Errata

Document Title: Testing Switching Power Supplies (AN 339-14)

Part Number: 5950-2977

Revision Date: December 1988

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
TESTING SWITCHING POWER SUPPLIES

USING THE HP 4194A

INTRODUCTION

Here are some suggestions on how to use the HP 4194A Impedance/Gain-Phase analyzer to test and troubleshoot Switching Power Supplies and the components used to build them.

This information will be useful to:

- Switching Power Supply Manufacturers (QA, Production, R&D Lab)
- Power Supply Design Engineers (Lab)
- Component Manufacturers who supply components to Switching Power Manufacturers.

MEASUREMENT NEEDS

Switching power supplies are becoming increasingly popular due to their high efficiency (thus lower operating temperature), lower volume, and lower weight than linear supplies. Switching frequencies are being pushed higher as engineers shoot for further reductions in weight and volume, and for increased efficiency. The characteristics of components used in switching power supplies are specified by most manufacturers at much lower frequencies than are used in switching power supplies, so the true characteristics of capacitors, transformers, and inductors must be tested at the actual frequency of operation. The following measurements are used to properly select, evaluate, and test switching power supply components and circuits.

Component Measurement Needs

- *Impedance* at frequency of operation
- *Self-resonance frequency* of inductors and capacitors

Circuit Measurement Needs

- Loop Gain/Phase measurement (Open and Closed Loop) for stability analysis
- Frequency response signature analysis for historical analysis when troubleshooting and product/component consistency analysis

MEASUREMENT SOLUTIONS

- HP 4194A
EXAMPLE 1: Measuring a Transformer's Self-resonance Frequency

Example 1 shows the measurement of the self-resonance frequency and the frequency response of a switching Power supply's transformer.

![Measurement Setup](image1)

Figure 1. Transformer Self-Resonance Frequency Measurement

In the following example an isolation transformer is used between the power line and the switching power supply under test. THINK SAFETY AT ALL TIMES! Ten to one oscilloscope probes are used for the REF and TEST channel inputs, and a straight through cable which is made up using COAX cable is used for the OUTPUT signal from the HP 4194A.

EXAMPLE 2: Switching Power Supply's Frequency Response Characteristics

Frequency response characteristics can be used in the design/development phase and in production test phase. In the design phase, components and circuits must be checked to ensure adequate gain-phase margins for stable operation. In the production phase, programmed limit testing can be used to verify that production units are within design limits. Wrong valued capacitors and inductors, defective capacitors and inductors, and defective transformers are some of the things that can cause frequency response variation in a switching power supply circuit.

The following figure shows a partial circuit diagram and the test setup used to test a switching supply based on the popular 3524 series switching regulator control IC. The output of the error amplifier is not brought directly out of the 3524 IC, so an alternative scheme of injecting the signal and connecting the REF and TEST inputs using a wide-band pulse transformer is shown. An injected test signal level of 0.2 V was used to obtain a good signal to noise ratio while at the same time not over driving the circuit to the point of trashing it. Notice what is happening at 50 Hz (the line frequency at which this test was conducted) and at around 58 kHz, the switching frequency.
Switching Power Supply Circuit Diagram and Test Setup

Measurement Setup

Figure 2. Circuit Frequency Response Characteristics
Open-loop Gain-Phase characteristics measured under closed-loop conditions.

Figure 3. Circuit Frequency Response Characteristics

SUMMARY

The design, evaluation, and testing of today's high frequency switching power supplies is much more effective (quality, time to market, cost) when sophisticated, yet easily used test equipment is brought to bare on the problem. In addition to the usual measurement techniques, the HP 4194A is flexible and powerful enough to allow the user to develop new and innovative measurements. Frequency response measurement can be used in a lab environment and as an automated test in a production line environment, and when using the HP 4194A frequency response measurement becomes a simple everyday measurement tool. The frequency response of a switching power supply is the signature of the circuit, and a change in the signature indicates a change (or problem) in the components within the circuit. Frequency response measurement normally requires several carefully setup instruments to perform, but with the HP 4194A you get everything in one instrument.

The HP 4194A offers powerful solutions for designing and testing switching power supply components and circuits. The problem of determining the properties and characteristics of components at frequencies outside of the normally specified values is critical to success in the highly competitive switching power supply market.

Printed in Japan December, 1988 5950-2977