Resistance Measurements Using the B2900A Series of SMUs

- Keysight B2901A Precision SMU, 1 ch, 100 fA resolution, 210 V, 3A DC/10.5 A pulse
- Keysight B2902A Precision SMU, 2 ch, 100 fA resolution, 210 V, 3A DC/10.5 A pulse
- Keysight B2911A Precision SMU, 1 ch, 10 fA resolution, 210 V, 3A DC/10.5 A pulse
- Keysight B2912A Precision SMU, 2 ch, 10 fA resolution, 210 V, 3A DC/10.5 A pulse
Introduction

Keysight Technologies, Inc. B2901/02/11/12A Precision Source/Measure Unit is a compact and cost-effective bench-top Source/Measure unit (SMU) with the capability to output and measure both voltage and current. They cover currents from 10 fA to 3 A (DC)/10.5 A (pulse) and voltages from 100 nV to 210 V, which enables you to make a wide range of current versus voltage (IV) measurements more accurately and quickly than ever before. The B2900A Series of SMUs also supports a resistance measurement function that facilitates both low and high resistance measurements. These features make the B2900A Series of SMUs the best solution for accurate characterization of resistors and other devices.

Making accurate resistance measurements is actually one of the more challenging areas of measurement science. Many factors can affect the accuracy of a resistance measurement, including residual test lead resistance, thermal electromotive force and leakage currents in the measurement path. The B2900A Series of SMUs possesses a variety of features to address these measurement issues, including a remote sense function (4-wire connection), offset compensation, and a guard function. All of these will be described in greater detail in this application note.
What is the B2900A Series of SMUs?

An SMU combines the capabilities of a current source, a voltage source, a current meter and a voltage meter along with the capability to switch easily between these various functions into a single instrument (please see Figure 1). This gives it the ability to evaluate the IV characteristics of devices across all four measurement quadrants without the need for any additional equipment. Besides being able to output and measure voltage or current very accurately, SMUs also possess a compliance feature that allows a limit to be placed on the voltage or current output to prevent device damage. The members of the B2900A Series of SMUs are single or dual channel SMU units that offer a wide range of IV measurement capability for a variety of two-terminal and three-terminal devices. They cover currents from 10 fA to 3 A (DC)/10.5 A (pulse) and voltages from 100 nV to 210 V. In addition to their DC operation mode, the B2900A Series of SMUs also has the ability to perform pulsed measurements in order to prevent device self-heating from distorting the measurement results. Finally, the B2900A Series of SMUs also has a built-in resistance measurement function.

Figure 1. The B2900A Series of SMUs combines four measurement functions into a single instrument.
Best Resistance Measurement Solution

The B2900A Series of SMUs is the best solution for making accurate resistance measurements due to its intrinsic voltage/current sourcing and measurement capabilities. In addition, the B2900A Series of SMUs has some special built-in functions specifically designed to improve resistance measurement. The following sections describe these features in detail.

Eliminating residual resistance effects

A basic 2-wire connection is the most common scheme used for resistance measurements. In this configuration (shown in Figure 2a) the same pair of test leads is used to both force current and measure voltage. This arrangement is suitable for resistance measurements as long as the residual lead resistance is negligible compared to the resistance of the device under test (DUT).

However, for very low resistance measurements where the residual lead resistance is comparable to the DUT resistance, the 2-wire measurement will give erroneous measurement results (please see Figure 2b). In this case a 4-wire connection scheme (remote sensing) can be used to eliminate this error. A 4-wire measurement uses one pair of leads to force current and the other pair of leads to monitor voltage. This eliminates cable resistance effects so that only the voltage drop across the DUT is measured (please see Figure 2c). In addition, the 4-wire measurement scheme of the B2900A Series of SMUs keeps the voltage between the sense points (A and B in Figure 2b) at exactly the specified voltage Vset, thereby ensuring that your device is characterized exactly under the measurement conditions you specify. The B2900A Series of SMUs supports both connection schemes and it is easy to switch between them.

