Errata

Document Title: Third Octave Analysis With The 3582A Spectrum Analyzer (AN 245-3)

Part Number: 5952-8800

Revision Date: January 1979

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
THIRD OCTAVE ANALYSIS WITH THE HP 3582A SPECTRUM ANALYZER
FOREWORD

Low frequency analyzers based on digital signal processing – especially the Fast Fourier Transform algorithm – are rapidly replacing older analog spectrum analyzers for a variety of measurement tasks. However, even the most enthusiastic FFT analyzer users recognize that there are some measurements for which they are not particularly suited. Log frequency sweep and 1/3 octave analysis are examples.

Nevertheless, the combination of an FFT analyzer and a “friendly” (i.e., easily programmed) small computer can perform a greater variety of measurements than the analyzer itself can do. For this to happen, it is essential to have fast, efficient communication between the two. The Hewlett-Packard Interface Bus (HP-IB*) serves this need well.

1/3 octave analysis is the measurement of a frequency spectrum by the use of constant percentage bandwidth filters 1/3 octave wide and spaced 1/3 octave. It has long been popular for audio and acoustic applications, largely because of the relationship between this filtering technique and certain psychoacoustic properties of human hearing.

This application note offers a means for making 1/3 octave measurements with a 3582A Spectrum Analyzer controlled by a 9835A Desktop Computer. Enough information is included (program listing, flowcharts, and description) to enable the reader to use it directly or to modify it as he requires.

*HP-IB is Hewlett-Packard’s implementation of IEEE Standard 488 and identical ANSI Standard MC1.1 “Digital interface for programmable instrumentation.”

THE HEWLETT-PACKARD MODEL 3582A SPECTRUM ANALYZER

The HP 3582A is a spectrum analyzer covering the frequency range of DC to 25 kHz. Although it is a FFT-based, digital instrument, a special design effort has made it as straightforward to use as a conventional swept analyzer. With dual measurement channels it is possible to measure transfer function gain and phase, as well as the coherence function. A built-in random or pseudo-random noise source, whose spectrum tracks the analysis range, is a useful measurement stimulus. Band Selectable Analysis enables narrowband, high resolution analysis to be applied to any portion of the frequency range. The instrument comes equipped with a flexible HP-IB interface for control and two-way data transfers.
TABLE OF CONTENTS

Section 1: Third octave analysis
 Brief review of the concept and practice of third octave spectrum analysis

Section 2: Implementing 1/3 octave analysis with an FFT analyzer
 Problems inherent in using an FFT analyzer directly
 The idea of synthesizing 1/3 octave filter response

Section 3: Introduction to this program
 Equipment needs
 Operating the program
 Sequence of operations
 How signals are combined

Section 4: Comparison with ANSI class III 1/3 octave filters
 ANSI standard
 How results of this program compare with standard specifications

Section 5: Suggested extensions to the program
 Modular program structure
 Several possible modifications

Section 6: Flow diagrams

Section 7: Program listing

Section 8: Summary

Appendix: HP 9825A Calculator Program
Section I: Third octave analysis

In concept, "third octave" analysis is straightforward: imagine a set of parallel-connected filters being used to examine an audio signal. The center frequencies of the filters are scaled by a factor of 1/3 octave; that is, each filter is located at a frequency 2^{1/3} times its lower neighbor. In addition the nominal bandwidth of each filter is 2^{1/3} -1 times its center frequency. To cover the audio range of, say, 20 Hz to 20 kHz (9.97 octaves), with this technique requires 30 filters. Because of the multiplicative frequency spacing and bandwidth of the filters, it is convenient to display their characteristics on a log frequency plot, such as illustrated by Figure 1.

Historically, this kind of analyzer has been implemented with an actual parallel bank of filters. The instantaneous signal amplitude in each filter is detected and converted to dB. The data is displayed on an oscilloscope in the form of a bar graph: log amplitude (vertical) versus log frequency (horizontal).

