Bring the full power of your Keysight Technologies, Inc. logic analyzer to your project with high quality probing solutions
- Wide range of solutions to meet your measurement needs
- Soft Touch Connectorless probing
- High-density, high-performance probing solutions
- General-purpose probing
Table of Contents

Probing for Memory System Validation...03
Reliable Connections Ensure Accuracy ...04
Which Logic Analyzer? ...04
Probe Selection Guide for All Keysight Logic Analyzers05
Selecting the Optimum Probing Strategy ...09
Probing Solutions for 90-pin Logic Analyzers General-Purpose Probing11
Probing Solutions for 90-pin Logic Analyzers Soft Touch Connectorless Probing ..17
Probing Solutions for 90-pin Logic Analyzers Mictor and Samtec Probing34
Probing Solutions for 90-pin Logic Analyzers High-Speed Timing Probing37
U4200A Series Probe/Cable Solutions for 160-pin Front Panel Connector Logic Analyzers ..38
U4206A Probe, 34 Channel, Soft Touch Pro, Single-Ended, to Four 160-pin Direct Connect to Logic Analyzer Front Panel Connectors40
U4207A Probe, Zero Ω, 34 Channel, Soft Touch Pro, Single-Ended, to Four 160-pin Direct Connect to Logic Analyzer Front Panel Connectors43
U4200 Series Direct Connect Cables for use with 16850 Series Portable Logic Analyzers43
General-Purpose Probing Flying Lead Probing Accessories44
40-pin and 90-pin Logic Analyzers Probe Cables ..45
Probing Solutions for 40-pin Logic Analyzers General-Purpose Probing47
Probing Solutions for 40-pin Logic Analyzers Designing for Logic Analysis Probing50
Probing Solutions for 40-pin Logic Analyzers Soft Touch Connectorless Probing51
Probing Solutions for 40-pin Logic Analyzers Mictor and Samtec Probing62
Probing Solutions for 40-pin Logic Analyzers Custom Probing70
Related Information ...75
Evolving Since 1939 ..77
Probing for Memory System Validation

Keysight Technologies, Inc. has the measurement tools you need to validate the very latest memory technologies. These include logic analyzers, oscilloscopes and software for automated compliance, decode, and protocol checking. To complement our high speed digital instruments and software, Keysight offers probing solutions with a comprehensive range of Ball Grid Array (BGA) interposers. When positioned between the processor memory controller and the memory device, the interposers allow you to make signal quality or protocol measurements with minimal effect on the system-under-test. You can choose from a large selection of existing BGA interposers or work with Keysight’s Application Engineers to define customized probing solutions for your specific needs.

Refer to the following publications for information on available DDR/LPDDR BGA interposers.

<table>
<thead>
<tr>
<th>Memory type</th>
<th>Model number coverage</th>
<th>Publication title</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPDDR2/3/4</td>
<td>Custom probes through the AEO</td>
<td>Digital BGA interposer catalog</td>
<td>5992-0379ENAT</td>
</tr>
</tbody>
</table>
Reliable Connections Ensure Accuracy

Signal frequency content drives probing solutions

Faster clock rates demand tighter timing tolerances, such as setup and hold specifications. Systems with faster clock rates usually have shorter rise and fall times. Signals with shorter transition times have more high frequency content and are more susceptible to high frequency analog problems such as cross talk, reflections, ground bounce, noise and emissions. Susceptibility of a system to analog problems relates to the transition times of the signals, not the clock rate. A system with slow transition times cannot have high clock rates. However, it is possible for a system with slower clock rates to have signals with very fast transition times.

General-purpose probing solutions provide the analog bandwidth required to run each logic analyzer module at its maximum clock rate. The high input impedance of these probes, especially at high frequencies, presents a minimal load to most systems. Systems that are operating with little margin should be designed with consideration for both the system components and the input impedance of the probing solution being used during debug. Input impedance specifications or equivalent load diagrams can be found for each of the probing solutions described in this document.

Which Logic Analyzer?

For logic analyzers with 160-pin front panel connector, use probes identified in this document as “Direct-connect probes.”

For logic analyzers with cables that use a 3M-style connector with two rows of 20 pins on 0.1-inch centers, as illustrated in Figure 1.1, use probes identified in this document as “for analyzers with 40-pin pod connectors.”

For logic analyzers with cables that use a 90-pin, high-density connector as illustrated in Figure 1.2, use probes identified in this document as “for analyzers with 90-pin pod connectors.”

<table>
<thead>
<tr>
<th>90-pin pod connector (pages 10 to 36)</th>
<th>40-pin pod connector (pages 47 to 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16950B, 16951B</td>
<td>16911A</td>
</tr>
<tr>
<td>U4164A, U4154A/B, and 16962A</td>
<td>16910A</td>
</tr>
<tr>
<td></td>
<td>16800 Series benchtop analyzers</td>
</tr>
</tbody>
</table>

Direct connect probe/cables (pages 37 to 39)

| U4164A |
| U4154A/B, 16850 Series |

Other considerations

Physical connection compatibility between various Keysight probes may allow you to mix and match a variety of probes and accessories. However, a probe accessory designed for slower clock speeds will not deliver high-speed target performance simply because it is used with a higher speed analyzer module. Also, the serial connection of multiple probe leads and/or accessories will degrade signal integrity.
Probe Selection Guide for All Keysight Logic Analyzers

Logic analyzer compatibility

- U4164A, U4154A/B
- 16850A Series
- 16962A, 16951B, 16950A/B
- 16760A, 16756A, 16755A, 16754A, 16753A

Note: U4201A logic analyzer cable(s) are required when using 90-pin probes with the U4164A, U4154A/B or 16850A Series logic analyzers.

<table>
<thead>
<tr>
<th>Soft touch connectorless probes</th>
<th>All soft touch probes are supplied with 5 retention modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model number</td>
<td>E5398A</td>
</tr>
<tr>
<td>Application</td>
<td>Quick connection to many channels in a small footprint without a header designed into the target</td>
</tr>
<tr>
<td>Number of channels</td>
<td>17</td>
</tr>
<tr>
<td>16 data, 1 clock</td>
<td>16 data, 1 clock</td>
</tr>
<tr>
<td>Supported signal types</td>
<td>Differential or single-ended clock single-ended data</td>
</tr>
<tr>
<td>Maximum data rate</td>
<td>4 Gb/s</td>
</tr>
<tr>
<td>Minimum signal amplitude</td>
<td>250 mV<sub>p-p</sub></td>
</tr>
<tr>
<td>Connection to target system</td>
<td>Requires half-size soft touch footprint designed into the target</td>
</tr>
<tr>
<td></td>
<td>Requires Pro Series soft touch footprint designed into the target</td>
</tr>
<tr>
<td></td>
<td>Requires original soft touch footprint designed into the target</td>
</tr>
<tr>
<td></td>
<td>Requires Pro Series soft touch footprint designed into the target system</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>< 0.7 pF</td>
</tr>
<tr>
<td>Kit of 5 additional retention modules</td>
<td>E5396-68702</td>
</tr>
<tr>
<td>Number of probes required per U4201A cable</td>
<td>1</td>
</tr>
</tbody>
</table>

1. The E5402A Soft Touch Pro probe is a low profile right angle version of the E5406A above.
Probe Selection Guide for All Keysight Logic Analyzers (Continued)

Logic analyzer compatibility

- U4164A, U4154A/B
- 16850A Series
- 16962A, 16951B, 16950A/B
- 16760A, 16756A, 16755A, 16754A, 16753A

Note: U4201A logic analyzer cable(s) are required when using 90-pin probes with the U4164A, U4154A/B or 16850A Series logic analyzers.

<table>
<thead>
<tr>
<th>Model number</th>
<th>Samtec probes</th>
<th>Mictor probes</th>
<th>General purpose flying lead sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>E5378A</td>
<td>E5379A</td>
<td>E5380B</td>
</tr>
<tr>
<td>Quick connection to many channels in a small footprint</td>
<td>Flexible connection to many signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of channels</td>
<td>34 32 data, 2 clocks</td>
<td>17 16 data, 1 clock</td>
<td>34 32 data, 2 clocks</td>
</tr>
<tr>
<td>Supported signal types</td>
<td>Differential or single-ended clock single-ended data</td>
<td>Differential or single-ended clock and or data</td>
<td>Single-ended clock single-ended data</td>
</tr>
<tr>
<td>Maximum data rate</td>
<td>1.5 Gb/s</td>
<td>1.5 Gb/s</td>
<td>600 Mb/s</td>
</tr>
<tr>
<td>Minimum signal amplitude</td>
<td>250 mV__p-p</td>
<td>V_max - V_min _200 mV</td>
<td>300 mV__p-p</td>
</tr>
<tr>
<td>Connection to target system</td>
<td>Requires 100-pin Samtec connector designed into the target system</td>
<td>Requires 100-pin Samtec connector designed into the target system</td>
<td>Requires 38-pin Mictor connector designed into the target system</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>1.5 pF</td>
<td>1.5 pF</td>
<td>3.0 pF</td>
</tr>
<tr>
<td>Additional supplies</td>
<td>See Table 4 page 34 for shrouds and pc board connectors</td>
<td>See Table 1 (page 10)</td>
<td>See Figure 4.4 (page 13)</td>
</tr>
<tr>
<td>Number of probes required per U4201A cable</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Probe Selection Guide for All Keysight Logic Analyzers (Continued)

U4200A Series direct-connect probes selection guide

Direct connect probes connect directly to the DUT and the 160-pin front panel connector of the compatible logic analyzers listed below.

Logic analyzer compatibility

- U4164A, U4154A/B
- 16850A Series

Note: The U4206A is for use only with the U4164A when in quad sample state mode or ¼ channel timing mode.

<table>
<thead>
<tr>
<th>Model number</th>
<th>Soft touch connectorless probes</th>
<th>Mictor probe</th>
<th>General purpose flying lead set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Quick connection to many channels in a small footprint without a header designed into the target system</td>
<td>Quick connection to many signals in a small footprint</td>
<td>Flexible connection to individual signals</td>
</tr>
<tr>
<td>Number of channels</td>
<td>34 data, 2 clock</td>
<td>34 data, 2 clock</td>
<td>34 data, 2 clock</td>
</tr>
<tr>
<td>Supported signal types</td>
<td>Differential or single-ended clock, single-ended data</td>
<td>Differential or single-ended clock, single-ended data</td>
<td>Single-ended clock, single-ended data</td>
</tr>
<tr>
<td>Maximum data rate</td>
<td>4 Gb/s</td>
<td>3.2 Gb/s</td>
<td>600 Mb/s</td>
</tr>
<tr>
<td>Minimum signal amplitude</td>
<td>$V_{max} - V_{min} = 300$ mV/200 mV</td>
<td>$V_{max} - V_{min} = 200$ mV</td>
<td>$V_{max} - V_{min} = 300$ mV</td>
</tr>
<tr>
<td>Connection to target system</td>
<td>Requires Pro Series soft touch footprint designed into the target</td>
<td>Requires Pro Series soft touch footprint designed into the target</td>
<td>Requires 38-pin Mictor connector designed into the target system</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>< 0.7 pF</td>
<td>< 0.7 pF</td>
<td>3.0 pF</td>
</tr>
<tr>
<td>Additional supplies</td>
<td>Kit of 5 additional retention modules</td>
<td>Kit of 5 additional retention modules</td>
<td>See Table 1 for PC board connectors and shrouds</td>
</tr>
<tr>
<td>Orderable as</td>
<td>E5403A</td>
<td>E5403A</td>
<td>See Figure for additional leads and grabbers</td>
</tr>
</tbody>
</table>

1. 300 mV input required for data rates greater than 2.5 Gb/s.
Probe Selection Guide for All Keysight Logic Analyzers (Continued)

