This paper illustrates how to use the dynamic power analysis measurement in the Keysight Technologies, Inc. 8960 test set to measure user equipment (UE) power sequences quickly and accurately.
Dynamic Power Analysis Measurement Overview

The dynamic power analysis measurement is a flexible tool that allows the measurement of UE output power sequences that step up and/or down with varying or fixed power step sizes. The power step length, which must be fixed for the sequence, can be between 100 μs and 10 ms. A total of 58.26 ms of power sequence can be analyzed. For example, up to 87 steps can be measured when Step Length is set to one timeslot (666.7 μs). The test set can measure power between –61 and +28 dBm, and a total change in power of up to 25 dB.

To use the measurement, Measurement Frequency must be set to the expected UE transmitter frequency, and Manual Power must be set to the maximum expected power for the sequence. Next, specify the length and number of steps in the sequence (including trigger pulses), then configure the RF rise trigger, initiate the measurement, and order the UE to send its sequence continuously.

The measurement executes most efficiently if the UE transmits its power sequence continuously until the measurement has completed. The measurement can be triggered externally or by an RF rise in the power sequence. Once triggered, the measurement captures the first power sequence, auto-ranges to the maximum power of the sequence, then triggers on and measures the next available power sequence. The time for the auto-ranging to complete varies depending upon the power sequence. It is important that the UE continuously transmit its power sequence so that a power sequence is available for the test set to measure as soon as it has completed its auto-ranging.

The Measurement Interval and its placement within each step can be varied (using the Trigger Delay setting) and the RRC Filter can be inserted or removed. The measurement can analyze CW signals and uplink DPCH signals. Note: when measuring CW signals, the RF Rise Trigger Threshold setting must be adjusted accordingly and the Frequency Offset setting used to indicate the signal’s offset from the Measurement Frequency setting.

Triggering the Dynamic Power Analysis Measurement

The dynamic power analysis measurement is triggered using an RF rise within the power sequence by setting Trigger Source to RF Rise and specifying the appropriate RF Rise Trigger Threshold. If the power sequence starts with an abrupt rise in power, no separate trigger pulse is needed. However, for the most robust triggering, it is recommended that a trigger pulse be included in every power sequence. The trigger pulse should rise in power by at least 20 dB, reach the maximum power of the sequence, then fall in power by at least 20 dB. Before initiating the measurement, Power Control must be set to Manual and Manual Power must be set to the highest power expected in the sequence. It is recommended that the RF Rise Trigger Threshold be set to approximately 10 dB below the expected maximum power.

It is recommended that the trigger qualification also be used, which allows the measurement trigger to be further defined. Instead of the measurement triggering when the UE’s signal simply rises above the RF Rise Trigger Threshold value, the signal must meet some additional criteria before the measurement is triggered. To use trigger qualification, set Trigger Qualification State to On and set Trigger Qualification Type to RF Rise, RF Fall, or RF Rise and Fall as appropriate for the power sequence. Then, set the Trigger Qualification Rise Threshold and/or the Trigger Qualification Fall Threshold accordingly. It is recommended that these rise/fall criteria be at least 10 dB (see Figure 1.)
Auto-ranging in the Dynamic Power Analysis Measurement

To ensure successful auto-ranging, the **Steps** setting must be set equal or greater than the number of steps in the power sequence (including trigger pulses). When the measurement is triggered, the test set captures data for the time period specified by the **Steps** and **Step Length** setting to determine the power range of the sequence. It then ranges its receivers to accommodate the highest power in the sequence. The time for this auto-ranging to complete varies depending on the number of steps in the sequence; a typical duration is approximately 500 ms. (Note that this is much greater than the duration of one power sequence.) Once it has completed this autoranging, the test set re-arms and then is triggered by the next available power sequence. It then analyzes and reports the power of each step in that power sequence.

To ensure that the measurement executes as quickly as possible, the UE should transmit its power sequence continuously until the measurement completes. This ensures that as soon as the measurement is done auto-ranging, another power sequence is immediately available for measurement (see Figure 2.)

Note: if the power range of the subsequent power sequence does not closely match that of the power sequence used to auto-range, instead of reporting measurement results, the measurement attempts to auto-range again. This could occur if the **Steps** setting is less than the number of steps in the sequence, the UE’s signal was noisy, or if a false trigger occurred.

The measurement is most accurate over a 25 dB range. If the UE’s power sequence spans more than 25 dB, the test set will measure and report the power of the entire sequence, but accuracy is degraded for steps that are more than the 25 dB below the highest power in the sequence.

