Keysight Technologies
Improve Electronic Product Quality and Performance with Keysight Precision LCR Meters

Application Note
Introduction

Today’s intense competition in electronics dictates that products meet increased performance, quality, and cost objectives. This puts high demands on the components used, and requires increased attention to component performance and specifications.

This note describes the general application of passive component measurements in incoming inspection and R&D and shows the benefits of the Keysight Technologies, Inc. Precision LCR Meter family; the Keysight E4980A, the Keysight 4284A and the Keysight 4285A 30 MHz LCR meter with digital Q capability.

Measurements are Required Throughout the Product Process

The following passive component problems often occur in the development and manufacturing stages of electronic products:

- Although the components meet manufacturer’s specifications, they exhibit different characteristics when they are integrated in a circuit.

- A part from one manufacturer substituted for that of another manufacturer shows different characteristics when it is mounted in a circuit, despite the fact that both parts are supposed to have identical specifications.

- A part that met the design values in the development department shows different characteristics on the production line.

- Increased rework costs occur when complex products fail final test due to poor component performance that could have been detected earlier in the process.

These problems are sometimes due to the fact that the test conditions of the standard specifications offered by the manufacturer do not correspond to the actual operating conditions under which the part is used. In addition, characteristics which are not covered in the specifications often influence the performance of the circuit, and may be unknowingly relied upon for proper operation.
The application of component measurement at two important steps of the process can eliminate many of the problems discussed. These steps, incoming inspection, and R&D are discussed below.

Incoming Inspection

The following are some of the difficulties and requirements associated with incoming inspection of passive components:

1. During incoming inspection, a great many types of measurements with a variety of measuring conditions are required:
 - As some test instruments cannot perform all of the measurements required, substitute measurements are made which may not reflect the intended specification test conditions.
 - Purchasing a large number of specialized testers for incoming inspection substantially increases capital costs.
 - Measuring instruments used in incoming inspection differ from those used by the development department. Results may not be valid for the actual operating conditions as measured in the lab.
2. Test fixtures and other factors influence the reliability of the measurements.
3. A measurement instrument should be able to measure many different types of devices, and it should respond quickly and accurately to frequently changing measurement conditions.
4. Measurement instruments of greater efficiency are required to cope with the increasing number of samples.
5. When a scanner is used, the deviation of the different channels causes discrepancies in measured values.
6. When extending the test fixture to an environmental test chamber, inaccurate measurements occur due to the cable length to the test fixture.

Conventional measurement instruments often cannot cope with these difficulties or meet the demands outlined above.
Solutions offered by the E4980A, 4284A and 4285A Precision LCR Meters for Incoming Inspection Applications

1. Precision LCR meters provide measurement flexibility that satisfies the large number of demands of incoming inspection:
 - Measurements over a wide frequency range from 20 Hz up to 30 MHz.
 - The test signal and DC bias can be set over wide ranges.
 - The Auto-Level Control (ALC) function allows measurements using constant-voltage and/or constant-current test signals.
2. High basic measurement accuracy. The E4980A and 4284A offer the highest basic accuracy of ± 0.05% and the 4285A provides ± 0.1% basic accuracy. Accuracy is improved by using the open/short correction function, eliminating the errors due to stray admittance and residual impedance of the test fixture.
3. A memory card facilitates setting up the instrument by storing 10 setups for easy recall.
4. An internal comparator that can be set to sort into a maximum of 10 BINs.
5. Multi-channel correction function (opt. 301) eliminates errors in individual scanner channels.
6. Cable extension function specifies measurement accuracy when the specified extension cables are used, maintaining accuracy when the test fixture is located in an environmental test chamber.
7. High throughput measurements require fast measurement times and automated handler and scanner interfaces. Precision LCR meters have exceptionally fast measurement times, as fast as 30 ms, and handler and scanner interfaces are available.

Incoming Inspection Measurement Example

Figure 4 shows the setup menu displayed on the 4284A's large liquid crystal display. The easy-to-see display facilitates setup and reduces errors.

Figure 5 shows a typical incoming inspection of capacitors using the built-in comparator. The limit value is set and distributed by bin value.

For incoming inspection applications, Keysight’s Precision LCR Meters feature a wide measuring frequency range (from 20 Hz to 30 MHz) and signal sources to make measurements under actual component operating conditions. Designed for high reliability and ease of operation, these LCR meters meet the most demanding requirements of electronics manufacturers’ incoming inspection departments.

Problems and Solutions in the R/D Process

Circuit design requires measurement under actual operating conditions

To design a high quality circuit, the characteristics of its components under actual operating conditions must be known. That is, the characteristics of components depend on the conditions (frequency, signal level, temperature, etc.) under which they are used or measured. In most cases, due to the inflexibility of the measurement system, the conditions under which components are tested and selected are different from the conditions the components will see in actual operation.
In the next example, a VCO circuit, the measurement of a critical inductor was key in making the circuit meet performance specifications. Knowing the Q of the inductor at actual operating conditions allowed the proper component to be specified to meet the overall phase noise specification of the circuit.

This VCO circuit was designed as a part of a frequency synthesizer circuit with a frequency range of 20 Hz to 30 MHz. The design specification called for the phase noise measured at a 1 kHz offset to be less than –110 dBc/Hz at an output frequency of 30 MHz.

The first-pass design used a 1μH inductor (L1) selected for a high Q value at 7.96 MHz, the traditional test frequency used by older Q measuring equipment. The measured Q was 43 at 7.96 MHz. The phase noise was then measured with the results being –107 dBc/Hz at 30 MHz, out of spec. Knowing that the Q of the circuit affects the phase noise, the designer investigated the variation of the Q of L1 as a function of frequency using the 4285A Precision LCR Meter that can measure inductors to 30 MHz. Using the List Sweep feature, measurements were performed quickly and easily at a number of test frequencies. See Figure 7.

The reason for the poor phase noise performance at 30 MHz was the Q of L1 was only 25 at 30 MHz. The Keysight 4285A was then used to select another inductor, making the Q measurement at 30 MHz instead of 7.96 MHz. An inductor with a Q of 60 at 30 MHz was selected. The phase noise at 1 kHz offset was measured again with the results being –112 dBc/Hz. Figure 8 shows the phase noise results with the two inductors selected.

Characterizing passive components at actual operating conditions provides important insight to the design performance, and should be standard operating procedure for design and component evaluation in the R&D phase of electronic product design.

Sometimes the component’s performance is tested in R&D in environmental test chambers. This requires that the test fixture is remote from the test equipment. For LCR measurements above 100 kHz, cable capacitance unbalances the measurement bridge circuit, causing errors.

Keysight’s Precision LCR meters have cable extension features that specify the measurement accuracy at the remote location, when specified cables are used. In addition open and short correction calibration can be performed at the end of the extension cables for increased accuracy.

Conclusion

Throughout the product design to final manufacture cycle, understanding the performance of the components used is critical to meeting performance, cost, and reliability goals. Test equipment must be flexible to test the components at many different operating conditions to simulate the actual circuit situations. For incoming inspection, high throughput and fast changeover to different setups is critical, while in R&D measurement flexibility and performance is important to fully understand the component parameters that affect design quality.

Keysight’s Precision LCR Meters are designed to meet the most demanding R&D requirements while offering high throughput, handler, and scanner interfaces, and system integration features for incoming inspection applications.

For more information on how Keysight’s component test products can help you design, test, and produce quality electronic designs, contact your local Test and Measurement Sales Representative.
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services

www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners

www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2826
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East

Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 982255
Switzerland 0800 805363
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries: www.keysight.com/find/contactus

(BP-9-7-17)

DEKRA Certified
ISO 9001:2015
Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5090-0233
www.keysight.com