Although parallel analog filters are still being used in some current instruments, there are at least two newer alternative techniques: digital filtering and FFT synthesis. Of these, the digital filter approach is preferable from the point of view of performance. This is primarily because the hardware can be optimized for the 1/3 octave task and the display is "real time." However, for the many cases for which "real time" operation is not necessary — meaning that the signal to be analyzed has a stationary spectrum — the FFT technique is attractive, especially if you already have an FFT analyzer! Advantages of the FFT synthesis technique include easy modification of the frequency range and the use of frequency weighting functions if desired.

Figure 1.

Representation of a 1/3 octave analyzer composite filter characteristic

Section IV: Implementing 1/3 octave analyzers with an FFT analyzer

Why can't an FFT analyzer, such as the 3582A, be modified so that it produces a 1/3 octave analysis directly? Primarily because the FFT algorithm generates data on a set of linearly spaced sample points in the frequency domain. Its display has a linear frequency axis, not logarithmic as required by the 1/3 octave data. Also, the individual FFT filters, or "bins," have all the same bandwidth rather than bandwidths proportional to their center frequencies.

The approach used in this application note is to synthesize the frequency characteristics of 1/3 octave filters by combining the signals from several FFT bins. This requires weighting the contribution from each bin so that the composite "filter" is a good approximation to the specified shape of the 1/3 octave filter in question. Figure 2 indicates how this is done.

At lower frequencies the approximation is not as good because only a few FFT bins can be used. In fact, in the 3582A the bin spacing is 100 Hz when using the 0-25 kHz span. If only this span were used, the lowest frequency third octave filter that could be synthesized would be about 500 Hz. This is certainly not satisfactory for audio analysis. Therefore, to adequately cover the audio range, three spans are used: 0-250 Hz, 0-5 kHz, and 0-25 kHz. The result is 32 third octave filters, with center frequencies ranging from 15.85 Hz to 19.95 kHz (Fig. 3).

Figure 2

Synthesizing a composite 1/3 octave filter by combining the weighted responses of several FFT filters, or "bins"
The equipment needed to use this program for 1/3 octave analysis is a 3582A Spectrum Analyzer (standard equipment includes HP-IBA), a 9835A Desktop Computer with a 98332A I/O ROM installed, and a 98034A HP-IB Interface. The program is written in BASIC; it will run on another language-compatible calculator with the appropriate I/O, such as the 9845A. Memory requirements are approximately 15000 bytes for program and variable storage. Using the program listing and the flow diagrams, one can rewrite the program in another language. See the Appendix for the 9825A Calculator version.

Operating the program is simple. Pressing RUN causes the necessary initialization and then the user is asked, "Do you want RMS averaging?" The reason for this is that many spectra are random in nature, and a better estimate of the spectrum — and thus a better 1/3 octave analysis — is obtained when the 3582A is allowed to average the data. (Application Note 245-1, "Signal Averaging with the 3582A Spectrum Analyzer," deals with averaging in detail.) After the user answers the question, the program proceeds to:

a) set the 3582A to each frequency range in turn
b) bring the amplitude data for each range from the 3582A display into the controller for processing
c) convert the data, apply weights, and combine to form 32 synthesized results as if from 1/3 octave filters
d) format and output these results in the form of a bar-graph display on the 3582A
e) return to the beginning for another analysis, if desired

Step (c) requires some explanation. How exactly should the data from several FFT bins be combined to approximate the result expected from a 1/3 octave filter? It should be done on the basis of power rather than linear addition. This is because the signals in adjacent FFT bins are uncorrelated when the input is a random time signal. And when a coherent signal is analyzed, such as a sinusoid, the sum of signal power remains constant as the signal frequency varies. This means there is no ripple in the synthesized passband.

In the program, line 3090 converts the FFT bin signals to power (that is, volts squared) from dBV, and line 3180 converts the sum of weighted powers back to dBV.

