This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent’s line of EEsof electronic design automation (EDA) products and services, please go to:

www.agilent.com/find/eesof
Eagleware PN 13
Electrical to Physical
with Advanced TLINE
Product Note

Translating between physical processes with Advanced TLINE
Electrical to Physical with Advanced TLINE

The popular TLINE program is now integrated into the schematic capture program. With the click of a button, schematics are changed from microstrip to stripline, coplanar waveguide, or other physical process.

In many preliminary designs, matching elements in the initial schematic are “electrical.” This means that the elements contain only electrically descriptive parameters (e.g. theta and impedance) rather than physically descriptive data such as width and length. Figure 1 shows a zoomed portion of a LNA schematic to illustrate these electrical parameters.

The GENESYS program TLINE has been enhanced to include several exciting new features:

1. Advanced mode integration within the GENESYS environment (Advanced TLINE);
2. Automatic conversion of electrical schematics to physical (e.g. microstrip, stripline, coplanar waveguide);
3. Automatic conversion of physical schematics to electrical;
4. Automatic insertion of Disco’s (Eagleware’s new discontinuity models).

Entire schematics (or portions of schematics) are converted between electrical and physical models by using the new Convert function from the schematic menu, shown in Figure 2.

With version 8.0, Eagleware also introduces Discos®, the automatic discontinuity model. Discontinuities exist in any distributed circuit where a discontinuous metal pattern exists, as in a bend or step in width. These discontinuities are important because they nearly always perturb the desired response in some way. However, they are purely a modeling issue since they are not considered when generating a layout. Therefore, engineers often
spend lots of time including these models in simulations simply out of necessity for accurate simulations. Advanced TLINE automatically places these models, and automatically "absorbs" these models into the adjacent lines to preserve the response. To illustrate this concept, Figure 3 shows a microstrip cross (two metal traces which intersect at a right angle), and the equivalent schematic diagram.

The schematic shown in Figure 3 includes four transmission lines, which all intersect at a single point. While this models the physical structure, the schematic simply models four separate lines which intersect, and otherwise do not interact. In reality, this structure exhibits fringing fields between the traces near the intersection point. These fields have a lowpass filtering effect, and can cause extreme disturbance in some cases. So, to model this effect, a "cross" model is inserted in the schematic at the intersection point as shown in Figure 4:

In the Figure 3 schematic, the lines are assumed to join at the exact center of the intersection. However, the cross model uses the reference planes shown at the center of the metal in Figure 3 (shown with dashed lines). In other words, the cross models the metal portion indicated by the dashed square. Since this metal is modeled by the cross, it should not be included in the length of the lines connected to the cross model. For this reason, whenever discontinuities are added to a schematic, it is usually necessary to adjust any lines connected to these discontinuities to compensate for the reference plane shift. Advanced TLINE does this automatically, and calls this step "aborbing Discos©."

Discontinuities are also needed at bends, steps in metal width (or height), and wherever two or more traces meet. Since these models are not actually constructed as part of the layout, they’re purely a manifestation of the modeling process. Advanced TLINE now automatically places these discontinuities, and fills in the required parameters based on the surrounding line connections.
Figure 5 shows the schematic portion from Figure 1 with Discos® added. Also, the lines have been converted to microstrip using Advanced TLINE.

Design Example

Advanced TLINE makes it easy for the engineer to quickly compare designs in various physical realization processes. Figure 6 (left) shows an ideal lowpass elliptic transmission line filter. This filter has 0.1 dB passband ripple, 45 dB of stopband ripple, and a cutoff frequency of 1.350 GHz. The filter as originally designed consists of ideal electrical transmission lines. Using Advanced TLINE, a variety of physical structures is easily explored by simply converting to a new process. Figures 6 through 9 show various equivalent physical structures along with actual line dimensions, all automatically calculated by TLINE based on the ideal structure in Figure 6. Figure 10 shows a comparison of the frequency responses of the filters.
Figure 9: Slabline equivalent for the ideal filter shown in Figure 6.

