Keysight Technologies

Differences in Application Between Power Dividers and Power Splitters

Application Note
Introduction

Power dividers are an RF microwave accessory constructed with equivalent 50 Ω resistance at each port. These accessories divide power of a uniform transmission line equally between ports to enable comparison measurements. Power dividers provide a good impedance match at both the output ports when the input is terminated in the system characteristic impedance (50 Ω). Once a good source match has been achieved, a power divider is used to divide the output into equal signals for comparison measurements. The power divider also can be used in test systems to measure two different characteristics of a signal, such as frequency and power, for broadband independent signal sampling. Besides dividing power it also can act as power combiners because they are bi-directional.

Power splitters are constructed of two resistors. They are used for leveling and ratio measurement applications to improve the effective output match of microwave sources. The two-resistor configuration also provides 50 Ω output impedance to minimize measurement uncertainty in source leveling or ratio measurement applications.

Characteristics of power dividers and power splitters

<table>
<thead>
<tr>
<th>Power dividers</th>
<th>Power splitters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide a signal equally for comparison measurements</td>
<td>Used in ratio measurements and leveling loop applications</td>
</tr>
<tr>
<td>All ports have equivalent 16 2/3 Ω resistance</td>
<td>Only the input port has a 50 Ω resistance, the other two ports have 83.33 Ω impedance</td>
</tr>
<tr>
<td>Can be used as power combiners</td>
<td>SWR 1:1</td>
</tr>
<tr>
<td>SWR 3:1</td>
<td></td>
</tr>
</tbody>
</table>

Key specifications of Keysight Technologies, Inc. 11636C power dividers and 11667C power splitter

<table>
<thead>
<tr>
<th>11636C power dividers</th>
<th>11667C power splitters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency: DC to 50 GHz</td>
<td>Operating frequency: DC to 50 GHz</td>
</tr>
<tr>
<td>± 0.3 dB amplitude tracking</td>
<td>< 0.4 dB tracking between output ports</td>
</tr>
<tr>
<td>± 2° phase tracking</td>
<td>Excellent output: 1.10 SWR at the auxiliary port</td>
</tr>
<tr>
<td>Low SWR 1.67</td>
<td></td>
</tr>
</tbody>
</table>
Power Divider and Power Splitter Applications

Power divider applications

Low power signal distribution to two antennas

In this application, a power divider divides the power into two antennas at the same time. Figure 1 shows how to make a simple connection to a power divider which distributes the low power signal equally into two antennas at one time.

Intermodulation distortion (IMD) measurements

Power dividers can be used as power combiners for IMD measurements. IMD measurements require a signal with the appropriate phase relationships among the carriers to simulate real life conditions and provide repeatable results. A power divider accurately combines two signals from the two difference signal sources into one signal for the device under test (DUT). A spectrum analyzer is used to examine the output of DUT while it is being stimulated with multi-tone test signal.

Figure 2 shows the traditional measurement setup used to measure the IMD product with a two-tone test stimulus.
Diversity gain measurements

The electromagnetic field in multipath environments is very strong in some positions and very weak in others. A power divider can be used to measure the diversity gain of the handset. Figure 3 shows how to connect a power divider.

This measurement setup is used to measure the diversity gain of digitally-enhanced cordless telecommunication (DECT) devices. The base station sends a slot through a power divider to a wall antenna selected by the switch. The handset then radiates the signal back to the base station. The handset is placed in a reverberation chamber so that a spectrum analyzer can receive and measure the radiated power of the signal.

Power splitter applications

Gain, compression and isolation measurements

Power splitters can be use for gain, gain compression and power testing. Figure 4 shows the basic test setup for amplifier gain, compression and power testing. The power splitter provides signal ratioing that improves the source match and removes re-reflected signals so gain measurements can be taken at different RF power levels without re-calibrating.
RATIOING OR LEVELING

The effective source match can be improved by ratioing or leveling the source externally. These two methods also provide similar source match improvement. Figure 5 shows the source leveling technique that uses an external crystal detector. Figure 6 shows the source leveling technique using a power meter.

CONCLUSION

Power dividers and power splitters perform different functions in test systems and, as seen in the applications above, are not interchangeable. For simple power dividing and combining, the three-resistor power divider should be used. For ratio measurement and leveling, the two-resistor power splitter is the right choice.

For more information on test accessories go to: www.keysight.com/find/mta
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

ATCA, AdvancedTCA, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

www.keysight.com/find/mta

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 800 349051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus

(BP.-9-7-17)

DEKRA Certified
ISO 9001:2015
Quality Management System

www.keysight.com/go/quality

Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

This information is subject to change without notice.
© Keysight Technologies 2017
Published in USA, January 17, 2018
5989-6699EN
www.keysight.com