Errata

Document Title: Schottky Diode Voltage Doubler (AN 956-4)

Part Number: 5964-4236E

Revision Date: November 1995

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
Schottky Diode Voltage Doubler

Application Note 956-4

Introduction
Diode detectors may be combined in various ways to produce higher output voltages than would be produced by a single diode. This note describes a microwave circuit that combines the detected output of two diodes to produce a detector with double the usual voltage sensitivity.

Circuit Description
Figure 1 shows a simple voltage doubler circuit that was assembled in HP Package 60 and tested at 2 GHz. In this version of the doubler, opposite polarity chips are needed. The shunt chip is a 5082-0009 detector. The series chip is a 5082-0023 mixer. Interchanging the chips does not affect performance. The circuit may also be assembled using packaged diodes, in which case the polarity requirements may be met by physically reversing the packages, thus eliminating the need for opposite polarity diodes.

Note that the two diodes are in shunt at R.F. so the impedance is halved. Impedance matching circuits will thus be easier to design.

Performance
Measured performance of the voltage doubler at 2 GHz compared to a single diode is shown in Figure 2. A triple stub tuner was used to match the detectors at each input level. Figure 3 shows similar data with the tuner adjusted at -30 dBm and fixed at that position. The doubler output is seen to be the sum of the detected voltage from two diodes in both cases.
How It Works

The voltage doubler is a combination of a clamer, the shunt diode, and a detector. Diode clamping action has been discussed in Hewlett-Packard Application Note 942. The input sine wave, symmetrical about zero volts is raised by the clamer so that the minimum voltage is zero. The input to the series detector diode is the input sine wave plus a d.c. component equal to the peak voltage. The detected voltage is then the peak-to-peak voltage of the sine wave, double the peak amplitude detected by a single diode.

Reference