![Figure 1. Trigger recommendations](image1.png)

![Figure 2. Measurement auto-ranging](image2.png)
Dynamic Power Analysis Measurement Example

This section illustrates how to configure the dynamic power analysis measurement to measure the example power sequence pictured in Figure 3. The test set settings shown in bold are critical for successful measurement triggering and auto-ranging.

![Figure 3. Example ramp-up power sequence](image)

Test set settings:

- Measurement frequency = 1950 MHz
- Power control = Manual
- Manual power = 0 dBm
- Steps = 23
- Step length = 666.7 μs
- Measurement interval = 300 μs
- RF rise trigger threshold = –10 dBm
- RRC filter = On
- Frequency offset = 0 Hz
- Trigger qualification state = On
- Trigger qualification type = RF Rise and Fall
- Trigger qualification rise threshold = 10 dB
- Trigger qualification fall threshold = 10 dB
- Trigger arm = Single
- Trigger source = RF Rise
- Trigger delay = 183.3 μs (to place the measurement interval in the center of the timeslot)
- Measurement timeout = 10 s
Remote commands:

RFA\text{nalyzer:MA\text{n}ual:ME\text{a}Surement 1950 MHZ
RFA\text{nalyzer:CO\text{n}trol:PO\text{w}er:AUTO OFF
RFA\text{nalyzer:MA\text{n}ual:PO\text{w}er 0 DBM
\text{SE}\text{T}up:WDP\text{a}nalysis:ST\text{E}Ps 23
\text{SE}\text{T}up:WDP\text{a}nalysis:LEN\text{G}th 666.7 US
\text{SE}\text{T}up:WDP\text{a}nalysis:IN\text{T}erval 300 US
\text{SE}\text{T}up:WDP\text{a}nalysis:TR\text{I}G\text{g}ger:TH\text{R}eshold -10 DBM
\text{SE}\text{T}up:WDP\text{a}nalysis:RRC\text{f}ilter ON
\text{SE}\text{T}up:WDP\text{a}nalysis:FO\text{F}set 0 HZ
\text{SE}\text{T}up:WDP\text{a}nalysis:TR\text{I}G\text{g}ger:QUA\text{L}ify:ST\text{A}Te ON
\text{SE}\text{T}up:WDP\text{a}nalysis:TR\text{I}G\text{g}ger:QUA\text{L}ify:TY\text{P}E RISEFALL
\text{SE}\text{T}up:WDP\text{a}nalysis:TR\text{I}G\text{g}ger:QUA\text{L}ify:RISE 10 DB
\text{SE}\text{T}up:WDP\text{a}nalysis:TR\text{I}G\text{g}ger:QUA\text{L}ify:FALL 10 DB
\text{SE}\text{T}up:WDP\text{a}nalysis:CONT\text{i}nuous OFF
\text{SE}\text{T}up:WDP\text{a}nalysis:TR\text{I}G\text{g}ger:SOUR\text{c}e RISE
\text{SE}\text{T}up:WDP\text{a}nalysis:TR\text{I}G\text{g}ger:DE\text{L}ay 183.3 US
\text{SE}\text{T}up:WDP\text{a}nalysis:TIM\text{e}out 10 S
INIT\text{i}ate:WDP\text{a}nalysis
“Order UE to transmit its power sequence continuously”
FETCh:WDP\text{a}nalysis?

![Figure 4: Dynamic power analysis measurement result](image)

Optimizing the Dynamic Power Analysis Measurement

To help ensure the measurement routine executes as fast as possible, consider the following:

- ensure that the UE is continuously repeating its power sequence
- use RF rise triggering, include a trigger pulse in the power sequence, and use trigger qualification to avoid false triggering
- make the trigger pulse equal to the maximum power in the sequence, to best utilize the 25 dB dynamic range of the measurement
- minimize the space between consecutive sequences (one step of space is sufficient)
- note that a noisy UE signal may force the measurement to auto-range repeatedly

Conclusion

The dynamic power analysis measurement in the 8960 is a flexible tool that provides fast and accurate power measurements to aid in the calibration of UE.

For additional information on the dynamic power analysis measurement, visit: http://wireless.keysight.com/rfcomms/refdocs/wcdma/wcdma_meas_wdpanalysis_desc.php
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

www.keysight.com/find/ems_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2826
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 989 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001 1122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 803 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 509286
Spain 800 000154
Sweden 0200 692255
Switzerland 0800 805363
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001:2015
Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5989-2573EN
www.keysight.com