Introduction

This application note describes how to extend the operating range of Keysight Technologies, Inc. InfiniiMax probes in voltage, temperature, and distance (reach) between probe amplifiers and heads.

Operating at high or low temperatures

You may need to monitor a system in a temperature chamber with an oscilloscope probe to verify performance over a wide range of operating temperature, or to determine the cause of failures at high or low temperatures. Keysight InfiniiMax probe amplifiers (1130 Series and 1160 Series) have a specified operating temperature range from 5°C to 40°C. However, the probe heads can be operated over a much wider range (see Table 1). You can use the Keysight N5450A extension cable set (Figure 1) to physically separate the probe heads from the probe amplifiers. This will allow you to operate the probe heads inside a temperature chamber with the probe amplifier located outside the temperature chamber.

Cycling the probe heads through a wide range of temperatures in a temperature chamber will impact the life of the probe heads. Table 1 shows the expected life of a probe head, expressed in the number of cycles through the range from min to max as shown in the second column. Note: Probe heads may appear discolored after lengthy operation at high temperatures. The color or texture of the cables may also change. This does not indicate degradation of the probe head or cable performance.

Measurement challenges

As with any cable, there is some loss due to the 3-ft length of these cables. Figures 2 and 3 show the frequency and time domain responses of the 1169A 13GHz InfiniiMax probe and N5381A solder-in probe head without (red) and with (blue) the extension cables. The -3 db frequency does not change noticeably, but there is approximately 1 db of additional in-band loss that will affect the risetime slightly. The addition of the extension cables will also cause the equivalent input noise of the probe to increase by about 40%.

<table>
<thead>
<tr>
<th>Probe heads</th>
<th>Operating temperature range</th>
<th>Lifetime in number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5381A 12 GHz differential solder-in head</td>
<td>-55°C to +150°C</td>
<td>>250</td>
</tr>
<tr>
<td>E2677A, E2678A, N5426A, or N5451A</td>
<td>-25°C to +80°C</td>
<td>>1000</td>
</tr>
</tbody>
</table>

Table I Probe head operating temperature ranges

Figure 1 Probe head and extension cables connected to probe amplifier

Figure 2 1169A and N5381A frequency response without (red) and with (blue) extension cables
Increasing the voltage dynamic range

The dynamic range of the 1130 series is 5 V p-p; the dynamic range of the 1160 series is 3.3 V p-p. If you need to measure larger signals, the architecture of the InfiniiMax probes allows you to add coaxial RF attenuators between the probe head and the probe amplifier to increase the dynamic range. Attenuators also allow you to increase the offset range of the probe.

The bandwidth and rise time of the probe system is not affected when using high quality attenuators. There is, however, a trade-off in noise and in the accuracy of DC offset relative to the input.

The maximum input voltage of the probe heads is +/-30 Vdc, so they should not be used to measure signals that exceed this range. This places a practical limit of 20 dB on the attenuators that are inserted between the probe head and the probe amplifier. Larger attenuation ratios will only degrade the noise performance and gain of the probe system.

Table 2 shows the typical noise, dynamic range, DC attenuation, and offset range for various attenuation values when used with the two families of InfiniiMax probe amplifiers.
Setting up the scope for the proper probe attenuation ratio

The software in the Infinium oscilloscope will detect the probe when connected and by default will assume that no additional attenuation is installed. If you want the scale factor readings and settings on the oscilloscope to be correct with the attenuator installed, go to the Setup menu and select the channel to which the probe is connected.

