Keysight Technologies
Accurate and Efficient Frequency Evaluation of a Ring Oscillator
4080 Series Parametric Test Systems
Application Note
With the continued demand for higher-speed operation of semiconductor devices, the measurement of gate delay and interconnect delay has become more important than ever. These two parameters play key roles in determining the ultimate speed of device operation. High speed operation has always been critical for successful logic devices. With new market pressures on peripheral devices, the need for high speed operation is now becoming necessary for memory devices.

It is commonly known that gate delay time can be evaluated by measuring the oscillation frequency of a ring oscillator test structure.

Interconnect delay, which is becoming significant for devices designed with less than 0.8 µm gate length, can also be evaluated using a specially designed ring oscillator test structure.

Because of this, measurement of the oscillation frequency of a ring oscillator has become an indispensable tool for semiconductor device engineers when designing high-speed devices.

This measurement can also be used to determine if devices are fabricated as designed, or to model AC characteristics by supplying measured data to simulation software. Today, measurement of the frequency of the ring oscillator is feasible on the production line. This application note introduces a precise and fast measurement method to measure the oscillation frequency of a ring oscillator structure using a spectrum analyzer integrated into the Keysight 4080 series parametric test systems.
Conventional Testing Methods

The objective of measuring the ring oscillator’s frequency is to obtain the gate delay time.

If a test structure consisting of a ring oscillator and long interconnect line is used, the interconnect delay can also be evaluated by comparing the result with another test structure that consists of only a ring oscillator. Often a bench-top frequency counter or oscilloscope connected to a manual probe station is used to measure the oscillation frequency of a ring oscillator. The frequency counter solution has the advantage of lower cost and higher measurement speed. However, there are some disadvantages.

- The frequency counter cannot detect waveform distortion caused by the device itself or by the measurement test system, so the measured result can be less reliable.
- It may pick up harmonics.
- If there is an offset voltage present, the frequency counter cannot accurately measure zero crossings.

The oscilloscope solution is reliable because the actual waveform can be monitored. However, there are also some disadvantages with this method.

- The measurement and analysis speed is slow.
- In a fully automated measurement system, it may return an incorrect frequency due to waveform distortion.

The oscilloscope solution is good for a measurement when using a manual probe station because the signal loss or distortion caused by the measurement path is small. However, if integrated into an automatic test system that includes a switching matrix, an oscilloscope is no longer a suitable solution due to the waveform distortion at higher frequencies.

If a parametric test system, integrated with a frequency counter or an oscilloscope, is used for the evaluation, the design of the test structure has to be considered as well. To minimize the waveform distortion caused by the switching matrix, the oscillation frequency needs to be reduced. Therefore, the area of the test structure can become very large due to the increased number of stages required to reduce the frequency of oscillation. For example, to reduce the oscillation frequency from 100 MHz to 10 MHz, the area of the ring oscillator increases by about ten times, using up precious space on a wafer.

Solution Using the Keysight 4080 and a Spectrum Analyzer

The 4080 series parametric test system reduces one of the bottlenecks that prevent a semiconductor parametric test system from being used for this application.

The HF (High Frequency) port of the Keysight 4080 has outstanding high frequency characteristics.

An oscilloscope output of an actual ring oscillator output waveform monitored through the switching matrix of the 4080 series test system is shown in Figure 1 (following page). The successful monitoring of an oscillation frequency that is close to 140 MHz is displayed.

Utilizing the superior frequency characteristics of the 4080 series test system will reduce many of the difficulties of ring oscillator evaluation.
A spectrum analyzer can be integrated in the 4080 series test system and used to measure the frequency of the ring oscillator. A spectrum analyzer with a reasonably wide frequency range, such as 1.5 GHz, is recommended. The spectrum analyzer is used in the system to directly measure the highest amplitude frequency, which should correspond to the oscillation frequency of the ring oscillator. There are several benefits that make a spectrum analyzer suitable for this application.

- The oscillation frequency can be precisely measured in the presence of an offset voltage.
- The usable frequency range is higher due to the wide baseband frequency range of the spectrum analyzer.
- The cost is reasonable.

Most Keysight spectrum analyzers have marker peak detection functions and GPIB control capability. These are both essential for configuring an automated measurement system.

Figure 2 shows an example measurement program using the TIS (Test Instruction Set) commands of the parametric test system that includes the driver for a spectrum analyzer.

Further measurements can be performed in order to get better accuracy if a marker frequency counter function is available on the spectrum analyzer. Unlike a frequency counter, a spectrum analyzer will not return an incorrect value by counting a harmonic of the ring oscillator.

Figure 3 shows example frequency measurement results of actual ring oscillators.

The characteristics shown in Figure 3 (A) were measured on the same device as shown in Figure 1. The results of the frequency measurements are nearly identical.
Conclusion

Gate delay and interconnect delay, both of which are critical parameters in the sub-micron device era, can efficiently be evaluated using the Keysight 4080 series of parametric test systems and a spectrum analyzer. Automatic evaluation allows collection of a reasonable amount of data both in R&D during design, and in production for advanced analysis and process monitoring.
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight

www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services

www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners

www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/4080

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:

www.keysight.com/find/contactus

Americas

Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2826
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 898 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East

Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 509286
Spain 800 001154
Sweden 0200 882255
Switzerland 0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:

www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

This information is subject to change without notice. © Keysight Technologies, 2017
Published in USA, December 1, 2017
5990-7120EN
www.keysight.com