These specifications apply to the Agilent Technologies E7402A and E7405A EMC analyzers.

Frequency Specifications

Frequency range

<table>
<thead>
<tr>
<th>E7402A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dc coupled</td>
<td>100 Hz¹ to 3.0 GHz</td>
<td></td>
</tr>
<tr>
<td>ac coupled</td>
<td>100 kHz¹ to 3.0 GHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E7405A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Band LO harmonic = N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1- dc coupled</td>
<td>30 Hz¹ to 3.6 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 MHz to 3.6 GHz</td>
<td></td>
</tr>
<tr>
<td>1 1- ac coupled</td>
<td>2.85 GHz to 6.7 GHz</td>
<td></td>
</tr>
<tr>
<td>2 2-</td>
<td>6.2 GHz to 13.2 GHz</td>
<td></td>
</tr>
<tr>
<td>3 4-</td>
<td>12.8 GHz to 19.2 GHz</td>
<td></td>
</tr>
<tr>
<td>4 4-</td>
<td>18.7 GHz to 26.5 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Frequency reference

- Aging: ±1 x 10⁻⁷/year
- Temperature stability: ±1 x 10⁻⁸
- Settability: ±1 x 10⁻⁸

Frequency readout accuracy

\[(\text{start, stop, center, marker}) \pm (\text{frequency indication} \times \text{frequency reference error}^2 + \text{span accuracy} + 15\% \text{ of RBW} + 10 \text{ Hz}) + 1 \text{ Hz} \times N^3]\]

1. Usable to 30 Hz
2. Frequency reference error = (aging rate \times period of time since adjustment + settability + temperature stability)
3. \(N = \text{LO harmonic mixing mode}\)
Marker frequency counter

Accuracy\(^2\) ±(marker frequency x frequency reference error\(^3\) + counter resolution)

Counter Resolution Selectable from 1 Hz to 100 kHz

Frequency span

Range 0 Hz (zero span), 100 Hz x N\(^4\) to the range of the spectrum analyzer

Resolution 2 Hz x N\(^4\)

Accuracy (> 2000 sweep points)

- Sweep type linear ±0.5% of span
- Sweep type log ±2% of span (characteristic)

Sweep time

Range
- Span > 0 Hz 1 ms to 4000 s
- Span = 0 Hz 50 ns\(^5\) to 4000 s

Accuracy ±1%

Sweep trigger Free run, single, line, video, external, delay, offset, and gate (Option 1D6)

Delay trigger range 1 µs to 400 s

Sweep (trace) point range

- Span = 0 Hz 2 to 8192

Resolution bandwidth

1 Hz to 3 MHz (–3 dB) in
- 1-3-10 sequence\(^6\)
- 5 MHz (–3 dB) bandwidth
- 200 Hz, 9 kHz, 120 kHz, 1 MHz
- (–6 dB) EMI bandwidths
- 1 MHz (impulse) EMI bandwidth

Accuracy
- 1 Hz to 300 MHz (–3 dB) ±10%
- 1 kHz to 3 MHz (–3 dB) ±15%
- 5 MHz (–3 dB) ±30%
- 200 Hz (–6 dB) ±10%
- 9 kHz to 120 kHz (–6 dB) ±20%
- 1 MHz (–6 dB) ±10%
- 1 MHz (impulse) ±15%

Selectivity (characteristic)
- 10 Hz to 300 Hz (–3 dB) < 5:1 (–60 dB/–3 dB) (Digital, approximately Gaussian-shaped)
- 1 kHz to 3 MHz (–3 dB) < 5:1 (–60 dB/–3 dB) (approximately Gaussian-shaped)
- 200 Hz (–6 dB) < 3:1 (–40 dB/–6 dB) (Digital, Kaizer Windows)
- 9 kHz, 120 kHz, 1 MHz (–6 dB) < 10:1 (–60 dB/–6 dB) (approximately Gaussian-shaped)
- 1 MHz (impulse) < 10:1 (–60 dB/–6 dB) (approximately Gaussian-shaped)

Stability

Noise sidebands (1 kHz RBW, 30 Hz VBW and sample detector)

Stability specifications

<table>
<thead>
<tr>
<th>Offset (Hz)</th>
<th>Specified</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 kHz</td>
<td>na</td>
<td>–78 dBc/Hz(^8)</td>
</tr>
<tr>
<td>≥ 10 kHz</td>
<td>≤ –90 dBc/Hz(^8)</td>
<td>–94 dBc/Hz(^8)</td>
</tr>
<tr>
<td>≥ 20 kHz</td>
<td>≤ –100 dBc/Hz(^8)</td>
<td>–105 dBc/Hz(^8)</td>
</tr>
<tr>
<td>≥ 30 kHz</td>
<td>≤ –106 dBc/Hz(^8)</td>
<td>–112 dBc/Hz(^8)</td>
</tr>
<tr>
<td>≥ 100 kHz</td>
<td>≤ –118 dBc/Hz(^8)</td>
<td>–122 dBc/Hz(^8)</td>
</tr>
<tr>
<td>≥ 1 MHz</td>
<td>≤ –125 dBc/Hz(^8)</td>
<td>–127 dBc/Hz(^8)</td>
</tr>
<tr>
<td>≥ 5 MHz</td>
<td>≤ –127 dBc/Hz(^8)</td>
<td>–129 dBc/Hz(^8)</td>
</tr>
<tr>
<td>≥ 10 MHz</td>
<td>≤ –131 dBc/Hz(^8)</td>
<td>–136 dBc/Hz(^8)</td>
</tr>
</tbody>
</table>

Residual FM

- 1 kHz RBW, 1 kHz VBW ≤ 100 x N\(^4\) Hz pk-pk in 100 ms
- 10 Hz RBW, 10 Hz VBW ≤ 2 x N\(^4\) Hz pk-pk in 20 ms

<table>
<thead>
<tr>
<th>System-related sidebands</th>
<th>Specified</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 30 kHz offset from CW signal ≤ –65 dBc + 20 Log N(^4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Not available in RBW < 1 kHz
2. Marker level to DANL > 25 dB, Span ≤ 1.5 GHz, RBW/Span ≥ 0.002
3. Frequency reference error = (aging rate x period of time since adjustment + settability + temperature stability)
4. N = LO harmonic mixing mode
5. RBW ≥ 1 kHz, 2 sweep points
6. 1 Hz to 300 Hz are only available in spans of ≤ 5 MHz. This bandwidth is not usable when the tracking generator is turned on (Option 1DN).
7. Characteristic
8. Add 20 log(N) for frequencies > 6.7 GHz.
Amplitude specifications

Amplitude range

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>Displayed average noise level (DANL) to maximum safe input level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input attenuator range</td>
<td>E7402A 0 to 65 dB (75 dB1), in 5 dB steps</td>
</tr>
<tr>
<td></td>
<td>E7405A 0 to 65 dB, in 5 dB steps</td>
</tr>
</tbody>
</table>

Maximum safe input level

Average continuous power	+30 dBm (1 W)
Peak pulse power	+50 dBm (100 W) (input attenuator ≥ 30 dB)
Maximum dc	0 Vdc (dc coupled)
1 dB gain compression (total power at input mixer2)	€5 0 MHz 0 dB
	≥ 6.7 GHz –3 dB
	≥ 13.2 GHz –5 dB

Display range

Log Scale	RBW ≥ 1kHz 0 to –85 dB from reference level is calibrated
Linear scale	RBW ≤ 300 Hz 0 to –120 dB from reference level is calibrated
Scale units	dBm, dBmV, dBµV, dBµA, Amps, Volts and Watts

Display average noise level (DANL)

<table>
<thead>
<tr>
<th>RBW</th>
<th>1 kHz</th>
<th>10 Hz</th>
<th>1 kHz w/preamp</th>
<th>10 Hz w/preamp</th>
<th>1 Hz w/preamp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>on</td>
<td>typical</td>
<td>on</td>
</tr>
</tbody>
</table>

Marker readout resolution

| Fast sweep times for zero span (Option AYX) | Log Scale, 0 to –85 dB 0.3 dB |
| Linear | 0.3 % of reference level |

1. Characteristic
2. Mixer power level (dBm) = input power (dBm) – input attenuator (dB)
3. Typical
4. 0 to 50 dB for RBWs ≤ 300 Hz and span = 0 Hz, or when auto ranging is off, or 0 to 30 dB for RBW = 200 Hz.
5. 0 to –70 dB range when span = 0 Hz, when RBW = 200 Hz, or when IF gain is fixed.
Frequency response

| Range | Absolute | Typical | Relative
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Hz to 3 GHz</td>
<td>±0.5 dB</td>
<td>na</td>
<td>±0.5 dB</td>
</tr>
<tr>
<td>3.0 GHz to 6.7 GHz</td>
<td>±1.5 dB</td>
<td>±0.39 dB</td>
<td>±1.3 dB</td>
</tr>
<tr>
<td>6.7 GHz to 13.2 GHz</td>
<td>±2.0 dB</td>
<td>±0.68 dB</td>
<td>±1.8 dB</td>
</tr>
<tr>
<td>13.2 GHz to 26.5 GHz</td>
<td>±2.0 dB</td>
<td>±0.86 dB</td>
<td>±1.8 dB</td>
</tr>
</tbody>
</table>

Input attenuation switching uncertainty at 50 MHz

| Attenuation setting | ±0.3 dB | Reference | ±0.3 dB | 20 to 65 dB | ±(0.1 dB + 0.01 x attenuator setting) |

Absolute amplitude accuracy

<table>
<thead>
<tr>
<th>Setting</th>
<th>Typical</th>
<th>±0.34 dB</th>
<th>±0.13 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamp on</td>
<td>±0.37 dB</td>
<td>±0.14 dB</td>
<td></td>
</tr>
<tr>
<td>Overall accuracy</td>
<td>±(0.54 dB + absolute frequency response)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RF input VSWR

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7402A</td>
<td>100 Hz to 100 kHz, 100 kHz to 3 GHz</td>
<td>1.1:1</td>
</tr>
<tr>
<td>E7405A</td>
<td>100 Hz to 100 kHz, 100 kHz to 6.7 GHz</td>
<td>1.1:1</td>
</tr>
<tr>
<td></td>
<td>6.7 GHz to 13.2 GHz, 13.2 GHz to 22 GHz</td>
<td>1.5:1</td>
</tr>
<tr>
<td></td>
<td>22 GHz to 26.5 GHz, 22 GHz to 26.5 GHz</td>
<td>2.2:1</td>
</tr>
</tbody>
</table>

Resolution bandwidth switching uncertainty

<table>
<thead>
<tr>
<th>RBW</th>
<th>±0.3 dB</th>
<th>±0.6 dB</th>
<th>±0.3 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz to 3 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Hz to 300 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference level

<table>
<thead>
<tr>
<th>Range</th>
<th>±149 dBm to max. mixer level + attenuator setting</th>
</tr>
</thead>
</table>

Resolution

| Log scale | ±0.1 dB |
| Linear scale | ±0.12% of reference level |

Accuracy (reference level)

| ± attenuator setting | ±0.5 dB (–10 dBm to –60 dBm) |
| + preamp gain | ±0.7 dB (–85 dBm to –90 dBm) |

Display scale fidelity

<table>
<thead>
<tr>
<th>Log maximum cumulative</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBW ≥ 1 kHz</td>
<td></td>
</tr>
<tr>
<td>dB below reference level</td>
<td></td>
</tr>
<tr>
<td>0 dB (reference)</td>
<td>±0.00 dB</td>
</tr>
<tr>
<td>> 0 dB to 10 dB</td>
<td>±0.3 dB</td>
</tr>
<tr>
<td>> 10 dB to 20 dB</td>
<td>±0.4 dB</td>
</tr>
<tr>
<td>> 20 dB to 30 dB</td>
<td>±0.5 dB</td>
</tr>
<tr>
<td>> 30 dB to 40 dB</td>
<td>±0.6 dB</td>
</tr>
<tr>
<td>> 40 dB to 50 dB</td>
<td>±0.7 dB</td>
</tr>
<tr>
<td>> 50 dB to 60 dB</td>
<td>±0.7 dB</td>
</tr>
<tr>
<td>> 60 dB to 70 dB</td>
<td>±0.8 dB</td>
</tr>
<tr>
<td>> 70 dB to 80 dB</td>
<td>±0.8 dB</td>
</tr>
<tr>
<td>> 80 dB to 85 dB</td>
<td>±1.15 dB</td>
</tr>
</tbody>
</table>

Linear accuracy

1 Hz to 300 Hz (span > 0 Hz)	±(0.3 dB + 0.01 x dB from reference level)
0 dB to 98 dB	±(2.0 dB from reference level)³
≥ 98 dB to 120 dB	±(2.0 dB from reference level)³

