Errata

Document Title: Receiver Testing (AN 421-28)

Part Number: 5954-9658

Revision Date: August 1987

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
Description Functional testing of a receiver determines whether a given unit will deliver the performance as stated by the manufacturer. Tests of the tuner, pre-amplifier, power amplifier and the signal switching paths are quite common. Receiver tests are designed to measure the signal distortion and sensitivity, and response at various amplifier settings for different types of signal inputs. The signal inputs can vary from pure audio signals to modulated RF.

Problem Receiver test applications require that the I/O signals be switched to a variety of instruments for different tests while rejecting noise and maintaining signal integrity. More than 12 data points for each test must be collected and stored for future analysis. Final test for a receiver production line will encompass hundreds of PASS/FAIL data points per day. Because of the complexity of the tests and the amount of data gathered, data analysis (computer) is a major factor.

Solution Hewlett-Packard instrumentation can provide signal stimulus/measurement capability, switch a variety of signals and make PASS/FAIL decisions. A variety of modules ensures that all signals can be switched by one instrument. The switch expands to several hundred channels. A mechanical interface increases test flexibility by providing a standard inter-connection between the Unit-Under-Test and the test system.

When connected to a powerful computer, the computer-aided-test system is capable of handling large amounts of data and performing comprehensive analysis for the product line using Statistical Quality Control (SQC). Instrument intelligence off-loads some tasks and frees the computer for more important analysis. This distributed intelligence approach can greatly improve test throughput.
IMPLEMENTATION

Frequency Response A large part of receiver testing is devoted to monitoring and analyzing the response on the pre-amplifier and power amplifier inputs at medium and high gain settings. The amplifiers are the heart of any receiver, and testing at key frequencies and gains determines whether the receiver’s amplifiers are operating within the stated specifications for a specific frequency range.

Total Harmonic Distortion Total Harmonic Distortion (THD) is an indicator of the non-linearity response of the amplifiers for signal harmonics. A dynamic signal analyzer will input and monitor the effects of a white noise source into the amplifiers.

Signal-to-Noise Ratio The Signal-to-Noise (S/N) ratio is a measure of the noise present in the amplifier. A dynamic signal analyzer will input the signal and the audioband RMS voltmeter will monitor the output signals.

Tuner Response Frequency response, THD and S/N ratio tests are applied to the tuner section of the receiver. The RF signal generator provides signals modulated by the dynamic signal analyzer and monitored by the audioband RMS voltmeter and the dynamic signal analyzer.

Receiver Control The receiver must be placed in defined functional states for each test. A remote control interface tied to a set of digital I/O lines will control the receiver. A breadboard is needed to power the remote control. The applying of AC power to the receiver is controlled by a general purpose switch.

KEY SYSTEM FEATURES
Data storage
SQC analysis
Networking
Low development time

TYPICAL CONFIGURATION

Computer-Aided-Test System

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 3235A</td>
<td>1</td>
</tr>
<tr>
<td>Relay multiplexer channels</td>
<td>10-30</td>
</tr>
<tr>
<td>RF multiplexer channels</td>
<td>1-2</td>
</tr>
<tr>
<td>Digital I/O channels</td>
<td>25-40</td>
</tr>
<tr>
<td>GP switching channels</td>
<td>2</td>
</tr>
<tr>
<td>Breadboard power supply</td>
<td>1</td>
</tr>
</tbody>
</table>

Computer/Software

- HP Series 300 computer
- Disc drive (HP 9153B)
- Printer (HP Laserjet Plus)
- Software - HP BASIC and HP FTM/300

Other Equipment

- True RMS Voltmeter (HP 3457A or HP 34520A)
- Dynamic Signal Analyzer (HP 3562A)
- RF Signal Generator (HP 8656B)

TYPICAL SYSTEM PRICE:

$40,000 to $65,000