Keysight Technologies
Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer

Application Note
Introduction

How a balanced circuit differs from an unbalanced circuit

A balanced circuit has its electrical midpoint grounded. An unbalanced circuit, however, has one side grounded. A balanced circuit is typically used in communications equipment because a balanced circuit has the advantage of better spurious noise suppression.

Figure 1 shows a balanced cable which is an example of a balanced circuit. The voltages of the cable’s two conductors are at every point equal in amplitude and opposite in phase. Figure 2 shows an unbalanced cable which is an example of an unbalanced circuit. Most measurement circuits in the Keysight Technologies, Inc. impedance analyzers and LCR meters are unbalanced.

Measuring a balanced circuit with an unbalanced measurement instrument

A balanced circuit cannot be directly measured with an unbalanced measurement instrument because of the difference in their configuration.

When measuring balanced circuits, the unbalanced measuring instrument requires a Balun (balanced to unbalanced) transformer. A Balun is a type of impedance-matching RF transformer.

Figure 3 shows the configuration for measuring a balanced circuit with an unbalanced instrument.

Note: In balanced cable measurements, residual current in the Balun or the measuring instrument can cause measurement errors. To reduce the degree of error, perform open/short and load compensation at the measurement terminals of the Balun.

Selecting a Balun

There are several types and brands of Balun transformers. When selecting a Balun, ensure that frequency is compatible with your measurement requirements. When you measure the impedance parameters of a balanced circuit, you don’t have to use the Balun which has the same impedance with the circuit under test. However, when you measure the transmission or reflection of it, you have to use a Balun which has the same impedance with the circuit under test to keep impedance matching. Table 1 shows recommended Balun transformers.
Measurement Configuration with a Balun and Compensation

Impedance measurement configuration with Keysight 4294A impedance analyzer

Figure 4 shows impedance measurement configuration (1)/(2) with the 4294A.

To calibrate/compensate for (1):

1. Perform open, short, and load compensation at the balanced terminals of the 16314-60011. Use the furnished compensation standards of the 16314-60011.

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>0 Ω</th>
<th>PN 04191-85300</th>
</tr>
</thead>
<tbody>
<tr>
<td>0S</td>
<td>PN 04191-85302</td>
<td></td>
</tr>
<tr>
<td>50 Ω</td>
<td>PN 04191-85301</td>
<td></td>
</tr>
</tbody>
</table>

Impedance measurement configuration with the Keysight 4395A(#010)

Figure 6 shows impedance measurement configuration (2) with the 4395A.

To calibrate/compensate for (2):

2. Assemble a female BNC connector as shown in Figure 5.
3. Perform open, short, and load calibration at the BNC connector using the following BNC Calibration standards: Short standard PN 1250-0929 50 Ω load standard PN 11593A
4. Remove the connector and connect the DUT. Measure the DUT.

Table 1. Recommended Balun transformers

<table>
<thead>
<tr>
<th>Unb/Bal. (W)</th>
<th>Bandwidth</th>
<th>Type No.</th>
<th>Suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>50:50</td>
<td>100 Hz to 10 MHz</td>
<td>16315-60011</td>
<td>Keysight</td>
</tr>
<tr>
<td>50:100</td>
<td>100 Hz to 10 MHz</td>
<td>16316A</td>
<td>Keysight</td>
</tr>
<tr>
<td>50:600</td>
<td>100 Hz to 3 MHz</td>
<td>16317A</td>
<td>Keysight</td>
</tr>
<tr>
<td>50:50</td>
<td>0.1–125 MHz</td>
<td>0001BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>50:75</td>
<td>0.1–125 MHz</td>
<td>0101BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>50:100</td>
<td>0.1–125 MHz</td>
<td>0300BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>50:600</td>
<td>0.1–65 MHz</td>
<td>0700BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:50</td>
<td>0.1–100 MHz</td>
<td>1000BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:75</td>
<td>0.1–100 MHz</td>
<td>1100BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:100</td>
<td>0.1–100 MHz</td>
<td>1300BB</td>
<td>North Hills Signal Processing</td>
</tr>
<tr>
<td>75:600</td>
<td>0.1–60 MHz</td>
<td>1700BB</td>
<td>North Hills Signal Processing</td>
</tr>
</tbody>
</table>

Transmission measurement configuration with a network analyzer

Figure 7 shows transmission measurement configuration (3) with a network analyzer.

To calibrate/compensate:

Short the terminals closest to the DUT to the signal out and to the test port, then perform response/thru calibration.
Figure 5. Assembling BNC connector

Figure 6. Measurement configuration (2)

Figure 7. Measurement configuration (3)
Appendix: Balun Transformer Information

Balun transformers are excellent interfaces for measuring balanced components or circuits. They can be used with unbalanced system measurement instruments such as impedance analyzers, LCR meters, and/or network analyzers (that are unbalanced system measurement instruments).