40-pin probes selection guide

<table>
<thead>
<tr>
<th>Model number</th>
<th>Soft touch connectorless probes</th>
<th>Supplied with five retention modules</th>
<th>Samtec probe</th>
<th>Mictor probe</th>
<th>General purpose flying lead set</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5396A</td>
<td></td>
<td>E5394A</td>
<td>E5385A</td>
<td>E5346A</td>
<td>E5383A</td>
</tr>
<tr>
<td>E5404A</td>
<td></td>
<td>E5394A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5387A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Application**: Quick connection to many channels in a small footprint without a header designed into the target system.
- **Number of channels**:
 - 16 data, 1 clock
 - 32 data, 2 clock
- **Supported signal types**: All probes: single-ended clock, single-ended data.
- **Maximum data rate**:
 - > 2.5 Gb/s
 - > 2.5 Gb/s
 - > 2.5 Gb/s
 - 1.5 Gb/s
- **Minimum signal amplitude**:
 - 500 mV p-p
 - 500 mV p-p
 - 500 mV p-p
 - 500 mV p-p
- **Connection to target system**:
 - Requires half-size soft touch footprint designed into the target system.
 - Requires Pro Series soft touch footprint designed into the target system.
 - Requires original soft touch footprint designed into the target system.
 - Requires 100-pin Samtec connector designed into the target system.
 - Requires 38-pin Mictor connector designed into the target system.
 - Requires a wide assortment of accessories to connect to individual leads.
- **Input capacitance**:
 - < 0.7 pF
 - < 0.7 pF
 - < 0.7 pF
 - 1.5 pF
 - 3.0 pF
 - 1.5 pF
- **Additional supplies**:
 - Additional five retention modules.
 - Additional five retention modules.
 - Additional five retention modules.
 - See Table 1 for PC board connectors and shrouds.
 - See Table 1 for PC board connectors and shrouds.
 - See Figure for additional leads and grabbers.
- **Orderable as**:
 - Order kit E5396-68702
 - Order kit E5403A
 - Order kit E5387-68701

2. Model E5351A Unterminated Mictor probe requires isolation networks to be provided on the target system. See page 64 for details.
Selecting the Optimum Probing Strategy

What is the best way to probe your signals, given their unique characteristics?

Available probing options for all Keysight logic analyzers

<table>
<thead>
<tr>
<th>Connectorless</th>
<th>Connector Samtec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connection to the target system

- **Connectorless**: Requires appropriate pro series soft touch or original soft touch footprint designed into the target system. Retention module is used for alignment and mechanical retention only.
- **Connector Samtec**: Requires 100-pin Samtec connector designed into the target system.

Advantages

- Reduces cost and shortens the design cycle by eliminating a connector
- Eliminates the capacitive loading of a connector, which gives you the lowest-loading (< 0.7 pF), highest-performance (> 2.5 Gb/s rate) logic analyzer probing option available
- Pliable micro spring-pin design with four-point crown tip allows you to easily attach and get a reliable, repeatable contact even for contaminated or uneven board surfaces
- Flow through signal routing streamlines design flow and maintains differential pair spacing to ensure constant differential-mode impedance and virtually eliminate stubs
- Acquire high-speed single-ended or differential signals without impacting the performance of your circuit, while providing an accurate representation to the logic analyzer
- Provides ability to attach retention module to probe and browse multiple signals by pressing the probe against the target device
- Compatible with all board finishes, including lead free
- High-performance connector solution (1.5 pF loading, 1.5 Gb/s data rate)
- Supports single-ended and differential signals
- 3 times the performance and half the loading of Mictor solution

Disadvantages

- Requires up-front design of probe footprint on PCB
- Added cost to include connector
- Requires up-front design of connector on PCB
Selecting the Optimum Probing Strategy (Continued)

What is the best way to probe your signals, given their unique characteristics?

Available probing options for all Keysight logic analyzers

<table>
<thead>
<tr>
<th>Connector Mictor</th>
<th>Flying leads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires 38-pin Mictor connector designed into the target system</td>
<td>Connects to individual, widely dispersed signals at IC pins, traces, pads, vias</td>
</tr>
<tr>
<td>Advantages</td>
<td></td>
</tr>
<tr>
<td>– Reliable and cost-effective solution for lower data rates (600 Mb/s)</td>
<td>– High-performance accessories are based on award winning, InfiniiMax scope probes</td>
</tr>
<tr>
<td>– Supports single-ended signaling</td>
<td>– Compatible with a wide variety of accessories to connect to IC pins, traces, pads, vias</td>
</tr>
<tr>
<td>– 3.0 pF capacitive loading</td>
<td>– Maintains a one-to-one signal-to-ground ratio</td>
</tr>
<tr>
<td></td>
<td>– Doesn’t require up-front design effort</td>
</tr>
<tr>
<td>Disadvantages</td>
<td></td>
</tr>
<tr>
<td>– Added cost to include connector</td>
<td>– More time-consuming to connect</td>
</tr>
<tr>
<td>– Combination of through-hole and surface-mount technology can make signal routing and board component loading difficult</td>
<td></td>
</tr>
<tr>
<td>– Requires up-front design of connector on PCB</td>
<td></td>
</tr>
</tbody>
</table>
E5382B single-ended flying lead probe set

The E5382B is a 17-channel single-ended flying lead probe compatible with logic analyzers with a 90-pin pod connection. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The E5382B is useful for acquiring signals from dispersed locations or when a mass connection scheme is not available. The E5382B has the following:

- 16 single-ended data inputs
- One differential or single-ended clock input
- Variety of supplied accessories

Unused clock inputs can be used as data inputs.

Table 1. Accessories

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5382-82103</td>
<td>Probe pin kit, 2 resistive pins per kit</td>
</tr>
<tr>
<td>E5382-82101</td>
<td>High-frequency probing kit, 2 resistive signal wires and 4 ground wires per kit</td>
</tr>
<tr>
<td>16517-82109</td>
<td>Grabber clip kit, 20 grabbers per kit</td>
</tr>
<tr>
<td>16517-82105</td>
<td>Ground extender kit, 20 ground extenders per kit</td>
</tr>
<tr>
<td>16517-82106</td>
<td>Right-angle ground lead kit, 20 ground leads per kit</td>
</tr>
</tbody>
</table>

Figure 4.1. E5382B flying lead set.
Suggested configurations and characteristics

Table 2. E5382B suggested configurations and characteristics

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
<th>Total lumped input C</th>
<th>Maximum recommended state speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 Ω resistive signal pin (orange) and solder-down ground lead</td>
<td>1.3 pF</td>
<td>1.5 Gb/s</td>
<td></td>
</tr>
<tr>
<td>5 cm resistive signal lead (can be soldered-down) and solder-down ground lead</td>
<td>1.6 pF</td>
<td>1.5 Gb/s</td>
<td></td>
</tr>
<tr>
<td>Flying lead and ground extender</td>
<td>1.4 pF</td>
<td>1.5 Gb/s</td>
<td></td>
</tr>
<tr>
<td>Grabber clip and right-angle 2.0 pf ground lead</td>
<td>2.0 pF</td>
<td>600 Mb/s</td>
<td></td>
</tr>
</tbody>
</table>
Probing Solutions for 90-pin Logic Analyzers
General-Purpose Probing (Continued)

Available accessories

Ground connector

It is essential to ground every tip that is in use. For best performance at high speeds, every tip should be grounded individually to ground in the system under test.

Adapting to coaxial connectors

The Keysight E9638A probe tip to BNC adapter can be used to connect one of the flying lead probes of the E5382B to a BNC connector. To probe other coaxial connectors, use the E9638A adapter, a BNC termination, and an adapter to the other type of coaxial connector. Refer to Figure 4.3.

Note: Examples of convenient connection which may result in degraded performance.

Figure 4.2. 5063-2174 BNC to probe tip adapter.

Figure 4.3. Recommended configurations to probe RF coaxial connectors with the E5382B flying lead probes.
E5381B differential flying-lead probe set
The E5381B is a 17-channel differential flying-lead probe compatible with logic analyzers with a 90-pin pod connection. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The E5381B is useful for acquiring signals from dispersed locations or when a mass connection scheme is not available. The E5381B has the following:
- 16 differential or single-ended data inputs
- One differential or single-ended clock input
- Variety of supplied accessories

Unused clock inputs can be used as data inputs.

Replaceable parts and additional accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Keysight part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>82 Ω resistor trimming template</td>
<td>1</td>
<td>01131-94309</td>
</tr>
<tr>
<td>Accessory kit - coaxial tip resistors (82 Ω)</td>
<td>34</td>
<td>E5381-82101</td>
</tr>
<tr>
<td>Accessory kit - socket adapter</td>
<td>34</td>
<td>E5381-82102</td>
</tr>
<tr>
<td>Accessory kit - damped wire (160 Ω)</td>
<td>34</td>
<td>E5381-82105</td>
</tr>
<tr>
<td>Accessory kit - 3-pin header</td>
<td>34</td>
<td>E5381-82104</td>
</tr>
<tr>
<td>Cable - main</td>
<td>1</td>
<td>E5381-61603</td>
</tr>
</tbody>
</table>
Probing Solutions for 90-pin Logic Analyzers
General-Purpose Probing (Continued)

Suggested configurations and characteristics

Table 3. E5381B suggested configurations and characteristics

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
<th>Total lumped input C</th>
<th>Maximum recommended state speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coaxial tip</td>
<td>Solder attach to components, traces, pads, or VIAs.</td>
<td>0.9 pF</td>
<td>1.5 Gb/s</td>
</tr>
<tr>
<td>Resistor (82 Ω blue)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-pin header</td>
<td></td>
<td>1.0 pF</td>
<td>1.5 Gb/s</td>
</tr>
<tr>
<td>Socket adapter</td>
<td></td>
<td>1.1 pF</td>
<td>1.5 Gb/s</td>
</tr>
<tr>
<td>Damped wire</td>
<td>Solder attach to components, traces, pads, or VIAs.</td>
<td>1.3 pF</td>
<td>1.5 Gb/s</td>
</tr>
</tbody>
</table>
Probing Solutions for 90-pin Logic Analyzers
General-Purpose Probing (Continued)

Recommended probe configurations
For the best performance, use the following configurations. The configurations are listed in the recommended order.

<table>
<thead>
<tr>
<th>Flexible direct ground pin</th>
<th>Ground extender</th>
<th>SMT tack-on signal/ground</th>
<th>Pin and socket ground lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make contact with the flexible ground first, then flex it to place the signal pin.</td>
<td></td>
<td>Ground black</td>
<td>Signal red</td>
</tr>
<tr>
<td>0.635mm (0.025") square pin or 0.66-0.84mm diameter pin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.6. Probing configurations that give the best signal fidelity.
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing

Several options are available for connecting Keysight logic analyzers with 90-pin pod connectors to a target system using mass connections.

Keysight Pro Series soft touch connectorless logic analyzer probes

Keysight has developed connectorless logic analyzer probes based on soft touch probing technology. Connectorless logic analyzer probing removes the connector that is traditionally attached to the target board and replaces it with an array of probe pads. This reduces the probe load on the target by eliminating the loading associated with the physical body of the connector. Additionally, this streamlines the design flow by eliminating the need to assign a logic analyzer connector to the bill of material of your board, procuring those connectors and then having them loaded onto your board.

Keysight’s soft touch connectorless probes use micro spring-pin technology to provide reliable contact which is not dependent on the planarity of the PC board or the plating processes used to fabricate the board. No special cleaning processes are required when using Keysight’s soft touch probes.

The new Keysight Pro Series soft touch connectorless probes offer a 30% smaller footprint than the original soft touch probes and are the basis for the industry standard connectorless probing footprint.

The probes use a retention module that ensures soft touch pin-to-PC board pad alignment and holds the probe in place while in use. The Pro Series soft touch uses a “top-side” mountable retention module. The retention module is mounted on the same side of the board as the probing footprint so there is no need to access the back-side of the board. Because there is no requirement for the retention module pins to extend beyond the back-side of the board, the retention module is compatible with virtually any board thickness.

![Figure 4.7. “Top-side” mountable retention module.](image-url)
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

E5405B Differential Pro series soft touch connectorless probe

The E5405B is a 17-channel differential Pro Series soft touch connectorless probe compatible with all Keysight logic analyzers that have a 90-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to.

Features
- No connector on the target board
- Top-side retention module
- Industry-standard connectorless footprint
- 17 channels, differential or single-ended clock and data
- Extremely low, < 0.7 pF, equivalent load capacitance
- Capable of data rates of 4 Gb/s (maximum rate dependent on analyzer used)
- 200 mV Vmax–Vmin minimum signal amplitude
- Robust and reliable soft touch technology

Unused clock inputs can be used as data inputs.

The E5405B uses the same retention module as the E5404A and E5406A Pro Series soft touch connectorless probe.

A kit of five retention modules is shipped with each Pro Series soft touch probe. Additional kits can be ordered using Keysight part number E5403A.

E5406A/E5402A Pro Series soft touch connectorless probes

The E5406A/E5402A are 34-channel single-ended Pro Series soft touch connectorless probe compatible with all Keysight logic analyzers that have a 90-pin pod connector. The E5402A is a low profile right angle version of the E5406A probe.

Features
- No connector on the target board
- Top-side mount retention module
- Industry-standard connectorless footprint
- 34 channels, single-ended or differential clock and single-ended data
- Extremely low, < 0.7 pF, equivalent load capacitance
- Capable of data rates of 4 Gb/s (maximum rate dependent on analyzer used)
- 250 mV p-p minimum signal amplitude
- Robust and reliable soft touch technology

Unused clock inputs can be used as data inputs.

The E5406A (used with logic analyzers with a 90-pin cable connector) uses the same footprint, pinout, and retention module as the E5404A and E5402A Pro Series soft touch connectorless probes (used with logic analyzers with a 40-pin cable connector).

A kit of five retention modules is shipped with each Pro Series soft touch probe. Additional kits can be ordered using Keysight part number E5403A. The low profile E5402A probe uses retention module Keysight part number E5412A.
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

E5390A single-ended soft touch connectorless probe
The E5390A is a 34-channel single-ended soft touch connectorless probe compatible with all Keysight logic analyzers that have a 90-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:
- 32 single-ended data inputs
- Two differential or single-ended clock inputs
- < 0.7 pf input capacitance
- 250 mV p-p minimum signal amplitude

Unused clock inputs can be used as data inputs.

The E5390A (used with logic analyzers with a 90-pin pod connector) uses the same footprint, pinout and retention module as the E5394A single-ended soft touch connectorless probe (used with logic analyzers with a 40-pin pod connector).

A kit of five retention modules is shipped with each soft touch probe. Additional kits can be ordered using Keysight part number E5387-68701.

E5398A half-size soft touch connectorless probe
The E5398A is a small space saving probe compatible with all Keysight logic analyzers that have a 90-pin cable connector. It is a 17-channel, single-ended probe capable of capturing data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:
- 16 single-ended data inputs
- One differential or single-ended clock input
- < 0.7 pf equivalent load capacitance
- 250 mV p-p minimum signal amplitude

Unused clock inputs can be used as data inputs.

The E5398A (used with logic analyzers with a 90-pin cable connector) uses the same footprint, pinout, and retention module as the E5396A single-ended soft touch connectorless probe (used with logic analyzers with a 40-pin cable connector).

More information about soft touch connectorless probes is available on the web at www.keysight.com/find/softtouch.
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Probe dimensions

The following figures show dimensions, footprint, and pinout information you will need to design your target system board for use with the Keysight soft touch probes.

Figure 4.9. E5405B probe dimensions.

Figure 4.10. E5406A probe dimensions.
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

![Pro Series soft touch retention module dimensions](image1)

Pro Series soft touch retention module dimensions
The following dimensions show the soft touch probe attached to the retention module. The retention module is mounted on the PC board.

![Pro Series soft touch side-by-side dimensions](image2)

Figure 4.11. Pro Series soft touch retention module dimensions, part number E5403A.

Figure 4.12. Pro Series soft touch side-by-side dimensions with retention module, part number E5403A.
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Figure 4.13. E5402A probe dimensions.

Figure 4.14. E5412A retention module dimensions.

Figure 4.15. E5412A side-by-side dimensions.
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Drawing notes:

1. Maintain a solder mask web between pads when traces are routed between the pads on the same layer. The solder mask may not encroach onto the pads within the pad dimension shown.

2. VIAs not allowed on these pads. VIA edges may be tangent to pad edges as long as a solder mask web between VIAs and pads is maintained.

3. Surface finishes on pads should be HASL immersion silver, or gold over nickel.

4. This footprint is compatible with retention module Keysight part number E5405-68702.

5. This through hole is not used with the Keysight retention module.

6. Plated through hole should not be tied to ground plane for thermal relief.

Figure 4.16. Pro Series soft touch footprint dimensions (see drawing notes).

Figure 4.17. Pad numbers for E5404/06A 34-channel single-ended probes.
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

E5404/06A 34-channel single-ended probe

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Pad #</th>
<th>Channel</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>A1</td>
<td>0</td>
<td>Whichever pod is connected to “Odd” on the E5404/06A probe</td>
</tr>
<tr>
<td>D1</td>
<td>A2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>A4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>A5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock 1+</td>
<td>A7</td>
<td>Clock</td>
<td></td>
</tr>
<tr>
<td>GND/NC/Clock 1–</td>
<td>A8</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>A10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>A11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>A13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>A14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>A16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>A17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>A19</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>A20</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>A22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>A23</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>A25</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>A26</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E5404/06A 34-channel single-ended probe

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Pad #</th>
<th>Channel</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>B2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>B3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>B5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>B6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>B8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>B9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>B11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>B12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>B14</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>B15</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>B17</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>B18</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>B20</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>B21</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Whichever pod is connected to “Odd” on the E5404/06A probe

Whichever pod is connected to “Even” on the E5404/06A probe

Whichever pod is connected to “Odd” on the E5404/06A probe

Whichever pod is connected to “Even” on the E5404/06A probe
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

<table>
<thead>
<tr>
<th>Pad</th>
<th>A1</th>
<th>B1</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0+</td>
<td>O</td>
<td>O</td>
<td>B1</td>
</tr>
<tr>
<td>D0-</td>
<td>A1</td>
<td>O</td>
<td>D1-</td>
</tr>
<tr>
<td>GND</td>
<td>A2</td>
<td>O</td>
<td>B2</td>
</tr>
<tr>
<td>D2+</td>
<td>A3</td>
<td>O</td>
<td>B3</td>
</tr>
<tr>
<td>D2-</td>
<td>A4</td>
<td>O</td>
<td>D3-</td>
</tr>
<tr>
<td>GND</td>
<td>A5</td>
<td>O</td>
<td>B5</td>
</tr>
<tr>
<td>D4+</td>
<td>A6</td>
<td>O</td>
<td>B6</td>
</tr>
<tr>
<td>D4-</td>
<td>A7</td>
<td>O</td>
<td>D3+</td>
</tr>
<tr>
<td>GND</td>
<td>A8</td>
<td>O</td>
<td>B7</td>
</tr>
<tr>
<td>D8+</td>
<td>A9</td>
<td>O</td>
<td>D5-</td>
</tr>
<tr>
<td>D8-</td>
<td>A10</td>
<td>O</td>
<td>B8</td>
</tr>
<tr>
<td>GND</td>
<td>A11</td>
<td>O</td>
<td>B10</td>
</tr>
<tr>
<td>NC</td>
<td>A12</td>
<td>O</td>
<td>D7-</td>
</tr>
<tr>
<td>NC</td>
<td>A13</td>
<td>O</td>
<td>B11</td>
</tr>
<tr>
<td>GND</td>
<td>A14</td>
<td>O</td>
<td>B12</td>
</tr>
<tr>
<td>NC</td>
<td>A15</td>
<td>O</td>
<td>B13</td>
</tr>
<tr>
<td>GND</td>
<td>A16</td>
<td>O</td>
<td>B14</td>
</tr>
<tr>
<td>NC</td>
<td>A17</td>
<td>O</td>
<td>B15</td>
</tr>
<tr>
<td>D8-</td>
<td>A18</td>
<td>O</td>
<td>B16</td>
</tr>
<tr>
<td>GND</td>
<td>A19</td>
<td>O</td>
<td>D9-</td>
</tr>
<tr>
<td>D10+</td>
<td>A20</td>
<td>O</td>
<td>B18</td>
</tr>
<tr>
<td>D10-</td>
<td>A21</td>
<td>O</td>
<td>B19</td>
</tr>
<tr>
<td>GND</td>
<td>A22</td>
<td>O</td>
<td>B20</td>
</tr>
<tr>
<td>D12+</td>
<td>A23</td>
<td>O</td>
<td>B21</td>
</tr>
<tr>
<td>D12-</td>
<td>A24</td>
<td>O</td>
<td>B22</td>
</tr>
<tr>
<td>GND</td>
<td>A25</td>
<td>O</td>
<td>B23</td>
</tr>
<tr>
<td>D14+</td>
<td>A26</td>
<td>O</td>
<td>B24</td>
</tr>
<tr>
<td>D14-</td>
<td>A27</td>
<td>O</td>
<td>B25</td>
</tr>
</tbody>
</table>

Figure 4.18. Pad numbers for E5405B 17-bit differential probe.
Probing Solutions for 90-pin Logic Analyzers

Soft Touch Connectorless Probing (Continued)

<table>
<thead>
<tr>
<th>E5405B differential probe</th>
<th>Logic analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal name</td>
<td>Pad #</td>
</tr>
<tr>
<td>D0 (+)</td>
<td>A1</td>
</tr>
<tr>
<td>D0 (–)</td>
<td>A2</td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
</tr>
<tr>
<td>D2 (+)</td>
<td>A4</td>
</tr>
<tr>
<td>D2 (–)</td>
<td>A5</td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
</tr>
<tr>
<td>D4 (+)</td>
<td>A7</td>
</tr>
<tr>
<td>D4 (–)</td>
<td>A8</td>
</tr>
<tr>
<td>Ground</td>
<td>A9</td>
</tr>
<tr>
<td>D6 (+)</td>
<td>A10</td>
</tr>
<tr>
<td>D6 (–)</td>
<td>A11</td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
</tr>
<tr>
<td>NC</td>
<td>A13</td>
</tr>
<tr>
<td>NC</td>
<td>A14</td>
</tr>
<tr>
<td>Ground</td>
<td>A15</td>
</tr>
<tr>
<td>D8 (+)</td>
<td>A16</td>
</tr>
<tr>
<td>D8 (–)</td>
<td>A17</td>
</tr>
<tr>
<td>Ground</td>
<td>A18</td>
</tr>
<tr>
<td>D10 (+)</td>
<td>A19</td>
</tr>
<tr>
<td>D10 (–)</td>
<td>A20</td>
</tr>
<tr>
<td>Ground</td>
<td>A21</td>
</tr>
<tr>
<td>D12 (+)</td>
<td>A22</td>
</tr>
<tr>
<td>D12 (–)</td>
<td>A23</td>
</tr>
<tr>
<td>Ground</td>
<td>A24</td>
</tr>
<tr>
<td>D14 (+)</td>
<td>A25</td>
</tr>
<tr>
<td>D14 (–)</td>
<td>A26</td>
</tr>
<tr>
<td>Ground</td>
<td>A27</td>
</tr>
</tbody>
</table>

Whichsoever pod is plugged into the E5405B probe

<table>
<thead>
<tr>
<th>E5405B differential probe</th>
<th>Logic analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal name</td>
<td>Pad #</td>
</tr>
<tr>
<td>Ground</td>
<td>B1</td>
</tr>
<tr>
<td>D1 (–)</td>
<td>B2</td>
</tr>
<tr>
<td>D1 (+)</td>
<td>B3</td>
</tr>
<tr>
<td>Ground</td>
<td>B4</td>
</tr>
<tr>
<td>D3 (–)</td>
<td>B5</td>
</tr>
<tr>
<td>D3 (+)</td>
<td>B6</td>
</tr>
<tr>
<td>Ground</td>
<td>B7</td>
</tr>
<tr>
<td>D5 (–)</td>
<td>B8</td>
</tr>
<tr>
<td>D5 (+)</td>
<td>B9</td>
</tr>
<tr>
<td>Ground</td>
<td>B10</td>
</tr>
<tr>
<td>D7 (–)</td>
<td>B11</td>
</tr>
<tr>
<td>D7 (+)</td>
<td>B12</td>
</tr>
<tr>
<td>Ground</td>
<td>B13</td>
</tr>
<tr>
<td>Clock–</td>
<td>B14</td>
</tr>
<tr>
<td>Clock+</td>
<td>B15</td>
</tr>
<tr>
<td>Ground</td>
<td>B16</td>
</tr>
<tr>
<td>D9 (–)</td>
<td>B17</td>
</tr>
<tr>
<td>D9 (+)</td>
<td>B18</td>
</tr>
<tr>
<td>Ground</td>
<td>B19</td>
</tr>
<tr>
<td>D11 (–)</td>
<td>B20</td>
</tr>
<tr>
<td>D11 (+)</td>
<td>B21</td>
</tr>
<tr>
<td>Ground</td>
<td>B22</td>
</tr>
<tr>
<td>D13 (–)</td>
<td>B23</td>
</tr>
<tr>
<td>D13 (+)</td>
<td>B24</td>
</tr>
<tr>
<td>Ground</td>
<td>B25</td>
</tr>
<tr>
<td>D15 (–)</td>
<td>B26</td>
</tr>
<tr>
<td>D15 (+)</td>
<td>B27</td>
</tr>
</tbody>
</table>

Whichsoever pod is plugged into the E5405B probe
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Probes dimensions

The following figures show dimensions, footprint, and pinout information you will need to design your target system board for use with the Keysight soft touch probes.

Figure 4.19. Probes dimensions.
Retention module dimensions

The soft touch probes are attached to the PC board using a retention module which ensures pin-to-pad alignment and holds the probe in place. A board thickness of up to 2.54 mm (0.100 inch) is recommended. Insert the retention module into the board, noting the keying pin, and solder the four alignment pins to the backside of the board.

![Retention module dimensions](image)

Probe and retention module dimensions

The following dimensions show the soft touch probe attached to the retention module. The retention module is mounted on the PC board.

![Probe and retention module dimensions](image)
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Probe footprint dimensions

Use these probe footprint dimensions for the PC board pads and holes for attaching the retention module.

Soft touch

![Footprint diagram](image)

Footprint is compatible with retention module, Keysight part # E5387-68702.

Retention module dimensions are 34.04 mm x 7.01 mm x 4.98 mm tall relative to the top surface of the PDB. Retention pins extend 4.32 mm beyond the bottom surface of the RM through the PCB.

Assume normal artwork tolerances for pad size dimensions.

Half-size soft touch

![Half-size footprint diagram](image)

Notes:

1. Must maintain a solder mask web between pads when traces are routed between the pads on the same layer. Soldermask may not encroach onto the pads within the pad dimension shown.

2. Via in pad not allowed on these pads. Via edges may be tangent to pad edges as long as a solder mask web between vias and pads is maintained.

3. Permissible surface finishes on pads are HASL, immersion silver, or gold over nickel.

4. Footprint is compatible with retention module, Keysight part # E5387-68702.

5. Retention module dimensions are 34.04 mm x 7.01 mm x 4.98 mm tall relative to the top surface of the PDB. Retention pins extend 4.32 mm beyond the bottom surface of the RM through the PCB.

6. Assume normal artwork tolerances for pad size dimensions.
Pinout for the E5387A differential soft touch probe

The following graphic and table show the E5387A differential soft touch probe pad numbers and logic analyzer pod inputs.

Figure 4.23. Pinout.

E5387A differential probe

<table>
<thead>
<tr>
<th>Negative signals</th>
<th>Positive signals</th>
<th>Logic analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal name</td>
<td>Pad #</td>
<td>Signal name</td>
</tr>
<tr>
<td>D0 (–)</td>
<td>A1</td>
<td>D0 (+)</td>
</tr>
<tr>
<td>D1 (–)</td>
<td>A2</td>
<td>D1 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
<td>Ground</td>
</tr>
<tr>
<td>D2 (–)</td>
<td>A4</td>
<td>D2 (+)</td>
</tr>
<tr>
<td>D3 (–)</td>
<td>A5</td>
<td>D3 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
<td>Ground</td>
</tr>
<tr>
<td>D4 (–)</td>
<td>A7</td>
<td>D4 (+)</td>
</tr>
<tr>
<td>D5 (–)</td>
<td>A8</td>
<td>D5 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A9</td>
<td>Ground</td>
</tr>
<tr>
<td>D6 (–)</td>
<td>A10</td>
<td>D6 (+)</td>
</tr>
<tr>
<td>D7 (–)</td>
<td>A11</td>
<td>D7 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
<td>Ground</td>
</tr>
<tr>
<td>Clock (–)</td>
<td>A13</td>
<td>Clock (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A14</td>
<td>Ground</td>
</tr>
<tr>
<td>D8 (–)</td>
<td>A15</td>
<td>D8 (+)</td>
</tr>
<tr>
<td>D9 (–)</td>
<td>A16</td>
<td>D9 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A17</td>
<td>Ground</td>
</tr>
<tr>
<td>D10 (–)</td>
<td>A18</td>
<td>D10 (+)</td>
</tr>
<tr>
<td>D11 (–)</td>
<td>A19</td>
<td>D11 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A20</td>
<td>Ground</td>
</tr>
<tr>
<td>D12 (–)</td>
<td>A21</td>
<td>D12 (+)</td>
</tr>
<tr>
<td>D13 (–)</td>
<td>A22</td>
<td>D13 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A23</td>
<td>Ground</td>
</tr>
<tr>
<td>D14 (–)</td>
<td>A24</td>
<td>D14 (+)</td>
</tr>
<tr>
<td>D15 (–)</td>
<td>A25</td>
<td>D15 (+)</td>
</tr>
<tr>
<td>Ground</td>
<td>A26</td>
<td>Ground</td>
</tr>
<tr>
<td>N/C</td>
<td>A27</td>
<td>N/C</td>
</tr>
</tbody>
</table>
Figure 4.24. Pinout.

Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Pad #</th>
<th>Channel</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>B1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>B2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>B4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>B5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>B7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>B8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>B10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>B11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Clock (+)</td>
<td>B13</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Pad #</th>
<th>Channel</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>A1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>A2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>A4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>A5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>A7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>A8</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>A10</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>A11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Clock (-)</td>
<td>A13</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Whichever pod is plugged into the E5398A probe
Probing Solutions for 90-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Pinout for the E5390A single-ended soft touch probe

The following graphic and table show the E5390A single-ended soft touch probe pad numbers and logic analyzer pod inputs.

<table>
<thead>
<tr>
<th>E5390A single-ended probe Signal name</th>
<th>Pad #</th>
<th>Logic analyzer Channel</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>A1</td>
<td>→ 1</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>A2</td>
<td>→ 3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>A4</td>
<td>→ 5</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>A5</td>
<td>→ 7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>A7</td>
<td>→ 9</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>A8</td>
<td>→ 11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>A10</td>
<td>→ 13</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>A11</td>
<td>→ 15</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock (–)</td>
<td>A13</td>
<td>→ Clock</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>B1</td>
<td>→ 0</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>B2</td>
<td>→ 2</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>B4</td>
<td>→ 4</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>B5</td>
<td>→ 6</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>B7</td>
<td>→ 8</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>B8</td>
<td>→ 10</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>B10</td>
<td>→ 12</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>B11</td>
<td>→ 14</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock (+)</td>
<td>B13</td>
<td>→ Clock</td>
<td></td>
</tr>
</tbody>
</table>

Whichsoever pod is connected to “Odd” on the E5390A probe

<table>
<thead>
<tr>
<th>E5390A single-ended probe Signal name</th>
<th>Pad #</th>
<th>Logic analyzer Channel</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>A14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>A15</td>
<td>→ 1</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>A16</td>
<td>→ 3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>A18</td>
<td>→ 5</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>A19</td>
<td>→ 7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>A21</td>
<td>→ 9</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>A22</td>
<td>→ 11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>A24</td>
<td>→ 13</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>A25</td>
<td>→ 15</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock (–)</td>
<td>A27</td>
<td>→ Clock</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>B15</td>
<td>→ 0</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>B16</td>
<td>→ 2</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>B18</td>
<td>→ 4</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>B19</td>
<td>→ 6</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>B21</td>
<td>→ 8</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>B22</td>
<td>→ 10</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>B24</td>
<td>→ 12</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>B25</td>
<td>→ 14</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock (+)</td>
<td>B27</td>
<td>→ Clock</td>
<td></td>
</tr>
</tbody>
</table>

Whichsoever pod is connected to “Even” on the E5390A probe

Figure 4.25. Pinout.
Equivalent probe loads

The following probe load models are based on in-circuit measurements made with a Keysight 8753E 6 GHz network analyzer and a Keysight 54750A TDR/TDT using a 50 Ω test fixture. The following schematic accurately models the probe load out to 6 GHz. PC board pads are not included.

Figure 4.26. Equivalent probe load model.
Probing Solutions for 90-pin Logic Analyzers
Mictor and Samtec Probing

E5378A 100-pin single-ended probe
The E5378A is a 34-channel single-ended Samtec probe capable of capturing data up to 1.5 Gbits/sec (see Figures 4.31 and 4.33 for probe dimensions and equivalent load). The probe has the following inputs:
- 32 single-ended data inputs, in two groups (pods) of 16.
- Two differential clock inputs. Either or both clock inputs can be acquired as data inputs if not used as a clock.
- Two data threshold reference inputs, one for each pod (group of 16 data inputs).

E5379A 100-pin differential probe
The E5379A is a 17-channel differential Samtec probe capable of capturing data up to 1.5 Gbits/sec (see Figures 4.33 and 4.34 for probe dimensions and equivalent load). The probe has the following inputs:
- 16 differential data inputs.
- One differential clock input.
- The clock input can be acquired as a data input if it is not used as a clock.

Refer to Table 4 on page 34 for part numbers for mating connectors and shrouds.
Probing Solutions for 90-pin Logic Analyzers
Mictor and Samtec Probing (Continued)

E5380B 38-pin probe

The E5380B is designed to be compatible with the Mictor connector. If you have a target system designed for connection to the E5346A high-density probe adapter, the E5380B probe will connect directly to this same Mictor connector. (For information on the E5346A, refer to pages 62 to 64). The maximum state speed when used with the E5380B probe is 600 Mbits/second. The minimum input signal amplitude required by the E5380B is 300 mV.

The E5380B probe combines two 17-channel cables into a single-ended 38-pin Mictor connector.

Refer to Table 4 for connector, shroud, and kit part numbers.

Table 4. Mating connectors, shrouds, and kits for Keysight E5378A, E5379A, and E5380B probes

<table>
<thead>
<tr>
<th>For probe model numbers</th>
<th>Description</th>
<th>Keysight part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5378A, E5379A</td>
<td>Kit of 5 support shrouds and 5 100-pin Samtec connectors for PC board thickness up to 1.57 mm (0.062")</td>
<td>16760-68702</td>
</tr>
<tr>
<td></td>
<td>Kit of 5 support shrouds and 5 100-pin Samtec connectors for PC board thickness up to 3.05 mm (0.120")</td>
<td>16760-68703</td>
</tr>
<tr>
<td></td>
<td>One 100-pin Samtec connector (also available from Samtec as part number ASP-65067-01)</td>
<td>1253-3620</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 1.57 mm (0.062")</td>
<td>16760-02302</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 3.05 mm (0.120")</td>
<td>16760-02303</td>
</tr>
<tr>
<td>E5380B</td>
<td>Kit of 5 support shrouds and 5 38-pin Mictor connectors for PC board thickness up to 1.57 mm (0.062")</td>
<td>E5346-68701</td>
</tr>
<tr>
<td></td>
<td>Kit of 5 support shrouds and 5 38-pin Mictor connectors for PC board thickness up to 3.175 mm (0.125")</td>
<td>E5346-68700</td>
</tr>
<tr>
<td></td>
<td>One 38-pin Mictor connector (also available from AMP as part number 2-767004-2)</td>
<td>1252-7431</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 1.57 mm (0.062")</td>
<td>E5346-44701</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 3.175 mm (0.125")</td>
<td>E5346-44704</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 4.318 mm (0.700")</td>
<td>E5346-44703</td>
</tr>
</tbody>
</table>

For further information on designing the E5378A, E5379A, or E5380B probe connectors into your system, refer to the following documents:

- Designing High-Speed Digital Systems for Logic Analyzer Probing [5988-2989EN](http://literature.cdn.keysight.com/litweb/pdf/5988-2989EN.pdf)
Probing Solutions for 90-pin Logic Analyzers
Mictor and Samtec Probing (Continued)

Figure 4.30. Dimensions of the 100-Pin Samtec connector used in the 16760-68702 and 16760-68703 connector kits.

Figure 4.31. E5378A 100-pin single-ended probe dimensions.

Figure 4.32. E5379A 100-pin differential probe dimensions.

Figure 4.33. E5378A and E5379A input equivalent load, including 100-pin connector.

Figure 4.34. E5380B 38-Pin probe dimensions.

Figure 4.35. E5380B input equivalent load, including 38-pin connector.
Probing Solutions for 90-pin Logic Analyzers
High-Speed Timing Probing

E5386A half-channel adapter

When the Keysight high-speed timing analyzers are operating at their maximum speed, only the even numbered channels are used. To reduce the number of probes and connectors required, the E5386A adapter maps the even channels to all of the pins of an E5378A and E5379A Samtec probes, E5387A and E5390A Soft Touch Connectorless probes, and Soft Touch Pro Series connectorless probes E5404A, E5405B, and E5406A. The following diagrams show how the E5386A is connected.

For further information on the application of the E5386A Half-channel adapter refer to Keysight E5400-Pro Series Soft Touch Connectorless Probes User’s Guide, publication number E5404-97006.pdf
U4200A Series Probe/Cable Solutions for 160-pin Front Panel Connector Logic Analyzers

U4201A logic analyzer cable

Figure 5.1. U4201A logic analyzer cable.

Figure 5.2. U4201A dimensions.
U4200A Series Probe/Cable Solutions for 160-pin Front Panel Connector Logic Analyzers (Continued)
U4206A Probe, 34 Channel, Soft Touch Pro, Single-Ended, to Four 160-pin Direct Connect to Logic Analyzer Front Panel Connectors

The U4206A is a direct connect probe/cable with a standard soft touch pro connector at one end that routes to four 160-pin connectors that plug into the front panel connectors of a U4164A logic analyzer module. The U4206A is designed to be used with either the quad state mode or ¼ channel 10 GHz timing mode of the U4164A logic analyzer module. For use in quad state mode only, the U4206A includes two flying leads to connect additional clock qualifier signals into the clock inputs on Pods 3 and 7. Please refer to the U4164A installation guide for specific details on the operation of the U4164A quad sample state or ¼ channel 10 GHz timing modes of operation.

Figure 6.1. Soft touch pro foot print mapping to U4164A pod/channel inputs using U4206A probe/cable.

Figure 6.2. LPDDR4 example foot print mapping using U4206A Soft Touch Pro probe/cable into U4164A.
U4206A Probe, 34 Channel, Soft Touch Pro, Single-Ended, to Four 160-pin Direct Connect to Logic Analyzer Front Panel Connectors (Continued)

U4206A Probe Cable

Quick start and accessory guide

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket adapter</td>
<td>Kit of 34 pieces E5381-82102</td>
</tr>
<tr>
<td>3-pin header</td>
<td>Kit of 34 pieces E5381-82104</td>
</tr>
<tr>
<td>Tip resistor 82 ohm coaxial</td>
<td>Kit of 34 pieces E5381-82101</td>
</tr>
<tr>
<td>Soft touch pro retention module</td>
<td>Kit of 5 pieces E5405-68702</td>
</tr>
<tr>
<td>82 ohm resistor template</td>
<td>1 piece E5131-94309</td>
</tr>
</tbody>
</table>

Figure 6.3. U4206A probe cable accessories.

1. **Connect Pods to Logic Analyzer**
 - U4206A connector pod - to - LA connector

2. **Apply Soft Touch Pro Retention Module to System Under Test**
 - Insert
 - Solder pins from top of board

3. **Connect Probe Cable to Soft Touch Pro Retention Module**

Clock Qualifier Connections are Made Using the Included Accessories

- Coaxial tip resistor 82 Ohm
 - solder attach to:
 - components
 - traces
 - pads
 - vias
 - Total lumped input C 0.9 pF

- 3-pin header
 - Total lumped input C 1.0 pF

- Socket adapter
 - Total lumped input C 1.1 pF

Figure 6.4. U4206A connections and probe cable details.

Figure 6.5. U4206A probe cable.

DO NOT DISCARD THIS PIN PROTECTOR
To protect the Soft Touch Pro pins from being damaged, use the Pin Protector when probe is not connected.
The U4206A ships with:
- Carrying case (qty 1)
- Socket adapters, one kit of qty 34, part number E5381-82102
- 3-pin headers, one kit of qty 34, part number E5381-82104
- Tip resistors 82 Ω coaxial, one kit of qty 34, part number E5381-82101
- Soft touch pro retention module, one kit of qty 5, part number E5405-68702
- 82 Ω resistor template (qty 1), part number 01131-94309
- Pin protector, one covering the soft touch pro connector on the U4206A and one spare, part number E5390-25201
U4207A Probe, Zero Ω, 34 Channel, Soft Touch Pro, Single-Ended, to Four 160-pin Direct Connect to Logic Analyzer Front Panel Connectors

The U4207A is only for use with Keysight RC (resistor/capacitor) BGA interposers, such as the W6602A. Please refer to the U4200A Series user guide for the specific Keysight RC BGA interposer for specific information regarding connecting the U4207A.

The Keysight W6602A+U4207A passively monitors the LPDDR4 200 ball DRAM package. After tuning the Keysight analyzer, Command/Address bits can be reliably captured up to 3200 MT/s. At some data rates, the analyzer may not be able to provide an error-free capture of all DQ data bits.

Physical dimensions of the U4207A are identical to the U4206A. Electrically, the probes are very different. The U4206A contains the RC tip network for the U4164A internally. The U4207A is zero Ω internally and is designed only to be used with Keysight BGA interposers with the tip RC network for the U4164A designed onto the BGA interposer.

CAUTION: Connecting the U4207A to a footprint without the RC tip network can damage the U4164A module.

The U4206A is designed to be used with either the quad state mode or ¼ channel 10 GHz timing mode of the U4164A logic analyzer module. For use in quad state mode only, the U4207A includes two flying leads to connect additional clock qualifier signals into the clock inputs on Pods 3 and 7 of the clocking module.

Please refer to the U4164A installation guide for specific details on the operation of the U4164A quad sample state or ¼ channel 10 GHz timing modes of operation.

The U4207A ships with:
- Carrying case (qty 1)
- Soft touch pro retention module, one kit of qty 5, part number E5405-68702
- Pin protector, one covering the soft touch pro connector on the U4206A and one spare, part number E5390-25201

U4200 Series Direct Connect Cables for use with 16850 Series Portable Logic Analyzers

The following U4200 Series direct connect cables are covered in the 16850 Series Portable Logic Analyzers - Data Sheet, publication number 5991-2791EN

- U4204A: Direct connect – single-ended soft touch pro series
Wedge adapters

The Keysight Wedge technology provides very reliable probing of a few channels on 0.5 mm and 0.65 mm pitch QFPs. No clear area is required around the device. Each Wedge of the probe slides between the legs of the QFP. The side of each Wedge probe contacts the package legs. An insulation core electrically isolates the sides of each Wedge (see Figures 7.1 and 7.2). Various 3-signal, 8-signal, and 16-signal probes are available (see Table 5).

Table 5. Wedge probe adapter

<table>
<thead>
<tr>
<th>IC leg spacing</th>
<th>Number of signals</th>
<th>Number of wedges in pack</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mm</td>
<td>3</td>
<td>1</td>
<td>E2613A</td>
</tr>
<tr>
<td>0.5 mm</td>
<td>8</td>
<td>1</td>
<td>E2614A</td>
</tr>
<tr>
<td>0.5 mm</td>
<td>16</td>
<td>1</td>
<td>E2643A</td>
</tr>
<tr>
<td>0.65 mm</td>
<td>3</td>
<td>1</td>
<td>E2615A</td>
</tr>
<tr>
<td>0.65 mm</td>
<td>8</td>
<td>1</td>
<td>E2616A</td>
</tr>
<tr>
<td>0.65 mm</td>
<td>16</td>
<td>1</td>
<td>E2644A</td>
</tr>
</tbody>
</table>

Miscellaneous probing accessories

The ferrite core assembly can be added to the probe cable to suppress EMI and RFI noise that can corrupt the measurement.

Figure 7.1. Three-signal Wedge electrical connection

Figure 7.2. Eight-signal and 16-signal Wedge (16-signal Wedge has a common ground plane).

Figure 7.3. Ferrite core assembly, 16555-60001.
40-pin and 90-pin Logic Analyzers Probe Cables

Signal line loading

Any probed signal line must be able to supply a minimum of 600 mV (unless noted otherwise — see probe of interest) to the probe tip while the probe is connected to the system. The maximum input voltage of each probe is ± 40 volts peak (unless noted otherwise — see probe of interest).

Probe cables

The probe cable (see Figure 10.1 and Table 10) contains 16 signal lines and two clk lines, two +5 volt power lines, and ground lines for each of the signal/clock and power lines. All of these lines are contained in a 4.5-foot cable. The probe cable is included with the logic analyzer. The cable grounds are chassis (earth) grounds, not “floating” grounds. The two +5 volt power lines can be used to power active probing systems. Consult the specifications for the individual logic analyzers or logic analyzer cards for the maximum allowable current through each +5 volt power supply.

Caution: These +5 volt power lines MUST NOT be connected to the target’s power supply.

Caution: Be careful when using straight wire probe leads, one common ground, or RC networks located far from the target. These circumstances increase the impact of analog effects such as crosstalk and EMT susceptibility, which contribute to measurement errors.
Table 6. Logic analyzer cables

<table>
<thead>
<tr>
<th>Logic analyzer</th>
<th>40-pin cable part number</th>
<th>90-pin cable part number</th>
<th>U4201A</th>
</tr>
</thead>
<tbody>
<tr>
<td>U4164A</td>
<td>01550-61607</td>
<td>01660-61605</td>
<td></td>
</tr>
<tr>
<td>U4154A/B</td>
<td>16550-61601</td>
<td>16555-61606</td>
<td></td>
</tr>
<tr>
<td>16850 Series</td>
<td>16710-61603</td>
<td>16715-61601</td>
<td></td>
</tr>
<tr>
<td>16962A</td>
<td>16760-61605</td>
<td>16962-61601</td>
<td></td>
</tr>
<tr>
<td>16951B</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16950A/B</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16911A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16910A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16800 Series</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16760A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16753/54/55/56A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16752A/B</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16751A/B</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16750A/B</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16740 Series</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16719A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16718A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16717A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16716A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16715A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16712A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16711A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16710A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16557D</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16556A/D</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16555A/D</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16554A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>16550A</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1690 Series</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1680 Series</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1670 Series</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1660 Series</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1650 Series</td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

1. You must purchase U4201A logic analyzer cables and 90-pin probes and/or purchase direct-connect probes for these logic analyzers.
Probing Solutions for 40-pin Logic Analyzers
General-Purpose Probing

E5383A 17-channel single-ended flying lead probe
Ideal when only a few lines may need to be probed or probe points are distributed across a target. The E5383A includes a set of 20 IC test clips and five ground leads.

Logic analysis general-purpose probes
General-purpose probing requires connecting probe leads to individual signal lines. This method is most convenient for a small to moderate number of signals, is very flexible, and can be used in conjunction with other probing methods.

Note: Any probed signal line must be able to supply a minimum of 600 mV to the probe with the specified loading.

The standard probing system
The standard probing system consists of IC clips, probe leads, probe housing and probe cable. Because it is passive, the standard probing system is smaller, lighter, and much easier to use than active probing systems. This passive probing system is similar to a probing system used on a high frequency oscilloscope. It consists of an isolation network (as shown in Figure 9.1) at the probe tip and a shielded resistive transmission line. The advantages of this system are:

- High input impedance. See Figure 9.1.
- Signal ground at the probe tip for high-speed signals.
- Inexpensive, removable probe tip assemblies.

![Tip isolation network](image)

![Equivalent load](image)

Figure 9.1. Probe tip Isolation network and equivalent load.
Probing Solutions for 40-pin Logic Analyzers
General-Purpose Probing (Continued)

Probe leads and lead sets

Probe leads are configured into lead sets, which can probe 16 data channels with
ground, one clock channel, and a common ground. A 17-channel probe lead set
(E5383A) is shown in Figure 9.2, along with the replacement part numbers for individual
components in Figure 9.3.

Each probe lead is a 12-inch, twisted-pair cable connected to the probe cable at the
probe housing (see Figure 9.3). The probe tip includes a signal lead, a connector for a
ground lead, and the isolation network.

The signal and ground leads can be connected directly to the target system. This
requires installing 0.63 mm (0.025 inch) square pins, or round pins with a diameter of
between 0.66 mm (0.026 inch) and 0.84 mm (0.033 inch) directly on the board. An IC
test clip can also be used. The same specifications apply for the pin dimensions of the
test clip. (See Figure 9.6 for IC test clips available from commercial sources.)
Probing Solutions for 40-pin Logic Analyzers
General-Purpose Probing (Continued)

IC clips
The surface-mount device IC clip with twin hooks (part number 5090-4833, containing 20 IC clips) is designed for fine surface-mounted component leads. The twin hook 0.5 mm IC clip (part number 10467-68701, containing four 0.5 mm IC clips), is very useful for 0.5 mm pitch components. See Figure 9.5.

Grounding
There are three methods of grounding the probe system. First, the entire probe lead set can be grounded through the common ground. This requires only one connection, but is not recommended because it will cause poor signal fidelity in systems with fast transition times. The recommended method is to individually ground each probe lead. This yields optimal signal fidelity and is required for signals with faster transition times (< 4 to 5 ns).

For moderate rise times (greater than 2 ns), it may be acceptable to ground every other (or every fourth) ground connection to the target.

Figure 9.4. Connecting IC clips and ground leads to probes.

Figure 9.5. SMD IC clip and 0.5 mm IC clip.

Figure 9.6. Typical IC test clips available from commercial test clip vendors.
Probing Solutions for 40-pin Logic Analyzers
Designing for Logic Analysis Probing

Keysight recommends that targets with probing constraints have connectors designed into the prototype versions of the product for effective hardware and software debug. The following should be considered when designing with connectors:

- Select the appropriate connector technology for your target speed and target density.
- Carefully select all lines for routing to the connectors that may be needed for debug.
- Group the lines at each connector for your probing convenience. For example, Keysight may have written an inverse assembler for your device that has a preconfigured signal order. Before designing, refer to the documentation for this inverse assembler for essential signal lines and order.
- Keep the routing to connectors as short as possible to minimize target impact and provide accurate data.
- Examine the impact of probing isolation networks designed into the target versus the isolation network products offered by Keysight.

An isolation network must be located between the target and the logic analyzer. It can be located on the target board in through-hole or SMT parts. It can also be attached to the logic analyzer cable with the probe leads (the isolation network is molded into the end of the probe); or the Keysight 01650-63203 isolation adapter with self contained isolation networks can be used. Probe leads can be used with connectors but are not the most convenient method. Direct connection of the connectors with the analyzer cable (isolation network parts on the target) or with a probe or isolation adapter is the faster, more convenient method.
High-density, high-performance probes

Keysight Pro Series soft touch connectorless logic analyzer probes

Keysight has developed connectorless logic analyzer probes based on soft touch probing technology. Connectorless logic analyzer probing removes the connector that is traditionally attached to the target board and replaces it with an array of probe pads. This reduces the probe load on the target by eliminating the loading associated with the physical body of the connector. Additionally, this streamlines the design flow by eliminating the need to assign a logic analyzer connector to the bill of material of your board, procuring those connectors and then having them loaded onto your board.

Keysight’s soft touch connectorless probes use micro spring-pin technology to provide reliable contact which is not dependent on the planarity of the PC board or the plating processes used to fabricate the board. No special cleaning processes are required when using Keysight’s soft touch probes.

The new Keysight Pro Series soft touch connectorless probes offer a 30% smaller footprint than the original soft touch probes and are the basis for the industry standard connectorless probing footprint.

The probes use a retention module that ensures soft touch pin-to-PC board pad alignment and holds the probe in place while in use. The Pro Series soft touch uses a “top-side” mountable retention module. The retention module is mounted on the same side of the board as the probing footprint so there is no need to access the back-side of the board. Because there is no requirement for the retention module pins to extend beyond the back-side of the board, the retention module is compatible with virtually any board thickness.

E5404A Pro Series soft touch connectorless probe

The E5404A is a 34-channel single-ended Pro Series soft touch connectorless probe compatible with all Keysight logic analyzers that have a 40-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to.

Features

- No connector on the target board
- Top-side mount retention module
- Industry-standard connectorless footprint
- 34 channels, single-ended clock and data
- Extremely low, < 0.7 pF, equivalent load capacitance
- Capable of data rates > 2.5 Gb/s (maximum rate dependent on analyzer used)
- 500 mV p-p minimum signal amplitude
- Robust and reliable soft touch technology

Unused clock inputs can be used as data inputs.

The E5404A (used with logic analyzers with a 40-pin cable connector) uses the same footprint, pinout, and retention module as the E5406A Pro Series soft touch connectorless probe (used with logic analyzers with a 90-pin cable connector).

A kit of five retention modules is shipped with each Pro Series soft touch probe. Additional kits can be ordered using Keysight part number E5403A.
Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

E5394A soft touch connectorless probe

The E5394A is a 34-channel single-ended soft touch connectorless probe compatible with all Keysight logic analyzers that have a 40-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:

- 32 single-ended data inputs
- Two single-ended clock inputs
- < 0.7 pf input capacitance
- 500 mV p-p minimum signal amplitude

Unused clock inputs can be used as data inputs.

The E5394A (used with logic analyzers with a 40-pin pod connector) uses the same footprint, pinout and retention module as the E5390A single-ended soft touch connectorless probe (used with logic analyzers with a 90-pin pod connector).

A kit of five retention modules is shipped with each soft touch probe. Additional kits can be ordered using Keysight part number E5387-68701.

E5396A half-size soft touch connectorless probe

The E5396A is a small space saving probe compatible with all Keysight logic analyzers that have a 40-pin cable connector. It is a 17-channel, single-ended probe capable of capturing data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:

- 16 single-ended data inputs
- One single-ended clock input
- < 0.7 pf equivalent load capacitance
- 500 mV p-p minimum signal amplitude

The unused clock input can be used as a data input.

The E5396A (used with logic analyzers with a 40-pin cable connector) uses the same footprint, pinout, and retention module as the E5398A single-ended soft touch connectorless probe (used with logic analyzers with a 90-pin cable connector).

Figure 9.8. Keysight E5394A soft touch probe connection.
Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Probe dimensions
The following figures show dimensions, footprint, and pinout information you will need to design your target system board for use with the Keysight Pro Series soft touch probes.

![Probe dimensions](image1)

![Probe dimensions](image2)

Figure 9.9. E5404A probe dimensions.

![Probe dimensions](image3)

Figure 9.10. Pro Series soft touch retention module dimensions.

Probe and retention module dimensions
The following dimensions show the Pro Series soft touch probe attached to the retention module. The retention module is mounted on the PC board.

![Probe dimensions](image4)

Figure 9.11. Pro Series soft touch side-by-side dimensions.
Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Figure 9.12. E5394A and E5396A soft touch probe dimensions.
Retention module dimensions

The soft touch probes are attached to the PC board using a retention module which ensures pin-to-pad alignment and holds the probe in place. A board thickness of up to 2.54 mm (0.100 inch) is recommended. Insert the retention module into the board, noting the keying pin, and solder the four alignment pins to the backside of the board.

Probe and retention module dimensions

The following dimensions show the soft touch probe attached to the retention module. The retention module is mounted on the PC board.
Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Drawing notes:
1. Maintain a solder mask web between pads when traces are routed between the pads on the same layer. The solder mask may not encroach onto the pads within the pad dimension shown.
2. VIAs not allowed on these pads. VIA edges may be tangent to pad edges as long as a solder mask web between VIAs and pads is maintained.
3. Surface finishes on pads should be HASL immersion silver, or gold over nickel.
4. This footprint is compatible with retention module Keysight part number E5405-68702.
5. This through hole is not used with the Keysight retention module.
6. Plated through hole should not be tied to ground plane for thermal relief.

Figure 9.15. Pro Series soft touch footprint dimensions (see drawing notes).

Figure 9.16. Pad numbers for E5404/06A 34-channel single-ended probes.
<table>
<thead>
<tr>
<th>Signal name</th>
<th>Pad #</th>
<th>Channel</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>A1</td>
<td>→ 0</td>
<td>Whichever pod is connected to "Odd" on the E5404/06A probe</td>
</tr>
<tr>
<td>D1</td>
<td>A2</td>
<td>→ 1</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>A4</td>
<td>→ 4</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>A5</td>
<td>→ 5</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock 1+</td>
<td>A7</td>
<td>→ Clock</td>
<td></td>
</tr>
<tr>
<td>GND/NC/Clock 1–</td>
<td>A8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>A10</td>
<td>→ 10</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>A11</td>
<td>→ 11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>A13</td>
<td>→ 14</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>A14</td>
<td>→ 15</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>A16</td>
<td>→ 2</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>A17</td>
<td>→ 3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>A19</td>
<td>→ 6</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>A20</td>
<td>→ 7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>A22</td>
<td>→ 8</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>A23</td>
<td>→ 9</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>A25</td>
<td>→ 12</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>A26</td>
<td>→ 13</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)
Probing Solutions for 40-pin Logic Analyzers

Soft Touch Connectorless Probing (Continued)

Probe footprint dimensions

Use these probe footprint dimensions for the PC board pads and holes for attaching the retention module.

