Introduction

This paper describes how to get the most from Network Parameter Measurement (NPM) capability on the Keysight Technologies, Inc. Medalist i3070 in-circuit test (ICT) system using enhancements in software version 7.20p. It is targeted at critical elements for NPM success. For general NPM and VTEP guidelines, refer to the white paper “Maximising Test Coverage with Keysight Medalist VTEP v2.0” found at www.keysight.com/see/vtep

NPM is a sensitive measurement requiring much greater care in fixturing and development than standard VTEP.

Fixturing considerations for NPM

A successful NPM fixture design must contain all of these elements:

► **VTEP Hardware and Sensor Mounting**

NPM requires that care be taken in mounting the VTEP sensor plates. The plate must cover the entire outline of the connector when engaged and not be rotated, elevated or misaligned.

► **Sizing Sensor Plates**

Sensor plates should be sized to the outline of the device. While VTEP guidelines suggest sizing the plate slightly smaller than the device, this was targeted at ball-grid array (BGA) style devices and not connectors. For connectors, both standard VTEP and NPM will work best with the sensor sized to the outline of the device.
Customizing Sensor Plates

When fabricating a custom sensor plate, follow the guidelines found in this white paper: “Maximising Test Coverage with Keysight Medalist VTEP v2.0”.

WARNING: It can be of critical importance that the amp board be mounted directly to the sensor plate when using NPM. Never insert wiring at this interface. Doing so can inject significant noise into the measurements. Proper mounting and wiring is extremely important when there are probes mounted on the same side of the fixture as the VTEP hardware. Often the probe wiring will couple to the wiring between the sensor plate and the amp and cause false readings. No probe should be within 1 cm of the VTEP sensor.

Custom sensor plates can be milled from double-sided copper clad material to fit small geometry connectors and other devices. The diagram and photograph below show an L shaped sensor plate designed to fit into a small connector and yet provide ample space to mount the amp board to the plate.
Enhanced Guarding

Software release 7.20p includes an enhanced guarding feature. Enhanced guarding provides an improved guard path (lower impedance) for better VTEP and NPM measurements. Enhanced guarding should always be used with NPM.

Enhanced guarding is specified by adding “throughput adjustment 4” to the VTEP source. The process to add enhanced guarding is:
1. Add “default throughput adjustment 4” to the VTEP source
2. Compile the modified test.
3. Run Auto Debug.

Why is it important?

Some DUTs have devices with pins that are connected through low-valued resistors to a fixed node. When these are guarded during the VTEP test, the small guard path impedance forms a voltage divider that allows the stimulus to leak into the fixed node. These many small signals sum together and cause the reading for the stimulus pin to be higher. This can mask an open.

What does it do?

A new option is available to close the hybrid card switched ground connections automatically when running a VTEP test. This dramatically reduces the guard path impedance and improves the VTEP reading. The new guarding will not impact throughput and will not cause a ‘short to system ground’ error.

When should it be used?

Enhanced guarding will improve all VTEP tests and should be used for every new development. Enhanced guarding should be added to existing boards when Auto Debug is run. After adding “throughput adjustment 4” to a test, some pins will have a lower nominal reading.

Will enhanced guarding be added automatically?

Enhanced guarding will automatically be added to all new tests but will not automatically be added to existing tests. New tests will have enhanced guarding added to the sources as the default during program generation. The user must run Auto Debug after adding enhanced guarding. Auto Debug will preserve but not add enhanced guarding.

Supported Connectors

NPM relies on the network parameter measurements of the connector to detect opens on power and ground pins. These network parameters are described in connector models. These connector models are supplied by Keysight. New models for connectors not currently supported can be requested through www.keysight.com/see/vtep

The connectors and mounting styles in the following tables have been tested by Keysight. Other connector types or mounting styles in manufacturing may yield unsatisfactory results, such as test escapes or false positive calls.

NPM Connector Measurements

The standard VTEP measurement of the signal pins on a connector must be at least 50fF and ideally 75fF – 100fF for NPM to successfully test the connector.

NPM Connector Models

These connector models are supplied in the 3070 library structure beginning with the 7.2 software upgrade at:

$KeysightICT_ROOT/library/supplemental/connectors
The following connectors and socket have NPM models at software release 7.20p:

<table>
<thead>
<tr>
<th>Description</th>
<th>Mounting Technology</th>
<th>Typical Manufacturer Part Numbers</th>
<th>3070 Connector Model Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBD, 240 pins DDR II</td>
<td>SMT, TH</td>
<td>AT54007-H3BF-4F</td>
<td>fbd_ddr2_240_pin</td>
</tr>
<tr>
<td>DIMM, 240 pins DDR II</td>
<td>SMT, TH</td>
<td>1775805-1</td>
<td>ddr2_240_pin</td>
</tr>
<tr>
<td>PCI Express 32X</td>
<td>SMT, TH</td>
<td>2EG0E017-D2D-DF</td>
<td>pci_express_32x</td>
</tr>
<tr>
<td>PCI Express 16X</td>
<td>SMT, TH</td>
<td>2EG38211-D2D-4F</td>
<td>pci_express_16x</td>
</tr>
<tr>
<td>PCI Express 8X</td>
<td>SMT, TH</td>
<td>2EG08211-D2D-DF</td>
<td>pci_express_8x</td>
</tr>
<tr>
<td>PCI Express 4X</td>
<td>SMT, TH</td>
<td>2EG03211-D2D-DF</td>
<td>pci_express_4x</td>
</tr>
<tr>
<td>PCI Express 1X</td>
<td>SMT, TH</td>
<td>22EG01811-D2D-DF</td>
<td>pci_express_1x</td>
</tr>
<tr>
<td>Serial ATA 22 pins</td>
<td>SMT</td>
<td>LD11223-S03</td>
<td>sata_22_pin</td>
</tr>
<tr>
<td>Metral® 11Row</td>
<td>Press Fit</td>
<td>2H251103-NC201</td>
<td>metral_11_row</td>
</tr>
<tr>
<td>FH B-T-B 0.8mm, 80 pins</td>
<td>SMT</td>
<td>177983</td>
<td>08mmfh_80</td>
</tr>
<tr>
<td>775 pin LGA CPU socket</td>
<td>BGA</td>
<td>PE077507-2041-01</td>
<td>lga_775</td>
</tr>
<tr>
<td>1207 pin LGA CPU socket</td>
<td>BGA</td>
<td>PE120703-3741</td>
<td>lga_1207</td>
</tr>
</tbody>
</table>

With the 7.20p release model files can be in any directory pointed to by the LIBRARY OPTIONS in the board file such as the board directory under CUSTOM_LIB or in the standard location on the test head controller at:

`$KeysightICT_ROOT/library/supplemental/connectors`

Debug considerations for npm

- **Auto Debug**

 Always use ADB to debug the “testjet_gx” file on a known good board (KGB). Remember that VTEP measurements are made for signal pins first. If these pass, then NPM is executed for the power, ground and fixed pins as defined in the connector model and map file. The KGB used for NPM needs to be a good representation of the boards being built. If process or part changes are causing NTF failures, a new boards from the current run should be Auto Debugged.

- **Fault Insertion**

 When inserting faults on a connector to determine the NPM coverage, only single faults should be inserted at a time. In a typical manufacturing environment, connectors with a large number of faults will fail standard VTEP testing.

Summary

Proper grounding is becoming increasingly crucial with higher on-board signal speeds; for example, on PCIe, DDR and SATA connectors. NPM allows users to detect opens on power and ground pins on such connectors -- something that only recently, many industry players had conceded as beyond existing test capabilities. By following the pointers outlined in this paper, users can achieve the maximum benefits offered by NPM along with other test capabilities available on their Medalist i3070 in-circuit tester.
myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

Three-Year Warranty
www.keysight.com/find/ThreeYearWarranty
Keysight’s commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/vtep
For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 488
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 0800 000154
Sweden 0200 882255
Switzerland 0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0280637

For other unlisted countries:
www.keysight.com/find/contactus

This information is subject to change without notice.
© Keysight Technologies, 2009–2014
Published in USA, July 31, 2014
5990-3759EN
www.keysight.com