Overview

The serial point-to-point PCI Express technology supports up to 4 GB/s bandwidth per direction. Depending on the link width, the bandwidth scales from 250 MB/s to 4 GB/s per direction. But, this high theoretical bandwidth does not guarantee the overall performance will be optimal. Performance always depends on the efficiency of both devices on a PCI Express link. Parameters like payload size, flow control credit availability and different latencies strongly influence the overall result.

It’s not an easy job to predict the actual performance of a new device. The numerous input factors make it very difficult to find a precise estimate of the real-life performance.

A first performance estimate

What is the maximum throughput, one can get for read completions on a x1 PCI Express link under the following conditions?

1. The requester is able to accept completion packets at maximum rate (ideal requester).
2. The completer is able to send completion packets at maximum rate.
3. The completer splits the completion at each 64-byte Read Completion Boundary.
 - 40 MB/s
 - 210 MB/s
 - 190 MB/s
 - 170 MB/s

The result is 190 MB/s. Is this surprising? Is it lower or higher than expected? Why is the maximum only 190 MB/s?
Definition of Performance Parameters

The most interesting performance parameter is the link throughput, the actual amount of bytes being transferred in one second.

Also interesting is the information how the link is being utilized. How does the link usage time compare to total link time?

Utilization = $\frac{\text{Link Active Symbols}}{\text{Total Symbols}}$

Finally, the link efficiency builds a ratio of number of payload symbols divided by the amount symbols while the link is active. In other words, efficiency is evaluated with the equation:

Efficiency = $\frac{\text{Payload Symbols}}{\text{Link Active Symbols}}$

where

\[\text{Link Active Symbols} = \text{Overhead Symbols} + \text{Payload Symbols} \]

This parameter tells how many symbols would be transferred if the complete link time was used.

The actual throughput is calculated with the formula below.

Throughput = $\text{Maximum Throughput} \times \text{Utilization} \times \text{Efficiency}$

Figure 1. Efficiency over payload size

Figure 2. Maximum throughput over payload size
Latencies

The request to completion latency (Figure 3) determines the responsiveness of the system. One can distinguish here between first DWORD latency and last DWORD latency. The values here may differ, depending on actual load condition of the backend. Missing credits for completion headers or data may also influence these numbers.

TLP to flow control (FC) update

When the transaction layer packet (TLP) is received, sequence number and CRC checking takes place. If there’s no error it will be put into the receive buffer. Then the TLP will be given to the transaction layer. When the transaction layer finally has accepted the TLP, the buffer spot will be freed again, and the transmitter will send a flow control update to the link partner.

TLP to flow control update (Figure 4) is the time between the end of a TLP and the flow control update data link layer packet (DLLP) that returns the credits that were used by the originating TLP.

Flow control update to TLP

When a flow control update is received, CRC checking takes place. Then it is forwarded to the transaction layer. If this flow control update results in additional posted, non-posted or completion credits, a TLP that was waiting for credits will be forwarded from the transaction layer to the data link layer (if replay buffer space is available). The data link layer will add the framing and finally transmit the TLP.

The flow control update to TLP latency (Figure 5) is the time it takes from receiving a FC update DLLP until a TLP that was waiting for credits is transmitted.

The flow control update latency (Figure 6) is the sum of TLP to FC Update plus FC Update to TLP plus the DLLP length.
Latencies (Continued)

Buffer sizes for each virtual channel need to be sufficient so that big flow control update latency does not cause lower utilization and throughput. It's really important to realize this latency is determined by both sides of the link. Buffer sizes need to be chosen so the performance requirements of the device are met at maximum link width and big flow control update latency.

In other words, if a device received credits for 8 headers and 1024 bytes, it needs to wait after it has used up all the credits if the flow control update for the first TLP did not come in on time.

For example, in a by one link, if the flow control update latency is 1 μs, a device needs sufficient header and payload credits for sending 250 bytes. If the initially advertised credits from the link partner are lower, the device can not achieve full line rate as it has to eventually wait for additional credits. Utilization will drop in this case.

The device, with a by 8 link, needs credits for sending 2 KB if the flow control update latency is 1 μs.
Latencies (Continued)

TLP to ACK/NAK latency
When a TLP is received by the data link layer, it will check that TLP for framing and CRC errors. Depending on the result of that test, it will schedule either an acknowledge (ACK) or a not acknowledge (NAK) data link layer packet (Figure 10).

