Errata

Document Title: Functional Analysis of Intel 4040 Microprocessor Systems (AN 167-16)

Part Number: 5952-2003

Revision Date: January 1975

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We've added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
1. INTRODUCTION

This application note is designed to assist the 4040 Microprocessor family user in the real-time analysis of his system in both design and troubleshooting environments. This note demonstrates real-time analysis of program flow, triggering on a specific event, as well as paging techniques.

The 4040 microprocessor, which is the heart of the 4040 microcomputer family, is fabricated with P-channel silicon gate MOS technology and operates from +5 volt and —10 volt power supplies. The 4040 features a 4-bit parallel CPU with 60 instructions. The 4040 can directly address 4k 8-bit instruction words of program memory or 8k with bank switching, and 5120 bits of data storage RAM. Up to 16 4-bit input ports and 16 4-bit output ports can also be addressed directly. Twenty-four randomly accessible index registers are provided internal to the microprocessor for temporary data storage. The 4040 microprocessor operates at clock rates to approximately 750 kHz.

2. PIN ASSIGNMENTS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D0</td>
</tr>
<tr>
<td>2</td>
<td>D1</td>
</tr>
<tr>
<td>3</td>
<td>D2</td>
</tr>
<tr>
<td>4</td>
<td>D3</td>
</tr>
<tr>
<td>5</td>
<td>STPA</td>
</tr>
<tr>
<td>6</td>
<td>STP</td>
</tr>
<tr>
<td>7</td>
<td>INT</td>
</tr>
<tr>
<td>8</td>
<td>INTA</td>
</tr>
<tr>
<td>9</td>
<td>VSS</td>
</tr>
<tr>
<td>10</td>
<td>φ1</td>
</tr>
<tr>
<td>11</td>
<td>φ2</td>
</tr>
<tr>
<td>12</td>
<td>RESET</td>
</tr>
<tr>
<td>13</td>
<td>TEST</td>
</tr>
<tr>
<td>14</td>
<td>VDD</td>
</tr>
<tr>
<td>15</td>
<td>VDD2</td>
</tr>
<tr>
<td>16</td>
<td>SYNC</td>
</tr>
<tr>
<td>17</td>
<td>CM-ROM 3</td>
</tr>
<tr>
<td>18</td>
<td>CM-ROM 2</td>
</tr>
<tr>
<td>19</td>
<td>CM-ROM 1</td>
</tr>
<tr>
<td>20</td>
<td>CM-ROM 0</td>
</tr>
<tr>
<td>21</td>
<td>VDD1</td>
</tr>
<tr>
<td>22</td>
<td>CM-ROM 1</td>
</tr>
<tr>
<td>23</td>
<td>CM-ROM 0</td>
</tr>
<tr>
<td>24</td>
<td>CY</td>
</tr>
</tbody>
</table>

SUMMARY OF CONTROL LINES

STPA
Signal acknowledges that the processor has entered the Stop mode.

STP
A logic “1” level on this input causes the processor to enter the Stop mode.

INT
A logic “1” level on this input causes the processor to enter the Interrupt mode.

INTA
Signal acknowledges receipt of an Interrupt command and prevents additional Interrupts from entering the processor. Signal remains active until cleared by the BBS instruction.
\(\phi_1, \phi_2 \) Non-overlapping clock signals that determine microprocessor timing.

RESET
A "1" level applied to RESET clears all flag and status flip-flops and forces the program counter to 0. RESET must be applied for 96 clock cycles (12 machine cycles) to completely clear all address and index registers.

TEST
Input. The logic state of TEST can be examined with JCN instruction.

SYNC
Synchronization signal indicating beginning of instruction cycle to ROM and RAM chips.

CM-ROM 0 Lines function as bank select signals for the RAM chips in the system.

CM-ROM 3

CM-ROM 0 Bank selection signals for program ROM chips in the system.

CM-ROM 1

CY
The state of the carry flip-flop is present on this output and updated each X1 time.

3. PROBE CONNECTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ROM 0, 1, 2, or 3 (1702A)</td>
</tr>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
</tr>
</tbody>
</table>

MOST SIGNIFICANT ADDRESS NIBBLE (PINS 15, 14, 13, AND 11 ON 4008 CHIP, OR EQUIVALENT CONNECTIONS IN YOUR SYSTEM)

4. SETTING THE CONTROLS

Turn power on and set Logic State Analyzer controls as follows:

- **Display Mode** ... Table A
- **Sample Mode** ... SGL
- **Trigger Mode**
 - NORM/ARM .. NORM
 - LOCAL/BUS ... LOCAL
 - OFF/WORD .. WORD

Figure 1. Circuit for Deriving a Clock for the 1600A from 4040 Sync, CM-ROM, and \(\phi_2 \) signals.
Threshold \(^2\) VAR, Adjust to 3.7 V
Logic POS
Clock
All other pushbuttons out position
Display Time cccw
Qualifiers OFF
Trigger Word Switches set to match address you want to trigger on
Column Blanking after a display is on screen, adjust to display 12 columns of data

\(^1\) "SGL" is selected for viewing single-shot events. Press "Reset" and start your system. The first time the system passes through the trigger point the display will be generated and stored. For programs that are looping or cycling through the selected address, select "Repet" sample mode.

