Agilent
Replace 8508A Vector Voltmeter with ENA-L RF Network Analyzers

Application Note

- Broader dynamic range for S_{11} and S_{21} measurements
- No external Signal Generator needed for stimulating DUT
- Emulate VVM operation with ENA-L built-in Visual Basic for Applications
In addition, the ENA-L’s built-in VBA programming capability enables you to emulate the VVM user interface by making a customized control panel on the ENA-L (Figure 2a). This allows you to minimize switching barriers for test operators who are familiar with the traditional VVM operations (Figure 2b).

S\textsubscript{11} and S\textsubscript{21} measurements

The VVM has been widely used for simple CW transmission (S\textsubscript{21}) and reflection (S\textsubscript{11}) measurements in combination with an external signal generator (SG) that stimulates the DUT (See Figure 1a). Typical application examples are:

- Equalizing a RF cable’s electrical length to a reference “golden” RF cable by measuring its relative S\textsubscript{11} phase value in the open-ended condition and physically trimming the cable length;
- Testing a phased array antenna by measuring each of its elements’ relative S\textsubscript{21} phase to a reference element; and so on. A vector network analyzer is designed for making these kinds of measurements (See Figure 1b). By replacing your old VVM-based test system with the ENA-L RF network analyzer, you will have the following advantages:
 - The ENA-L features an internal source for stimulating DUTs. No external SG is needed.
 - The ENA-L provides a much broader dynamic range (max. 120 dB).
 - It is possible to make not only CW measurements but also swept measurements very easily.
 - The ENA-L’s built-in vector error correction functions can improve measurement accuracy.

In addition, the ENA-L’s built-in VBA programming capability enables you to emulate the VVM user interface by making a customized control panel on the ENA-L (Figure 2a). This allows you to minimize switching barriers for test operators who are familiar with the traditional VVM operations (Figure 2b).
Measuring phase difference of external source devices

Measuring phase difference between two CW signals coming from external source devices is also a typical VVM application (Figure 3). The ENA-L can perform this phase difference measurement as follows:

- Set the ENA-L’s center frequency to the DUT’s frequency, and set the ENA-L’s span to zero. These operations are for setting the ENA-L’s receiver frequency to the DUT’s frequency.
- Set the ENA-L to RF Out OFF mode to turn off its internal source output.
- Measure $S_{11} = T_1/R_1$ and $S_{21} = T_2/R_1$.

Perform a complex calculation to derive the phase angle of $S_{21}/S_{11} = T_2/T_1$. (See Figure 4)

For GPIB controlled automated system environments, the above operation sequence and complex calculation should be performed on an external PC. For manual test applications, the sequence and calculation can be automated with the ENA-L’s built-in VBA programming function.

Notes

- The ENA-L has no capability to phase-lock the measured CW signal. It is recommended that you lock the 10 MHz reference signal between the ENA-L and the DUT. If the 10 MHz reference lock is not possible, carefully adjust the ENA-L’s center frequency to the DUT. If necessary, adjust the receiver IFBW to a broader value.
- To precisely measure the ratio T_2/T_1 with 50 ohm input ports, it is important to minimize impedance mismatches between the analyzer and the DUT. Ensure that a good impedance match is maintained in each of the ratio measurement paths. If possible, it is also recommended that you perform the Zero compensation by inputting equal-phase CW signals, prior to conducting the measurements.
- The ENA-L has no built-in high-impedance input function. If high-impedance input is needed, use external high-impedance probes and external probe powers.
- It is recommended that you add Option 016 Touchscreen for easy operation of the VBA panel in environments where the mouse cannot be used.
Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to
www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 81 426 56 7832
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe
Austria 0820 87 44 11
Belgium 32 (0)2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0)10 855 2100
France 0825 010 700
Germany 01805 24 6333*
*0.14€/minute
Ireland 1890 924 204
Italy 39 02 92 60 8484
Netherlands 31 (0)20 547 2111
Spain 34 (91)631 3300
Sweden 0200-88 22 55
Switzerland (French) 41 (21)8113811 (Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0)118 9276201

Other European Countries:
www.agilent.com/find/contactus
Revised: May 7, 2007

Product specifications and descriptions in this document subject to change without notice.

Printed in USA, June 5, 2007
5989-3987EN