EM Insights Series

Episode #4: Contactor Design In High Volume RF Test Fixtures

Agilent EEsof EDA October 2008

Highlights of This Episode

Typical situation

The contactor is central to the design of high volume RF test fixtures. It acts as the final link connecting the RF test system to the RFIC package. Applications of contactors include high-volume test, characterization in the lab or burn-in test. In the past, high volume contactors were used primarily for testing digital ICs. However, with clock speeds exceeding 1GHz and higher operating frequencies of ICs, the performance degradation due to the contactors can be no longer ignored. IC manufacturers either design their contactors in-house or purchase them from commercial vendors. Developing contactors in house ensures they will suit the need, since universal contactors are virtually impossible because of the number of package sizes, styles and pad configurations available.

Potential users and targeted market

- IC Test engineers
- RF board engineers in RF labs
- IC companies, RF loadboard sub-contractors

EM product used

• <u>Electromagnetic Professional (EMPro)</u>: http://www.agilent.com/find/eesof-empro

Design Challenge

Design challenge

The design of contactors impacts the product's cost, its manufacturing time, and eventually product success. Designing a contactor requires a combination of several disciplines — mechanical, electrical, thermal and functionality. The best contactors can be evaluated in terms of their mechanical construction, RF capabilities, and high-volume RF testing. Since the contactors are designed for a specific test fixture application, it is very important for test engineers to quickly analyze and understand the impact of the contactors to the overall test performance, consequently the production yield.

Problem solved

EM simulations greatly reduce the cycle time of contactor designs. Either Finite Element Method (FEM) or Finite-difference time-domain (FDTD) field solvers can be used, however FDTD is preferable (since it is much faster and efficient for complex and larger structures) EM technology for contactors compared to FEM.

Value delivered

Quickly simulate and evaluate contactors as well as the fixture board to include all 3D effects, to give you an understanding of the impact of the contactors to the overall test performance.

Board + Contactor + Socket Drawing in EMPro

Agilent Technologies

Suggested Design Flow and Methodology for Contactor Designs

Substrate Definition in ADS Layout

Create/Modify Substrate:6	x
Substrate Layers Layout Layers	
Select a layout layer to map to the substrate	
- Laver Manning	
Substrate Lavers	Layout Layer
FreeSpace	Name cond 💌
	Model Sheet (No Expansion)
Dielec_0	
FreeSpace0	Thickness 40 um 👻
	Material Conductor (Sigma)
	○中事表/ laws ヨドキオナキの名言 コロゴ 本語 オイオ語 (2012) 2012 10 10 10 10 10 10 10 10 10 10 10 10 10
sterin Ø	
100 Holds	
eran energy	
<u>長</u> 長	
82	
tes 1000	
Active Modes	
80.00+ 18840 1982 - 1987	
HEAT HEAT	
1	
Strip Stot Mag Ragt Po	
10- 10 Po	
ок <u>в</u> в	
and the states	
secular Addition	

Agilent Technologies

EMDS Viewer – Write SAT files

Agilent Technologies

Import SAT file to EMPro

EMPro Meshing with different X, Y, Z cells size

RF Contactor and Socket in EMPro

EMPro RF Contactor Meshing

Compare Results in ADS

Red: Full EMPro simulation

Trace and contactor width are different.

The housing material of socket in contact with the microstrip trace may affect the line charateristics such as impedance.

EM Insights Series

Episode #4: Contactor Design Summary

EMPro (FDTD EM Field Solver) provides the easiest and quickest way to evaluate and validate RF contactor designs so that test engineers can quickly analyze the impact of the contactors to the overall test performance, consequently improve the production yield.

Interested in learning more about this application?

- Request an <u>evaluation copy of EMPro</u>
 http://www.agilent.com/find/eesof-empro-evaluation
- Request a <u>demo of EMPro</u>

http://www.agilent.com/find/eesof-contact

www.agilent.com

For more information about Agilent EEsof EDA, visit:

www.agilent.com/find/eesof

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Contact Agilent at:

Americas

Canada (877)894-4414Latin America305 269 7500United States(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe & Middle East

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2009 Printed in USA, March 31, 2009 5989-9984EN

