare Function viOpen Lib "VISA32.DLL" Alias "#131" (ByVal sesn As Long, ByVal desc As String, ByVal mode As Long, ByVal TimeOut As Long, vi As Long) As Long
Private Declare Function viClose Lib "VISA32.DLL" Alias "#132" (ByVal vi As Long) As Long
Private Declare Function viRead Lib "VISA32.DLL" Alias "#256" (ByVal vi As Long, ByVal Buffer As String, ByVal Count As Long, retCount As Long) As Long
Private Declare Function viWrite Lib "VISA32.DLL" Alias "#257" (ByVal vi As Long, ByVal Buffer As String, ByVal Count As Long, retCount As Long) As Long
'
' Error Codes
Global Const VI_SUCCESS = 0
'
' Global Variables
Global videfaultRM As Long ' Resource manager id for VISA GPIB
Global vi As Long ' Stores the session for VISA
Dim errorStatus As Long ' VTL error code
Global VISAaddr As String

' This routine requires the file 'VISA32.DLL' which typically resides in the
' c:\windows\system directory on your PC. This routine uses the VTL Library to send
' commands to the instrument. A description of these and additional VTL commands can be
' found in the Keysight VISA User's Guide.

Public Sub SendSCPI(SCPICmd As String)
' This routine sends a SCPI command string to the GPIB port. If the command is a
' query command (contains a question mark), you must read the response with 'getScpi'

Dim commandstr As String ' Command passed to instrument
Dim actual As Long ' Number of characters sent/returned

' Write the command to the instrument terminated by a line feed
commandstr = SCPICmd & Chr$(10)
errorStatus = viWrite(vi, ByVal commandstr, Len(commandstr), actual)
End Sub

Continued on next page
Function getScpi() As String
    Dim readbuf As String * 2048 ' Buffer used for returned string
    Dim replyString As String  ' Store the string returned
    Dim nulpos As Integer      ' Location of any nul's in readbuf
    Dim actual As Long         ' Number of characters sent/returned

    ' Read the response string
    errorStatus = viRead(vi, ByVal readbuf, 2048, actual)
    replyString = readbuf
    ' Strip out any nul's from the response string
    nulpos = InStr(replyString, Chr$(0))
    If nulpos Then
        replyString = Left(replyString, nulpos - 1)
    End If
    getScpi = replyString
End Function

Sub OpenPort()
    ' Be sure that the GPIB address has been set in the 'VISAaddr' variable
    ' before calling this routine.

    ' Open the VISA session
    errorStatus = viOpenDefaultRM(videfaultRM)
    ' Open communications to the instrument
    errorStatus = viOpen(videfaultRM, "GPIB0::" & VISAaddr & "::INSTR", 0, 2500, vi)
    ' If an error occurs, give a message
    If errorStatus < VI_SUCCESS Then
        Range("A2").Select
        Cells(1, 1) = "Unable to Open Port"
    End If
End Sub

Sub ClosePort()
    errorStatus = viClose(vi)
    ' Close the session
    errorStatus = viClose(videfaultRM)
End Sub

' This subroutine is used to create delays. The input is in seconds and fractional seconds are allowed.
Sub delay(delay_time As Single)
    Dim Finish As Single
    Finish = Timer + delay_time
    Do
        Loop Until Finish <= Timer
End Sub
This Excel Macro (Visual Basic) configures the 34970A for scanning with the 34901A, 34902A, or 34908A multiplexer modules. When this subroutine is executed, it will scan 5 channels and display the readings on a spreadsheet. You can easily modify the channels in the scan list, number of scans, channel delay, and scan delay. To make these changes, modify the code in the section titled ‘SET UP’. Note that you must have one of the above modules installed in slot 100 for this program to run properly. You must also have an GPIB interface card installed in your PC with the VISA or VTL library.

Option Explicit
Sub ScanChannels()
    Dim columnIndex As Integer ' The column number of the data
    Dim numberScans As Integer ' Total number of scans
    Dim numberChannels As Integer ' Total number of scanned channels
    Dim ScanInterval As Single ' Time interval in seconds between scans
    Dim points As Integer ' Reading count in instrument memory
    Dim replyString As String ' Store the string returned from instrument
    Dim scanList As String ' List of channels included in scan
    Dim channelDelay As Single ' Delay between relay closure and measurement
    Dim Channel As Integer
    Range("a1:ba40").ClearContents ' Clear the spreadsheet

    To change the GPIB address, modify the variable 'VISAaddr' below.
    VISAaddr = "9"
    OpenPort ' Open communications on GPIB
    SendSCPI "*RST" ' Issue a Factory Reset to the instrument

    ' SET UP: Modify this section to select the scan interval, the scan count, and channel delay.
    ' These are variables that are used to set the scan parameters
    ScanInterval = 10 ' Delay (in secs) between scans
    numberScans = 3 ' Number of scan sweeps to measure
    channelDelay = 0.1 ' Delay (in secs) between relay closure and measurement
    ' To delete channels from the scan list, modify the scan list string variable
    ' 'scanlist' below. To add channels to the scan list, modify 'scanList' and then configure the channel using the CONFIGure command.
    ' 'scanList' is the list of channels in the scan list; note that this does not have to include all configured channels in the instrument.
    scanList = "(@101,102,110:112)"
    SendSCPI "CONF:TEMP TC,T,(@101)" ' Configure channel 101 for temperature
    SendSCPI "CONF:TEMP TC,K,(@102)" ' Configure channel 102 for temperature
    SendSCPI "CONF:TEMP THER,5000,(@103)" ' Configure channel 103 for temperature
    SendSCPI "CONF:VOLT:DC (@110,111,112)" ' Configure three channels for DC volts
SendSCPI "ROUTE:SCAN " & scanList  ' Select the list of channels to scan
SendSCPI "ROUTE:SCAN:SIZE?"  ' Query the number of channels in scan list and
numberChannels = Val(GetSCPI())  ' set variable equal to number of channels
SendSCPI "FORMAT:READING:CHAN ON"  ' Return channel number with each reading
SendSCPI "FORMAT:READING:TIME ON"  ' Return time stamp with each reading
Set the delay (in seconds) between relay closure and measurement
SendSCPI "ROUT:CHAN:DELAY " & Str$(channelDelay) & "," & scanList

' Set up the scan trigger parameters after configuring the channels in the scan list
' using the CONFIGure command. The following commands configure the scan interval.
SendSCPI "TRIG:COUNT " & Str$(numberScans)
SendSCPI "TRIG:SOUR TIMER"
SendSCPI "TRIG:TIMER " & Str$(ScanInterval)
Cells(2, 1) = "Start Time"  ' Put headings on spreadsheet
Cells(4, 1) = "Channel"  ' Put headings on spreadsheet
Cells(2, 2) = "Channel"  ' Put headings on spreadsheet

' Start the scan and retrieve the scan start time
SendSCPI "INIT;:SYSTEM:TIME:SCAN?"  ' Put time into string variable
replyString = GetSCPI()
' Convert the time to Excel format and put into cells B2 and C2
Cells(2, 2) = ConvertTime(replyString)
Cells(2, 3) = Cells(2, 2)
Cells(2, 3).NumberFormat = "d-mmm-yy"  ' Format for date
Cells(2, 2).NumberFormat = "hh:mm:ss"  ' Format for time
Range("a1:ba1").ClearContents  ' Clear out row 1

' Step through the number of scan sweeps
For columnIndex = 1 To numberScans  ' Start of scan data
  Do  ' Wait for instrument to put a reading in memory
    SendSCPI "DATA:POINTS?"  ' Get the number of readings stored
    points = Val(GetSCPI())
  Loop Until points >= 1
  ' Remove one reading at a time from memory
  For Channel = 1 To numberChannels
    SendSCPI "DATA:REMOVE? 1"  ' Request one reading from memory
    Application.ScreenUpdating = False
    ' Get readings from buffer and store in cell A1
    Cells(1, 1) = GetSCPI()
    ' Parse the string in cell A1 and put into row '1'
    Range("a1").TextToColumns Destination:=Range("a1"), comma:=True
    ' Call routine to organize the data in row 1 into a table
    makeDataTable Channel, columnIndex
  Next Channel
  Application.ScreenUpdating = True
  Do  ' Wait for instrument to put another reading in memory
    SendSCPI "DATA:POINTS?"  ' Get the number of readings stored
    points = Val(GetSCPI())
  Loop Until points >= 1 Or Channel >= numberChannels
Next columnIndex
ClosePort  ' Close communications on GPIB
End Sub
Sub makeDataTable(Channel As Integer, columnIndex As Integer)
' This routine will take the parsed data in row '1' for a channel and put it into a
' table. 'Channel' determines the row of the table and 'columnIndex' determines the
' column (scan sweep count).

' The number of comma-delimited fields returned per channel is determined by the
' FORMat:READing commands. The number of fields per channel is required to locate
' the data in row 1. In this example, there are three cells (fields) per channel.
' Set up the heading while scanning the first channel.
If Channel = 1 Then
' Label the top of the data column and time stamp column
Cells(4, columnIndex * 2) = "Scan " & Str(columnIndex)
Cells(4, columnIndex * 2).Font.Bold = True
Cells(3, columnIndex * 2 + 1) = "time stamp"
Cells(4, columnIndex * 2 + 1) = "min:sec"
End If
' Get channel number, put in column 'A' for first scan only
If columnIndex = 1 Then
Cells(Channel + 4, 1) = Cells(1, 3)
End If
' Get the reading data and put into the column
Cells(Channel + 4, columnIndex * 2) = Cells(1, 1)
' Get the time stamp and put into the column to the right of data; to convert relative
' time to Excel time, divide by 86400.
Cells(Channel + 4, columnIndex * 2 + 1) = Cells(1, 2) / 86400
Cells(Channel + 4, columnIndex * 2 + 1).NumberFormat = "mm:ss.0"
End Sub

Function ConvertTime(TimeString As String) As Date
' This routine will take the string returned from the SYSTem:TIME:SCAN? command and
' return a number compatible with the Excel format. When loaded into a cell, it can
' be formatted using the Excel 'Format' menu.
Dim timeNumber As Date ' Decimal or time portion of the number
Dim dateNumber As Date ' Integer or date portion of the number
Cells(1, 1).ClearContents
Cells(1, 1) = TimeString
Range("a1").TextToColumns Destination:=Range("a1"), comma:=True
dateNumber = DateSerial(Cells(1, 1), Cells(1, 2), Cells(1, 3))
timeNumber = TimeSerial(Cells(1, 4), Cells(1, 5), Cells(1, 6))
ConvertTime = dateNumber + timeNumber
End Function

Sub GetErrors()
' Call this routine to check for instrument errors. The GPIB address variable
' 'VISAaddr' must be set.
Dim DataString As String
OpenPort
SendSCPI "SYSTEM:ERROR?" ' Read one error from the error queue
Delay (0.1)
DataString = GetSCPI()
MsgBox DataString
ClosePort
End Sub
Example Programs for C and C++

The following C programming examples show you how to send and receive formatted I/O. For more information on non-formatted I/O, refer to the Keysight VISA User’s Guide. The examples in this section show you how to use the SCPI commands for the instrument with the VISA functionality and does not include error trapping. Error trapping, however, is good programming practice and is recommended for your application. For more information on error trapping, refer to the Keysight VISA User’s Guide.

The example programs are written in Microsoft® Visual C++ Version 1.52 using project type “QuickWin application”, and using the large memory model. Be sure to have access in the project to visa.lib or visa32.lib usually found in the c:\wxipnp or c:\visa directory.
C/C++ Example: dac_out.c

/* dac_out.c
*******************************************************************************
* Required: 34907A Multifunction Module in slot 200; VISA library *
* This program uses the VISA library to communicate with the 34970A. *
* The program queries slot 200 and displays the response. It then resets *
* the instrument and sends the value 'voltage' to the DAC on channel 205. *
*******************************************************************************

#include <visa.h>
#include <stdio.h>
#include <string.h>
#define ADDR "9" /* Set GPIB address for instrument */

void main ()
{
 ViSession defaultRM; /* Resource manager id */
 ViSession dac; /* Identifies instrument */
 char reply_string[256]; /* String returned from instrument */
 char Visa_address[40]; /* VISA address sent to module */
 double voltage; /* Value of voltage sent to DAC */

 /* Build the address required to open communication with GPIB card. 
The address format looks like this "GPIB0::9::INSTR". */
 strcpy(Visa_address,"GPIB0::");
 strcat(Visa_address, ADDR);
 strcat(Visa_address, "::INSTR");

 /* Open communication (session) with the 34970A */
 viOpenDefaultRM (&defaultRM);
 viOpen (defaultRM, Visa_address, VI_NULL, VI_NULL, &dac);

 /* Query the module id in slot 200; Read response and print. */
 viPrintf (dac, "SYST:CTYPE? 200\n");
 viScanf (dac, "%s", &reply_string);
 printf("Instrument identification string:
 %s

", reply_string);

 viPrintf (dac, "*RST\n"); /* Set power-on condition */
 voltage = 5; /* Set variable to voltage setting */
 viPrintf (dac, "SOURCE:VOLTAGE %f,(@205)\n",voltage); /* Set output voltage */
 /* Close communication session */
 viClose (dac);
 viClose (defaultRM);
}
C/C++ Example: stat_reg.c

/* stat_reg.c */
/* * stat_reg.c */
/* Required: VISA library. */
/* This program demonstrates the use of the 34970A Status Registers */
/* for an alarm and Operation Complete (OPC) and for enabling and receiving */
/* an SRQ interrupt. This program also shows how to configure a scan for */
/* 10 readings on one channel. */
/******************************************************************************
* Required: VISA library. *
* This program demonstrates the use of the 34970A Status Registers   *
* for an alarm and Operation Complete (OPC) and for enabling and receiving  *
* an SRQ interrupt. This program also shows how to configure a scan for  *
* 10 readings on one channel.  *
***************************************************************************** */

#include <visa.h>
#include <stdio.h>
#include <string.h>
ViSession defaultRM;  /* Resource manager id */
ViSession DataAcqu;  /* Variable to identify an instrument */
char reply_string [256]= {0};  /* string returned from instrument */
double volt [10];
int index, count;
srqFlag = {0};

/* Function prototypes for SRQ handler */
ViStatus _VI_FUNCH SRQ_handler(ViSession DataAcqu,ViEventType eventType, ViEvent context,ViAddr userHdlr);

int main ()
{
    /* Open communication with DataAcqu using GPIB address "9" */
    viOpenDefaultRM (&defaultRM);
    viOpen (defaultRM,"GPIB0::9::INSTR",VI_NULL,VI_NULL, &DataAcqu);
    /* Reset instrument to power-on and clear the Status Byte */
    viPrintf (DataAcqu, "*RST;*CLS\n");

    /* Configure the Status Registers to generate an interrupt whenever an alarm */
    /* is detected on Alarm 1 or when the operation is complete */
    viPrintf (DataAcqu, "STATUS:ALARM:ENABLE 1\n"); /* Enable Alarm 1 */
    viPrintf (DataAcqu, "*ESE 1\n"); /* Enable the Operation Complete bit */
    /* Enable Status Byte Register bit 1 (2) and 5 (32) for SRQ */
    viPrintf (DataAcqu, "*SRE 34\n");
    /* Enable the interrupt handler for SRQ from the instrument */
    viInstallHandler(DataAcqu, VI_EVENT_SERVICE_REQ, SRQ_handler, (ViAddr)10);
    viEnableEvent(DataAcqu,VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);
    /* Configure the instrument to take 10 DC voltage readings on channel 103. */
    /* Set the alarm and set SRQ if the voltage is greater than 5 volts. */
    viPrintf (DataAcqu, "CONF:VOLT:DC 10,(@103)\n");
    viPrintf (DataAcqu, "TRIG:SOURCE TIMER\n");
    viPrintf (DataAcqu, "TRIG:COUNT 10\n");
    viPrintf (DataAcqu, "CALC:LIMIT:UPPER 5,(@103)\n");
    viPrintf (DataAcqu, "CALC:LIMIT:UPPER:STATE ON,(@103)\n");
    /* Configure the instrument to take 10 DC voltage readings on channel 103. */
    viPrintf (DataAcqu, "OUTPUT:ALARMS:SOURCE (@103)\n");
    viPrintf (DataAcqu, "INIT;*OPC\n");
}

Keysight 34970A/34972A User's Guide 265
do { /* Stay in loop until the srqFlag goes negative */
    index = 1;
    for (count = 0; count < 45; count++)
    {
        index = 0;
        printf(".");
        printf(" srq flag = %d\n",srqFlag);
    }
    printf(" srq flag = %d\n",srqFlag);
} while (srqFlag >= 0); /* A negative srqFlag indicates scan is done */
/* The instrument is done, so close the SRQ handler */
viDisableEvent(DataAcqu, VI_EVENT_SERVICE_REQ, VI_HNDLR);
viUninstallHandler (DataAcqu, VI_EVENT_SERVICE_REQ, SRQ_handler, (ViAddr)10);
viPrintf (DataAcqu, "FETCH?\n"); /* Get all the readings */
viScanf(DataAcqu, ",%10lf", &volt); /* Put readings into an array */
for (index = 0; index < 10; index++)
    { /* Print the readings */
        printf("reading %d = %lf\n", index+1, volt[index]);
    }
viClose (DataAcqu); /* Close the communication port */
viClose (defaultRM);
}

/* This function will be called when the instrument interrupts the controller with
an SRQ for alarm and/or Operation Complete */
ViStatus _VI_FUNCH SRQ_handler(ViSession DataAcqu, ViEventType eventType,
ViEvent context, ViAddr userHdlr)
{
    ViUInt16 statusByte;
    viReadSTB(DataAcqu, &statusByte); /* Read status byte register and clear SRQ */
    /* Bit 6 (64) indicates this SRQ is for our instrument, bit 1 (2) indicates
    an alarm, and bit 5 (32) indicates the standard event register;
    so alarm 64+2=66; OPC 64+32=96; both 64+32+2=98 */
    if ((statusByte==66)|,(statusByte==98))
    {
        srqFlag = 1; /* Set flag to indicate this is an alarm */
        viPrintf (DataAcqu, "STATUS:ALARM:EVENT?\n"); /* Check and clear alarm */
        viScanf(DataAcqu, "%s", &reply_string);
        printf("alarm event; bit = %s\n", reply_string);
    }
    if ((statusByte==96)|,(statusByte==98))
    {
        srqFlag = -1; /* Set flag to indicate end of operation */
        viPrintf (DataAcqu, "*ESR?\n"); /* Check and clear ESR bit */
        viScanf(DataAcqu, "%s", &reply_string);
        printf("Standard Event Register; bit %s\n", reply_string);
    }
    return VI_SUCCESS;
}
This chapter describes methods that you can use to reduce errors that can affect your measurements. You will also find information to help you better understand how the 34970A/34972A makes measurements and what you can do to get the best results.
System Cabling and Connections

This section describes methods to reduce measurement errors that can be introduced by your system cabling. Many system cabling errors can be reduced or eliminated by selecting the proper cable and grounding scheme for your system.

Cable Specifications

A wide variety of general-purpose and custom cables are available. The following factors influence the type of cable that you choose.

- **Signal Requirements** – such as voltage, frequency, accuracy, and measurement speed.
- **Interconnection Requirements** – such as wire sizes, cable lengths, and cable routing.
- **Maintenance Requirements** – such as intermediate connectors, cable terminations, strain relief, cable lengths, and cable routing.

Cables are specified in a variety of ways. Be sure to check the following specifications for the cable type you intend to use (continued on the following page).

- **Nominal Impedance (insulation resistance)** – Varies with the frequency of the input signal. Check for HI-to-LO, channel-to-channel, and HI- or LO-to-shield. High frequency RF applications have exact requirements for cable impedance.
- **Dielectric Withstand Voltage** – Must be high enough for your application.

**WARNING**

To prevent electrical shock or equipment damage, insulate all channels to the highest potential in the system. It is recommended that you use wire with 600 V rated insulation.

- **Cable Resistance** – Varies with wire gauge size and cable length. Use the largest gauge wire possible and try to keep the cable lengths as short as possible to minimize the cable resistance. The following table lists typical cable resistance for copper wire of several gauge sizes (the temperature coefficient for copper wire is 0.35% per °C).
– **Cable Capacitance** – Varies with the insulation type, cable length, and cable shielding. Cables should be kept as short as possible to minimize cable capacitance. In some cases, low-capacitance cable can be used.

The table below lists typical cable specifications.

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Nominal Impedance</th>
<th>Capacitance</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twisted Pair</td>
<td>100Ω at 1 MHz</td>
<td>10 to 20 pF/ft</td>
<td>Up to 1 dB/100 ft at 1 MHz</td>
</tr>
<tr>
<td>Shielded Twisted Pair</td>
<td>100Ω at 1 MHz</td>
<td>10 to 20 pF/ft</td>
<td>Up to 1 dB/100 ft at 1 MHz</td>
</tr>
<tr>
<td>Coaxial</td>
<td>50Ω or 75Ω at 100 MHz</td>
<td>15 to 25 pF/ft</td>
<td>Up to 6 dB/100 ft at 100 MHz</td>
</tr>
<tr>
<td>Twisted Pair Ribbon</td>
<td>100Ω at 1 MHz</td>
<td>15 to 20 pF/ft</td>
<td>Up to 1 dB/100 ft at 1 MHz</td>
</tr>
</tbody>
</table>
Grounding Techniques

One purpose of grounding is to avoid ground loops and minimize noise. Most systems should have at least three separate ground returns.

1. One ground for signals. You may also want to provide separate signal grounds between high-level signals, low-level signals, and digital signals.

2. A second ground is used for noisy hardware such as relays, motors, and high-power equipment.

3. A third ground is used for chassis, racks, and cabinets. The AC power ground should generally be connected to this third ground.

In general, for frequencies below 1 MHz or for low-level signals, use single-point grounding (see below). Parallel grounding is superior but is also more expensive and more difficult to wire. If single-point grounding is adequate, the most critical points (those with the lowest levels and/or the most precise measurement requirements) should be positioned near the primary ground point. For frequencies above 10 MHz, use the separate grounding system. For signals between 1 MHz and 10 MHz, you can use a single-point system if the longest ground return path is kept to less than 1/20 of a wavelength. In all cases, return-path resistance and inductance should be minimized.
Shielding Techniques

Shielding against noise must address both capacitive (electrical) and inductive (magnetic) coupling. The addition of a grounded shield around the conductor is highly effective against capacitive coupling. In switching networks, this shielding often takes the form of coaxial cables and connectors. For frequencies above 100 MHz, double-shielded coaxial cable is recommended to maximize shielding effectiveness.

Reducing loop area is the most effective method to shield against magnetic coupling. Below a few hundred kilohertz, twisted pairs may be used against magnetic coupling. Use shielded twisted pair for immunity from magnetic and capacitive pickup. For maximum protection below 1 MHz, make sure that the shield is not one of the signal conductors.

Separation of High-Level and Low-Level Signals

Signals whose levels exceed a 20-to-1 ratio should be physically separated as much as possible. The entire signal path should be examined including cabling and adjacent connections. All unused lines should be grounded (or tied to LO) and placed between sensitive signal paths. When making your wiring connections to the screw terminals on the module, be sure to wire like functions on adjacent channels.
Sources of System Cabling Errors

Radio Frequency Interference
Most voltage-measuring instruments can generate false readings in the presence of large, high-frequency signals. Possible sources of high-frequency signals include nearby radio and television transmitters, computer monitors, and cellular telephones. High-frequency energy can also be coupled to the internal DMM on the system cabling. To reduce the interference, try to minimize the exposure of the system cabling to high-frequency RF sources.

If your application is extremely sensitive to RFI radiated from the instrument, use a common mode choke in the system cabling as shown below to attenuate instrument emissions.

Thermal EMF Errors
Thermoelectric voltages are the most common source of error in low-level DC voltage measurements. Thermoelectric voltages are generated when you make circuit connections using dissimilar metals at different temperatures. Each metal-to-metal junction forms a thermocouple, which generates a voltage proportional to the junction temperature difference. You should take the necessary precautions to minimize thermocouple voltages and temperature variations in low-level voltage measurements. The best connections are formed using copper-to-copper crimped connections. The table below shows common thermoelectric voltages for connections between dissimilar metals.
Noise Caused by Magnetic Fields

If you are making measurements near magnetic fields, you should take precautions to avoid inducing voltages in the measurement connections. Voltage can be induced by either movement of the input connection wiring in a fixed magnetic field or by a varying magnetic field. An unshielded, poorly dressed input wire moving in the earth’s magnetic field can generate several millivolts. The varying magnetic field around the AC power line can also induce voltages up to several hundred millivolts. You should be especially careful when working near conductors carrying large currents.

Where possible, you should route cabling away from magnetic fields. Magnetic fields are commonly present around electric motors, generators, televisions, and computer monitors. Also make sure that your input wiring has proper strain relief and is tied down securely when operating near magnetic fields. Use twisted-pair connections to the instrument to reduce the noise pickup loop area, or dress the wires as close together as possible.

Noise Caused by Ground Loops

When measuring voltages in circuits where the internal DMM and the device-under-test are both referenced to a common earth ground, a ground loop is formed. As shown below, any voltage difference between the two ground reference points \( V_{\text{ground}} \) causes a current to flow through the LO measurement lead. This causes an error voltage \( V_L \) which is added to the measured voltage.
Where:

RL = Lead resistance

Ri = DMM isolation resistance

Ci = DMM isolation capacitance

V_{ground} = Ground noise voltage

I = Current flow caused by \( V_{ground} = \frac{V_{ground}}{R_L + Z} \)

\( Z = Z_{Ci} = \frac{1}{2\pi fC} = 10 \text{ M\Omega} \) at 50 or 60 Hz

\( V_L = I \times R_L \)

To minimize ground loop errors:

- If \( V_{ground} \) is a DC voltage, keep \( R_L \) small compared to \( R_i \).
- If \( V_{ground} \) is an AC voltage, keep \( R_L \) small compared to \( Z \), and set the DMM’s integration time to 1 PLC or greater (see page 133 for a discussion of integration time).
Low-Level AC Measurement Errors

When measuring AC voltages less than 100 mV, be aware that these measurements are especially susceptible to errors introduced by extraneous noise sources. An exposed test lead will act as an antenna and the internal DMM will measure the signals received. The entire measurement path, including the power line, act as a loop antenna. Circulating currents in the loop will create error voltages across any impedances in series with the instrument’s input. For this reason, you should apply low-level AC voltages to the instrument through shielded cables. You should also connect the shield to the input LO terminal.

Be sure to minimize the area of any ground loops that cannot be avoided. A high-impedance source is more susceptible to noise pickup than a low-impedance source. You can reduce the high-frequency impedance of a source by placing a capacitor in parallel with the instrument’s input terminals. You may have to experiment to determine the correct capacitance value for your application.

Most extraneous noise is not correlated with the input signal. You can determine the error as shown below.

\[
\text{Voltage Measured} = \sqrt{V_{\text{in}}^2 + \text{Noise}^2}
\]

Correlated noise, while rare, is especially detrimental. Correlated noise will always add directly to the input signal. Measuring a low-level signal with the same frequency as the local power line is a common situation that is prone to this error.

You should use caution when switching high-level and low-level signals on the same module. It is possible that high-level charged voltages may be discharged onto a low-level channel. It is recommended that you either use two different modules or separate the high-level signals from the low-level signals with an unused channel connected to ground.
Measurement Fundamentals

This section explains how the 34970A/34972A makes measurements and discusses the most common sources of error related to these measurements.

The Internal DMM

The internal DMM provides a universal input front-end for measuring a variety of transducer types without the need for additional external signal conditioning. The internal DMM includes signal conditioning, amplification (or attenuation), and a high resolution (up to 22 bits) analog-to-digital converter. A simplified diagram of the internal DMM is shown below. For complete details on the operation of the internal DMM, refer to “Measurement Input” on page 90.

The internal DMM can directly make the following types of measurements. Each of these measurements is described in the following sections of this chapter.

- Temperature (thermocouple, RTD, and thermistor)
- Voltage (dc and AC up to 300V)
- Resistance (2-wire and 4-wire up to 100 MΩ)
- Current (dc and AC up to 1A)
- Frequency and Period (up to 300 kHz)

Rejecting Power-Line Noise Voltages

A desirable characteristic of an integrating analog-to-digital (A/D) converter is its ability to reject spurious signals. Integrating techniques reject power-line related noise present with DC signals on the input. This is called normal mode rejection or NMR. Normal mode noise rejection is achieved when the internal DMM measures the average of the input by “integrating” it over a fixed period. If you set the integration time to a whole number of power line cycles (PLCs) of the spurious input, these errors (and their harmonics) will average out to approximately zero.
When you apply power to the internal DMM, it measures the power-line frequency (50 Hz or 60 Hz), and uses this measurement to determine the integration time. The table below shows the noise rejection achieved with various configurations. For better resolution and increased noise rejection, select a longer integration time.

<table>
<thead>
<tr>
<th>PLCs</th>
<th>Digits</th>
<th>Bits</th>
<th>Integration Time 60 Hz (50 Hz)</th>
<th>NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>4½</td>
<td>15</td>
<td>400 μs (400 μs)</td>
<td>0 dB</td>
</tr>
<tr>
<td>0.2</td>
<td>5½</td>
<td>18</td>
<td>3 ms (3 ms)</td>
<td>0 dB</td>
</tr>
<tr>
<td>1</td>
<td>5½</td>
<td>20</td>
<td>16.7 ms (20 ms)</td>
<td>60 dB</td>
</tr>
<tr>
<td>2</td>
<td>6½</td>
<td>21</td>
<td>33.3 ms (40 ms)</td>
<td>90 dB</td>
</tr>
<tr>
<td>10</td>
<td>6½</td>
<td>24</td>
<td>167 ms (200 ms)</td>
<td>95 dB</td>
</tr>
<tr>
<td>20</td>
<td>6½</td>
<td>25</td>
<td>333 ms (400 ms)</td>
<td>100 dB</td>
</tr>
<tr>
<td>100</td>
<td>6½</td>
<td>26</td>
<td>1.67 s (2 s)</td>
<td>105 dB</td>
</tr>
<tr>
<td>200</td>
<td>6½</td>
<td>26</td>
<td>3.33 s (4 s)</td>
<td>110 dB</td>
</tr>
</tbody>
</table>

The following graph shows the attenuation of AC signals measured in the DC voltage function for various A/D integration time settings. Note that signal frequencies at multiples of 1/T exhibit high attenuation.
Temperature Measurements

A temperature transducer measurement is typically either a resistance or voltage measurement converted to an equivalent temperature by software conversion routines inside the instrument. The mathematical conversion is based on specific properties of the various transducers. The mathematical conversion accuracy (not including the transducer accuracy) for each transducer type is shown below.

### Transducer Conversion Accuracy

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Conversion Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple</td>
<td>0.05°C</td>
</tr>
<tr>
<td>RTD</td>
<td>0.02°C</td>
</tr>
<tr>
<td>Thermistor</td>
<td>0.05°C</td>
</tr>
</tbody>
</table>

Errors associated with temperature measurements include all of those listed for DC voltage and resistance measurements elsewhere in this chapter. The largest source of error in temperature measurements is generally the transducer itself.

Your measurement requirements will help you to determine which temperature transducer type to use. Each transducer type has a particular temperature range, accuracy, and cost. The table below summarizes some typical specifications for each transducer type. Use this information to help select the transducer for your application. The transducer manufacturers can provide you with exact specifications for a particular transducer.

### Table of Temperature Transducer Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Thermocouple</th>
<th>RTD</th>
<th>Thermistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-210°C to 1820°C</td>
<td>-200°C to 850°C</td>
<td>-80°C to 150°C</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>Voltage</td>
<td>2- or 4-Wire Ohms</td>
<td>2- or 4-Wire Ohms</td>
</tr>
<tr>
<td>Transducer Sensitivity</td>
<td>6 μV/°C to 60 μV/°C</td>
<td>≈ R₀ x 0.004°C</td>
<td>≈ 400Ω /°C</td>
</tr>
<tr>
<td>Probe Accuracy</td>
<td>0.5°C to 5°C</td>
<td>0.01°C to 0.1°C</td>
<td>0.1°C to 1°C</td>
</tr>
<tr>
<td>Cost (U.S. Dollars)</td>
<td>$1 / foot</td>
<td>$20 to $100 each</td>
<td>$10 to $100 each</td>
</tr>
<tr>
<td>Durability</td>
<td>Rugged</td>
<td>Fragile</td>
<td>Fragile</td>
</tr>
</tbody>
</table>
RTD Measurements

An RTD is constructed of a metal (typically platinum) that changes resistance with a change in temperature in a precisely known way. The internal DMM measures the resistance of the RTD and then calculates the equivalent temperature.

An RTD has the highest stability of the temperature transducers. The output from an RTD is also very linear. This makes an RTD a good choice for high-accuracy, long-term measurements. The 34970A/34972A supports RTDs with $\alpha = 0.00385$ (DIN / IEC 751) using ITS-90 software conversions and $\alpha = 0.00391$ using IPTS-68 software conversions. “PT100” is a special label that is sometimes used to refer to an RTD with $\alpha = 0.00385$ and $R_0 = 100\,\Omega$.

The resistance of an RTD is nominal at 0 °C and is referred to as $R_0$. The 34970A/34972A can measure RTDs with $R_0$ values from 49 $\Omega$ to 2.1 k$\Omega$.

You can measure RTDs using a 2-wire or 4-wire measurement method. The 4-wire method provides the most accurate way to measure small resistances. Connection lead resistance is automatically removed using the 4-wire method.

Thermistor Measurements

A thermistor is constructed of materials that non-linearly changes resistance with changes in temperature. The internal DMM measures the resistance of the thermistor and then calculates the equivalent temperature.

Thermistors have a higher sensitivity than thermocouples or RTDs. This makes a thermistor a good choice when measuring very small changes in temperature. Thermistors are, however, very non-linear, especially at high temperatures and function best below 100 °C.

Because of their high resistance, thermistors can be measured using a 2-wire measurement method. The internal DMM supports 2.2 k$\Omega$ (44004), 5 k$\Omega$ (44007), and 10 k$\Omega$ (44006) thermistors. The thermistor conversion routines used by the 34970A/34972A are compatible with the International Temperature Scale of 1990 (ITS-90).
Thermocouple Measurements

A thermocouple converts temperature to voltage. When two wires composed of dissimilar metals are joined, a voltage is generated. The voltage is a function of the junction temperature and the types of metals in the thermocouple wire. Since the temperature characteristics of many dissimilar metals are well known, a conversion from the voltage generated to the temperature of the junction can be made. For example, a voltage measurement of a T-type thermocouple (made of copper and constantan wire) might look like this:

Notice, however, that the connections made between the thermocouple wire and the internal DMM make a second, unwanted thermocouple where the constantan (C) lead connects to the internal DMM's copper (Cu) input terminal. The voltage generated by this second thermocouple affects the voltage measurement of the T-type thermocouple.

If the temperature of the thermocouple created at J2 (the LO input terminal) is known, the temperature of the T-type thermocouple can be calculated. One way to do this is to connect two T-type thermocouples together to create only copper-to-copper connections at the internal DMM's input terminals, and to hold the second thermocouple at a known temperature.
An ice bath is used to create a known reference temperature (0 °C). Once the reference temperature and thermocouple type are known, the temperature of the measurement thermocouple can be calculated.

The T-type thermocouple is a unique case since one of the conductors (copper) is the same metal as the internal DMM’s input terminals. If another type of thermocouple is used, two additional thermocouples are created. For example, take a look at the connections with a J-type thermocouple (iron and constantan):

Two additional thermocouples have been created where the iron (Fe) lead connects to the internal DMM’s copper (Cu) input terminals. Since these two junctions will generate opposing voltages, their effect will be to cancel each other. However, if the input terminals are not at the same temperature, an error will be created in the measurement.
To make a more accurate measurement, you should extend the copper test leads of the internal DMM closer to the measurement and hold the connections to the thermocouple at the same temperature.

This circuit will give accurate temperature measurements. However, it is not very convenient to make two thermocouple connections and keep all connections at a known temperature. The Law of Intermediate Metals eliminates the need for the extra connection. This empirical law states that a third metal (iron (Fe) in this example) inserted between two dissimilar metals will have no effect upon the output voltage, provided the junctions formed are at the same temperature. Removing the reference thermocouple makes the connections much easier.

This circuit is the best solution for accurate thermocouple connections.
In some measurement situations, however, it would be nice to remove the need for an ice bath (or any other fixed external reference). To do this, an isothermal block is used to make the connections. An isothermal block is an electrical insulator, but a good heat conductor. The additional thermocouples created at J1 and J2 are now held at the same temperature by the isothermal block.

Once the temperature of the isothermal block is known, accurate temperature measurements can be made. A temperature sensor is mounted to the isothermal block to measure its temperature.

Thermocouples are available in a variety of types. The type is specified by a single letter. The table on the following page shows the most commonly used thermocouple types and some key characteristics of each.

**NOTE**
The thermocouple conversion routines used by the 34970A/34972A are compatible with the International Temperature Scale of 1990 (ITS-90).
### Thermocouple Types

<table>
<thead>
<tr>
<th>T/C Type</th>
<th>Pos (+) Lead</th>
<th>Neg (-) Lead</th>
<th>Temperature Range</th>
<th>Probe Accuracy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Platinum -30% Rhodium Gray</td>
<td>Platinum -60% Rhodium Red</td>
<td>250°C - 1820°C</td>
<td>±0.5°C</td>
<td>High Temperature. Beware of contamination. Do not insert in metal tubes.</td>
</tr>
<tr>
<td>K</td>
<td>Nickel-Chromium Yellow</td>
<td>Nickel-Aluminum Red</td>
<td>-200°C - 1370°C</td>
<td>±1.1°C - 2.2°C</td>
<td>For oxidizing environments. Good linearity above 8°C.</td>
</tr>
<tr>
<td>T</td>
<td>Copper Blue</td>
<td>Constantan Red</td>
<td>-200°C - 400°C</td>
<td>±0.5°C - 1°C</td>
<td>Withstands moisture. Has a copper lead. Low temperature applications.</td>
</tr>
<tr>
<td>E</td>
<td>Nickel-Chromium Purple</td>
<td>Constantan Red</td>
<td>-200°C - 1000°C</td>
<td>±1°C - 1.7°C</td>
<td>Highest output voltage. Highest resolution.</td>
</tr>
<tr>
<td>T/C Type</td>
<td>Pos (+) Lead</td>
<td>Neg (-) Lead</td>
<td>Temperature Range</td>
<td>Probe Accuracy</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>N</td>
<td>Nicrosil</td>
<td>Nisil</td>
<td>-200°C - 1300°C</td>
<td>±1.1°C - 2.2°C</td>
<td>Superior stability to K type at higher temperatures</td>
</tr>
<tr>
<td>U.S.</td>
<td>Orange</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Platinum -13% Rhodium</td>
<td>Rhodium</td>
<td>-50°C - 1760°C</td>
<td>±0.6°C - 1.5°C</td>
<td>High Temperature. Beware of contamination. Do not insert in metal tubes.</td>
</tr>
<tr>
<td>U.S.</td>
<td>Black</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British</td>
<td>White</td>
<td>White</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN</td>
<td>Red</td>
<td>White</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>Yellow</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Platinum -10% Rhodium</td>
<td>Platinum</td>
<td>-50°C - 1760°C</td>
<td>±0.6°C - 1.5°C</td>
<td>Low error, good stability. High temperature Beware of contamination. Do not insert in metal tubes.</td>
</tr>
<tr>
<td>U.S.</td>
<td>Black</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British</td>
<td>White</td>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN</td>
<td>Red</td>
<td>White</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>Yellow</td>
<td>Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constantan = Copper-Nickel; Nicrosil = Nickel-Chromium-Silicon; Nisil = Nickel-Silicone-Magnesium; N/A = Not Available.
Sources of Error in Thermocouple Measurements

Reference Junction Error
A thermocouple is typically formed by welding or soldering two wires together to make the junction. Soldering introduces a third metal into the junction. Provided that both sides of the thermocouple are at the same temperature, the third metal has little effect.

Commercial thermocouples are welded using a capacitive-discharge technique. This technique is used to prevent overheating of the thermocouple wire near the junction and to prevent the diffusion of the welding gas and atmosphere into the thermocouple wire.

A poor weld or bad solder connection can also cause errors in a thermocouple measurement. Open thermocouple junctions can be detected by checking the resistance of the thermocouple. A resistance measurement of more than 5 kΩ typically indicates a defective thermocouple. The 34970A/34972A contains a built-in, automatic thermocouple check feature. If you enable this feature, the instrument measures the channel resistance after each thermocouple measurement to ensure a proper connection. For more information on using the thermocouple check feature, see page 137.

Diffusion Error
Diffusion in a thermocouple wire is the process of changing the alloy type along the wire itself. Atmospheric particles can actually diffuse into the metal. These changes in the wire alloy introduce small voltage changes in the measurement. Diffusion is caused by exposure to high temperatures along the wire or by physical stress to the wire such as stretching or vibration.

Temperature errors due to diffusion are hard to detect since the thermocouple will still respond to temperature changes and give nearly correct results. The diffusion effects are usually detected as a drift in the temperature measurements.

Replacing a thermocouple which exhibits a diffusion error may not correct the problem. The extension wire and connections are all subject to diffusion. Examine the entire measurement path for signs of temperature extremes or physical stress. If possible, keep the temperature gradient across the extension wire to a minimum.
Shunt Impedance

The insulation used for thermocouple wire and extension wire can be degraded by high temperatures or corrosive atmospheres. These breakdowns appear as a resistance in parallel with the thermocouple junction. This is especially apparent in systems using a small gauge wire where the series resistance of the wire is high.

Shielding

Shielding reduces the effect of common mode noise on a thermocouple measurement. Common mode noise is generated by sources such as power lines and electrical motors. The noise is coupled to the unshielded thermocouple wires through distributed capacitance. As the induced current flows to ground through the internal DMM, voltage errors are generated along the distributed resistance of the thermocouple wire. Adding a shield to the thermocouple wire will shunt the common mode noise to earth ground and preserve the measurement.

Common mode noise can dramatically affect the internal DMM. A typical thermocouple output is a few millivolts and a few millivolts of common mode noise can overload the input to the internal DMM.
Calculation Error
An error is inherent in the way a thermocouple voltage is converted to a temperature. These calculation errors are typically very small compared to the errors of the thermocouple, wiring connections, and reference junction (see page 278).

DC Voltage Measurements
To make a useful DC meter, a “front-end” is required to condition the input before the analog-to-digital conversion. Signal conditioning increases the input resistance, amplifies small signals, and attenuates large signals to produce a selection of measuring ranges.

Signal Conditioning for DC Measurements
Input signal conditioning for DC voltage measurements includes both amplification and attenuation. A simplified input to the internal DMM is shown below.

For input voltages less than 12 VDC, the Low V switch is closed and applies the input signal directly to the input amplifier. For higher voltages, the High V switch is closed and the signal is attenuated 100:1 before being applied to the input amplifier. The input amplifier gain is set to one of three values (x1, x10, or x100) to yield a signal in the range of ±12 VDC for the analog-to-digital converter.
For the lower voltage ranges, the internal DMM's input resistance is essentially that of the input amplifier. The input amplifier uses a low-bias current (less than 50 pA) FET input stage yielding an input resistance greater than 10 G\(\text{\Omega}\). On the 100V and 300V input ranges, the input resistance is determined by the total resistance of the 100:1 divider. You can also set the input resistance to 10 M\(\text{\Omega}\) by continuously closing the High V switch (for more information on DC input resistance, see page 142).

Sources of Error in DC Voltage Measurements

**Common Mode Rejection**

Ideally, the internal DMM is completely isolated from earth-referenced circuits. However, there is finite resistance and capacitance between the input LO terminal and earth ground. If the input terminals are both driven by an earth-referenced signal (\(V_f\)) then a current will flow through \(R_S\) and create a voltage drop \(V_L\) as shown below.

Any resulting voltage (\(V_L\)) will appear as an input to the internal DMM. As the value of \(R_S\) approaches zero, so does the error. Additionally, if \(V_f\) is at the power line frequency (50 Hz or 60 Hz), the noise can be greatly reduced by setting the internal DMM's integration time to 1 PLC or greater (see page 133 for a discussion of integration time).
Where:

\[ V_f = \text{Common mode float voltage} \]

\[ R_s = \text{LO lead resistance} \]

\[ R_i = \text{Isolation resistance} \]

\[ C_i = \text{Isolation capacitance} \]

\[ Z_i = \text{Parallel impedance of } R_i + C_i \]

\[ \text{Error (} V_L \text{)} = \frac{V_f \times R_s}{R_s + Z} \]
Noise Caused by Injected Current

Residual capacitances in the instrument’s power transformer cause small currents to flow from the LO terminal of the internal DMM to earth ground. The frequency of the “injected current” is the power line frequency or possibly harmonics of the power line frequency. The injected current is dependent upon the power line configuration and frequency. A simplified circuit is shown below.

With Connection A (see below), the injected current flows from the earth connection provided by the circuit to the LO terminal of the internal DMM. This configuration adds no noise to the measurement. However, with Connection B, the injected current flows through the resistor R thus adding noise to the measurement. With Connection B, larger values of R will make the problem worse.

The measurement noise caused by injected current can be significantly reduced by setting the integration time of the internal DMM to 1 PLC or greater (see page 133 for a discussion of integration time).
Loading Errors Due to Input Resistance

Measurement loading errors occur when the resistance of the device-under-test (DUT) is an appreciable percentage of the instrument's own input resistance. The diagram below shows this error source.

Where:

- \( V_s \) = Ideal DUT voltage
- \( R_s \) = DUT source resistance
- \( R_i \) = Input resistance (10 M\( \Omega \) or \( > 10 \ G\Omega \))

Error (%) = \( \frac{-100 \times R_s}{R_s + R_i} \)

To minimize loading errors, set the DMM’s DC input resistance to greater than 10 G\( \Omega \) when needed (for more information on DC input resistance, see page 142).

Loading Errors Due to Input Bias Current

The semiconductor devices used in the input circuits of the internal DMM have slight leakage currents called bias currents. The effect of the input bias current is a loading error at the internal DMM’s input terminals. The leakage current will approximately double for every 10 °C temperature rise, thus making the problem much more apparent at higher temperatures.
Where:

$I_b = $DMM bias current

$R_s = $DUT source resistance

$R_i = $Input resistance (10 MΩ or $>10$ GΩ)

$C_i = $DMM input capacitance

Error (V) = $I_b \times R_s$
AC Voltage Measurements

The main purpose of an AC “front end” is to change an AC voltage input into a DC voltage which can be measured by the ADC.

Signal Conditioning for AC Measurements

Input signal conditioning for AC voltage measurements includes both attenuation and amplification. An input coupling capacitor (C) blocks the DC portion of the input signal so that only the AC component is measured. Ranging is accomplished by combining signal attenuation from the first-stage amplifier and gain from the second-stage amplifier.

The first stage implements a high input impedance (1 MΩ) switchable compensated attenuator. The second stage provides variable-gain signal amplification to scale the input to the AC converter to the full-scale level. Any residual DC offset from the attenuator and amplifier stages is blocked by a capacitor.

An AC voltage front end similar to the one discussed above is also used to measure AC current. Shunt resistors convert the AC current into an AC voltage which can then be measured. Current shunts are switched to provide selectable AC current ranges.
True RMS AC Measurements

True RMS responding multimeters measure the “heating” potential of an applied voltage. Unlike an “average responding” measurement, a true RMS measurement is used to determine the power dissipated in a resistor. The power is proportional to the square of the measured true RMS voltage, independent of waveshape. An average responding AC multimeter is calibrated to read the same as a true RMS meter for sinewave inputs only. For other waveform shapes, an average responding meter will exhibit substantial errors as shown below.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Waveform Shape} & \text{Crest Factor} & \text{AC RMS} & \text{AC+DC RMS} & \text{Average Responding Error} \\
\hline
\text{\( V = \frac{x}{y} \)} & 1.414 & \frac{V}{4/4} & \frac{V}{4/4} & \text{Calibrated for 0 error} \\
\hline
\text{\( V = \frac{x}{y} \)} & 1.732 & \frac{V}{1.732} & \frac{V}{1.732} & -3.9\% \\
\hline
\text{\( V = \sqrt{\frac{T}{t}} \)} & \sqrt{\frac{t}{t}} \times \sqrt{\left\{-\frac{1}{C} \right\}^2} & \frac{V}{t} & \frac{V}{t} & -4.6\% \text{ for } C = 4 \\
\hline
\end{array}
\]

The internal DMM's AC voltage and AC current functions measure the ac-coupled true RMS value. This is in contrast to the ac+dc true RMS value shown above. Only the “heating value” of the AC component of the input waveform is measured (dc is rejected). For sinewaves, triangle waves, and square waves, the AC and AC+DC values are equal since these waveforms do not contain a DC offset. Non-symmetrical waveforms, such as pulse trains, contain DC voltages which are rejected by ac-coupled true RMS measurements.

An ac-coupled true RMS measurement is desirable in situations where you are measuring small AC signals in the presence of large DC offsets. For example, this situation is common when measuring AC ripple present on DC power supplies. There are situations, however, where you might want to know the ac+dc true RMS value. You can determine this value by combining results from DC and AC measurements as shown below. You should perform the DC measurement using at least 10 power line cycles of integration (6½ digit mode) for best AC rejection.

\[
\text{AC + DC} = \sqrt{\text{AC}^2 + \text{DC}^2}
\]
Making High-Speed AC Measurements

The internal DMM’s AC voltage and AC current functions implement three low-frequency filters. These filters allow you to trade-off low frequency accuracy for faster scanning speed. The fast filter settles in 0.12 seconds and is useful for measurements above 200 Hz. The medium filter settles in 1 second and is useful for measurements above 20 Hz. The slow filter settles in 7 seconds and is useful for measurements above 3 Hz.

With a few precautions, you can perform AC measurements at speeds up to 100 readings per second (use manual ranging to eliminate autoranging delays). By setting the preprogrammed channel settling delays to zero, each filter will allow up to 100 channels per second. However, the measurement might not be very accurate since the filter is not fully settled. In scanning applications where sample-to-sample levels vary widely, the medium filter (20 Hz) will settle at 1 reading per second, and the fast filter (200 Hz) will settle at 10 readings per second.

If the sample-to-sample levels are similar, little settling time is required for each new reading. Under this specialized condition, the medium filter (20 Hz) will provide reduced accuracy results at 5 readings per second, and the fast filter (200 Hz) will provide reduced accuracy results at 50 readings per second. Additional settling time may be required when the DC level varies from sample to sample.

The internal DMM’s DC blocking circuitry has a settling time constant of 0.2 seconds. This settling time only affects measurement accuracy when DC offset levels vary from sample to sample. If maximum measurement speed is desired in a scanning system, you may want to add an external DC blocking circuit to those channels with significant DC voltages present. This circuit can be as simple as a resistor and a capacitor.

<table>
<thead>
<tr>
<th>AC Filter</th>
<th>Channel Delay</th>
<th>Settling Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Hz (Fast)</td>
<td>AUTO</td>
<td>0.12 seconds</td>
</tr>
<tr>
<td>20 Hz (Medium)</td>
<td>AUTO</td>
<td>1 second</td>
</tr>
<tr>
<td>3 Hz (Slow)</td>
<td>AUTO</td>
<td>7 seconds</td>
</tr>
<tr>
<td>200 Hz (Fast)</td>
<td>0</td>
<td>0.02 seconds</td>
</tr>
<tr>
<td>20 Hz (Medium)</td>
<td>0</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>3 Hz (Slow)</td>
<td>0</td>
<td>1.5 seconds</td>
</tr>
</tbody>
</table>

DC blocking settling time (1 time constant) = 0.2 seconds.
Sources of Error in AC Voltage Measurements

Many of the errors associated with DC voltage measurements also apply to AC voltage measurements. Additional errors unique to AC voltage measurements are described in this section.

**Crest Factor Errors (non-sinusoidal inputs)**

A common misconception is that “since the internal DMM is true RMS, its sinewave accuracy specifications apply to all waveforms.” Actually, the shape of the input signal can dramatically affect measurement accuracy. A common way to describe signal waveshapes is crest factor. Crest factor is the ratio of the peak value to the RMS value of a waveform.

For a pulse train, for example, the crest factor is approximately equal to the square root of the inverse of the duty cycle as shown in the table on page 295. In general, the greater the crest factor the greater the energy contained in higher frequency harmonics. All multimeters exhibit measurement errors that are crest factor dependent. Crest factor errors are shown in the specifications in Chapter 8. Note that the crest factor errors do not apply for input signals below 100 Hz when using the slow AC filter.

You can estimate the measurement error due to signal crest factor as shown below:

\[
\text{Total Error} = \text{Error}_{\text{sine}} + \text{Error}_{\text{crest factor}} + \text{Error}_{\text{bandwidth}}
\]

Where:

- \(\text{Error}_{\text{sine}}\) = DMM’s sinewave accuracy (see Chapter 8, "Specifications")
- \(\text{Error}_{\text{crest factor}}\) = DMM’s crest factor (see Chapter 8, "Specifications")
- \(\text{Error}_{\text{bandwidth}}\) = Estimated bandwidth error as shown below:

\[
\text{Error}_{\text{bandwidth}} = \frac{-C.F. \times F}{4\pi \times BW}
\]

Where:

- C.F. = Signal crest factor (see the table on page 295)
- F = Fundamental input signal frequency
- BW = DMM’s -3 dB bandwidth (1 MHz for the 34970A/34972A)
Example: Calculating Measurement Error

Calculate the approximate measurement error for a pulse train input with a crest factor of 3 and a fundamental frequency of 20 kHz. The internal DMM is set to the 1 V range. For this example, use the 90-day accuracy specifications of ± (0.05% of reading + 0.04% of range), as shown in Chapter 8.

\[
\text{Error}_{\text{sine}} = \pm (0.05\% + 0.04\%) = \pm 0.09\%
\]

\[
\text{Error}_{\text{crest factor}} = 0.15\%
\]

\[
\text{Error}_{\text{bandwidth}} = \frac{-3^2 \times 20000}{4 \times 3.14159 \times 1000000} \times 100 = 1.4\%
\]

Total Error = 0.09% + 0.15% + 1.4% = 1.6%
AC Loading Errors

In the AC voltage function, the input of the internal DMM appears as a 1 MΩ resistance in parallel with 150 pF of capacitance. The cabling that you use to connect signals to the instrument will also add additional capacitance and loading. The table below shows the approximate input resistance at various frequencies.

<table>
<thead>
<tr>
<th>Input Frequency</th>
<th>Input Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>700 kΩ</td>
</tr>
<tr>
<td>1 kHz</td>
<td>600 kΩ</td>
</tr>
<tr>
<td>10 kHz</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>100 kHz</td>
<td>10 kΩ</td>
</tr>
</tbody>
</table>

For low frequencies:

\[
\text{Error (\%)} = \frac{-100 \times R_s}{R_s + 1 \text{ MΩ}}
\]

Additional error for high frequencies:

\[
\text{Error (\%)} = 100 \times \frac{1}{\sqrt{1 + (2\pi \times F \times R_s \times C_{in})^2}} - 1
\]

\(F\) = Input frequency

\(R_s\) = Source resistance

\(C_{in}\) = Input capacitance (150 pF) + Cable capacitance

*Use low-capacitance cable when measuring high-frequency AC signals (see page 269).*
Low-Level AC Measurement Errors

When measuring AC voltages less than 100 mV, be aware that these measurements are especially susceptible to errors introduced by extraneous noise sources. An exposed test lead will act as an antenna and the internal DMM will measure the signals received. The entire measurement path, including the power line, act as a loop antenna. Circulating currents in the loop will create error voltages across any impedances in series with the instrument’s input. For this reason, you should apply low-level AC voltages to the instrument through shielded cables. You should also connect the shield to the input LO terminal.

Be sure to minimize the area of any ground loops that cannot be avoided. A high-impedance source is more susceptible to noise pickup than a low-impedance source. You can reduce the high-frequency impedance of a source by placing a capacitor in parallel with the instrument’s input terminals. You may have to experiment to determine the correct capacitance value for your application.

Most extraneous noise is not correlated with the input signal. You can determine the error as shown below.

\[ \text{Voltage Measured} = \sqrt{\text{Vin}^2 + \text{Noise}^2} \]

Correlated noise, while rare, is especially detrimental. Correlated noise will always add directly to the input signal. Measuring a low-level signal with the same frequency as the local power line is a common situation that is prone to this error.

You should use caution when switching high-level and low-level signals on the same module. It is possible that high-level charged voltages may be discharged onto a low-level channel. It is recommended that you either use two different modules or separate the high-level signals from the low-level signals with an unused channel connected to ground.

Measurements Below Full Scale

You can make the most accurate AC measurements when the internal DMM is at full scale of the selected range. Autoranging occurs at 10% and 120% of full scale. This enables you to measure some inputs at full scale on one range and 10% of full scale on the next higher range. Note that the measurement accuracy will be significantly different for the two cases. For highest accuracy, you should use manual ranging to select the lowest range possible for the measurement.
Temperature Coefficient and Overload Errors

The internal DMM uses an AC measurement technique that periodically measures and removes internal offset voltages when you select a different function or range. When manual ranging to a new range in an overload condition, the internal offset measurement may be degraded for the selected range. Typically, an additional 0.01% of range error may be introduced. This additional error will remain until the next periodic removal (typically 15 minutes).
Current Measurements

Current measurements are allowed only on the 34901A module.

An ammeter senses the current flowing through its input connections – approximating a short circuit between its input terminals. An ammeter must be connected in series with the circuit or device being measured such that current flows through both the meter and the test circuit.

A resistor, $R_s$ in the diagram below, is connected across the input terminals such that a voltage drop proportional to the input current is generated. The value of $R_s$ is selected as low as possible to minimize the instrument’s burden voltage, or $IR$ drop. This voltage drop is sensed by the internal DMM and scaled to the proper current value to complete the measurement (see the discussion on the following page).

AC current measurements are very similar to DC current measurements. The output of the current-to-voltage sensor is measured by an AC voltmeter. The input terminals are direct coupled (ac+dc coupled) to the shunt so that the internal DMM maintains DC continuity in the test circuit. Performing AC current measurements demands additional care. The burden voltage (loading) varies with frequency and input inductance, often causing unexpected behavior in the test circuit (see the discussion on the following page).
Sources of Error in DC Current Measurements

When you connect the internal DMM in series with a test circuit to measure current, a measurement error is introduced. The error is caused by the DMM’s series burden voltage. A voltage is developed across the wiring resistance and current shunt resistance of the internal DMM as shown below.

\[ V_s = \text{Source voltage} \]
\[ R_s = \text{Source resistance} \]
\[ V_b = \text{Burden voltage} \]
\[ R = \text{Current shunt resistance} \]

Error (\%) = \frac{-100\% \times V_b}{V_s}

Sources of Error in AC Current Measurements

Burden voltage errors, which apply to DC current, also apply to AC current measurements. However, the burden voltage for AC current is larger due to the internal DMM’s series inductance and the measurement connections. The burden voltage increases as the input frequency increases. Some circuits may oscillate when performing current measurements due to the internal DMM’s series inductance and the measurement connections.
Resistance Measurements

An ohmmeter measures the DC resistance of a device or circuit connected to its input. Resistance measurements are performed by supplying a known DC current to an unknown resistance and measuring the DC voltage drop.

The internal DMM offers two methods for measuring resistance: 2-wire and 4-wire ohms. For both methods, the test current flows from the input HI terminal through the resistor being measured. For 2-wire ohms, the voltage drop across the resistor being measured is sensed internal to the DMM. Therefore, test lead resistance is also measured. For 4-wire ohms, separate “sense” connections are required. Since no current flows in the sense leads, the resistance in these leads does not give a measurement error.

4-Wire Ohms Measurements

The 4-wire ohms method provides the most accurate way to measure small resistances. Test lead, multiplexer, and contact resistances are automatically reduced using this method. The 4-wire ohms method is often used in automated test applications where long cable lengths, input connections, and a multiplexer exist between the internal DMM and the device-under-test.

The recommended connections for 4-wire ohms measurements are shown in the diagram on the following page. A constant current source, forcing current $I$ through unknown resistance $R$, develops a voltage measured by a DC voltage front end. The unknown resistance is then calculated using Ohm’s Law.
The 4-wire ohms method is used in systems where lead resistances can become quite large and variable and in automated test applications where cable lengths can be quite long. The 4-wire ohms method has the obvious disadvantage of requiring twice as many switches and twice as many wires as the 2-wire method. The 4-wire ohms method is used almost exclusively for measuring lower resistance values in any application, especially for values less than 10Ω and for high-accuracy requirements such as RTD temperature transducers.
Offset Compensation

Most connections in a system use materials that produce small DC voltages due to dissimilar metal-to-metal contact (thermocouple effect) or electrochemical batteries (for a description of the thermocouple effect, see page 272). These DC voltages also add errors to resistance measurements. The offset-compensated measurement is designed to allow resistance measurements in the presence of small DC voltages.

Offset compensation makes two measurements on the circuit connected to the input channel. The first measurement is a conventional resistance measurement. The second is the same except the internal DMM’s test current source is turned off (essentially a normal DC voltage measurement). The second measurement is subtracted from the first prior to scaling the result, thus giving a more accurate resistance measurement. Refer to “Offset Compensation” on page 144 for more information.

Offset compensation can be used for 2-wire or 4-wire ohms measurements (but not for RTD or thermistor measurements). The 34970A/34972A disables offset compensation when the measurement function is changed or after a Factory Reset (*RST command). An Instrument Preset (SYSTem:PRESet command) or Card Reset (SYSTem:CPON command) does not change the setting.

If the resistor being measured does not respond quickly to changes in current, offset compensation will not produce an accurate measurement. Resistors with very large inductances or resistors with large parallel capacitance would fall into this category. In these cases, the channel delay parameter can be increased to allow more settling time after the current source is switched on or off, or offset compensation can be turned off. For more information on channel delay, see page 119.
Sources of Error in Resistance Measurements

External Voltages

Any voltages present in the system cabling or connections will affect a resistance measurement. The effects of some of these voltages can be overcome by using offset compensation (as described on the previous page).

Settling Time Effects

The internal DMM has the ability to insert automatic measurement settling delays. These delays are adequate for resistance measurements with less than 200 pF of combined cable and device capacitance. This is particularly important if you are measuring resistances above 100 kΩ. Settling due to RC time constant effects can be quite long. Some precision resistors and multifunction calibrators use large parallel capacitances (1000 pF to 0.1 μF) with high resistance values to filter out noise currents injected by their internal circuitry. Non-ideal capacitances due to dielectric absorption (soak) effects in cables and other devices may have much longer settling times than expected just by RC time constants. Errors will be measured when settling after the initial connection, after a range change, or when using offset compensation. You may need to increase the channel delay time before a measurement in these situations (for more information on channel delay, see page 119).
High-Resistance Measurement Errors

When you are measuring large resistances, significant errors can occur due to insulation resistance and surface cleanliness. You should take the necessary precautions to maintain a “clean” high-resistance system. Test leads and fixtures are susceptible to leakage due to moisture absorption in insulating materials and “dirty” surface films. Nylon and PVC are relatively poor insulators (10^9 ohms) when compared to PTFE Teflon® insulators (10^13 ohms). Leakage from nylon or PVC insulators can easily contribute a 0.1% error when measuring a 1 MΩ resistance in humid conditions. The table below shows several common insulating materials and their typical resistances.

<table>
<thead>
<tr>
<th>Insulating Material</th>
<th>Resistance Range</th>
<th>Moisture Absorbing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teflon® (PTFE)</td>
<td>1 TΩ to 1 PΩ</td>
<td>N</td>
</tr>
<tr>
<td>Nylon</td>
<td>1 GΩ to 10 TΩ</td>
<td>Y</td>
</tr>
<tr>
<td>PVC</td>
<td>10 GΩ to 10 TΩ</td>
<td>Y</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>100 GΩ to 1 PΩ</td>
<td>N</td>
</tr>
<tr>
<td>Ceramic</td>
<td>1 GΩ to 1 PΩ</td>
<td>N</td>
</tr>
<tr>
<td>Glass Epoxy (FR-4, G-10)</td>
<td>1 GΩ to 10 TΩ</td>
<td>Y</td>
</tr>
<tr>
<td>Phenolic, Paper</td>
<td>10 MΩ to 10 GΩ</td>
<td>Y</td>
</tr>
</tbody>
</table>

Strain Gage Measurements

Although the instrument does not directly support strain measurements, you can measure a strain gage using a 4-wire resistance measurement with scaling. However, BenchLink Data Logger 3 software has built-in strain gage measurement capability.

When a force is applied to a body, the body deforms. The deformation per unit length is called strain (ε). Strain may be either tensile (+) or compressive (−). Practical strain values are usually quite small (typically less than 0.005 inch/inch for most metals) and are often expressed in micro-strains (με). There are three common types of strain measurements as shown below.
Normal Strain ($\varepsilon$) is a measure of the deformation along the axis of the applied force. $\varepsilon = \Delta L/L$

Shearing Strain ($\gamma$) is a measure of the angular distortion of a body. It is approximated by the tangent of the angle formed by the angular change between two line segments that were parallel in the undeformed state.

Poisson Strain ($\nu$) measures a property of materials known as the Poisson Ratio. It is the negative ratio of transverse and longitudinal normal strain when a body has a longitudinal tensile force applied. $\nu = -\varepsilon_t/\varepsilon$, where $\varepsilon_t = \Delta D/D$ and $\varepsilon = \Delta L/L$

Stress
Stress is a term used to compare the loading applied to a material with its ability to carry the load. Stress ($\sigma$) in a material can not be measured directly; it must be computed from material properties and measurable quantities such as strain and force.

Strain Sensors
The metal foil resistance strain gage is by far the most widely used strain measurement sensor. It consists of a thin metallic foil grid bonded to a thin insulating, adhesive backing. The resistance of the foil varies linearly with strain. Strain in the test body is simply the ratio of the foil’s strained to unstrained resistance: $\varepsilon = \Delta R / R$.

The Gage Factor (GF) indicates the sensitivity of a strain gage and is a measure of the fractional resistance change per strain: $GF = (\Delta R / R) / \varepsilon$. Devices with a higher gage factor will exhibit a greater resistance change per strain applied.
Strain gages are available in many patterns with various numbers and configurations of elements. The most common element is the single gage form shown below. Multi-element strain gages, also called rosettes, are used to measure components of strain in different directions. Two-element (90°) and three-element (45° or 60°) configurations are the most common.

Common Uses for Strain Gages
Strain gages are used to sense many types of physical parameters. Strain gages are primarily a force-sensing device. Force is measured indirectly by measuring the deformation of a test body to a known applied force thus producing a resistance change proportional to the applied force. Many other physical quantities can be measured through force measurements. Common applications of strain gages include weight, pressure, flow, and level measurements.

Making Strain Gage Measurements
A Wheatstone bridge is commonly used to enable instruments with low-sensitivity measuring capabilities to measure small resistance changes common in strain measurements. Instruments with high-resolution resistance measuring capabilities, like the 34970A/34972A internal DMM, can directly measure small resistance changes with high precision and linearity. You should also use the 4-wire resistance method when measuring strain gages to eliminate system cabling errors.

An initial, unstrained, gage resistance measurement is used as the reference ($R_0$) measurement from which strain ($\Delta R / R_0$) is measured. For best results, you should perform this reference measurement after the strain gage has been mounted to the test body. The table below shows the resistance changes corresponding to 1 με strain for common gage factor and unstrained gage resistance values.
Using the Mx+B scaling function with the equations shown below will allow you to display results directly in strain on the 34970A/34972A front-panel display. You can use a custom measurement label to display readings in "με" (micro-strain) directly. The instrument will automatically add the micro ("μ") prefix based upon actual calculated values. For more information on scaling, see page 148.

\[
M = \frac{1}{GF \times R_0} \quad \text{B} = -\frac{1}{GF}
\]

**Temperature Effects**

The resistive element of a strain gage will produce a resistance change \(\Delta R\) due to measured strain as well as changes in gage temperature. This will create an “apparent” strain change which is undesirable. A second gage of similar type can be used to detect temperature changes and thus remove this error source. You should mount the second gage in close proximity and at 90° to the first gage, thus responding to local temperature changes but rejecting strain changes. Subtracting measurements from the second gage will remove any undesirable strain errors.

<table>
<thead>
<tr>
<th>Strain</th>
<th>GF</th>
<th>(R_0)</th>
<th>(\Delta R)</th>
<th>DMM Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 με</td>
<td>2.0</td>
<td>120Ω</td>
<td>0.24 mΩ</td>
<td>0.1 mΩ (0.4 με)</td>
</tr>
<tr>
<td>1 με</td>
<td>2.0</td>
<td>350Ω</td>
<td>0.70 mΩ</td>
<td>1.0 mΩ (1.4 με)</td>
</tr>
<tr>
<td>1 με</td>
<td>2.0</td>
<td>1000Ω</td>
<td>2.0 mΩ</td>
<td>1.0 mΩ (0.5 με)</td>
</tr>
</tbody>
</table>
Frequency and Period Measurements

The internal DMM uses a reciprocal counting technique to measure frequency and period. This method generates constant measurement resolution for any input frequency. The internal DMM’s AC voltage measurement section performs input signal conditioning for frequency and period measurements.

The timebase is divided to provide a gate signal. The gate signal and input signal are combined to enable the counter. During the “on” time, the counter counts the 6 MHz timebase signal. At the end of each gate period, the total count is latched and the result is divided by the known timebase frequency to determine the input frequency. The counter is then reset before the next gate period. The resolution of the measurement is tied to the timebase, and not the input frequency. This increases measurement speed especially at low frequencies.

The reciprocal counter has the advantage of a constant number of digits of display, no matter what the input frequency is. With a reciprocal counter, the number of digits of resolution scales with the gate time. If a 1-second gate gives six digits of resolution, a 0.1-second gate gives five digits, and so forth.

Sources of Error in Frequency and Period Measurements

The internal DMM’s AC voltage measurement section performs input signal conditioning. All frequency counters are susceptible to errors when measuring
low-voltage, low-frequency signals. The effects of both internal noise and external noise pickup are critical when measuring “slow” signals. The error is inversely proportional to frequency. Measurement errors will also occur if you attempt to measure the frequency (or period) of an input following a DC offset voltage change. You must allow the internal DMM’s input DC blocking capacitor to fully settle before making frequency measurements.

If the external noise pickup becomes large enough to exceed the hysteresis of the measuring circuitry, the frequency function may actually become unusable. External shielding and low-pass filtering may help.
Low-Level Signal Multiplexing and Switching

Low-level multiplexers are available in the following types: one-wire, 2-wire, and 4-wire. The following sections in this chapter describe each type of multiplexer. The following low-level multiplexer modules are available with the 34970A.

- 34901A 20-Channel Armature Multiplexer
- 34902A 16-Channel Reed Multiplexer
- 34908A 40-Channel Single-Ended Multiplexer

An important feature of a multiplexer used as a DMM input channel is that only one channel is connected at a time. For example, using a multiplexer module and the internal DMM, you could configure a voltage measurement on channel 1 and a temperature measurement on channel 2. The instrument first closes the channel 1 relay, makes the voltage measurement, and then opens the relay before moving on to channel 2 (called break-before-make switching).

Other low-level switching modules available with the 34970A/34972A include the following:

- 34903A 20-Channel Actuator
- 34904A 4x8 Two-Wire Matrix
One-Wire (Single-Ended) Multiplexers

On the 34908A multiplexer, all of the 40 channels switch the HI input only, with a common LO for the module. The module also provides a thermocouple reference junction for making thermocouple measurements (for more information on the purpose of an isothermal block, see page 283).

---

**NOTE**

Only one channel can be closed at a time; closing one channel will open the previously closed channel.
Two-Wire Multiplexers

The 34901A and 34902A multiplexers switch both HI and LO inputs, thus providing fully isolated inputs to the internal DMM or an external instrument. These modules also provide a thermocouple reference junction for making thermocouple measurements (for more information on the purpose of an isothermal block, see page 283).

NOTE

If any channels are configured to be part of the scan list, you cannot close multiple channels; closing one channel will open the previously closed channel.
Four-Wire Multiplexers

You can make 4-wire ohms measurements using the 34901A and 34902A multiplexers. For a 4-wire ohms measurement, the channels are divided into two independent banks by opening the bank relay.

For 4-wire measurements, the instrument automatically pairs channel \( n \) with channel \( n+10 \) (34901A) or \( n+8 \) (34902A) to provide the source and sense connections. For example, make the source connections to the HI and LO terminals on channel 2 and the sense connections to the HI and LO terminals on channel 12.

![Diagram of 4-wire multiplexer connections]

**NOTE**

If any channels are configured to be part of the scan list, you cannot close multiple channels; closing one channel will open the previously closed channel.

When making a 4-wire measurement, the test current flows through the source connections from the HI terminal through the resistor being measured. To eliminate the test lead resistance, a separate set of sense connections are used as shown below.
Signal Routing and Multiplexing

When used stand-alone for signal routing (not scanning or connected to the internal DMM), multiple channels on the 34901A and 34902A multiplexers can be closed at the same time. You must be careful that this does not create a hazardous condition (for example, connecting two power sources together).

Note that a multiplexer is not directional. For example, you can use a multiplexer with a source (such as a DAC) to connect a single source to multiple test points as shown below.
Sources of Error in Multiplexing and Switching

Noise can be coupled inside a switch by the drive circuitry, by switch thermal EMFs, or by coupling among signal paths. Noise can also be generated outside the network and conducted or coupled into the switch. Although noise problems apply to the entire system, they can become especially acute for switching. Switch networks contain a high concentration of signals, which magnify the errors. Most problems with electric noise can be traced to improper grounding and shielding (for more information on grounding and shielding, see page 270).

Noise can be capacitively coupled between physically adjacent channels in a switching system. Noise can be coupled between the switch contacts themselves ($C_{sw}$) or between adjacent cabling ($C_{adj}$).

Capacitive noise coupling is a function of area and proximity. A simple method to reduce the noise coupling is to physically separate the switches and cables from each other. However, this may not be practical for all applications.

Another solution is to keep large amplitude signals and small amplitude signals away from each other. Group similar signals together (high voltages, low voltages, analog, and digital). If possible, use two separate switch modules; one for high-level signals and one for low-level signals. If you are using a single module for mixed-signal switching, leave one unused, grounded channel between the groups. Also, ground any unused channels on the module.

The 34901A and 34902A multiplexers have an additional relay, called a bank switch or tree switch, which helps reduce channel-to-channel noise ($C_{adj}$). The multiplexer channels are divided into two banks. The bank switch isolates one
bank of channels from the other, effectively removing any parallel adjacent capacitance from the isolated bank. During a scan, the instrument automatically controls the bank switches.

If you are not using all of the channels on the multiplexer, divide the input signals equally between Bank 1 and Bank 2. For example, if you are multiplexing eight channels using the 16-channel multiplexer, use four channels in the lower bank and four channels in the upper bank. For even better noise immunity, leave one unused, grounded channel between each input channel.

<table>
<thead>
<tr>
<th>Module</th>
<th>Bank 1</th>
<th>Bank 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>34901A</td>
<td>Channels 1 through 10</td>
<td>Channels 11 through 20</td>
</tr>
<tr>
<td>34902A</td>
<td>Channels 1 through 8</td>
<td>Channels 9 through 16</td>
</tr>
<tr>
<td>34908A</td>
<td>Channels 1 through 20</td>
<td>Channels 21 through 40</td>
</tr>
</tbody>
</table>
Actuators and General-Purpose Switching

The 34903A Actuator provides 20 independent, isolated SPDT (single-pole, double-throw) or Form C switches. This module offers simple on-off switching which you can use to control power devices or for custom switching applications. For example, you can use an actuator to build a simple resistance ladder as shown below.

In the above diagram, the resistance is \(60\,\Omega\) when all of the actuator channels are open (not connected to COM). Note that when the actuator channels are open, as shown above, the normally-closed contacts (not shown above) are connected to COM. Values from \(10\,\Omega\) to \(50\,\Omega\) are selected by closing the appropriate channel(s) on the module.
Snubber Circuits

Whenever a relay contact opens or closes, electrical breakdown or arching can occur between the contacts. This can cause high-frequency noise radiation, voltage and current surges, and physical damage to the relay contacts.

A breadboard area is provided on the 34903A to implement custom circuitry such as simple filters, snubbers, and voltage dividers. The breadboard area provides the space necessary to insert your own components but there are no circuit board traces here. You can build these networks to provide contact protection when actuating AC power line for reactive loads. Although many types of contact protection networks can be used, only RC networks and varistors are described in this section.

![Relay Contact Diagram]

RC Protection Networks

When designing RC protection networks, the protection resistor \( R_p \) is selected as a compromise between two resistance values. The minimum value of \( R_p \) is determined by the maximum acceptable relay contact current \( (I_{\text{max}}) \). For the 34903A, the maximum allowable relay current \( (I_{\text{max}}) \) is 1A DC or AC rms. Thus, the minimum value for \( R_p \) is \( V/I_o \), where \( V \) is the peak value of the supply voltage.

\[
R_p = \frac{V}{I_{\text{max}}} = \frac{V}{2}
\]
The maximum value for \( R_p \) is usually made equal to the load resistance \( R_L \). Therefore, the limits on \( R_p \) can be stated as:

\[
\frac{V}{I_{\text{max}}} < R_p < R_L
\]

Note that the actual value of the current \( (I_o) \) in a circuit is determined by the equation:

\[
I_o = \frac{V}{R_L}
\]

Where \( V \) is the peak value of the source voltage and \( R_L \) is the resistance of the load. The value for \( I_o \) will be used to determine the value of the protection capacitor \( (C_p) \).

In determining the value of the protection network capacitor \( (C_p) \), there are several things that you will need to consider. First, the total circuit capacitance \( (C_{\text{tot}}) \) must be such that the peak voltage across the open relay contacts does not exceed 300 Vrms. The equation for determining the minimum allowable circuit capacitance is:

\[
C_{\text{tot}} \geq (I_o/300)^2 \times L
\]

where \( L \) is the inductance of the load and \( I_o \) is the current value calculated earlier.

The total circuit capacitance \( (C) \) is actually made up of the wiring capacitance plus the value of the protection network capacitor \( C_p \). Therefore, the minimum value for \( C_p \) should be the value obtained for the total circuit capacitance \( (C) \).

Note that the actual value used for \( C_p \) should be substantially greater than the value calculated for \( C \).

**Using Varistors**

Use a varistor to add an absolute voltage limit across the relay contacts. Varistors are available for a wide range of voltage and clamp energy ratings. Once the circuit reaches the voltage rating of the varistor, the varistor’s resistance declines rapidly. A varistor can supplement an RC network and is especially useful when the required capacitance \( (C_p) \) is too large.
Using Attenuators

Provisions have been made on the 34903A circuit board for installing simple attenuators or filter networks. An attenuator is composed of two resistors that act as a voltage divider. A typical attenuator circuit is shown below.

To select the attenuator components, use the following equation:

\[ V_{\text{att}} = V_{\text{signal}} \times \frac{R_2}{R_1 + R_2} \]

One typical use for the shunt component is with 4 to 20 mA transducers. A 50Ω ±1%, 0.5 watt resistor can be installed in the R2 location. The resultant voltage drop (transducer current through the resistor) can be measured by the internal DMM. Thus, the 50Ω resistor converts the 4 to 20 mA current to a 0.2 to 1 volt signal.
Matrix Switching

A matrix switch connects multiple inputs to multiple outputs and therefore offers more switching flexibility than a multiplexer. Use a matrix for switching low-frequency (less than 10 MHz) signals only. A matrix is arranged in rows and columns. For example, a simple 3x3 matrix could be used to connect three sources to three test points as shown below.

Any one of the signal sources can be connected to any one of the test inputs. Be aware that with a matrix, it is possible to connect more than one source at the same time. It is important to make sure that dangerous or unwanted conditions are not created by these connections.
Combining Matrices

You can combine two or more matrix switches to provide more complex switching. For example, the 34904A provides a 4-row by 8-column matrix. You can combine two of these modules as either a 4-row by 16-column matrix or an 8-row by 8-column matrix. An 8x8 matrix is shown below.
RF Signal Multiplexing

A special type of multiplexer is the RF multiplexer. This type of multiplexer uses special components to maintain a $50\Omega$ or $75\Omega$ impedance in the signal line being switched. In a test system, these switches are often used to route a test signal from a signal source to the device-under-test. The switches are bi-directional. The diagram below shows two examples of a 4-to-1 channel RF multiplexer in a test system.

By using patch cables, you can expand RF multiplexers to provide additional test inputs or outputs. For example, you can combine two 4-to-1 multiplexers to create a 7-to-1 multiplexer as shown below.

On the 34905A ($50\Omega$) and 34906A ($75\Omega$) RF multiplexers, you can close only one channel per bank at a time; closing one channel in a bank will open the previously closed channel. These modules respond only to the \texttt{CLOSE} command (\texttt{OPEN} does not apply). To open a channel, send the \texttt{CLOSE} command to another channel in the same bank.
Sources of Error in RF Switching

Impedance mismatching can cause a variety of errors in an RF multiplexing system. These errors can cause distorted waveforms, overvoltage, or undervoltage conditions.

To minimize RF impedance mismatching:

- Use the correct cable and connector for the circuit impedance (50Ω or 75Ω). Note that it is difficult to visually differentiate a 50Ω connector from a 75Ω connector.
- Be sure that all leads and signal paths are properly terminated. Uterminated sections of line can appear as near shorts at RF frequencies. Note that the 34905A and 34906A do not automatically terminate open channels.
Multifunction Module

Digital Input

The 34907A module has two non-isolated 8-bit input/output ports which you can use for reading digital patterns.

- You can read the live status of the bits on the port or you can configure a scan to include a digital read.
- You can generate an alarm when a specific bit pattern or bit pattern change is detected on an input channel. The channels do not have to be part of the scan list to generate an alarm.
- The internal +5V pull-up circuitry allows you to use the digital input to detect contact closures like micro-switches or limit switches. An open input floats to +5V and is read as a “1”. An input shorted to ground is read as a “0”. An example of a contact closure detection channel is shown below.
Digital Output

The 34907A module has two non-isolated 8-bit input/output ports, which you can use for outputting digital patterns. You can combine the two ports to output a 16-bit word. A simplified diagram of a single output bit is shown below.

- Each output bit is capable of directly driving up to 10 TTL loads (less than 1 mA). The buffer for each port is used to drive a high output from the internal +5V supply through the diode. The drive is rated at +2.4V minimum at 1 mA.
- Each output bit is also an active sink, capable of sinking up to 400 mA from an external power supply. The FET is used to sink currents and has a nominal "on" resistance of 0.2Ω.
- For non-TTL logic you must provide an external pull-up. A description of the pull-up calculation is given on the following page.
- If used with an external power supply and pull-up, the external supply must be greater than +5 VDC and less than +42 VDC.
Using an External Pull-Up

In general, an external pull-up is required only when you want to set the output "high" value greater than TTL levels. For example, to use a +12V external power supply, the value of the external pull-up resistor is calculated as follows:

\[ V_{cc} = 12 \text{ VDC} \]

\[ I_{\text{max}} = I_{\text{out low}} \times \text{safety factor} = 1 \text{ mA} \times 0.5 + 0.5 \text{ mA} \]

\[ R = \frac{V_{cc}}{I_{\text{max}}} = \frac{12}{0.0005} = 24 \text{ k}\Omega \]

The value of the logic "high" level with the external 24 k\Omega pull-up resistor is calculated as follows:

\[ V_{\text{high}} = V_{cc} \times \frac{R_{\text{external}}}{R_{\text{external}} + R_{\text{external}}} = 12 \times \frac{24 \text{ k}\Omega}{24 \text{ k}\Omega + 10 \text{ k}\Omega} = 8.47 \text{ VDC} \]
Driving External Switches

You can use two digital output channels to control an external switch. For example, you can drive the Keysight 876X series of microwave switches using an external power supply and two digital output channels. The state of the 2-to-1 multiplexer is changed by setting the appropriate output bit low (0).
Totalizer

The 34907A module has a 26-bit totalizer which can count pulses at a 100 kHz rate. You can manually read the totalizer count or you can configure a scan to read the count.

- You can configure the totalizer to count on the rising edge or falling edge of the input signal.
- Using the hardware jumper labeled “Totalize Threshold” on the module, you can control the threshold at which an edge is detected. Move the jumper to the “AC” position to detect changes through 0 volts. Move the jumper to the “TTL” position (factory setting) to detect changes through TTL threshold levels.

- The maximum count is 67,108,863 ($2^{26} - 1$). The count rolls over to “0” after reaching the maximum allowed value.
You can control when the totalizer actually records counts by providing a gate signal (G and G' terminals on the module). A TTL high signal applied to the “G” terminal enables counting and a low signal disables counting. A TTL low signal applied to the “G’” terminal enables counting and a high signal disables counting. The totalizer only counts when both terminals are enabled. You can use either the G terminal, the G’ terminal, or both. When a gate is not connected, the gate terminal floats to the enabled state, effectively creating a “gate always” condition.

Totalizer Errors

- Noise on the totalizer input can be a problem, especially on signals with a slow rise time. This noise can create a false indication of a threshold crossing. For more information on cabling noise, see page 268.
- Contact bounce on external switches can create false counts. All mechanical switches bounce when they open and close. Use an external capacitor to filter the contact bounce.
Voltage (DAC) Output

The 34907A module has two analog outputs capable of outputting calibrated voltages between ±12 volts with 16 bits of resolution. Each DAC (Digital-to-Analog Converter) channel can be used as a programmable voltage source for analog input to other devices.

- You can set the output voltage to any value between +12 VDC and -12 VDC, in 1 mV steps. Each DAC is earth referenced; it cannot float.
- Each DAC channel is capable of supplying 10 mA maximum current.

**NOTE**

You must limit the output current to 40 mA total for all three slots (six DAC channels).

- To maintain the rated output accuracy, the load \( R_L \) in the diagram shown above must be greater than 1 kΩ.
DAC Errors

The output of a DAC varies with temperature. If possible, you should operate the instrument at a stable temperature and as close as possible to the calibration temperature of the DAC for greater accuracy.

The output of a DAC also exhibits two other types of errors: differential error and integral error.

- **Differential Error** refers to the smallest possible change in voltage. The DAC output is not linear, but is stepped as progressively larger (or smaller) voltages are programmed. The step size is 1 mV.
- **Integral Error** refers to the difference between the programmed voltage and the actual output voltage from the DAC. This error is included in the output specifications shown in Chapter 8.
Relay Life and Preventive Maintenance

The 34970A/34972A Relay Maintenance System automatically counts the cycles on each relay in the instrument and stores the total count in non-volatile memory on each switch module. Use this feature to track relay failures and predict system maintenance requirements. For more information on using this feature, refer to “Relay Cycle Count” on page 177.

Relays are electromechanical devices which are subject to wear-out failure modes. The life of a relay, or the number of actual operations before failure, is dependent upon how it is used – applied load, switching frequency, and environment.

You can use the graphs shown in this section to estimate relay lifetimes for your application. Additional background information is also provided to give you a better understanding of relay wear-out mechanisms. In general, relay lifetimes depend heavily upon the signals that are being switched and the types of measurements being performed.

- Switching typical signal levels will result in relay lifetimes from 1,000,000 to 10,000,000 operations.
- High-power switching (>25% rating) or high-voltage switching (>100V) applications will yield relay lifetimes from 100,000 to 1,000,000 operations.
- Low-voltage switching (<30V) and low-current switching (<10 mA) applications will yield relay lifetimes to 10,000,000 operations.
- RF switching applications seldom exhibit relay lifetimes exceeding 1,000,000 operations due to more stringent contact resistance requirements (typically less than 0.2Ω).

The following table shows the time required to reach the specified number of switch operations for several switching speeds.

<table>
<thead>
<tr>
<th>Continuous Switching Speed</th>
<th>Switching Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100,000</td>
</tr>
<tr>
<td>1 / Hour</td>
<td>12 Years</td>
</tr>
<tr>
<td>1 / Minute</td>
<td>10 Weeks</td>
</tr>
<tr>
<td>1 / Second</td>
<td>1 Day</td>
</tr>
<tr>
<td>10 / Second</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>
Relay Life

As a relay is used, the contacts begin to wear and the resistance of the closed contacts increases. The initial contact resistance of a relay is typically 50 mΩ (plus lead resistance). When the contact resistance exceeds 20 to 50 times its initial value, the contact resistance becomes very erratic and the relay should probably be replaced. For most applications, a relay with contact resistance greater than 1Ω should be replaced. The graph below shows the typical contact resistance characteristics of the relays used on the 34970A/34972A switching modules.

Typical Relay Lifetime

![Graph showing typical relay contact resistance](image)

Relay Load

For most applications, the load switched by the relay is the most important factor affecting relay life. As shown in the graph below, relay life is maximized by switching low power. As the power switched increases, relay life deteriorates.

![Graph showing maximum switching capacity](image)
Switching Frequency

Relay contacts heat up as they switch significant power. The heat is dissipated through the leads and the body of the relay. As you increase the switching frequency to near its maximum, heat cannot dissipate before the next cycle. The contact temperature rises and the life of the relay is reduced.

Replacement Strategy

There are essentially two strategies that you can use for preventive maintenance of the relays on the switching modules. The strategy that you choose depends upon your application, the consequences of a relay failure in your system, and the number of relay cycles during a measurement session.

The first strategy is to replace each relay as needed after it fails or becomes erratic. This is suitable if you are switching higher loads on only a few relays on the module. The disadvantage of this strategy is the inconvenience of continually replacing relays as they near the end of their life at different times.

The second strategy is to replace all relays on the module or simply purchase a new module as the relays near the end of their life. This strategy is best suited for those applications where all relays on the module are switching similar loads. The failure of several relays over a relatively short period of time may indicate impending failures on other relays switching similar loads. This strategy decreases the risk of failure during actual use at the expense of replacing some relays that may have useful life remaining.

NOTE

In both cases described above, you can use the 34970A/34972A Relay Maintenance System to track and even predict relay failures.
For the characteristics and specifications of the 34970A/34972A Data Acquisition / Switch Unit, refer to the technical overview at http://literature.cdn.keysight.com/litweb/pdf/5965-5290EN.pdf
alarms

---

non-integrating technique, 87

---

braces ({}), syntax, 99

---

brackets ([ ]), syntax, 99

---

break-before-make switching, 306

---

bridge, strain gage, 302

---

buffering triggers, 109

---

burden voltage, 295

---

C

---

C and C++ example programs, 255

---

cabling

---

attenuation, 261

---

capacitance, 261

---

capacitive coupling, 263

---

coaxial, 79

---

dielectric withstand voltage, 260

---

dielectric withstand voltage, 260

---

dielectric withstand voltage, 260

---

errors, 264

---

flat ribbon, 79

---

factory setting, 260

---

resistance, 261

---

RS-232, 34, 73

---

shielded coaxial, 263

---

shiedling, 263

---

twisted pair, 79, 263

---

types, 79

---

wire gauge size, 260

---

Calculation error, 280

---

calendar

---

factory setting, 171

---

setting, 40, 171

---

calibration

---

overview, 194

---

read count, 198

---

security code, 194

---

text message, 197

---

to secure, 196

---

to unsecure, 195

---

calibration certificate, 34

---

capacitance, cable, 261

---

capacitive coupling, 263, 310

---

Card Reset key, 46

---

carrying handle adjusting, 50

---

removing, 50

---

---

344 Keysight 34970A/34972A User’s Guide
celsius, setting units, 132
Channel Advance (external scanning)
  connector, 15, 16
  operation, 122
Channel Closed (external scanning)
  connector, 15, 16
  operation, 122
channel configuration
  copying, 44
  front panel, 41
channel delay
  automatic, 116
  default values, 115
  defined, 115
  settings, 115
channel list
  building from front panel, 104
  building from remote, 105
  examples, 99
  rules, 99
channel number, with readings, 114
channel numbering, 41
  34901A, 206
  34902A, 209
  34903A, 211
  34904A, 213
  34905A, 215
  34906A, 215
  34907A, 217
  34908A, 219
chassis ground, 15, 16
  clearing reading memory, 101
  clock
    factory setting, 171
    setting the, 40, 171
Close key, 46
c coaxial cables, 79, 263
  coefficient, temperature, 99
  color codes, 293
  thermocouples, 276
  command syntax (SCPI)
    conventions, 99
    version query, 176
  common LO multiplexers, 82,
  common mode noise, 279
  CONFIG annunciator, 14
  CONFIGure command, 105
  connector location
    Alarm output, 15, 16, 153
    Channel Advance, 15, 16
    Channel Closed, 15, 16
    Ext Trig, 15, 16, 109
    GPIB, 15
    RS-232, 15
  connector pinout
    alarm output, 153
  contact
    debounce (timerizer), 326
    protection, 314
    resistance, 329
  continuous scan count, 113
  conversion accuracy
    RTD, 270
    thermistor, 270
    thermocouple, 270
  copying, channel configuration, 44
  correlated noise, 265, 292
  count
    calibration, 198
    clearing relay cycles, 174
    reading relay cycles, 173, 329
  count (scan)
    continuous, 58, 113
    default value, 58, 113
    settings, 58, 113
  count-down time, 106
  counter
    adding to scan list, 64
    manually reset, 64
    reading count, 64
    reset mode, 64
  crest factor
    defined, 289
  crosspoint switching, 84
  current measurements
    ac low frequency filter, 141, 288
    ac settling time, 141, 288
    burden voltage, 295
  low frequency filter, 141, 288
  measurement ranges, 141
  valid channels, 141
  custom label (Mx+B)
    displaying character, 145
    valid characters, 145
  cycles
    clearing relay count, 173
    reading relay count, 173, 329

DAC output (34907A)
  differential error, 328
  integral error, 328
  simplified schematic, 327
  writing to, 65
data acquisition overview, 72
data bits (RS-232)
  factory setting, 187
  selecting, 187
DATA:LAST? command, 120
DATA:POINTS? command, 120
DATA:REMove? command, 120
date (calendar)
  factory settings, 171
  setting, 40, 171
dc voltage
  bias current, 284
  common mode noise, 280
  injected current, 283
  input resistance, 138, 284
  loading errors, 284
  measurement ranges, 138
  signal conditioning, 280
decimal format (digital input), 62, 158
default delays (channel delays), 116
Default Gateway, 192
delay (channel delay), 115
dHCP, 191
dielectric withstand voltage, 260
differential error, (DAC), 328
diffusion error,  278
digital channels, external scanning,  123
digital input (34907A)  8-bit vs. 16-bit operations,  158
carding scan list,  62, 158
binary format,  62, 158
block diagram,  217
card reset,  158, 159
decimal format,  62, 158
scanning,  101
simplified schematic,  321
using alarms,  155
digital output (34907A)  8-bit vs. 16-bit operations,  163
binary format,  63, 163
card reset,  163
decimal format,  63, 163
switches,  324
simplified schematic,  322
sink current,  322
TTL drive capability,  322
digits  
number of,  127
vs. integration time,  129
DIN/IEC 751,  132
disabling internal DMM,  122
display
annunciators,  14
enable/disable,  170
text message,  170
dissimilar metals,  264
DMM (internal)  block diagram,  268
enabling/disabling,  171, 173
reading relay count,  173
DNS Server,  192
DTR/DSR flow mode (RS-232),  188
Dynamic Host Configuration Protocol,  191
diffusion error,  278
digital channels, external scanning,  123
digital input (34907A)  8-bit vs. 16-bit operations,  158
adding to scan list,  62, 158
binary format,  62, 158
block diagram,  217
card reset,  158, 159
decimal format,  62, 158
scanning,  101
simplified schematic,  321
using alarms,  155
digital output (34907A)  8-bit vs. 16-bit operations,  163
binary format,  63, 163
card reset,  163
decimal format,  63, 163
switches,  324
simplified schematic,  322
sink current,  322
TTL drive capability,  322
digits  
number of,  127
vs. integration time,  129
DIN/IEC 751,  132
disabling internal DMM,  122
display
annunciators,  14
enable/disable,  170
text message,  170
dissimilar metals,  264
DMM (internal)  block diagram,  268
enabling/disabling,  171, 173
reading relay count,  173
DNS Server,  192
DTR/DSR flow mode (RS-232),  188
Dynamic Host Configuration Protocol,  191
errors
ac loading,  291
cabling,  264
capacitive coupling,  310
clearing,  168
common mode noise,  279
diffusion error,  278
frequency measurements,  304
loading, dc voltage,  284
loading, input bias current,  284
low-level ac,  265
magnetic fields,  264
multiplexing and switching,  310
period measurements,  304
reading error queue,  168, 223
RF multiplexing,  320
thermal EMF,  264
thermocouple calculation,  280
thermocouple reference junction,  278
totalizer,  326
example programs  C and C++,  255
Excel 7.0,  247
Excel macro example programs,  247
Exporting readings to USB,  183
EXT annunciator,  14
Ext Trig connector,  15, 16, 109, 121
external DMM connections,  121
scanning with,  121
external reference (T/C),  133
external scanning connections,  121
with digital channels,  123
external trigger connector,  15, 16, 109, 121
scan interval,  106
errors
ac loading,  291
cabling,  264
capacitive coupling,  310
clearing,  168
common mode noise,  279
diffusion error,  278
frequency measurements,  304
loading, dc voltage,  284
loading, input bias current,  284
low-level ac,  265
magnetic fields,  264
multiplexing and switching,  310
period measurements,  304
reading error queue,  168, 223
RF multiplexing,  320
thermal EMF,  264
thermocouple calculation,  280
thermocouple reference junction,  278
totalizer,  326
example programs  C and C++,  255
Excel 7.0,  247
Excel macro example programs,  247
Exporting readings to USB,  183
EXT annunciator,  14
Ext Trig connector,  15, 16, 109, 121
external DMM connections,  121
scanning with,  121
external reference (T/C),  133
external scanning connections,  121
with digital channels,  123
external trigger connector,  15, 16, 109, 121
scan interval,  106
factory reset state,  199
fahrenheit, setting units,  132
fast ac filter,  139, 141, 142, 288
fast timeout,  143
FETCh? command description,  105
filler panel kit (rack mounting),  52
filter, ac signal,  139, 141, 142, 288
firmware revision 34970A,  172
plug-in modules,  172
fixed input range (dc voltage),  138
fixed reference (thermocouple),  133
flange kit (rack mounting),  52
flow mode (RS-232)
DTR/DSR mode,  188
factory setting,  67, 188
Modem mode,  189
None (no flow mode),  188
RTS/CTS mode,  188
selecting,  67, 188
XON/XOFF mode,  188
form C (SPDT) switching,  85, 313
format  alarm queue data,  152
scanned readings,  114
four-wire multiplexers,  82, 309
four-wire ohms,  140, 296
four-wiring pairing (RTD),  135
frequency measurements  low frequency timeout,  143
sources of error,  304
front panel annunciators,  14
defining scan list,  41
layout,  11
menu overview,  12
front-panel display
gain "M" (Mx+B) scaling,

hardware, rack mounting,

handshake (RS-232)

hardware output lines

GPIB (IEEE-488)

get (Group Execute Trigger),

G

gage factor (strain),
gain "M" (Mx+B) scaling,
gate signal (totalizer),
gauge, wire size,
ground loops,
grounding,

H

handle

adjusting,
handshake (RS-232)

DTR/DSR mode,
factory setting,
Modem mode,
None (no flow mode),
RTS/CTS mode,
selecting,
XON/XOFF mode,

hardware output lines (alarms),
hardware, rack mounting,

high-frequency switching,

ice bath,

IEEE-488 (GPIB)

address selection,
cable,
connector,
factory address setting,
interface selection,
setting address,

impedance mismatching,
INITiate command description,
injected current, dc voltage,
input resistance
dc loading errors,
dc voltage,
INPut:IMP:AUTO

Instrument configuration,
importing
instrument preset state,
instrument state storage definition,
front-panel operation,
naming states,
power-down recall,
remote operation,
integral error (DAC),
integrating ADC,
integration time definition,
selecting,
vs. channel delays,
vs. number of bits,
vs. number of digits,
vs. resolution,

Interface key,
interface, GPIB (IEEE-488)

address selection,
cable,
connector,
factory address setting,
interface selection,
setting address,

interface, RS-232 (serial)
baud rate,
cable,
flow control,
parity,
stop bits,

internal DMM
block diagram,
enabling/disabling,
reading relay count,

interval key,
interval scan
default value,
resolution,
setting from front panel,
setting from remote,

interval, scan-to-scan,
IP address,

IPTS-68 conversions,
isothermal block,
ITS-90 conversions,

junction temperature,

jumper, Totalize Threshold,
kelvins, setting units,
plug-in module information

null, stored as offset ("B"),

number of digits,

configuration,
pasting, channel

number of bits

vs. integration time,

offset compensation,

144

OC annunciator,

offset "B" (Mx+B) scaling, 59, 144

offset compensation, 140, 298

offset voltages, 131

ONCE annunciator, 14

output format, alarm queue data, 152

output lines, alarms, 149, 153

parity (RS-232)

factory setting, 187

selecting, 67, 187

pasting, channel

configuration, 44

PCL, 129, 268

vs. channel delays, 116

period measurements

sources of error, 304

plug-in module description

34901A, 206

34902A, 209

34903A, 211

34904A, 213

34905A, 215

34906A, 215

34907A, 217

34908A, 219

plug-in module information

default settings, 203

firmware revision, 172

reading relay count, 172

poisson strain, 301

polarity, alarm output lines, 154

power failure, during scan, 103

power line cycles, 129, 268

power-down recall, 70, 103, 166

power-line fuse

factory setting, 48

location, 15, 16, 48

part number, 48

replacing, 48

power-line voltage

factory setting, 48

fuse, 48

selection, 48

selector module, 48

power-line, rejecting noise, 268

preset state, 201

programming examples

C and C++, 255

Excel 7.0, 247

PT100 (RTD), 135, 271

Quick Start Kit, 34

R

R0 (RTD)

default, 135

range, 135

rack mounting

filler panel, 52

flange kit, 52

lock-link kit, 52

sliding-shelf kit, 52

radio

interference, 264

random noise, 304

range

autorange, 125

overload, 125

selecting, 126

ranges by function

2-wire ohms, 140

4-wire ohms, 140

ac current, 141

ac voltage, 138

dc current, 141

dc voltage, 138

RC protection circuitry, 314

Read key, 62, 64

READ? command, 105

reading format, 114

readings memory, storing

alarms, 147

readings, viewing, 118

real-time clock

factory setting, 171

setting, 40, 171

rear panel

external scanning, 121

pictorial overview, 15, 16

recall power-down state, 166

reference junction (thermocouple)

definition, 133

external reference, 133

fixed temperature, 133

internal reference, 133

reference channel, 133

reference thermocouple, 274

relative time, 114

relay contact protection, 314

relay contact resistance, 329

relay cycle count

clearing, 173

estimating relay life, 329

reading, 173, 329

relay life, 330

relay maintenance

system, 329

vs. load switched, 330

relay maintenance system

clearing relay count, 173

reading relay count, 173, 329

remote interface, 66, 68

remote interface, GPIB (IEEE-488)

address selection, 66, 68, 186

cable, 73

interface selection, 66, 68,
remote interface, RS-232 (serial), 105
baud rate, 67, 69
cable, 73
flow control, 67
parity, 67
stop bits, 67
reset mode, totalizer, 102
resistance measurements
2-wire ohms, 296
4-wire ohms, 296
nominal (RTD), 135
offset compensation, 140, 288
resolution, "half" digit, 127
selecting, 127
vs. integration time, 129
revision number (firmware) 34970A, 172
plug-in modules, 172
RF multiplexers
insertion loss, 320
sources of error, 320
VSWR, 320
RFI radiation, 264
ribbon cables, 79
RMT annunciator, 14
rosette (strain gage), 302
ROUTE:CHAN:ADV:SOUR command, 124
ROUTE:CHAN:DElay command, 115
ROUTE:CHAN:FWIRe command, 124
ROUTE:MON:DATA? command, 176
ROUTE:MON:STATE command, 176
ROUTE:SCAN command, 105
RS-232 (serial) interface
baud rate, 186
cable, 34, 73
connector location, 15
flow mode, 188
parity, 187
selecting interface, 186
RTD measurements, 135
alpha (a), 135
conversion accuracy, 270
measurement tutorial, 271
measurement units, 132
supported types, 132
RTS/CTS flow mode (RS-232), 188
S
Sample (*) annunciator, 14
sample programs
C and C++, 255
Excel 7.0, 247
scale, temperature units, 132
scaling (Mx+B)
custom label, 59, 145
default gain ("M"), 144, 146
default offset ("B"), 144, 146
equation used, 144
interaction with alarms, 144
null stored as offset, 144
setting gain ("M"), 59, 146
setting offset ("B"), 59, 146
strain measurements, 302
valid gain ("M") values, 145
valid offset ("B") values, 145
while scanning, 101, 144
SCAN annunciator, 14
scan configuration, copying, 44
scan configuration, front panel, 41
scan count
continuous, 58, 113
default value, 58, 113
settings, 58, 113
scan interval
default value, 58, 107
resolution, 107
setting from front panel, 107
setting from remote, 107
Scan key, 104
scan list
adding channels to, 104
building from front panel, 104
building from remote, 105
defining, 41—42
date examples, 99
defining, 41—42
detailing, 99
history, 41—42
resetting, 41—42
selecting interface, 99
timebase, 41—42
with digital input, 62
with Mx+B scaling, 101
with totalizer channels, 102
SCPI language
syntax conventions, 99
sink current, digital output, 322
sliding-shelf kit (rack mounting), 52
slope, alarm output lines, 154
slot numbering, 15, 16
slow ac filter, 139, 288
slow timeout, 143
snubber circuitry, 314
software (BenchLink Data Logger)
installation, 36
on-line help, 37
overview, 17
source connections (RTD), 135
source connections, 309
SPDT (Form C) switching, 85, 313
state storage
definition, 70
front-panel operation, 167
naming states, 70, 166
power-down recall, 166
remote operation, 167
statistics, while scanning, 101
Status of LAN Connectivity, 190
Step key, 104
Sto//Rcl key, 56, 70
stored states
definition, 70
front-panel operation, 167
naming states, 70, 166
power-down recall, 166
remote operation, 167
strain gage
commom uses, 302
gage factor, 301
measurements, 145, 300
Mx+B equations, 145
poison strain, 301
rosette, 302
shearing strain, 301
Wheatstone bridge, 302
strain relief, 260
stress (strain gage), 300
Subnet Mask, 192
sweep (scan), defined, 104, 106
switch contact resistance, 329
switch life, 329
switch types
form C (SPDT), 85
matrix, 84
multiplexer, 82, 306
switching, errors, 310
syntax, SCPI conventions, 99
system cabling, 79, 260
system clock
factory setting, 171
setting the, 40, 171
SYSTem:ERR? command, 224
SYSTem:PRESet command, 201

temperature conversion accuracy, 270
temperature measurements
RTDs, 135
thermistors, 137
thermocouples, 133
temperature units, 132
terminal connections
ac current, 40
ac voltage, 40
dc current, 40
dc voltage, 40
frequency, 40
period, 40
resistance, 40
RTDs, 40
thermistors, 40
thermocouples, 40
thermal EMF errors, 264
thermistors
color codes, 276
calculation error, 280
decision accuracy, 270
diffusion error, 278

Keysight 34970A/34972A User’s Guide 351
external reference,, 133
fixed reference,, 133
internal reference,, 133
isothermal block,, 133
measurement tutorial,, 272
measurement units,, 132
metals used,, 276
probe accuracy,, 276
reference junction error,, 278
reference junction,, 133
shielding,, 279
shunt impedance,, 279
temperature range,, 276
Thermocouple Check,, 133
thermoelectric voltages,, 264
threshold, totalize,, 160–162
time (clock)
factory setting,, 171
setting the,, 40, 171
time stamp absolute,, 114
relative,, 114
timeout, low frequency,, 143
torroid,, 264
totalize threshold,, 160
hardware jumper,, 325
totalizer ac vs. TTL threshold,, 160
adding to scan list,, 161
block diagram,, 325
clearing the count,, 162
contact bounce,, 326
counting on falling edge,, 160
counting on rising edge,, 160
ers,, 326
gate signal,, 160, 326
manually reset,, 64
maximum count,, 161, 325
reset mode while scanning,, 101
reset mode,, 161
scanning,, 101
Totalize jumper,, 160
track mode, alarm output
lines,, 153
transducer types,, 80
tree switch,, 311
triangle brackets (< >), syntax,, 99
TRIG:SOUR command,, 107, 108, 110, 112
TRIGger:COUNt command,, 113
triggering buffering,, 109
external,, 109
scan,, 106
ture RMS,, 287
TTL drive, digital output,, 322
twisted pair cables,, 79
two-wire multiplexers,, 83, 306
two-wire ohms,, 296
UNIT:TEMP command,, 132
units temperature,, 132
with readings,, 114
unsecure calibration,, 195
USB Front Panel,, 183
USB, exporting readings,, 183
USB, formatting readings,, 183
USB, importing an instrument configuration,, 184
Utility key,, 55
VAR
varistor,, 315
vertical bar ( | ), syntax,, 99
VIEW annunciator,, 14
View key,, 55, 119, 151
viewing readings,, 118
Visual Basic, example,, 247
VM Complete signal,, 122
voltage (DAC) output card reset,, 165
current limitations,, 327
differential error,, 328
integral error,, 328
resetting,, 65
simplified schematic,, 327
writing,, 65
voltage dividers,, 314
voltage measurements,, 138
ac low frequency filter,, 139
ac settling time,, 139
VSWR,, 320
W
Warnings
34901A,, 208
34908A,, 220
Wheatstone bridge (strain),,, 302
wire size (gauge),,, 260
wiring connections
RTDs,, 40
thermists,, 40
thermocouples,, 40
wiring log 34901A,, 208
X
XON/XOFF annunciator,, 188
Z
ZERO:AUTO command,, 131