<table>
<thead>
<tr>
<th>FILTER NUMBER</th>
<th>CENTER FREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.85</td>
</tr>
<tr>
<td>2</td>
<td>19.95</td>
</tr>
<tr>
<td>3</td>
<td>25.12</td>
</tr>
<tr>
<td>4</td>
<td>31.62</td>
</tr>
<tr>
<td>5</td>
<td>39.81</td>
</tr>
<tr>
<td>6</td>
<td>50.12</td>
</tr>
<tr>
<td>7</td>
<td>63.1</td>
</tr>
<tr>
<td>8</td>
<td>79.43</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>125.9</td>
</tr>
<tr>
<td>11</td>
<td>158.5</td>
</tr>
<tr>
<td>12</td>
<td>199.5</td>
</tr>
</tbody>
</table>

Pass.1
0-250 Hz

<table>
<thead>
<tr>
<th>FILTER NUMBER</th>
<th>CENTER FREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>251.2</td>
</tr>
<tr>
<td>14</td>
<td>316.2</td>
</tr>
<tr>
<td>15</td>
<td>398.1</td>
</tr>
<tr>
<td>16</td>
<td>501.2</td>
</tr>
<tr>
<td>17</td>
<td>631</td>
</tr>
<tr>
<td>18</td>
<td>794.3</td>
</tr>
<tr>
<td>19</td>
<td>1000</td>
</tr>
<tr>
<td>20</td>
<td>1259</td>
</tr>
<tr>
<td>21</td>
<td>1585</td>
</tr>
<tr>
<td>22</td>
<td>1995</td>
</tr>
<tr>
<td>23</td>
<td>2512</td>
</tr>
<tr>
<td>24</td>
<td>3162</td>
</tr>
<tr>
<td>25</td>
<td>3981</td>
</tr>
</tbody>
</table>

Pass.2
0-5 kHz

<table>
<thead>
<tr>
<th>FILTER NUMBER</th>
<th>CENTER FREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>5012</td>
</tr>
<tr>
<td>27</td>
<td>6310</td>
</tr>
<tr>
<td>28</td>
<td>7943</td>
</tr>
<tr>
<td>29</td>
<td>10000</td>
</tr>
<tr>
<td>30</td>
<td>12599</td>
</tr>
<tr>
<td>31</td>
<td>15850</td>
</tr>
<tr>
<td>32</td>
<td>19950</td>
</tr>
</tbody>
</table>

Pass.3
0-25 kHz
Section 4:
Comparison with ANSI class III 1/3 octave filters

The American National Standards Institute publishes a document recognized as setting proper standards for these filters. The filters synthesized by this program conform closely to the specifications for "Third-Octave Band Filters - Class III," as defined in this paper. Here are the principal characteristics of the filters:

a) Center frequencies: Strictly speaking, the ANSI document defines these in "tenth decade" intervals, but the difference from third octave is negligible. The greatest deviation from the specified value occurs in filter #20, whose geometric mean frequency is 0.7% below the specified value of 1259 Hz. (± 3% is allowable).
b) Transmission loss limits: All filters meet these criteria, although the rolloff rates differ due to the varying number of FFT bins used in the synthesis of individual filters. Filter #13, which uses only 4 bins, reaches -72 dB loss at 1/5 its center frequency, rather than the specified -75 dB. The other extreme is filter #12, which uses 49 bins. The attenuation characteristics of these two filters are shown in Figures 4 and 5, with the specification limits superimposed.

c) Effective bandwidth (noise bandwidth): This specification requires that the power output from a filter, when the input is white noise, be within 10% of the noise passed by an ideal rectangular 1/3 octave filter. Filter #10 has the greatest deviation, with a noise bandwidth 2.9% higher than standard.
d) Passband uniformity (passband ripple): The synthesized filters have no perceptible ripple within the defined band-edge frequencies, and so the ripple specification (0.5 dB) does not apply.
e) Variation of minimum loss among filters: Theoretically, all filters in this program have zero mid-band loss. Some variation will be encountered due to individual 3582A amplitude accuracy characteristics, specifically gain variations between different frequency spans. These will be well within the allowed ± 1 dB.
f) Transient response: The program cannot meet this specification, since it is necessary that the signal being analyzed be statistically stationary during the acquisition of data.

**Figure 4.
Filter #12**

```
0
10
20
30
40
50
60
70
.1
.5
1.0
5
10

ANSI class III
1/3 octave filter specs
(Document S1.11)

Minimum attenuation

Synthesized filter

Maximum attenuation

Normalized center frequency

""AMERICAN NATIONAL STANDARD SPECIFICATION FOR OCTAVE, HALF-OCTAVE, AND THIRD-OCTAVE BAND FILTER SETS,"" ANSI Specification S1.11-1966
American National Standards Institute, Inc.
1430 Broadway, New York, N.Y. 10018
```
Because of the modular structure of the program, it is simple to modify by adding or deleting sections. “Modular” means that the action portions of the program are written as subroutines called up as needed by a control sequence located in lines 50 to 150.

