Errata

Document Title: Criterion for the Tangential Sensitivity Measurement (AN 956-1)

Part Number: 5091-0169E

Revision Date: October 1990

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
The Criterion for the Tangential Sensitivity Measurement

Application Note 956-1

A tangential signal is defined on a C.R.T. display as a pulse whose bottom level coincides with the top level of the noise on either side of the pulse (Figure 1). Although the corresponding signal-to-noise ratio depends on many system factors, the generally accepted ratio of 8 dB at the output correlates well with the tangential appearance on the oscilloscope for practical systems.

The often asked question concerning whether 8 dB refers to voltage or power is not a valid one. The number of decibels is defined as $10 \log_{10} \left(\frac{P_1}{P_2} \right)$ where P_1 and P_2 are power levels to be compared. If output voltages are to be compared, the ratio $\left(\frac{V_1}{V_2} \right)^2$ may be substituted for $\left(\frac{P_1}{P_2} \right)$. In this case the number of decibels is $20 \log_{10} \left(\frac{V_1}{V_2} \right)$. The number of decibels determines both $\left(\frac{V_1}{V_2} \right)$ and $\left(\frac{P_1}{P_2} \right)$. The terms “voltage dB” and “power dB” are not significant. For example, the 8 dB output ratio corresponds to a power ratio of 6.3 and a voltage ratio of 2.5.

Another source of confusion is the relationship between input ratios and output ratios. Because the detector is a square law device, the output voltage is proportional to the square of the input voltage, or to the input power. A signal-to-noise voltage ratio of 2.5 at the output thus corresponds to an input power ratio of 2.5. Since $10 \log 2.5 = 4$, the equivalent input signal-to-noise ratio for tangential sensitivity is 4 dB.
A useful production test system (Figure 2) uses an RMS voltmeter to compare signal output to noise output. The noise level is observed on the meter with R.F. signal off, but with d.c. bias applied to the D.U.T. Then the specified tangential signal level is applied and the increase in RMS voltmeter reading must correspond to 8 dB or more.

The use of square wave modulation and AC coupling introduces another source of confusion to this measurement. The increase in reading on the RMS voltmeter corresponding to the 8 dB criterion is 4.1 dB. The 8 dB criterion means that the peak signal voltage is 2.5 times the RMS noise voltage V_m. Because the RMS meter uses AC coupling, the square wave is symmetrical with amplitude $1.25 V_m$. The square of this voltage combines with the square of the noise voltage to give the total voltage on the RMS meter.

$$V_T^2 = V_N^2 + (1.25 V_N)^2 = 2.56 V_N^2$$

This ratio corresponds to 4.1 dB.