![Figure 8. 16314-60011 and 16315-60011](image)

16314-60011

The 16314-60011 can be directly connected to a 4-terminal-pair impedance analyzer or an LCR meter. High-accuracy impedance measurements of balanced devices can be made by using the OPEN/SHORT/LOAD characteristic. This unique feature of the Keysight impedance analyzer and LCR meters is performed at the binding posts by using the furnished shorting plate and a 50 Ω load resistor.

- Wide frequency range (100 Hz to 10 MHz) is covered.
- Recommended instruments:
 - 4294A precision impedance analyzer
 - 4284A precision LCR meter
 - 4285A precision LCR meter
 - E4980A precision LCR meter

16315-60011, 16316A, 16317A

- Reflection and transmission measurements of balanced devices and circuits can be measured with a network analyzer.
- With the furnished load resistor (50 Ω, 100 Ω, 600 Ω) and short plate, calibration can be performed for high-accuracy measurements.
- Depending on the impedance of the device, balanced impedance of 50 Ω, 100 Ω, or 600 Ω can be selected.
- Wide frequency range (100 Hz to 10 MHz (Keysight 16317A covers up to 3 MHz))
- Recommended instruments:
 - 4395A 500 MHz network/spectrum/impedance analyzer
 - 4396B 1.8 GHz network/spectrum/impedance analyzer
 - 4294A precision impedance analyzer
Specifications

Specifications describe the instrument’s warranted performance over the temperature range of 0 to 50 °C (except where noted) and after 30-minute warm-up time.

Table 2. Balun transformers specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>16314-60011</th>
<th>16315-60011</th>
<th>16316A</th>
<th>16317A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal configuration & nominal characteristic impedance</td>
<td>Balanced port</td>
<td>Binding posts</td>
<td>2 signal terminals and 1 ground terminal (signal terminal spacing: 14.0 mm)</td>
<td>50Ω</td>
</tr>
<tr>
<td>Unbalanced port</td>
<td>4 BNC connectors</td>
<td>1 BNC connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>89(W) x 56(H) x 133 (D)</td>
<td>89(W) x 55(H) x 121 (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (g)</td>
<td>400</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 to 55 °C</td>
<td>≤ 95% RH (@ 40 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-operation temperature</td>
<td>-40 to +70 °C</td>
<td>≤ 90% RH (@ 65 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnished accessories</td>
<td>50Ω load resistor</td>
<td>50Ω load resistor</td>
<td>100Ω load resistor</td>
<td>600Ω load resistor</td>
</tr>
<tr>
<td></td>
<td>Shorting plate</td>
<td>Shorting plate</td>
<td>Shorting plate</td>
<td>Shorting plate</td>
</tr>
</tbody>
</table>

Supplemental Characteristics

Supplemental characteristics are intended to provide information useful in applying the instrument by giving non-warranted performance parameters.

Table 3. Balun transformers supplemental characteristics (at 23 ± 5 °C)

<table>
<thead>
<tr>
<th>Item</th>
<th>16314-60011</th>
<th>16315-60011</th>
<th>16316A</th>
<th>16317A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>100 Hz to 10 MHz</td>
<td>100 Hz to 3 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insertion loss</td>
<td>≤ 1.0 dB (relative to the insertion loss at 100 kHz)</td>
<td>≤ 1.5 dB (relative to the insertion loss at 100 kHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freq. response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return loss</td>
<td>≤ 10 dB (100 Hz < Freq. < 300 Hz)</td>
<td>≤ 10 dB (100 Hz < Freq. < 300 MHz)</td>
<td>≤ 20 dB (300 Hz < Freq. < 1 MHz)</td>
<td>≤ 15 dB (1 MHz < Freq. < 3 MHz)</td>
</tr>
<tr>
<td>Common mode loss</td>
<td>≤ 50 dB (100 Hz < Freq. < 3 MHz)</td>
<td>≤ 50 dB (100 Hz < Freq. < 1 MHz)</td>
<td>≤ 45 dB (3 MHz < Freq. < 5 MHz)</td>
<td>≤ 45 dB (1 MHz < Freq. < 3 MHz)</td>
</tr>
<tr>
<td>≤ 45 dB (5 MHz < Freq. < 10 MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Web Resource

www.keysight.com/find/impedance
www.keysight.com/find/lcmeters

References

Impedance Measurement Handbook, Publication Number 5950-3000

For information on Balun, contact the manufacturers:
North Hills Signal Processing
A Porta Systems Company
575 Underhill Blvd.
Syosset, NY 11791
Tel: (516) 682 7740
Fax: (516) 682 7704
www.northhills-sp.com/contact.html
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

This document was formerly known as application note number 346-2.

www(keysight.com/find/impedance
www(keysight.com/find/lcrometers

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 803553
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www(keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001 Quality Management System

www(keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 2, 2017
5091-4480E
www(keysight.com