Here are some possible modifications:

PRINTED OUTPUT. Some users may want a permanent record of the analysis results. The structure of this program makes this an easy job. Simply write an output routine to the desired printer (internal or HP-IB external), listing the contents of “Thirdmag” (dBV) together with the 1/3 octave filter number or center frequency. The center frequency is readily calculated as \(10^{\frac{\text{filter number} + 11}{10}}\) Hz. Append this routine to the program and call it by a statement like

145 GOSUB Printer

This method also could be used to save the data on a mass storage device, like the tape cassette.

DISPLAY ANNOTATION. It may be desirable to identify individual filters more readily on the 3582A display. Since there are 32 third octave filters and also room for 32 characters on each of the four display lines, you can fill the lower two lines with digits so that they give the filter number when read vertically:

0000.2333
1234.9012

This change would be made in lines 2540 and 2550 of the program.

FREQUENCY WEIGHTING. Some measurements require the application of special shaping to measured spectra. An example is “A” weighting sometimes used in acoustics measurements. It is simple to do this with the present program. What is required is a table of dB loss values for the center frequency of each of the 1/3 octave filters in the program. Then a routine should be written to modify the dBV numbers in “Thirdmag” by these values. The routine should be called up before the display routine by adding, for example, the line

125 GOSUB Spectrum.weight

Figure 5.

Filter #13

- ANSI class III
- 1/3 octave filter specs
- (Document S1.11)

- Minimum attenuation
- Synthesized filter
- Maximum attenuation

- Normalized center frequency
Main Flow Diagram – 1/3 octave program

Start

SUB Set.ave 180-330
Asks number of averages. Sends commands to 3582 for *averages, RMS averaging

YES
RMS averaging in 3582?

NO
SUB No.ave 160-170
Sends command to 3582 for no averaging

SUB Pass.1 1600-1690
0-250 Hz data

SUB Pass.2 1700-1790
0-5 kHz data

SUB Pass.3 1800-1890
0-25 kHz data

SUB Plot.response 2000-2100
Takes 32 one-third octave results and scales them from 0 to 1023 to fit requirements of 3582 display; outputs to 3582 display buffer in reverse sequence since display writes from right to left

SUB Annotation 2500-2560
writes alpha on 3582 display

SUB Bin.groups 500-590
defines first and last FFT bins to be used to compute each of the 32 one-third octave filter responses

SUB Fft.weights 1000-1230
establishes table of weighting factors used in combining FFT responses

10-40
Initialize variables
Detailed Flow Diagram
Pass subroutines – 1/3 octave program

Pass.1 begins at 1600
Pass.2 begins at 1700
Pass.3 begins at 1800

ENTER

Set 3582 frequency span; start measurement

XX10-20

Program line numbers; XX are 16, 17, or 18

XX30

RMS averaging asked for?

was

YES

NO

XX40-50

interrogate 3582 status to determine end of averaging

YES

NO

XX60-70

averaging complete?

define which set (out of 32 total) 1/3 octave filters are to be computed by "Third_octave"

XX80

call "Third_octave" subroutine

RETURN

Detailed Flow Diagram
Third octave subroutine – 1/3 octave program

ENTER

3040-3050

retrieve 256 bin values of amplitude from 3582 display

3060-3100

convert these values from dBV to volts squared, setting those values at bottom of display to zero

3110-3210

for each 1/3 octave filter response to be computed in this pass, weigh converted values and add. convert sums to dB. If any sum is lower than level of bottom of display, set it to that level

