Errata

Document Title: Crosstalk and Impedance Measurements of PC Board Patterns (AN 339-3)

Part Number: 5952-7863

Revision Date: September 1986

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
Crosstalk and Impedance Measurements of PC Board Patterns
— HP 4194A Application Information —

Introduction

This application sheet describes how to use the HP 4194A Impedance/Gain-Phase Analyzer to measure impedance parameters (Z, C, G, L, R), crosstalk, and the dielectric constant of PC boards. This information will be useful to PC board and circuit designers, PC board end users and material suppliers.

Problem

The demand to measure more PC board parameters has increased because of the complexity of today's boards and circuits. Electronic instruments and computers are utilizing higher density and multilayer PC boards. Device speeds have also increased, causing more concern about the signal timing characteristics.

Capacitance and crosstalk between traces increases as PC board's density and number of layers increase. A ground trace can be added between traces to reduce crosstalk, but the capacitance between the trace and ground will also increase. The trace-to-ground capacitance increases because the dielectric material in the PC board becomes thinner. A large capacitance between the trace and ground rounds off the edges of a signal (refer to Fig 1).

Figure 1 Capacitance and Crosstalk on a PC Board

![Diagram of crosstalk and capacitance on a PC board]

(A) Add ground trace to reduce crosstalk

But capacitance increases

(C) Affects the trailing edge of signal

(D)

1
Impedance Measurements

PC board designers must be concerned about impedance. The HP 4194A Impedance/Gain-Phase Analyzer and HP 41941A/B Impedance Probe can measure various kinds of impedance parameters.

1) Characteristic Impedance

Refer to the Application Note 339-2.

2) Capacitance and conductance between traces or trace and ground, and trace inductance and resistance

Use the HP 41941A/B Impedance Probe to measure the impedance parameter on the PC board.

NOTE

The following should be used as guidelines for designing good PC board traces.

1) For high frequency analog and ECL circuits, the characteristic impedance (Zo) should be designed as follows;

\[Zo = \sqrt{\frac{L}{C}} \]

\(L \) is the trace series inductance
\(C \) is the trace-to-ground capacitance

2) For other digital circuits, the capacitance between traces and trace-to-ground must be minimized. The inductance and resistance of each trace must also be minimized.
Crosstalk Measurement

The HP 4194A Impedance/Gain-Phase Analyzer can measure crosstalk between traces on a PC board using its gain-phase measurement function (10 Hz to 100 MHz). To measure crosstalk, make the connections shown in Figure 2b or 3b, depending upon the direction of the signals (Figure 2a and 3a). You should have good connections when measuring up to 100 MHz. Solder cables and resistors to the PC board directly. Resistor leads should be as short as possible.

Figure 2a PC Board Signal & Crosstalk

Figure 3a PC Board Signal & Crosstalk

Figure 2b PC Board Crosstalk Measurement

Figure 3b PC Board Crosstalk Measurement

where;

Ro: characteristic impedance of PC board trace

R1: 50 ohms (4194A/41941A/B w/opt 350)
75 ohms (4194A/41941A/B w/opt 375)
When the input impedance of an IC is much greater than the PC board trace characteristic impedance, and the IC output impedance is less than the PC board characteristic impedance, then there is another way to measure crosstalk. In this case, leave one end of both traces open and measure. Refer to Figure 4 for an example.

![Figure 4 Crosstalk PC Board Measurement](image)

Dielectric Constant

The dielectric constant of PC board material is derived from capacitance measurement (refer to the dielectric constant equation in Figure 4). The HP 4194A can measure capacitance and calculate the dielectric constant using an Auto Sequence Program (an internal basic-like program that controls the HP 4194A operation without a computer). The HP 4194A can then display the dielectric constant vs frequency on its color CRT.

\[
K_{\text{sample}} = \frac{d \times C_{\text{sample}}}{A \times E_0}
\]

where;

- \(K_{\text{sample}} \) = Dielectric constant of the device
- \(C_{\text{sample}} \) = Capacitance value of the device (this is measured)
- \(A \) = Area of electrode
- \(d \) = Distance between the electrodes
- \(E_0 \) = Permittivity of free space (8.854 \(\times 10^{-12} \))

Printed in U.S.A. September 1986 02-5952-7863