\(^2\) For TTL compatible systems, set threshold to TTL.

5. DISPLAY INTERPRETATION
In this illustration, an output routine is examined. Proper operation is confirmed by a comparison between real time state analysis, figure 2a, and the 4040 cross assembler program listing, figure 2b.
The output routine performs the following events:
1. Sets up a bit pattern in the accumulator.
2. Outputs the accumulator contents to an I/O port for control of status lights.
3. Reads status of start switch connected to input port.
4. If switch position is true (CY = 1), clears status lights and jumps to start routine; if switch position is false (CY = 0), loops.

Consider the state display photograph, figure 2a. Line 1 displays the address 0000 0100 0000 (040). This corresponds to the address of the STC instruction listed in the program listing, figure 2b. Lines 2 and 3 of the state display correspond to the JUN instruction at address 041. JUN is a two-word instruction, thus occupying two address locations. Examination of line 4 of the state display (0000 0100 0100) shows that the JUN instruction was properly executed, i.e., the program jumped to address 044. In a similar fashion, each instruction can be shown to have been executed in the proper sequence.
The last address shown in the state display is address 050. To view subsequent addresses you would simply set the Trigger Word switches to match address 050. This address would then become the trigger word in line 1 with the next 15 addresses listed in lines 2 through 16. If you wish to retain the original trigger point, an alternate technique is to use digital delay and set the thumbwheels to 00015 which would provide the same display.

6. THE MAP
If a tabular display is not presented in Section 5, it means the system did not access the selected address and the No Trigger light will be on. To find where the system is residing in the program switch to "map" (figure 3). Using the Trigger Word switches move the cursor (circle in photo) to encircle one of the dots on screen. Switch to Expand and make the final positioning of the cursor—the No Trigger light will now go out and switching back to Table A displays the 16 addresses around that point.

Figure 3. Map Display Shows Entire System Activity.

![Figure 2. System Response to Output Routine.](a)
![Figure 3. Map Display Shows Entire System Activity.](b)
7. VIEWING ADDRESS, DATA, AND CONTROLS

When program deviations are found, the reason may
be as simple as a program error or as complicated as a
hardware failure on the data bus or command lines.
Additional input channels now become very desirable.
By combining the 1600A and 1607A the display and
trigger capability can be expanded to 32 bits wide,
allowing the 12-bit address, 8-bit data word and up
to 12 other active control signals to be viewed
simultaneously. The hookup is easy:

1. Connect data cable between rear panel con-
nectors.
2. Connect trigger bus cable between front panel
bus connectors.
3. Set 1600A controls as described in Section 4
with the following exception: set display mode
to Table A & B
4. Set 1607A controls as follows:

<table>
<thead>
<tr>
<th>Sample Mode</th>
<th>SGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Display</td>
<td>ON</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td></td>
</tr>
<tr>
<td>NORM/ARM</td>
<td></td>
</tr>
<tr>
<td>LOCAL/BUS</td>
<td>BUS</td>
</tr>
<tr>
<td>OFF/WORD</td>
<td>OFF</td>
</tr>
<tr>
<td>Threshold, Logic, Clock</td>
<td></td>
</tr>
<tr>
<td>All other pushbuttons</td>
<td></td>
</tr>
<tr>
<td>Q0, Q1</td>
<td></td>
</tr>
</tbody>
</table>

5. Connect data and clock inputs for 1607A as
follows:

a. Connect 1607A Data inputs 0 through 7 to
RD 0 through RD 7 outputs of 1702A
ROM chip (pins 4 through 11 in order).
b. Connect 1607A Data Input 8 to CY output
of 4040 chip (pin 24).
c. Connect 1607A clock input to signal used
to clock 1600A.
d. Connect grounds to appropriate points.