RETURN
1 REM 1/3 OCTAVE ANALYSIS PROGRAM FOR THE H-P 3582A SPECTRUM
2 REM ANALYZER AND THE 9800 SERIES 35 CALCULATOR.
3 REM H-P LOVELAND INSTRUMENT DIVISION.
10 OPTION BASE 1
20 INTEGER Firstbins(32),Lastbins(32),Graphics(256),Analyzer,First_third,Last_third,H,I,J,K
30 SHORT Binweight(32,49),Thirdmag(32),Fftmag(256),Temp
40 Analyzer=711 !REM LINES 50 TO 150 COMPRISSE THE MAIN
50 GOSUB Bin_groups !REM CONTROL PROGRAM WHICH CALLS
60 GOSUB Fft_weights !REM SUBROUTINES IN THE PROPER SEQUENCE
70 Start: INPUT "DO YOU WANT RMS AVERAGING?",Averaging$!
80 ON (Averaging$="YES")+1 GOSUB No_ave,Set_ave!
90 GOSUB Setup
100 GOSUB Fass_1
110 GOSUB Fass_2
120 GOSUB Fass_3
130 GOSUB Plot_response
140 GOSUB Annotation
150 GOTO Start
160 No_ave: OUTPUT Analyzer:"HLTAV1"
170 RETURN
180 Set_ave: INPUT "HOW MANY AVERAGES?",A
190 Aver$="ERROR"
200 IF A=4 THEN Aver$="NUISHA"
210 IF A=6 THEN Aver$="NUISHO"
220 IF A=16 THEN Aver$="NUISHO"
230 IF A=32 THEN Aver$="NUISHO"
240 IF A=64 THEN Aver$="NUISH1"
250 IF A=128 THEN Aver$="NUISH1"
260 IF A=256 THEN Aver$="NUISH1"
270 IF Aver$="ERROR" THEN GOTO 320
280 BEEP
290 DISP "CHOOSE A NUMBER FROM THOSE ON FRONT PANEL OF 3582A"
300 WAIT 4000
310 GOTO 180
320 OUTPUT Analyzer:"HLTAV2LST0",Aver$
330 RETURN
500 Bin_groups: REN LOADS THE ARRAYS Firstbins AND Lastbins
510 REM WITH THE FIRST AND LAST NUMBERS OF THE SETS OF
520 REM FFT BINS USED TO COMPUTE EACH 1/3 OCTAVE FILTER
530 MAT READ Firstbins
540 DATA 15,13,23,29,36,45,57,71,89,112,142,178,12,15,18,23
550 DATA 29,36,45,56,71,89,112,141,178,45,57,71,89,112,142,179
560 MAT READ Lastbins
570 DATA 19,24,30,37,46,58,72,91,114,143,180,226,15,19,24,30
580 DATA 37,46,58,72,91,114,143,179,225,58,72,91,114,143,179,225
590 RETURN
1000 Fft_weights: REN LOADS THE ARRAY Binweight WITH THE WEIGHTS
1010 REM TO BE USED IN ADDING RESPONSES FROM FFT BINS
1020 MAT Binweight=(.67)
1030 FOR I=1 TO 32
1040 READ Binweight(I,1)
1050 NEXT I
1060 DATA .25,.1,.3,.3,.3,.2,.2,.1,.2,.3,.2,.15,.25,.1,.2
1070 DATA .3,.3,.2,.2,.1,.1,.2,.2,.1,.3,.3,.2
FOR I=1 TO 32
 READ Binweight(I,2)
NEXT I
DATA .67,.4,.4,.5,.5,.4,.5,.4,.4,.4,.4,.4,.4,.67,.67,.4,.4
DATA .5,.5,.4,.4,.4,.4,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
FOR I=1 TO 32
 READ Binweight(I,Lastbins(I)-Firstbins(I))
NEXT I
DATA .67,.4,.4,.5,.5,.4,.5,.4,.4,.4,.4,.4,.4,.67,.67,.4,.4
DATA .5,.5,.4,.4,.4,.4,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
FOR I=1 TO 32
 READ Binweight(I,Lastbins(I)-Firstbins(I)+1)
NEXT I
DATA .25,.2,.25,.3,.3,.2,.2,.2,.2,.2,.2,.2,.2,.2,.2,.2
DATA .3,.3,.2,.2,.2,.2,.2,.1,.1,.2,.2,.2,.2,.1,.1,.3,.2
RETURN

setup: REM Initializes the control settings of the 3582A.
REM Chan A sensitivity is obtained for proper display scaling.
REM Three constants are calculated.
OUTPUT Analyzer:"RA1AE0X0SC2PA0P0B0X0CH0P2FR1PP1MD2IN1TR0RR0"
OUTPUT Analyzer:"LAS"
ENTER Analyzer:Sensitivity
Minimum=101*(Sensitivity-80)/10
Display_scale=1023/80
Input_scale=8/1023
RETURN

Pass 1: REM 0 TO 250 Hz
OUTPUT Analyzer:"SP8RUNRE"
WAIT 2000
IF Averaging""""YES"" THEN GOTO 1660
OUTPUT Analyzer:"LST0"
IF BIT(READBIN(Analyzer),6)=0 THEN GOTO 1640
First_third=1
Last_third=12
RETURN

Pass 2: REM 0 TO 5 KHz
OUTPUT Analyzer:"SP12RUNRE"
WAIT 1000
IF Averaging""""YES"" THEN GOTO 1760
OUTPUT Analyzer:"LST0"
IF BIT(READBIN(Analyzer),6)=0 THEN GOTO 1740
First_third=13
Last_third=25
RETURN

Pass 3: REM 0 TO 25 KHz
OUTPUT Analyzer:"SP14RUNRE"
WAIT 1000
IF Averaging""""YES"" THEN GOTO 1860
OUTPUT Analyzer:"LST0"
IF BIT(READBIN(Analyzer),6)=0 THEN GOTO 1840
First_third=26
Last_third=32
RETURN
Section 8:

Summary

We hope this application note will provide some insight into one possible technique for making 1/3 octave measurements with the 3582A Spectrum Analyzer. While the program is written in BASIC, there should be enough flowcharts, program annotation, and comments to allow the interested reader to implement the measurement with a controller using another language.

The program has been developed, tested, and evaluated by the Product Marketing Group of HP's Loveland Instrument Division. It is based on a report from the R&D Department.
Appendix
HP 9825A Calculator Program

For the users of the popular 9825A Calculator, the 1/3 octave program is given here in HPL, the language of that machine.

The 9825A version is structurally the same as the 9835A program around which this application note is written. All subroutines have the same labels; this will help you use the flow diagrams of Section 6 to follow the 9825A version. However, most of the variables are different, because HPL allows only single characters for simple, array, and string variables. Listed below is a table showing corresponding variables in both programs.