Linear to log switching

| ±0.15 dB at reference level |

Notes

1. Referenced to 50 MHz amplitude reference (20 °C to 30 °C)
2. Reference to midpoint between highest and lowest frequency response deviations. (20 °C to 30 °C)
3. Characteristic
4. Reference level –20 dBm; input attenuation 10 dB; center frequency 50 MHz; RBW 1 kHz; VBW 1 kHz; scale linear or log; span 2 kHz; sweep time coupled, sample director, signal at reference level.
5. 1 Hz to 300 Hz are only available in spans of ≤ 5 MHz and are not usable with tracking generator Option 1DN.
6. For reference levels 0 to 50 dBm; input attenuation 10 dB; dc coupled; RFW 1 kHz; VBW 1 kHz; scale loge range 0 to –50 dB from reference level; sweep time coupled; signal input 0 to 50 dBm; span ≤ 20 kHz.
7. 0 to 50 dB for RBWs ≤ 300 Hz and span = 0 Hz, or when auto ranging is off, or 0 to 30 dB for RBW = 200 Hz.
Spurious responses
Second harmonic distortion
10 MHz to 500 MHz < –65 dBc for –30 dBm tone at input mixer ¹
500 MHz to 1.5 GHz < –75 dBc for –30 dBm tone at input mixer ²
1.5 GHz to 2.0 GHz < –85 dBc for –10 dBm tone at input mixer ²
> 2.0 GHz < –100 dBc for –10 dBm tone at input mixer ² (or below displayed average noise level)

Third order intermodulation distortion
100 MHz to 6.7 GHz < –85 dBc for two –30 dBm tones at input mixer ¹ and > 50 kHz separation
> 6.7 GHz < –75 dBc for two –30 dBm tones at input mixer ¹ and > 50 kHz separation

Other input related spurious < –65 dBc, for –20 dBm tone at input mixer ¹

Residual responses (input terminated and 0 dB attenuation)
150 kHz to 6.7 GHz < –90 dBm

Amplitude ref. output
Amplitude –20 dBm (nominal)

FM demodulation ³
Input level –60 dBm + attenuator setting
Signal level 0 to –30 dB below reference level

Quasi-peak detector specifications
The EMC analyzer displays the quasi-peak amplitude of a pulse radio frequency on continuous wave signals. Amplitude response conforms with Publication 16 of Comite International Special des Perturbations Radioelectrique (CISPR) Section 1, Clause 2, as indicated in the relative quasi-peak response table.

<table>
<thead>
<tr>
<th>Pulse repetition frequency (Hz)</th>
<th>120 kHz EMI BW</th>
<th>9 kHz EMI BW</th>
<th>9 kHz to 150 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>+8.0 ±1.0</td>
<td>+4.5 ±1.0</td>
<td>–</td>
</tr>
<tr>
<td>100</td>
<td>0 dB reference ⁴</td>
<td>0 dB reference ⁴</td>
<td>+4.0 ±1.0</td>
</tr>
<tr>
<td>50</td>
<td>–</td>
<td>+3.0 ±1.0</td>
<td>–</td>
</tr>
<tr>
<td>20</td>
<td>–8.0 ±1.0</td>
<td>–6.5 ±1.0</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>–14 ±1.5</td>
<td>–10.0 ±1.5</td>
<td>–4.0 ±1.0</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>–7.5 ±1.5</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>–26 ±2.0</td>
<td>–20.5 ±2.0</td>
<td>–13.0 ±2.0</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>–22.5 ±2.0</td>
<td>–17.0 ±2.0</td>
</tr>
<tr>
<td>Isolated pulse</td>
<td>–</td>
<td>–23.5 ±2.0</td>
<td>–19.0 ±2.0</td>
</tr>
</tbody>
</table>

General specifications

Temperature range
Operating 0° C to +55° C
Storage –40° C to +75° C

EMI compatibility
Conducted and radiated emissions is in compliance with CISPR Pub. 11/1990 Group 1 Class B⁵

Audible noise
< 40 dBA pressure and < 4.6 Bel power (ISODP7779)

Military specification
Type tested to the environmental specifications of MIL-PRF-28800F, class 3

Power requirements
ON (line1) 90 to 132 V rms, 47 to 440 Hz
195 to 250 V rms, 47 to 66 Hz
Power consumption < 300 W
Standby (line 0) Power consumption < 5 W

DC operation
Voltage 12 to 20 Vdc
Power consumption < 200 W

Measurement speed
E7402A ≥ 45/sec ≥ 40/sec
E7405A ≥ 45/sec ≥ 40/sec

Local measurement rate ⁶
Remote measurement as GPIB transfer rate ⁷ ≥ 45/sec ≥ 40/sec
RF center frequency tuning time ⁸ ≥ 75/ms ≥ 75/ms

Data storage (nominal)
Internal 200 traces ⁹ or states
External (floppy) 200 traces ⁹ or states

1. Mixer power level (dBm) = input power (dBm) – input attenuator (dB)
2. Not available in RBW < 1 kHz
3. Characteristic
4. Reference pulse amplitude accuracy relative a 66 µV CW signal < 1.5 dB as specified in CISPR Pub 16 CISPR reference pulse: 0.44 µVs for 30 MHz to 1 GHz, 0.316 µVs for 150 kHz to 30 MHz, 13.5 µVs for 9 kHz to 150 kHz
5. Meets Class A performance during dc operation or serial number US41110000 or lower.
6. Characteristic; factory preset, fixed center frequency, sweep points = 101 auto align off, RBW = 1 MHz, stop frequency ≤ 3 GHz, span > 10 MHz and ≤ 600 MHz.
7. Characteristic; factory preset, fixed center frequency, sweep points = 101 auto align off, RBW = 1 MHz, stop frequency ≤ 3 GHz, span = 20 MHz, GPIB interface, display and markers off, fixed center frequency, single sweep
8. Characteristic; includes center frequency tuning and measurement plus GPIB transfer times, stop frequency ≤ 3 GHz, sweep points = 101, display and markers off, single sweep
9. When storing a 401-point trace plus the instrument state...
Weight (without options)
E7402A 14.9 kg (32.9 lbs.)
E7405A 17.1 kg (37.7 lbs.)

Dimensions
Without handle 222 mm(H) x 409 mm(D) x 373 mm(W)
With handle (max.) 222 mm(H) x 516 mm(D) x 416 mm(W)

Inputs/outputs
Front panel connectors
Input 50 Ω type N (f)
RF Out 50 Ω type N (f)

Probe power +15 Vdc, −12.6 Vdc at 150 mA max. characteristic

Ext. keyboard 6-pin mini-DIN, PC keyboards (for entering screen titles and file names)

Speaker front-panel knob controls volume

Headphone 3.5 mm (1/8 inch) miniature audio jack
Power output 0.2 W into 4 Ω¹

Amptd ref. output 50 Ω, BNC (f)

Rear panel connectors
10 MHz ref out 50 Ω, BNC (f), > 0 dBm¹
10 MHz ref in 50 Ω, BNC (f), −15 to +10 dBm¹

Gate trig/ext. trig in BNC (f), 5 V TTL

Gate hi swp out BNC (f), 5 V TTL

VGA output VGA compatible monitor, 15-pin D-SUB, (31.5 kHz horizontal, 60 Hz vertical sync rates, non-interlaced) Analog RGB 640 x 480

IF and sweep ports
Aux IF output BNC (f), 21.4 MHz, nominal −10 to −70 dBm¹ (uncorrected)
Aux video out BNC (f), 0 to 1 V¹ (uncorrected)
Hi swp In BNC (f), low stops sweep (5 V TTL)
Hi swp out BNC (f), (5 V TTL)
Swp out BNC (f), 0 to +10 V¹ ramp

GPIB interface
Standard (Option A4H) IEEE-488 bus connector

Serial interface
(Option 1AX) RS-232, 9-pin D-SUB (m)

Parallel interface
Standard 25-pin D-SUB (f), printer port only

¹. Characteristic
Option specifications
Option 1DN tracking generator

Frequency range
9 kHz to 3.0 GHz

Output power level range
- Range: –2 to –66 dBm
- Resolution: 0.1 dB
- Absolute accuracy: ±0.75 dB (at 50 MHz)

Output vernier range
8 dB

Output attenuator range
0 to 56 dB, 8 dB steps

Output flatness
- 9 kHz to 10 MHz: ±3.0 dB
- 10 MHz to 3.0 GHz: ±2.0 dB

Effective source match (characteristic)
- 0 dB attenuation: < 2.0:1 (0 dB attenuation)
- ≥ 8 dB attenuation: < 1.5:1 (≥ 8 dB attenuation)

Spurious output
- Harmonic spurs (–1 dBm output)
 - 9 kHz to 3 GHz: < –25 dBc
- Non-harmonic spurs
 - 9 kHz to 2 GHz: < –27 dBc
 - 2 GHz to 3 GHz: < –23 dBc

Dynamic range
Maximum output power – displayed average noise level

Power sweep range
(–10 dBm to –1 dBm) –
(source attenuator setting)

Preamplifier (standard)
1 MHz to 3 GHz
(nominal gain 20 dB)
Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

Option ordering information
ESA/EMC Spectrum Analyzer Configuration Guide
literature number 5968-3412E

Agilent Email Updates
www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Direct
www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions with confidence.

Agilent Open
www.agilent.com/find/open
Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

www.agilent.com
www.agilent.com/find/EMC
For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 01 36027 71571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
Germany 07031 464 6333**
*0.125 €/minute
**0.14 €/minute
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus

Revised: August 14, 2008

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc.
Printed in USA, September 3, 2008
5968-3662E