Errata

Document Title: Temperature Dependence of Schottky Detector Voltage Sensitivity (AN 956-6)

Part Number: 5964-3898E

Revision Date: November 1995

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
Temperature Dependence of Schottky Detector Voltage Sensitivity

Application Note 956-6

Although Schottky barrier diodes are less sensitive to temperature changes than are point-contact diodes\cite{1}, the effect on detector voltage sensitivity may be significant. Performance improves at lower temperatures in a predictable manner. In fact, a second diode can be used in a compensating circuit\cite{2} to cancel out the temperature effects.

Typical behavior of voltage sensitivity vs. temperature is shown in Figure 1. This spread of values (approximately 1 dB) was obtained from 10 Hewlett-Packard 5082-2750 Schottky detector diodes chosen at random from 2 different lots.

![Figure 1. Typical Voltage Sensitivity vs. Temperature.](image)

The temperature dependence of current sensitivity was studied by Cowley and Sorensen\cite{3}, but the analysis was not extended to voltage sensitivity. For the ideal diode with infinite cutoff frequency (zero series resistance and/or zero junction capacitance) there is no temperature effect on voltage sensitivity. The inverse temperature behavior of current sensitivity is balanced by the direct temperature variation of the diode barrier resistance.

That is, for current sensitivity:

\[
\beta = \frac{q}{2nkT} = \frac{5400}{T} \quad (1)
\]

and for diode junction resistance:

\[
R_j = \frac{nkT}{qI} = \frac{T}{11I} \quad (2)
\]

In these equations, \(T\) is temperature in degrees Kelvin, \(I\) is bias current in milliamperes and \(n\), \(q\), and \(k\) are constants\cite{3}. When the load resistance is much greater than diode resistance, the voltage sensitivity, \(\gamma_0\), is the product of current sensitivity and junction resistance and is independent of temperature:

\[
\gamma_0 = \beta R_j = \frac{490}{I} \quad (3)
\]

In practical cases, however, the voltage sensitivity is reduced by the presence of both junction capacitance and series resistance, i.e.:

\[
\gamma = \frac{\gamma_0}{1 + 4\pi^2 f^2 C_j^2 R_s R_j} \quad (4)
\]

The temperature dependence shows up in the \(R_j\) term (equation 2). Using typical values of \(I = 0.02\) mA, \(R_s = 25\) ohms, \(C_j = 0.1\) pF, and \(f = 10\) GHz, the effect of temperature on voltage sensitivity is:

\[
\gamma = \frac{\gamma_0}{1 + 0.0045T} \quad (5)
\]

For a typical voltage sensitivity of 6.5 mV/\(\mu\)W at \(T = 293\)°K, \(\gamma_0 = 15.1\) mV/\(\mu\)W. Figure 2 shows this theoretical curve in excellent agreement with experimental data from a typical diode.

However, when \(f = 1\) GHz, equation (4) predicts a response nearly independent of temperature:

\[
\gamma = \frac{\gamma_0}{1 + 4.5T \times 10^{-5}} \quad (6)
\]
Measurements at this frequency are not in good agreement with this prediction. Figure 3 shows considerable improvement in performance over temperature, but there is still a 25% variation.

A theoretical model of the temperature behavior of a Schottky detector is in excellent agreement with 10 GHz measurements. Further refinement of the theory is necessary to extend the model to lower frequencies.

References