<table>
<thead>
<tr>
<th>9835A Program</th>
<th>9825A Program</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firstbins(32)</td>
<td>F[32]</td>
<td></td>
</tr>
<tr>
<td>Lastbins(32)</td>
<td>L[32]</td>
<td></td>
</tr>
<tr>
<td>Filtmag(256)</td>
<td>M[256]</td>
<td>also used as a temporary in “Fit_weights” routine.</td>
</tr>
<tr>
<td>Thrdmag(32)</td>
<td>T[32]</td>
<td></td>
</tr>
<tr>
<td>Binweight(32,49)</td>
<td>B$[3136]</td>
<td>weight values times 100, stored in integer format.</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Display_scale</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Input_scale</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>First_third</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Last_third</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Averaging$</td>
<td>A$[3]</td>
<td>used as temporary in “Fit_weights” and “Third_octave”.</td>
</tr>
<tr>
<td>Ave$</td>
<td>D$[6]</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>C$[2]</td>
<td></td>
</tr>
</tbody>
</table>
8: "1/3 octave analysis program for the H-P 3582A spectrum";
9: "analyzer and the 9825A calculator";
10: dim F[32], L[32], B[3136], T[32], M[256], A[31], i[6], C[2];
11: dev "Analyzer"; 711
12: asb "Bin_groups"
13: asb "Fft_weights"
14: asb "Start";ent "do you want RMS averaging?"; A$
15: if A$="yes"; asb "Set_ave";
16: if A$="#yes"; asb "No_ave";
17: asb "Setup"
18: asb "Pass_1"
19: asb "Pass_2"
20: asb "Pass_3"
21: asb "Plot_response"
22: asb "Annotation"
23: goto "Start"
24: "No_ave";urt "Analyzer";"HLTHAV1"; ret
25: "Set_ave";ent "how many averages?"; A$
26: "ERROR"; D$
27: if A$="41"; HU1SH8" + D$
28: if A$="41"; HU2SH8" + D$
29: if A$="42"; HU3SH8" + D$
30: if A$="43"; HU4SH8" + D$
31: if A$="44"; HU5SH8" + D$
32: if A$="45"; HU6SH8" + D$
33: if A$="46"; HU7SH8" + D$
34: if A$="47"; HU8SH8" + D$
35: if A$="48"; HU9SH8" + D$
36: if A$="49"; HU0SH8" + D$
37: if A$="#41"; ERROR"; Isto + 3
38: beep; disp "chose a number from front panel"
39: wait 3000; "goto "Set_ave"
40: urt "Analyzer";"HLTHAV2LST8"; D$
41: ret
42: "Fft_average"; fti (67) = C$
43: for I = 1 to 15681; C$ + B$[2] + 1;
49: for I = 1 to 32; f1 (100 T[I]) + B$[98(I-1)] + 1 + 98(I-1) + 23;
59: for I = 1 to 32; "LI[I] = F[I] + K
776
60: fti (100[I])=B#(I-1)+2K-1,98(I-1)+2K;next I
65: for I=1 to 32;LI[I]=F[I]+1+K
66: fti (100[I])=B#(I-1)+2K-1,98(I-1)+2K;next I
67: ret
68: "Setup":
69: wrt "Analyzer", "AA1A00Ax08G2PF0B0FX0GCH0PS2FR1IFHD2IMITR0RR0"
70: wrt "Analyzer", "LAS";red "Analyzer";S
71: 1016(S-80)/10+C
72: 1023/30+B;8/1023+E
73: ret
74: "Pass_1";wrt "Analyzer","SPSUHRE"
75: wait 2000
76: if A#"yes"=sto +3
77: wrt "Analyzer","LST0"
78: if bit(6+rdb("Analyzer"))=0;sto -1
79: 1+M12+Lisb "Third_octave"
80: ret
81: "Pass_2";wrt "Analyzer","SPSUHRE"
82: wait 1000
83: if A#"yes"=sto +3
84: wrt "Analyzer","LST0"
85: if bit(6+rdb("Analyzer"))=0;sto -1
86: 13+M125+Lisb "Third_octave"
87: ret
88: "Pass_3";wrt "Analyzer","SPSUHRE"
89: wait 1000
90: if A#"yes"=sto +3
91: wrt "Analyzer","LST0"
92: if bit(6+rdb("Analyzer"))=0;sto -1
93: 26+M325+Lisb "Third_octave"
94: ret
95: "Plot_response";for I=1 to 32
96: D(T[33]-I)+S-5)+P
97: if P>1023;1023+P
98: if P<800+P
99: for J=1 to 8;P=M[I]+J-3;next J;next I
100: wrt "Analyzer","WTA;74400;256"
101: for I=1 to 256;wrtb 731;sh(M[1],8)+wrt 731,M[I];next I
102: ret
103: "Annotation";fmt 1,c5,f3,0,c29
104: wrt "Analyzer.1", "WTA1", S, " dBV FULLSCALE --- 10 dB/DIV "
105: wrt "Analyzer","WTA2",
106: wrt "Analyzer","WTA3,16 Hz", " 20 KHz"
107: wrt "Analyzer","WTA4", "32 THIRD-OCTAVE SEGMENTS"
108: ret
109: "Third_octave";wrt "Analyzer","WHTLEH,74400;256";red "Analyzer"
110: for I=1 to 256;ior(sh(rdb(731))-8, rdb(731))+M[I];next I
111: for I=1 to 256;E=AND(M[I],1023)+M[I]
112: if M[I]=0;sto +2
113: 10+(M[I]+S/10-8)+M[I]
114: next I
115: for I=M to LI0+P;for J=F[I] to LI[I]
116: J=F[I]+1+K86+T98(I-1)+2K-1,98(I-1)+2K+C
117: P+=0;Dit(C)$ME(257-J)+P;next J
118: if P<8+$sto +2
119: $50+(P)+T[I];sto +2
120: $50+(S-80+T[I])
121: next I
122: ret
123: #9859