Deep-Memory Oscilloscopes Illuminate Hard-to-Find Problems

Modern embedded systems that utilize a mix of analog and digital technologies call for a new breed of oscilloscope.

If you have ever debugged a mixed-signal embedded system, you know the frustration of trying to get a big picture of the various signals while maintaining enough resolution to focus in on details. When designing complex state-of-the-art systems such as electromechanical or biomechanical products, you must simultaneously acquire both slow analog and fast digital signals. Design complexity is increasing as you use advanced microcontrollers, DSPs, and FPGAs to deliver smarter products to your customers. Limitations in simulation tools and the inability to provide real-world stimulus to the simulated environment require you to execute rapid prototyping and debugging cycles. The debugging problems you face during these cycles can be intermittent, infrequent, and difficult to reproduce.

Fortunately, deep-memory oscilloscopes are available for intermittent problems and any others requiring large time capture windows at high resolution. In the early stages of debugging, problems in the design prototype are not well understood. You often try to capture as much of the target system execution as possible and then peruse the data to see if you can find any clues as to what might be going wrong. Some problems occur intermittently or under very rare conditions and often cannot be duplicated at will.

Some failures carry detrimental financial implications during product development, as when an expensive component is inadvertently destroyed during a test. When this happens, accumulating as much data as you can each time a failure occurs is highly desirable. Even if a problem can be reliably duplicated, capturing the effect of the problem (such as a target system crash) without having captured
enough data to view the cause, which occurred much earlier, can be a very frustrating experience. Deep-memory oscilloscopes are invaluable for situations like these. Two examples of how deep-memory oscilloscopes can help solve some of your mixed-signal and other debugging problems are described below.

EXAMPLE 1: A Low-Power, Spread-Spectrum Data Acquisition System

The first example is a Motorola MC68HC11K1 microcontroller being used to collect temperature data from an array of remote sensors. The collected data is transmitted to a central computer via spread-spectrum radio transceivers (figure 1). This low-power system turns on briefly every 60 seconds to make its measurements and then is designed to sit quietly and conserve power for the remainder of the 60-second cycle. The problem is that intermittently, the system is showing activity during the quiet period. This added, unwanted activity is consuming power at a higher-than-acceptable rate. The engineer needs to know where in the 60-second window the problem is occurring and what precise system activity is happening at that point. The long time window makes this a good application for a deep-memory scope.

Good Measurements Start with Quality Probing

It should go without saying, but a high-quality probing solution is required for high-quality measurements. This is a surprisingly easy area in which to make mistakes. A poor probing setup can mask real problems or create problems that are not actually present. Either situation can result in a significant loss of time and add a significant amount of frustration. In this example, a high-precision “wedge” probe is used to reliably connect to the closely spaced pins of some of the QFP components. Also, every effort is made to maintain a short ground lead to minimize probe inductance. Low-mass, low-loading probes designed for and calibrated with the scope being used are employed in the setup.

![Figure 1. Block diagram of the wireless data acquisition system. One analog input of the scope monitors power-up on the MCU while the other monitors the carrier-detect signal feeding the transceiver.](image-url)
Capturing Long Time Windows with Sustained Sample Rate

The ability to sustain high sample rates over long time windows is the classic benefit of a deep-memory oscilloscope. With a shallow-memory oscilloscope, a lower sample rate must be used as the time-base setting is increased in order to display an entire screen of data. Thus a shallow-memory oscilloscope with a higher maximum sample rate at fast sweep speeds may actually deliver lower sample rates at slow sweep speeds than its deep-memory counterparts.

The benefit of a sustained high sample rate is that you do not miss any signal details due to digital under-sampling of the waveform. Long time windows allow you to view an entire execution cycle or an entire range of motion of the device under test. In this example, the entire 60-second execution cycle is captured at a resolution of 16.7k samples per second (one sample every 60 ms) due to the 1 megasample of deep acquisition memory behind every channel. This is sufficient resolution to capture the 2-ms glitch that occurs 15 seconds after the trigger event and causes power-consuming activity (Figure 2).

