Errata

Document Title: Recommending Electronic Manufacturers To Preform Incoming Inspections (AN 369-4)

Part Number: 5950-2952

Revision Date: September 1988

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
Application Note 369-4

Recommending Electronic Manufacturers to Perform Incoming Inspection

- HP 4284A Precision LCR Meter -

Introduction

The following types of problems occur in the development and manufacturing stages of electronic instruments.

- Although the components meet manufacturer’s specifications, they exhibit different characteristics when they are integrated in a circuit.

- A part from one manufacturer substituted for that of another manufacturer shows different characteristics when it is mounted in a circuit, despite the fact that both parts are supposed to have identical specifications.

- A part that met the design values in the development department shows different characteristics on the production line.

These instances are due to the fact that the conditions of the standard specifications offered by the manufacturer do not correspond to the actual operating conditions under which the part is used. Often characteristics which are not covered in the specifications influence the characteristics of the entire circuit. In addition, the high performance and versatility of recent electronic instruments increase the cost and the amount of work required when malfunctions are turned up by inspections performed after the parts were included in a circuit or an instrument. This situation can be corrected by conducting incoming inspections to select the parts that will exhibit the required characteristics when the parts are integrated into an actual circuit. Such inspections will improve the reliability of the instrument and increase yield figures as well.

Difficulties and Requirements of Impedance Measurements During Incoming Inspection

The following are some of the difficulties and requirements that accompany incoming inspection of passive components.

1. A great many types of measurements requiring a variety of measuring conditions have to be carried out during incoming inspection. However, as measurement instruments cannot perform all of the measurements required, substitute measurements are made. On the other hand, purchasing all of the necessary measuring equipment would substantially increase capital costs. Since the measuring instruments used differ from those used by the development department, measuring conditions differ and incoming inspection results may not be valid for the actual operating conditions.

2. Test fixtures and other factors influence the reliability of the measurements.

3. A measurement instrument should be able to measure many different types of devices, and it should respond quickly and accurately to frequently changing measurement conditions.

4. Measurement instruments of greater efficiency to cope with the increasing number of samples are required.

5. When a scanner is used, the deviation of the different channels cause discrepancies in measuring values.

Conventional measurement instruments cannot cope with the difficulties or meet the demands outlined above.
Solutions Offered by the HP 4284A

1. Measurement Conditions that Satisfy a Large Number of Demands

- Measurements over a wide frequency range from 20 Hz up to 1 MHz.
- The voltage of the measured signal can be set up to 20 Vrms and the current of the signal up to 200 mA.
- The ALC function allows measurements of constant-voltage (10 mV - 10 V) and constant-current (100 µA - 10 mA) signals.
- ±40 V DC bias source is built-in.

2. Highly accurate measurements (C: 0.05%, D: 0.0005) and a powerful error compensating functions reduce the influence of test fixtures to a minimum and raises the reliability of the HP 4284A's measurements.

3. A memory card facilitates the chores of setting up the instrument.

4. An built-in comparator that can be set to sort into a maximum of 10 BINS.

5. With a scanner interface that allows channel compensation of up to 128 channels to reduce discrepancies in measurement values for different channels.

Measurement Example

Figure 1 shows the setup menu displayed on the HP 4284A's large Liquid Crystal Display to facilitate setup. Figure 2 shows an example of selecting capacitors that would be performed during incoming inspection. The limit value is set and distributed by BIN value. Figure 3 shows a conceptual application of the scanner.
Conclusion

The HP 4284A Precision LCR Meter features a wide measuring frequency range and signal sources to enable measurements under actual conditions. This, in combination with its ease of operation, and its high reliability, makes it the measurement instrument that satisfies all the varying demands of impedance measurements performed by electronics manufacturers during incoming inspection.

1, 2. When Option 001 is used.

3 Automatic level control

4, 5, 6 When option 001 is used.

7 At measurement frequencies above 50 Hz.

8 When option 301 is used.