<table>
<thead>
<tr>
<th>Probe amplifier</th>
<th>Added attenuation</th>
<th>Dynamic range</th>
<th>Offset range</th>
<th>Typical noise referred to</th>
<th>Nominal DC attenuator of probe system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1130 Series</td>
<td>None</td>
<td>5 V p-p</td>
<td>+/-12V</td>
<td>3 mV RMS</td>
<td>10:1</td>
</tr>
<tr>
<td>1130 Series</td>
<td>6 dB</td>
<td>10 V p-p</td>
<td>+/-24V</td>
<td>7.8 mV RMS</td>
<td>20:1</td>
</tr>
<tr>
<td>1130 Series</td>
<td>12 dB</td>
<td>20 V p-p</td>
<td>+/-48V*</td>
<td>16.7 mV RMS</td>
<td>40:1</td>
</tr>
<tr>
<td>1130 Series</td>
<td>20 dB</td>
<td>50 V p-p</td>
<td>+/-120V*</td>
<td>41.7 mV RMS</td>
<td>100:1</td>
</tr>
<tr>
<td>1160 Series</td>
<td>None</td>
<td>3.3 V p-p</td>
<td>+/-16V</td>
<td>2.2 mV RMS</td>
<td>3.45:1</td>
</tr>
<tr>
<td>1160 Series</td>
<td>6 dB</td>
<td>6.6 V p-p</td>
<td>+/-32V*</td>
<td>6.3 mV RMS</td>
<td>6.9:1</td>
</tr>
<tr>
<td>1160 Series</td>
<td>12 dB</td>
<td>13.2 V p-p</td>
<td>+/-64V*</td>
<td>13.2 mV RMS</td>
<td>13.8:1</td>
</tr>
<tr>
<td>1168A/69A Series</td>
<td>20 dB</td>
<td>33.3 V p-p</td>
<td>+/-160V*</td>
<td>33.4 mV RMS</td>
<td>34.5:1</td>
</tr>
</tbody>
</table>

*: Usable range of DC voltage at the probe input is limited to +/-30 Vdc
Note: The figures shown above do not apply to the N5380A dual-SMA probe head. Due to the maximum input voltage specification of 2.28 VRMS of the N5380A, it is not suitable for measuring signals large enough to require an added attenuator.
In the Channel Setup menu, click on “probes.”

![Probes Menu](image1)

In the next screen, click on “Configure probing system.”

![Configure Probing System](image2)
Then select “User defined probe.”

![Figure 8 Probe menu](image)

Then enter the nominal attenuation value from the table above.

Calibrating the probe system (optional)

If you wish to calibrate the probe and attenuator system for the best attainable accuracy, you can use the calibrated dc outputs from the oscilloscope’s Aux Out. Go to the Utilities menu and select “Calibration.” Select “dc” from the dropdown menu under “Aux.”

With no input to the probe, measure the average voltage using the “Vavg” automatic measurement. Then probe a known dc output voltage from the Aux Out, using the Probe Cal Fixture E2655B. Measure the average voltage again using the “Vavg” automatic measurement. Calculate the correct attenuation ratio of the probing system based on the ratio of the difference between the two readings to the known output from the calibrator. Enter this correct attenuation value into the user-defined probe menu (see Figure 8).

How to purchase attenuators

For the applications that need to measure larger signals with fast edges, the N2880A in-line coaxial attenuator kit allows you to increase the dynamic range of the probe system up to 50 Vpp and the offset range up to +/-30 V, without affecting the bandwidth or rise time characteristics of the probe system. The N2880A comes with one pair of 6 dB, 12 dB and 20 dB attenuators in a kit. The N2881A DC blocking capacitors can be used in series with the in-line attenuator to block out unwanted DC components of the input signal up to 30 V.

All InfiniiMax probe amplifiers and heads are compatible with the N2880A in-line attenuators and N2881A DC blocking capacitors. However, due to limited max input voltage of N5380A dual SMA probe head, the N5380A is not suitable for measuring signals large enough to require an added attenuator.
Increasing the separation between the probe amplifier and the probe head

In some cases, it may be desirable to increase the distance between the probe amplifier and the probe head. For example, in a densely packed system with large plug-in cards, there may not be enough space between cards for the probe amplifier and the probe head leads may not be long enough to reach the probing points. The probe head extension cables N5450A can be useful in this situation.
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight.

myKeysight

www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services

www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners

www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

This document was formerly known as application note 1601.