Example 2: A Motor Controller Utilizing Pulse-Width Modulation Circuits

The second example is an Infineon C504 microcontroller controlling an AC motor. The AC motor is driven by a three-phase inverter controlled by digital pulse-width modulation circuits (Figure 3). The three-phase inverter uses MOSFET power switches to convert the digital PWM control signals to the amplified phase signals needed to drive the motor.
This is an efficient design, but it is tricky to make sure that both sides of the push-pull switches do not conduct at the same time. If this occurs, the three-phase inverter will be destroyed. The engineer must determine whether potentially destructive operation can occur during variations to motor loading and operating temperature. Measuring both the inputs and the outputs of the three-phase inverter simultaneously can be a challenge because the inputs have a cycle time in the nanosecond range and the outputs have a cycle time in the millisecond range – a million to one difference in resolution.

Image Processing – Getting the Big Picture of All that Data

So how can over one million data points be displayed on an oscilloscope screen that has only six hundred display pixels across its horizontal axis? A simple decimation scheme that eliminates all but one of every two thousand data points would result in the loss of a great deal of signal information. Clearly, some very intelligent display processing algorithms must be employed to produce a final display image that is not misleading. The desired result is that any variation in the signal’s characteristics is clearly projected so that even a casual glance at the display will identify that something is wrong.

The most effective, modern deep-memory oscilloscopes can display entire megasample-length acquisition records on the display without missing a single variation in the data patterns. In the previous example, this allows the engineer to correctly identify a 2-ms glitch on a display showing 60 seconds’ worth of activity. In this example, the user can view the slow-moving three-phase inverter outputs while monitoring the high-speed digital inputs for any data pattern variations or dropouts.

Avoiding Scroll and Zoom Frustration

Anyone who has had the frustrating experience of trying to use a computer to scroll through a file of large photo images can identify with the problem of a tool that has become unresponsive to its user because it has too much data to deal with. Some deep-memory oscilloscopes can leave you with the same frustrated feeling. With deep memory enabled, the scope can become very unresponsive when you are trying to scroll through or zoom in and out of the acquired data. This can leave you with an unpleasant tradeoff: having to choose between a scope with deep memory or one that is responsive to commands. The latest deep-memory scopes are both responsive and deep, so you don’t have to choose between the two.

In this example, the engineer must zoom out to observe the quality of the analog output signals and then zoom in to verify that the digital control signals do not cause the power switches to conduct at the same time. The engineer’s next step is to scroll to the next transition of interest and use measurement cursors to determine the timing margin in the desired non-overlapping switching operation. This can be either a painless or painful sequence of events depending on whether the oscilloscope is responsive to its controls when deep memory is enabled.

Specifying a Trigger – Focusing on the Event of Interest

As stated previously, an advantage of deep-memory oscilloscopes is that you don’t necessarily need to know what to trigger on in order to start solving the problem. However, once you understand the problem better, the ability to trigger on specific events of interest can be quite useful in determining whether undesir-
able events ever occur or in making very specific measurements. Mixedsignal oscilloscopes with deep memory allow you to trigger on a wider variety of target system events due to their 16 extra, integrated digital channels. In this example, the time-qualified trigger mode allows the engineer to synchronize the scope’s display to the desired dead-time measurement (figure 4).

The complexity of the latest embedded systems that utilize mixed-signal technologies can present debugging and verification problems that are best solved by deep-memory oscilloscopes. These scopes are a valuable resource for locating small or intermittent problems, which is particularly difficult for complex embedded systems that use a combination of analog and digital signals.

Figure 4. Verifying the dead time between the high-side and low-side PWM outputs
Agilent Technologies’ Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent’s overall support policy: "Our Promise" and "Your Advantage."

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent Email Updates
www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Direct
www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions with confidence.

Agilent T&M Software and Connectivity
Agilent’s Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity for more information.

Online assistance:
www.agilent.com/find/assist

Phone or Fax
United States: (tel) 800 829 4444
Canada: (tel) 877 894 4414 (fax) 905 282 6495
China: (tel) 800 810 0189 (fax) 800 820 2816
Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840
Korea: (tel) (82 2) 2004 5004 (fax) (82 2) 2004 5115
Latin America: (tel) (305) 269 7500 (fax) (305) 269 7599
Taiwan: (tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100 (fax) (65) 6836 0252
Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

Expanded from original article in Agilent Measurement Solutions Volume 1. Issue 1
© Agilent Technologies, Inc. 2004
Printed in USA June 21, 2004
5988-4538EN