Soft touch

Figure 9.17. Footprint dimensions.
Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Pinout for the E5394A single-ended soft touch probe

The following graphic and table show the E5394A single-ended soft touch probe pad numbers and logic analyzer pod inputs.

Figure 9.18. Pinout.

<table>
<thead>
<tr>
<th>E5394A single-ended probe</th>
<th>Logic analyzer</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal name</td>
<td>Pad # Channel</td>
<td>Pod</td>
</tr>
<tr>
<td>D1</td>
<td>A1 → 1</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>A2 → 3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>A4 → 5</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>A5 → 7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>A7 → 9</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>A8 → 11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>A10 → 13</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>A11 → 15</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>A13 → NC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E5394A single-ended probe</th>
<th>Logic analyzer</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal name</td>
<td>Pad # Channel</td>
<td>Pod</td>
</tr>
<tr>
<td>D1</td>
<td>A15 → 1</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>A16 → 3</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A17</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>A18 → 5</td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>A19 → 7</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A20</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>A21 → 9</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>A22 → 11</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A23</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>A24 → 13</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>A25 → 15</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>A26</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>A27 → NC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E5394A single-ended probe</th>
<th>Logic analyzer</th>
<th>Pod</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>B1 → 0</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>B2 → 2</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>B4 → 4</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>B5 → 6</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>B7 → 8</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>B8 → 10</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B9</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>B10 → 12</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>B11 → 14</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B12</td>
<td></td>
</tr>
<tr>
<td>Clock</td>
<td>B13 → Clock</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B14</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>B15 → 0</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>B16 → 2</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B17</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>B18 → 4</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>B19 → 6</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B20</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>B21 → 8</td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>B22 → 10</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B23</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>B24 → 12</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>B25 → 14</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>B26</td>
<td></td>
</tr>
<tr>
<td>Clock</td>
<td>B27 → Clock</td>
<td></td>
</tr>
</tbody>
</table>
Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Pinout for the E5396A
17-channel single-ended soft touch probe

The following graphic and table show the E5396A single-ended soft touch probe pad numbers and logic analyzer pod inputs.

![Figure 9.19. Pinout.](image)

<table>
<thead>
<tr>
<th>E5396A 17-channel single-ended probe</th>
<th>Logic analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal name</td>
<td>Pad #</td>
</tr>
<tr>
<td>D1</td>
<td>A1</td>
</tr>
<tr>
<td>D3</td>
<td>A2</td>
</tr>
<tr>
<td>Ground</td>
<td>A3</td>
</tr>
<tr>
<td>D5</td>
<td>A4</td>
</tr>
<tr>
<td>D7</td>
<td>A5</td>
</tr>
<tr>
<td>Ground</td>
<td>A6</td>
</tr>
<tr>
<td>D9</td>
<td>A7</td>
</tr>
<tr>
<td>DT11</td>
<td>A8</td>
</tr>
<tr>
<td>Ground</td>
<td>A9</td>
</tr>
<tr>
<td>D13</td>
<td>A10</td>
</tr>
<tr>
<td>D15</td>
<td>A11</td>
</tr>
<tr>
<td>Ground</td>
<td>A12</td>
</tr>
<tr>
<td>NC</td>
<td>A13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E5396A 17-channel single-ended probe</th>
<th>Logic analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal name</td>
<td>Pad #</td>
</tr>
<tr>
<td>D0</td>
<td>B1</td>
</tr>
<tr>
<td>D2</td>
<td>B2</td>
</tr>
<tr>
<td>Ground</td>
<td>B3</td>
</tr>
<tr>
<td>D4</td>
<td>B4</td>
</tr>
<tr>
<td>D6</td>
<td>B5</td>
</tr>
<tr>
<td>Ground</td>
<td>B6</td>
</tr>
<tr>
<td>D8</td>
<td>B7</td>
</tr>
<tr>
<td>D10</td>
<td>B8</td>
</tr>
<tr>
<td>Ground</td>
<td>B9</td>
</tr>
<tr>
<td>D12</td>
<td>B10</td>
</tr>
<tr>
<td>D14</td>
<td>B11</td>
</tr>
<tr>
<td>Ground</td>
<td>B12</td>
</tr>
<tr>
<td>Clock</td>
<td>B13</td>
</tr>
</tbody>
</table>
Probing Solutions for 40-pin Logic Analyzers
Soft Touch Connectorless Probing (Continued)

Equivalent probe loads

The following probe load models are based on in-circuit measurements made with a Keysight 8753E 6 GHz network analyzer and a Keysight 54750A TDR/TDT using a 50 Ω test fixture. The following schematic accurately models the probe load out to 6 GHz.

Figure 9.20. Simple (does not include capacitive coupling between channels or inductance of the spring pins).

Figure 9.21. Complex (includes capacitive coupling between channels and inductance of spring pins).
Probing Solutions for 40-pin Logic Analyzers
Mictor and Samtec Probing

High-Density, High-Performance

Keysight has developed high-density probing solutions based on the 100-pin Samtec and AMP Mictor 38-pin connectors. The Keysight probes and adapter cables, E5346A, E5339A, E5351A, and E5385A, provide a connection strategy to route your important signals to the Keysight logic analyzer. Simply design the connectors onto the board for the critical signals such as address, data, and status bits. The connectors consume a minimal amount of board space. Each connector provides 32 channels of logic analysis per connector and two clocks (unused clocks can be used as data). Connectors for use with the E5385A, E5346A, E5339A, and E5351A can be purchased directly from AMP, Samtec, or Keysight. See the “Related Information” at the end of this document.

Figure 9.22. E5385A Samtec 100-pin probe mechanical dimensions.

Figure 9.23. E5346A, E5351A, E5339A Mictor probes mechanical dimensions.
Probing Solutions for 40-pin Logic Analyzers
Mictor and Samtec Probing (Continued)

Keysight Technologies E5346A, E5339A, and E5385A probes

The E5346A, E5339A, and E5385A probes include the required isolation networks for the logic analyzer right at the probe tip, close to the target. The E5346A and E5385A are designed to acquire signals with peak-to-peak amplitude as low as 500 mV. The E5339A is designed to acquire signals as small as 250 mV peak-to-peak. Figure 9.24 shows the equivalent load for the E5339A, and Figure 9.25 shows the equivalent load for the E5346A. Figure 9.26 shows the equivalent load for the E5385A.

To use the E5346A, E5339A, or E5385A at high clock speeds, the following design guidelines should be observed:

– Calculate the electrical length of the probe hookup stub.
– For PC board material with $E_r=4.9$, use a propagation delay of 160 ps/inch.
– Check that the propagation delay of the probe hookup stub is less than 20% of the bus signal rise time (T_r). If it is, the E5346A, E5339A, or E5385A can be used for connection.

For example, if $E_r=4.9$, a 2.5 inch probe hookup stub generates a propagation delay of 400 ps. If $T_r > 2$ ns, the E5346A, E5339A, or E5385A is a viable probing choice.

The E5346A and E5339A use the AMP Mictor 38-pin connector. The E5385A uses a 100-pin connector manufactured by Samtec. Keysight recommends the E5394A or E5385A for new applications, due to the reduced input capacitive loading and improved isolation between adjacent channels.

Equivalent load

For additional information on designing connectors into a target system, refer to the following documents:

<table>
<thead>
<tr>
<th>Product</th>
<th>Installation Notes</th>
<th>URL</th>
</tr>
</thead>
</table>
Probing Solutions for 40-pin Logic Analyzers
Mictor and Samtec Probing (Continued)
Probing Solutions for 40-pin Logic Analyzers
Mictor and Samtec Probing (Continued)

E5385A 100-pin probe pin assignments

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>1, 2</td>
</tr>
<tr>
<td>Do Not Connect</td>
<td>3, 4</td>
</tr>
<tr>
<td>Ground</td>
<td>5, 6</td>
</tr>
<tr>
<td>Odd D0</td>
<td>7, 8</td>
</tr>
<tr>
<td>Ground</td>
<td>9, 10</td>
</tr>
<tr>
<td>Odd D1</td>
<td>11, 12</td>
</tr>
<tr>
<td>Ground</td>
<td>13, 14</td>
</tr>
<tr>
<td>Odd D2</td>
<td>15, 16</td>
</tr>
<tr>
<td>Ground</td>
<td>17, 18</td>
</tr>
<tr>
<td>Odd D3</td>
<td>19, 20</td>
</tr>
<tr>
<td>Ground</td>
<td>21, 22</td>
</tr>
<tr>
<td>Odd D4</td>
<td>23, 24</td>
</tr>
<tr>
<td>Ground</td>
<td>25, 26</td>
</tr>
<tr>
<td>Odd D5</td>
<td>27, 28</td>
</tr>
<tr>
<td>Ground</td>
<td>29, 30</td>
</tr>
<tr>
<td>Odd D6</td>
<td>31, 32</td>
</tr>
<tr>
<td>Ground</td>
<td>33, 34</td>
</tr>
<tr>
<td>Odd D7</td>
<td>35, 36</td>
</tr>
<tr>
<td>Ground</td>
<td>37, 38</td>
</tr>
<tr>
<td>Odd D8</td>
<td>39, 40</td>
</tr>
<tr>
<td>Ground</td>
<td>41, 42</td>
</tr>
<tr>
<td>Odd D9</td>
<td>43, 44</td>
</tr>
<tr>
<td>Ground</td>
<td>45, 46</td>
</tr>
<tr>
<td>Odd D10</td>
<td>47, 48</td>
</tr>
<tr>
<td>Ground</td>
<td>49, 50</td>
</tr>
<tr>
<td>Odd D11</td>
<td>51, 52</td>
</tr>
<tr>
<td>Ground</td>
<td>53, 54</td>
</tr>
<tr>
<td>Odd D12</td>
<td>55, 56</td>
</tr>
<tr>
<td>Ground</td>
<td>57, 58</td>
</tr>
<tr>
<td>Odd D13</td>
<td>59, 60</td>
</tr>
<tr>
<td>Ground</td>
<td>61, 62</td>
</tr>
<tr>
<td>Odd D14</td>
<td>63, 64</td>
</tr>
<tr>
<td>Ground</td>
<td>65, 66</td>
</tr>
<tr>
<td>Odd D15</td>
<td>67, 68</td>
</tr>
<tr>
<td>Ground</td>
<td>69, 70</td>
</tr>
<tr>
<td>NC</td>
<td>71, 72</td>
</tr>
<tr>
<td>Ground</td>
<td>73, 74</td>
</tr>
<tr>
<td>NC</td>
<td>75, 76</td>
</tr>
<tr>
<td>Ground</td>
<td>77, 78</td>
</tr>
<tr>
<td>Odd D16P/</td>
<td>79, 80</td>
</tr>
<tr>
<td>Odd CLK</td>
<td>81, 82</td>
</tr>
<tr>
<td>NC</td>
<td>83, 84</td>
</tr>
<tr>
<td>Ground</td>
<td>85, 86</td>
</tr>
<tr>
<td>NC</td>
<td>87, 88</td>
</tr>
<tr>
<td>Ground</td>
<td>89, 90</td>
</tr>
<tr>
<td>NC</td>
<td>91, 92</td>
</tr>
<tr>
<td>Ground</td>
<td>93, 94</td>
</tr>
<tr>
<td>Ground</td>
<td>95, 96</td>
</tr>
<tr>
<td>+5V</td>
<td>97, 98, 99</td>
</tr>
</tbody>
</table>

Figure 9.29. Keysight E5385A connection and pinout.
Keysight E5351A 38-pin adapter cable

If the calculated electrical length of the required routing stub prohibits the use of the Keysight E5339A, E5346A, or E5385A, the Keysight E5351A can be used with the required isolation networks installed on the target.

The E5351A does not have its own internal isolation networks. When using the E5351A, place the SIP isolation networks or equivalent discrete components very near the target component for measurement. Ensure that the stub length between the target component and the isolation network is short. The stub propagation delay should be less than 20% of the bus signal rise time, as mentioned before. The transmission line from the on-board isolation network to the Mictor connector should be designed for an impedance in the range of 80 to 100 ohms (closer to 100 ohms is better). This length should not exceed 3 to 4 inches, and all signal line lengths should be equal. Signal line length variation should not cause propagation delay variation to exceed 20 ps between signal lines.

Notes on using discrete components

Discrete components can be used in the design of the RC network. Keysight recommends the circuit shown in Figure 9.31. To achieve the equivalent load shown in the figure, trace lengths should be minimized by locating the RC network very near the measured node. Actual load will be the stub length load added to the equivalent load in the figure.

Figure 9.30. Keysight E5351A design rules.
Options for on-board terminations for the E5351A

There are two options for isolating the E5351A on the target PC board:

- Use the surface mount isolation network, Keysight part number 5062-7396. Refer to Figure 9.32 for schematic and pinout.
- Use discrete components. Refer to Figure 9.31 for recommended components and equivalent load.

If you are operating at state speeds above 200 MHz, you should use discrete components for best results. Due to the added electrical length of the E5351A probe cable, the divider compensating capacitors in the SIP, and surface-mount isolation networks are not optimum for the E5351A, but they are usable up to 200 MHz clock rates.

Figure 9.31. Suggested on-board isolation network and equivalent load when using discrete components to terminate the E5351A.

1. The effective input capacitance for on-board isolation networks is purely a function of geometry - 0.3 pF is about as low as can be achieved.
2. The equivalent load is the same when using the surface-mount isolation network, 5062-7396.
Support shrouds

A support shroud is recommended to provide additional strain relief between the probe and the connector, as shown in Figures 9.27 and 9.29. Two plated through-holes are required on the target board. The shroud is mounted directly to the target board using the through-holes. This places the shroud around the connector, providing solid mechanical strain relief. Connector kits are available; Table 1 shows the Keysight part numbers for shrouds and connector kits for various PC board thicknesses.

Table 7. Mating connectors, shrouds, and kits for Keysight E5339A, E5346A, E5351A, and E5385A probes

<table>
<thead>
<tr>
<th>For probe model numbers</th>
<th>Description</th>
<th>Keysight part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5339A, E5346A, E5351A</td>
<td>Kit of five support shrouds and five 38-pin Mictor connectors for PC board thickness up to 1.57 mm (0.062")</td>
<td>E5346-68701</td>
</tr>
<tr>
<td></td>
<td>Kit of five support shrouds and five 38-pin Mictor connectors for PC board thickness up to 3.175 mm (0.125")</td>
<td>E5346-68700</td>
</tr>
<tr>
<td></td>
<td>One 38-pin Mictor connector (also available from AMP as part number 2-767004-2)</td>
<td>1252-7431</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 1.57 mm (0.062")</td>
<td>E5346-44701</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 3.175 mm (0.125")</td>
<td>E5346-44704</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 4.318 mm (0.700")</td>
<td>E5346-44703</td>
</tr>
<tr>
<td>E5385A</td>
<td>Kit of five support shrouds and five 100-pin Samtec connectors for PC board thickness up to 1.57 mm (0.062")</td>
<td>16760-68702</td>
</tr>
<tr>
<td></td>
<td>Kit of five support shrouds and five 100-pin Samtec connectors for PC board thickness up to 3.05 mm (0.120")</td>
<td>16760-68703</td>
</tr>
<tr>
<td></td>
<td>One 100-pin Samtec connector (also available from Samtec as part number ASP-65067-01)</td>
<td>1253-3620</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 1.57 mm (0.062")</td>
<td>16760-02302</td>
</tr>
<tr>
<td></td>
<td>One support shroud for PC board thickness up to 3.05 mm (0.120")</td>
<td>16760-02303</td>
</tr>
</tbody>
</table>

Figure 9.33. Mechanical information for E5346-44701, E5346-44703, E5346-44704 support shrouds for 38-pin Mictor connectors.
Probing Solutions for 40-pin Logic Analyzers
Mictor and Samtec Probing (Continued)

Right-angle Mictor adapter

For systems with space constraints above the 38-pin connector, Keysight offers a right-angle adapter, as shown in Figure 9.34. With the E5346-63201 right-angle adapter inserted in the 38-pin connector, the adapter cable is connected parallel to the target board surface. When using the right-angle adapters, the 38-pin connectors must be placed end-to-end on the target board, as shown in Figure 9.35. Support shrouds cannot be used with the right-angle adapter.

![Figure 9.34. E5346-63201 right-angle 38-pin adapter.](image1)

Note: The right-angle adapter adds significant capacitance and inductance in series with the probe. It is not recommended for state speeds above 100 MHz or for signals with rise times < 4 to 5 ns.

![Figure 9.35. 38-pin connectors placed for use of right-angle adapter.](image2)
Probing Solutions for 40-pin Logic Analyzers
Custom Probing

Low density, moderate performance solutions shown in the “High-Density, High-Performance” (page 62) section of this document can be used in place of the solutions described here. Keysight recommends standard 0.1 inch center connectors for normal density applications if the loading/speed is not a significant issue. Many of these items are available from 3M or Keysight (see Table 8). See the “Related Information” section at the end of this document for 3M address information.

Direct connection through isolation adapter
Isolation adapters (Keysight part number 01650-63203) that connect to the end of the probe cable are designed to perform two functions. The first is to reduce the number of pins required for the header on the target board from 40 pins to 20 pins. This process reduces the board area dedicated to the probing connection. The second function is to provide the proper RC networks in a very convenient package. Figure 9.36 illustrates how the isolation adapter physically connects to the target system and the equivalent load of the isolation adapter connected to a Keysight logic analyzer. Figures 9.37 and 9.38 show the pinout diagrams for the probe cable and the isolation adapter, respectively. There are two 20-pin connectors, along with their Keysight and 3M part numbers, listed in Table 8.

Table 8. Twenty-pin connectors for fixed configuration probing. (Requires isolation adapter)

<table>
<thead>
<tr>
<th>Keysight part number</th>
<th>3M part number</th>
<th>Connector description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1251-8106</td>
<td>2520-6002</td>
<td>20-pin, low-profile (straight)</td>
</tr>
<tr>
<td>1251-8473</td>
<td>2520-5002</td>
<td>20-pin, low-profile (right-angle)</td>
</tr>
</tbody>
</table>

1. The Keysight 01650-63203 saves space by using a common ground (see Figure 4.5). This will impact signal fidelity, especially faster transition times (< 4 to 5 ns).
Probing Solutions for 40-pin Logic Analyzers
Custom Probing (Continued)

Figure 9.37. Pinout for probe cable.

Figure 9.38. Pinout for 100 kΩ isolation adapter (Keysight part number 01650-63203).

1. +5 V is supplied from the logic analyzer to provide power for analysis probes and demo boards. **DO NOT connect these pins to a +5 V supply in the target system!**
Probing Solutions for 40-pin Logic Analyzers
Custom Probing (Continued)

Direct connection through 40-pin connectors

The probe cable also can be plugged directly into the various 40-pin connectors shown in Table 9, but proper isolation networks must be installed directly onto the target system board (see Figure 9.39 for the 40-pin connector pinout).

Discrete components can also be used for the proper isolation network. See Figure 9.42 for an equivalent load diagram for the isolation networks.

Note that the effective input capacitive lead of an isolation network using discrete components is a function of the layout geometry and the parasitic capacitance of the input series damping resistor.

Table 9. Forty-pin connectors for fixed configuration probing.
(Requires isolation network installed on target board)

<table>
<thead>
<tr>
<th>Keysight part number</th>
<th>3M part number</th>
<th>Connector description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1251-8158</td>
<td>2540-5002</td>
<td>40-Pin, low-profile (right-angle)</td>
</tr>
<tr>
<td>1251-8831</td>
<td>3432-6302</td>
<td>40-Pin, with long latches (straight)</td>
</tr>
<tr>
<td>1251-8931</td>
<td>3432-5302</td>
<td>40-Pin, with long latches (right-angle)</td>
</tr>
</tbody>
</table>

Figure 9.39. Forty-pin connector pinout.

1. +5 V is supplied from the logic analyzer to provide power for analysis probes and demo boards. DO NOT connect these pins to a +5 V supply in the target system!
Figure 9.40. Connecting probe cable to 40-pin connector with isolation networks.
Notes on using discrete components

Discrete components can be used to design the isolation network. Keysight recommends the circuit shown in Figure 9.42. To achieve the equivalent load shown in the figure, trace lengths should be minimized by locating the RC network very near the measured node. Actual load will be the stub length load added to the equivalent load in the figure. Trace length from the suggested on-board RC network to the target connector must be 3 to 4 inches or less. This transmission line should be designed for an impedance in the range of 80 to 100 ohms (closer to 100 ohms is better).

Figure 9.41. Equivalent load for on-target discrete components.
Related Information

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>U4164A 4 Gb/s State Mode Logic Analyzer Module - Data Sheet</td>
<td>5992-1057EN</td>
</tr>
</tbody>
</table>

Pattern generator probing and accessories

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Modules for the 16900 Series - Data Sheet</td>
<td>5989-0422EN</td>
</tr>
<tr>
<td>16800 Series Portable Logic Analyzers - Data Sheet</td>
<td>5989-5063EN</td>
</tr>
</tbody>
</table>

Analysis probes for processors and buses

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Publication number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Support for Agilent Logic Analyzers - Configuration Guide</td>
<td>5966-4365E</td>
</tr>
<tr>
<td>W2630 Series DDR2 BGA Probes for Logic Analyzers and Oscilloscopes - Data Sheet</td>
<td>5989-5964EN</td>
</tr>
<tr>
<td>W3630A Series DDR3 BGA Probes for Logic Analyzers and Oscilloscopes - Data Sheet</td>
<td>5990-3179EN</td>
</tr>
<tr>
<td>W4630A Series DDR4 BGA Interposers for Logic Analyzers - Data Sheet</td>
<td>5991-4258EN</td>
</tr>
</tbody>
</table>

3M

http://www.mmm.com/interconnects

AMP, Inc.

Phone: 1-717-986-7777
Fax: 1-717-986-7575
Phone (USA only): 1-800-522-6752
E-mail: product.info@amp.com
Web site: http://www.amp.com

Keysight Technologies Test and Measurement Organization support line phone number: 1-800-452-4844

Keysight Technologies Test and Measurement Organization web site: http://www.keysight.com

Keysight Technologies Test and Measurement Logic Analyzers web site: http://www.keysight.com/find/logic

Keysight Technologies Test and Measurements Accessories web site: http://www.keysight.com/find/la_probing
www.axiestandard.org
AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. The business that became Keysight was a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

www.lxstandard.org
LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. The business that became Keysight was a founding member of the LXI consortium.

www.pxisa.org
PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Download your next insight
Keysight software is downloadable expertise. From first simulation through first customer shipment, we deliver the tools your team needs to accelerate from data to information to actionable insight.

- Electronic design automation (EDA) software
- Application software
- Programming environments
- Productivity software

Learn more at
www.keysight.com/find/software
Start with a 30-day free trial.
www.keysight.com/find/free_trials
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Three-Year Warranty
www.keysight.com/find/ThreeYearWarranty
Keysight’s committed to superior product quality and lower total cost of ownership. Keysight is the only test and measurement company with three-year warranty standard on all instruments, worldwide. And, we provide a one-year warranty on many accessories, calibration devices, systems and custom products.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/la_probing