Errata

Document Title: Comb Generator Simplifies Multiplier Design (AN 983)

Part Number: 5989-6259EN

Revision Date: February 1981

HP References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Application Note

We’ve added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
INTRODUCTION

A comb generator uses a step recovery diode with appropriate circuitry to generate a narrow pulse of voltage from each cycle of an incident sine wave. In the frequency domain this repeated narrow pulse is seen as the harmonics of the input frequency. Power is divided approximately equally among the lower harmonics and drops off at a rate dependent on the width of the pulse. This comb of frequencies is useful for testing circuits over a range of frequencies.

Since the power output is divided among so many frequencies, the power level in each harmonic is quite low. Even at low order harmonic frequencies, the output is about 20 dB down from the input level. For example the minimum low order harmonic level of the HP 33004 comb generator is +5 dBm (Figure 1), 22 dB down from the 27 dBm input level.

from the active element, the step recovery diode. The unwanted frequencies are reflected from the filter to the diode where they multiply and mix with each other to produce more power at the desired frequencies. When a narrow band filter passing the nth harmonic is placed at the comb generator output, the percent efficiency for the single frequency output can exceed 100/n.

FILTER ADDED TO COMB GENERATOR

To illustrate this effect a bandpass filter was added to a comb generator similar to the Hewlett-Packard model 33005D as shown in Figure 2. Since the power output results from a combination of harmonics of the 1 GHz input from the comb generator with harmonics and mixing products due to reflected signals from the filter, the phase separation between diode and filter will affect the power level at each frequency. To measure this effect a phase shifter is included in the test system.

Figure 1. Spectrum Envelope of 33004A/B (500 MHz)

In applications where more power is needed at selected harmonics, an expensive microwave amplifier may be added to the comb generator. However, the required increase in power may often be obtained by adding an inexpensive bandpass filter.

The use of a passive element to amplify power in the desired frequency band may seem to violate the principle of the conservation of energy, but the increased power comes

Figure 2. Block Diagram

Figure 3 shows how the filter increases the harmonic power when proper spacing between diode and filter is used. When the phase shifter in Figure 2 is set at 75° the eighth harmonic power level is 10.8 dBm with 27 dBm input. Without the filter, the power at this frequency from the comb generator is 4 dBm, less than one fourth the power from the filter.

This filter passes six harmonics, from the eighth to the thirteenth. With a narrow band filter passing only the eighth harmonic, the efficiency would be approximately \(\frac{1}{n} = \frac{1}{8} \) or -9 dB. The power would be \((27-9)\) dBm = 18 dBm, an increase of 14 dB from the comb generator power at the eighth harmonic and 7 dB from the broader band filter case.
OPTIMUM FILTER SPACING

Figure 4 shows the power variation for the eighth and ninth harmonics when the phase is varied. In order to simulate a change in physical distance of the filter location, the phase shift at the eighth harmonic is plotted for both harmonic outputs. The ninth harmonic power at optimum phase is 7 dBm compared to 0 dBm for the comb power. If equal power were needed from these two harmonics, the phase shift would be set at 97° where the curves cross. If, however, equal degradation from the peak is the criterion, a phase shift of 88° will reduce both harmonics 1.5 dB from their peaks.

Because phase changes more quickly at higher frequencies as the separation increases, the X9 peak will move closer to the X8 peak when a half wavelength is added. At 257° the power levels reach a peak for both harmonics.

It is only coincidence that the addition of a half wavelength spacer brought the two peaks together. Figure 5 shows how randomly spaced are the peaks for the six harmonics passed by this filter. The peaks for any adjacent pair of harmonics may be brought together within 10° by adding multiple half wavelengths. Four multiples would be needed for X9 and X10. If more than two harmonics are needed, a spread of power levels must be accepted.
FILTER “GAIN”

Figure 6 compares the peak of each harmonic output with the filter to the harmonic output of the comb generator without the filter. Input power at approximately 1 GHz is 0.5 watt. Power levels have been corrected for filter loss. The increase in power varies from 7 to 27 dB. More “gain” would be expected from filters with narrower bandwidth.

If the six peak powers shown in Figure 6 could be obtained at once, the total efficiency would be 8.8%. Higher efficiency would probably be obtained in circuits more directly coupling the filter to the diode. In this experimental circuit there are coaxial to waveguide adapters as well as coaxial adapters. For example a multiplier has been reported with seven harmonics from the eighteenth to the twenty-fourth. Reported efficiency is 9%, even though the order of multiplication is much higher.

SUMMARY

Step recovery diodes may be used in impulse generator circuits to produce a broad band of frequencies harmonically related to the input frequency. When a narrow band of frequencies is needed a filter may be added to the comb generator to eliminate the unwanted harmonics and increase the power output of the desired harmonics.

Note: