IMPEDANCE MEASUREMENTS ... in brief

1. **Know the DUT impedance**
 Reactance chart of various ideal capacitors and inductors helps approximating DUT impedance range vs frequency for choosing the proper instrument technique. For instance, a 1nF ideal capacitor exhibits an impedance of 160 KOhms @ 1KHz and only 160 Ohms @ 1MHz.

2. **Choose adequate instrumentation**
 This chart shows that autobalancing bridge technique provides the widest impedance range. I-V probe is good for medium frequency range. Reflectometry or network analysis has narrowest impedance range, but allows very high frequency measurements. However, to be complete, this chart should be 3-dimensional showing accuracy as well. Don’t forget it!

3. **Set-up and measurement procedure**
 To test this 1nF capacitor up to 1MHz, with best accuracy, we will use an autobalancing bridge, with a 4 terminal pair port extension if required.

 Here, measurement quality depends on the quality of the instrument, the port extension and the test fixturing. Indicated measurement result is then close to or identical to the real value. This figure summarizes the key points. For example, remember that Z and theta are measured while Cp,Lp,Cs,Ls,...are calculated.

 So, always start by evaluating Z and theta!
Measurement Methods and HP Products

<table>
<thead>
<tr>
<th>Measurement Method</th>
<th>HP Products</th>
<th>Frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Balancing Bridge</td>
<td>HP 4263A LCR Meter
HP 427xA LCR Meters
HP 4284A Precision LCR Meter
HP 4285A Precision LCR Meter
HP 4192A LF Impedance Analyzer
HP 4194A Impedance/Gain-Phase Analyzer</td>
<td>100Hz to 100 kHz spot
100Hz to 10MHz spot
20Hz to 1MHz spot
75KHz to 30MHz
5Hz to 13MHz
10Hz to 40MHz</td>
</tr>
<tr>
<td>Resonant (Q-Meter)</td>
<td>HP 4342A Q-Meter (Obsolete, FY94)
HP 42851A Q Adapter (with HP 4285A)
HP 4193A Vector Impedance Probe (with HP 4194A)
HP 4286A RF LCR Meter
HP 4291A Impedance/Material Analyzer</td>
<td>20KHz to 70 MHz
75KHz to 30 MHz
10KHz to 100MHz</td>
</tr>
<tr>
<td>1-V (Probe)</td>
<td>HP 4191A RF Impedance Analyzer (Obsolete in 1995)
HP 4195A Network/Spectrum Analyzer with HP 41951A Impedance Test Set
HP 4396A Network/Spectrum Analyzer with HP 43961A Impedance Test Kit
HP 8751A Network Analyzer
HP 8752C/8753D RF Network Analyzers
HP 8510B Network Analyzer
HP 8719C/8720C Network Analyzers</td>
<td>1MHz to 1GHz
100 kHz to 500MHz
100 kHz to 1.8 GHz
5Hz to 500MHz
300KHz to 1.3GHz/6GHz
45 MHz to 100GHz
130MHz to 13.5GHz/20GHz</td>
</tr>
</tbody>
</table>

Cable Correction / Compensation by Product

<table>
<thead>
<tr>
<th></th>
<th>HP 4192A</th>
<th>HP 4194A</th>
<th>HP 4263A</th>
<th>HP 4279A</th>
<th>HP 4278A</th>
<th>HP 4284A</th>
<th>HP 4285A</th>
<th>HP 4286A</th>
<th>HP 4291A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Correction /</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Electrical Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open / Short</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Compensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open / Short / Load</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Compensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>