Figure 10: S_{21} Comparison of standard physical processes with ideal filter characteristics.
Figure 11 shows a cross-sectional comparison of some of the line types which can be automatically converted using Advanced TLINE. Any existing or new schematic containing these elements is automatically converted to any other type by using the Convert function, shown in Figure 2.
Worldwide Sales and Support

Australia, New Zealand
Electronic Development Sales
16 Smith Street, PO Box D3013
Chatswood NSW 2067
Australia
Tel: +61 2 9496 0500
Fax: +61 2 9496 0599
web: http://www.edsales.com.au
E-mail: info@edsales.com.au

Brazil
Anacom Software e Hardware Ltda.
Rua Conceicao, 627
Sao Caetano do Sul, SP, Brazil 09530-060
Tel: (0xx) 11 4229.5588
Fax: (0xx) 11 4221.5177
web: http://www.anacom.com.br
E-mail: vendas@anacom.com.br

China, Hong Kong
Everjet
6B, Weiyuan Building, 7th Industrial Rd
Shekou, Shenzhen
Guang Dong China 518067
Tel: +86.775.6884050
Fax: +86.755.8673708
E-mail: everjet@public.szptt.net.cn

France, Belgium
Tech Inter
Immeuble Sezac B
1, Rond-Point Pariwest
78310 Maurepas/ France
Tel: +33 (0) 1 30 51 66 99
Fax: +33 (0) 1 30 62 20 19
E-mail: sales@tech-inter.net.com

Germany, Austria, Switzerland
TSS (Technical Software Service)
Postfach 1261
89264 Weissenhorn, Germany
Tel: +49 7309 9675-0
Fax: +49 7309 3275
E-mail: hendrik@tssd.com

India
Step Electronics PVT. LTD.
#356, 3rd Stage, 4th Block
Basaveshwaranagar,
Bangalore - 560 079
Tel: +91-80-323 7427
Fax: +91-80-323 7487
E-mail: srinu@vsnl.com

Israel
Tech-Cent LTD
Raul Valenberg St
Ramat Hachayal
Tel-Aviv Israel
Tel: +972 3-6478563
Fax: +972 3-6478334
E-mail: giddi@techcent.com

Italy
Sematron Italia (Headquarters and South Italy)
Viale Marx 153/2
00137 Roma
Tel: (396) 8689.5015
Fax: (396) 8680.2253
E-mail: sematronitalia@flashnet.it

Sematron Italia (North Italy)
Via Mazzini 46
20056 Trezzo sull’Adda MI Italy
Tel: +390290929158
Fax: +390290929166
Web: http://www.sematronitalia.it
E-mail: sematronitalia@flashnet.it

Japan
AET JAPAN
Urus Bldg 9th Floor 1-2-3 Manpukuji
Asaoku
Kawasaki City 215 0004 Japan
Tel: +81-44-966-9981
Web: http://www.aetjapan.co.jp/
E-mail: info@aetjapan.co.jp

South Korea
MOAsoft Corporation
Suite 700, Back-Am Bldg.
123 Karak-Dong
Songpa-Ku, 138-160, Seoul, Korea
Tel: +82-2-420-3203
Fax: +82-2-407-3511
E-mail: bkjung@moasoft.com.co.kr

Singapore, Malaysia
SPS-DA PVT. LTD
3 International Business Park
#03-18/19 Nordic European Center
Singapore 609927
Tel: +65-890-9838
Fax: +65-896-0928
Web: http://www.spisd.com.sg/
E-mail: hhgo@spisd.com.sg

Sweden
Pronesto AB
Finlandsgatan 18
Box 6914,
SE-164 06 Kista SWEDEN
Tel: +46-8-444 10 68
Mobile: +46-70-5888 51 88
Fax: +46-8-751 41 11
Web: http://www.pronesto.se
E-mail: fredrik.knutsen@pronesto.se

Taiwan
Evergo Electronics Corporation
10-1 Floor #287, NanKing E Rd Section 3
Taipei, Taiwan 105
Tel: +886-02-2752-0767
Fax: +886-02-8773-0678
E-mail: evergo@m4.hinet.net

United Kingdom, Eire
Melcom Electronics Limited
Elliott House, Gogmore Lane
Chertsey
Surrey, KT16 9AF
Tel: +44 1932 565544
Fax: +44 1932 569988
Web: www.melcom.co.uk
E-mail: melcomsales@melcom.co.uk

United States
Eagleware Corporation
635 Pinnacle Court
Norcross, GA 30071
Telephone: +1 678-291-0995
Facsimile: +1 678-291-0971
www.eagleware.com
Get the latest information on the products and applications you select.

Quickly choose and use your test equipment solutions with confidence.

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
Germany 01805 24 6333**
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201

Other European Countries:
www.agilent.com/find/contactus

Revised: March 27, 2008

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008
Printed in USA, January 25, 2002
5989-9908EN