The TLP to ACK/NAK latency is the average time between the end of the TLP and the ACK or NAK DLLP for the appropriate TLP.

ACK to buffer free and NAK to replay
Receiving an ACK or NAK data link layer packet uses up some time. Also, the action that is either buffer free or replay needs some time (Figure 11).

The time from reception of the ACK DLLP until the receive buffer is freed is the ACK in latency.

The time from reception of the NAK DLLP until the TLP is replayed is the NAK in latency (Figure 12).

The NAK in latency can be measured whereas the ACK in latency can not be measured since buffer free does not result in an observable event on the link.

Nevertheless, a device may need to wait for replay buffer space depending on ACK latency, link speed and replay buffer size (Figure 13).

Test methods and setup

Setup 1
The performance measurements were taken with a Keysight Technologies, Inc. E2960 protocol analyzer. It was set up to measure throughput, efficiency and utilization on the link between Device 1 and Device 2. It’s only possible to measure the actual results with the protocol analyzer. This setup (Figure 14) does not allow measuring the maximum capabilities of Device 1 or Device 2.

Setup 2
In order to measure the maximum capabilities of a device, an ideal link partner is required. An ideal stimulus is a device that does not influence the performance parameters of the device under test.

An Keysight E2960A Protocol Exerciser and Analyzer setup was used for this task. The exerciser is stimulating the system with ideal traffic. The protocol analyzer measures the actual performance numbers in this setup (Figure 15).
Latencies (Continued)

Figure 10. TLP to ACK/NAK latency

Figure 11. ACK to buffer free

Figure 12. NAK to replay

Figure 13. ACK/NAK latency

Figure 14. Setup for measuring actual performance

Figure 15. Setup for measuring maximum capabilities
Measurement Results

Actual device performance

The Figure 16 bitmap shows throughput, utilization and efficiency on a x1 link. The result was:

<table>
<thead>
<tr>
<th>Direction throughput</th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilization</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>55%</td>
<td>30%</td>
</tr>
</tbody>
</table>

The upstream direction was more efficient. Therefore, utilization of the upstream direction was half as big as the downstream direction.

Maximum completion throughput

Now the exerciser was used in order to send infinite read requests to the device under test (Figure 17). The receiver of the exerciser was configured to show infinite credits for completions. This way it’s possible to measure the maximum completion throughput the device under test is able to drive.

The result was 180 MB/s at 99% utilization and 75% efficiency. The low efficiency was due to the average payload size of 64 bytes.

Figure 16. Actual performance

Figure 17. Maximum completion throughput
Measurement Results (Continued)

TLP to FC update latency

Here (Figure 18) the exerciser was programmed to send a memory write request to the DUT. The protocol analyzer was used to measure the time between that TLP and the next flow control update. The result was 624 ns. Since the TLP duration was 240 ns, the real TLP to FC update latency for posted writes on this device was 384 ns.

FC update to TLP latency

Finally, the exerciser was programmed to show very limited completion credits for the device under test so that it was forced to wait for flow control updates (Figure 19). This way it’s possible to measure the FC update to TLP latency by measuring the time between a flow control update (completion) packet and the next completion TLP. The device under test showed a latency of 432 ns.
How to avoid performance surprises

As it has been shown, the performance on a PCIe® link depends on the characteristics of both devices on the link. In order to make sure performance requirements are met, it’s a good idea to anticipate the device at the other side of the link has high latencies. Here are some suggestions on meeting performance requirements:

- Make sure the device is sending packets with maximum payload size.
- Avoid unnecessary DLLP’s.
- Minimize the flow control and ACK/NAK latencies of the device.
- Supply sufficient buffer size for each virtual channel and the reply buffer so that big flow control and ACK/NAK latencies at the other side of the link do not hurt.

Summary

- PCI Express parameters such as TLP size, availability of flow control credits and latencies have a strong influence on the overall performance.
- Both sides of a link are influencing the overall performance.
- For corner case measurements an ideal stimulus is required.
myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

Three-Year Warranty
www.keysight.com/find/ThreeYearWarranty
Keysight’s commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 52352
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0280637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-09-23-14)