6. After a display is on screen, set the 1607A
blanking to display nine columns.

8. DISPLAY INTERPRETATION OF AD-
DRESS, DATA AND CONTROL LINES

By displaying both address, data and control lines,
it is now possible to confirm exact system operation
with respect to the output routine. Consider the pro-
gram listing, figure 4b. The first address, 040, con-
ains an STC instruction. The second address, 041, is
the address of the first word of a two-word JUN instruction.
These two instructions are shown in lines 1 through 3
of the state display, figure 4a. Line 1 shows the address
(0000 0100 0000) and instruction code (1111 1010)
of the STC instruction. Lines 2 and 3 show the addresses
of the two words that make up the JUN instruction.
The first byte (0100) of the JUN instruction is the
operation code and the remaining three bytes (0000
0100 0100) is the address that program control is
transferred to. Examination of line 4 of the state dis-
play shows that program control was indeed transferred
to the specified address which contains an RAR
instruction (instruction code 1111 0110). Line 5 of
the state display corresponds to the STC (Set Carry)
instruction at address 045. Proper execution of the STC
instruction is confirmed by observing that the carry bit
(CY column) in line 6 of the state display is a one. The
one shows up in the CY column on one cycle after the
STC instruction because the 1600A is clocked during
A 3 state, i.e., before the instruction is executed. Thus
the 1600A does not see the results of the instruction
execution until the next A 3 state.

Each line of the display can be examined in a similar
fashion to reveal exact program operation.

![Figure 4. System Response to Output Routine On Address, Data and Control Lines.](image-url)
9. VIEWING THE MULTIPLEXED DATA BUS

In the preceding examples, the demultiplexed address and data lines have been observed. However, when a hardware failure occurs, it may be very useful to directly observe activity on the multiplexed microprocessor data bus. In the following example, we shall observe data being demultiplexed into a 12-bit address for driving a ROM. Then we shall watch the ROM output being multiplexed back onto the bus.

Set up the 1600A and 1607A to obtain the display as follows:
1. Connect 1600A data, qualifier, and clock inputs as follows:
 a. 1600A data inputs 0 through 7 to RD 0 through RD 7 in order.
 b. 1600A data inputs 8 through 15 to A 0 through A 7 in order.
 c. 1600A Q0 input to ROM 0 chip select line (1702A, pin 14). 3
 d. 1600A clock input same as in Section 3.

By qualifying on CS and triggering on A 0 through A 7, we derive a unique trigger that is effectively 12-bits wide with only the eight least significant bits displayed.

2. Connect 1607A data and clock inputs to microprocessor as follows:
 a. 1607A data inputs 0 through 3 to D 0 through D 3.
 b. 1607A data input 4 to CM-ROM line for ROM bank being monitored.
 c. 1607A data input 5 to SYNC line.
 d. 1607A clock input to φ2.

3. Set 1600A controls the same as in Section 4 with the following exceptions:
 Display Mode Table A&B
 End Display ON
 Delay ON, delay set to 8
 Qualifier TRIG, QO set to LO
 Column Blanking ccw

4. Set 1607A controls as follows:
 End Display ON
 Delay ON, delay set to 8
 Logic 4 NEG

5. After a display is obtained, adjust 1607A column blanking to display 6 columns in Table B.

10. DISPLAY INTERPRETATION OF MULTIPLEXED DATA BUS

The state display photograph in figure 5 shows a comparison of the demultiplexed address and data buses (Table A) with the multiplexed microprocessor bus (Table B). Let's compare line 8 of Table A (trigger word) with the multiplexed data in Table B. Examination of the Sync line shows that line 6 of Table B corresponds with instruction cycle state A 1. Note that the Sync and CM-ROM pulses are displayed as ones in the photograph since we have selected negative logic on the 1607A. Comparison of states A 1, A 2, and A 3 (lines 6, 7, and 8 of the Table B state display) with the trigger word address bits reveal that the interface circuit has correctly demultiplexed the address from the 4040. Similarly, comparison of trigger word data bits RD 7 through RD 0 with states M 1 and M 2 (lines 9 and 10 of the Table B display) shows that the interface circuit has correctly multiplexed the ROM data onto the 4040 data bus. Note that the CM-ROM line is true during M 1 and M 2 states indicating that the instruction word being executed is the first word of an I/O instruction.

11. CONCLUSION

From the foregoing examples it may be concluded that efficient troubleshooting of the Intel 4040 Microprocessor system is expedited by two factors; first, the availability of the program listing as produced by 4040 cross assembler; and second, the availability of real time Logic State Analysis to display actual system operation for rapid error detection and correction.
Application Notes in the 167 series with the primary instrument(s) used in parenthesis.

167-1 The Logic Analyzer (5000A).
167-2 Digital Triggering for Analog Measurements (1601L).
167-3 Functional Digital Analysis (1601L).
167-4 Engineering in The Data Domain Cal's for a New Kind of Digital Instrument (Describes measurement problems and various solutions with applicable instruments.)
167-5 Troubleshooting in the Data Domain is Simplified by Logic Analyzers (1600A and 1607A).
167-6 Mapping, a Dynamic Display of Digital System Operation (1600A).
167-7 Supplemenary Data from Map Displays without Changing Probes (1600A).
167-8 Stable Displays of Disc System Waveforms Synchronized to Record Address (1620A).

167-10 Using the 1620A for Serial Pattern Recognition (1620A).
167-13 The Role of Logic State Analyzers in Microprocessor Based Designs (1600A and 1607A).