![Figure 2. A 4-wire connection eliminates the measurement error caused by residual lead resistance](image_url)
Offset compensation

When measuring small resistances, both the offset voltages inherent in the instrumentation and the thermal electromotive force (EMF) generated when the mechanical reed relays in the SMU output path close can create measurement inaccuracies. An equivalent circuit model of these effects is shown in Figure 3a. Since the voltage drop across the DUT is small when measuring low resistances, the effects of the offset and EMF voltages are not negligible (please see Figure 3b). However, using the resistance compensation function of the B2900A Series of SMUs the instrument will automatically make a two point measurement and calculate the true value of the resistance using the following equation.

\[R_{\text{comp}} = \frac{V_2 - V_1}{I_2 - I_1} \]

Where:
- \(V_1 \) is the measured voltage when the source is set to 0 volts (voltage force mode) or 0 amps (current force mode).
- \(V_2 \) is the measured voltage when the source is set to \(V_f \) (voltage force mode) or \(I_f \) (current force mode).
- \(I_1 \) is the measured current when the source is set to 0 volts (voltage force mode) or 0 amps (current force mode).
- \(I_2 \) is the measured current when the source is set to \(V_f \) (voltage force mode) or \(I_f \) (current force mode).

By using its built-in 2 point measurement function, the B2900A Series of SMUs allows you to easily eliminate the influence of offset voltages on a resistance measurement (please see Figure 3c).

\[
R_{\text{Meas}} = \frac{V_{\text{Meas}}}{I_{\text{Meas}}} = \frac{V_{\text{DUT}} + V_{\text{OFF}} + V_{\text{EMF}}}{I_{\text{Meas}}} = R_{\text{DUT}} + R_{\text{Error}} \\
R_{\text{Meas}} = \frac{V_2 - V_1}{I_2 - I_1} = R_{\text{DUT}}
\]

a) Error factor caused by the thermal EMF
b) Measurement without the offset compensation
c) Effect of the offset compensation

Figure 3. The B2900A Series of SMUs has a compensation feature that can automatically eliminate the effects of offset voltages and thermal electromotive force.
Leakage current prevention

Leakage currents in the cables and test fixturing can cause significant measurement errors, especially when measuring large resistances where the measurement current is small (less than a nanoamp). In this case, the guard function of the B2900A Series of SMUs can be used by employing banana-to-triaxial adaptors and triaxial cables. The SMU circuitry maintains the guard terminal at same voltage potential as the high force line, which prevents current from leaking into the cable and the surrounding measurement path (please see Figure 4).

![Banana-to-Triax-adaptor for 4-wire (kelvin) connection](image1)

![Banana-to-Triax-adaptor for 2-wire (non-kelvin) connection](image2)

Figure 4. The active guard of the B2900A Series of SMUs eliminates leakage currents when used with the proper triaxial connectors and cabling

Powerful GUI and easy custom program support

The wide QVGA LCD display of the B2900A Series of SMUs supports an easy-to-use GUI that provides easy instrument control from the front panel. This makes it simple to perform both spot resistance measurements using constant voltage or current and sweep measurements to obtain an IV curve. After measurement completion you can use the front panel GUI to graphically view measurement results such as IV curves using Graph View, and display a list of the measurement data using the Measure Result dialog window (please see Figure 5).

1) Set the measurement condition and the measurement range

2) Execute

![GUI of the B2900A Series of SMUs makes it easy to take a quick measurement](image3)

Figure 5. GUI of the B2900A Series of SMUs makes it easy to take a quick measurement
For the remote control, both Standard Commands for Programmable Instruments (SCPI) and IVI-COM drivers are available for the B2900A Series of SMUs. The Keysight B2900A Quick I/V Measurement Software is available for download from the Keysight Web site for free. The Keysight B2900A Graphical Web Interface is also available, and it provides functionality to allow access to the B2900A Series of SMUs over a LAN connection. The B2900A Series of SMUs is fully compliant with the LXI class C specification, making it easy to take measurements using a standard web browser by just connecting the B2900A Series of SMUs to a PC using a LAN cable.

A Range of Free Software Control Options

In addition to its powerful and easy-to-use GUI, if you prefer PC-based instrument control, then the B2900A Series of SMUs comes with a range of free software control options to facilitate program development, allowing you to choose the solution that best fits your particular application.

BenchVue

The Keysight BenchVue software for the PC reinvents your bench testing by making it simple to connect and record results with your instruments without the need for programming. You can quickly and easily obtain results by viewing, logging and exporting measurement data and screen images with just a few mouse clicks. BenchVue provides a wide array of capabilities, depending on the chosen instrument application. These capabilities will vary according to the functionality of the instrument types and models, including the B2900A Series of SMUs, that are connected to the PC that is running the BenchVue software. See http://www.keysight.com/find/benchvue for more details.

Figure 6. BenchVue Software
Graphical Web Interface

The Keysight B2900A Graphical Web Interface provides functionality to allow access to the B2900A Series of SMUs over a LAN connection. The B2900A Series of SMUs is fully compliant with the LXI class C specification and contains a web server that provides a webpage with an interface to support the basic measurement functions of the B2900A. You can quickly and easily make measurements using a standard web browser by simply connecting the B2900A Series of SMUs to a PC using a LAN cable.

Quick I/V Measurement Software

The Keysight B2900A Quick I/V Measurement Software is a common software solution for the entire B2900 precision instrument family. It has powerful measurement capabilities to control the B2900A Series of SMUs over GPIB, USB or LAN connections (see Figure 8). You can download this PC-based software for free from http://www.keysight.com/find/quickiv. The Keysight B2900A Quick I/V Measurement Software also supports a variety of functions such as a sweep measurement, a sampling measurement, basic math functions, graphical display functions and the ability to save test results as CSV files.
EasyEXPERT group+

The EasyEXPERT group+ software is the more powerful solution for detailed characterization and analysis of devices, circuits and materials. It supports efficient and repeatable characterization across the entire characterization process from measurement setup and execution to analysis and data management. EasyEXPERT group+ makes it easy to perform complex characterization with ready-to-use furnished measurements (application tests), and gives you the option of automatically storing every test condition and piece of measurement data in a unique built-in database (workspace), ensuring that valuable information is not lost and that measurements can be repeated at a later date. See http://www.keysight.com/find/easyexpert for more details.

Figure 9. EasyEXPERT group+ is a powerful solution for detailed characterization and analysis of devices, circuits and materials

Summary

The Keysight B2901/02/11/12A Precision Source/Measure Unit is the best solution for IV characterization of resistors and a variety of other devices. The B2900A Series of SMUs has many built-in functions that make it easy to take accurate resistance measurements, including support for a 4-wire connection (remote sense function), voltage offset compensation and an active guard function. The easy-to-use GUI of the B2900A Series of SMUs provides fast and convenient front panel operation, and for PC-based programming there are a variety of options to control the SMU over GPIB, USB and LAN.

In addition to being able to control the B2900A Series of SMUs remotely over GPIB, USB and LAN interfaces, Keysight offers multiple free software control options to facilitate program development if you prefer PC-based instrument control, allowing you to choose the solution that best fits your particular application.

For more detailed information on the various models of the B2900A Series of SMUs, please refer to the data sheet of the B2900A Series of SMUs (5990-7009EN).

The B2900A Series of SMUs enables you to quickly debug and accurately characterize a wide variety of devices using only a single bench-top SMU.
B2900 Precision Instrument Family
The B2900 family contains products that perform both precision sourcing and precision measurement.

www.keysight.com/find/b2900a

Learn more at: www.keysight.com

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus