U1730C Series Handheld LCR Meters

Take your expectations higher with the latest LCR meters

Introduction

The Keysight Technologies, Inc. U1730C Series handheld LCR meters allow you to measure at frequencies as high as 100 kHz -a capability typically found only in benchtop meters. Get measurements done faster using the one-touch automatic identification function button, which displays component type and more detailed component analysis such as Z, ESR, and DCR. Ideal for testing on the go, these LCR meters operate on a battery that lasts up to 16 hours. With the U1730C Series that is built for your convenience, you can perform quick and basic LCR measurements at an affordable price.

Features

Key features

- 20,000 counts resolution
- 0.2\% basic accuracy
- Wide LCR ranges with three to five selectable test frequencies (up to 100 kHz for U1733C)
- Auto identification (Ai) automatically determines and displays component type and measurements
- Detailed component analysis with DCR, ESR, Z, D, Q, and θ functions
- Battery life of 16 hours/AC-powered
- IR-to-USB connectivity for data logging to PC

Frequency up to 100 kHz

The test frequency now extends as high as 100 kHz , providing more flexibility to test a wider range of components. A higher test frequency, for example, 100 kHz , is useful for testing aluminum electrolytic capacitors in switching power supply circuits.

Automated identification

With Automated identification (AI), the testing and measuring experience is easy, eliminating unnecessary trial and error time-with just a single push of a button. This unique feature automatically specifies L, C, or R with parallel and series modes without manually changing buttons.

Detailed component analysis

The handheld LCR meters allow you to test various component types, including secondary components of Dissipation Factor (D), Quality Factor (Q), and Angle Indication of Impedance (θ). This new handheld series also includes other functions that result in a more detailed component analysis. For example, the built-in Equivalent Series Resistance (ESR) function helps you better understand the inherent resistance behavior typically found in capacitors across selected frequencies. DCR is a built-in DC resistance measurement that eliminates using a separate digital multimeter (DMM) for component tests.

Figure 1. Automate the recording of continuous readings when you hook the U1731C/U1732C/U1733C to a PC

Take a Closer Look

Figure 2. Front view of the U1733C

U1731C/U1732C/U1733C Electrical Specifications

Accuracy is given as \pm (\% of reading + counts of least significant digit) at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, with relative humidity less than 80%. Please refer to the User Guide about the measuring mode specified for each range of $\mathrm{L} / \mathrm{C} / \mathrm{R}$, series or parallel mode. Measurements performed at the test socket and necessary Open and Short corrections must prior be done. The accuracy is verified by design and specified type tests.

Impedance/Resistance

Accuracy = AZ + Offset							
Range	Resolution	U1731C/U1732C/U1733C			$\begin{aligned} & \text { U1732C/U1733C } \\ & 10 \mathrm{kHz} \end{aligned}$	U1733C	
		100 Hz	120 Hz	1 kHz		100 kHz	DCR ${ }^{1}$
$2 \Omega^{1}$	0.0001Ω	0.7\% + 50	0.7\% + 50	0.7\% + 50	0.7\% + 50	1.0\% + 50	0.7\% + 50
$20 \Omega^{1}$	0.001Ω	0.7\% + 8	0.7\% + 8	0.7\% + 8	0.7\% + 8	0.7\% + 8	0.7\% + 8
$200 \Omega^{1}$	0.01Ω	$0.2 \%+3$	$0.2 \%+3$	$0.2 \%+3$	$0.2 \%+3$	0.5\% + 5	0.2\% + 3
2000Ω	0.1 ת	0.2\% + 3	0.2\% + 3	0.2\% + 3	$0.2 \%+3$	0.5\% + 5	0.2\% + 3
$20 \mathrm{k} \Omega$	$0.001 \mathrm{k} \Omega$	0.2\% + 3	0.2\% + 3	0.2\% + 3	$0.2 \%+3$	0.5\% + 5	0.2\% + 3
$200 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$	0.5\% + 5	0.5\% + 5	0.5\% + 5	0.5\% + 5	0.7\% + 8	0.5\% + 5
$2000 \mathrm{k} \Omega$	$0.1 \mathrm{k} \Omega$	0.5\% + 5	0.5\% + 5	0.5\% + 5	0.7\% + 5	NA	0.5\% + 5
$20 \mathrm{M} \Omega$	$0.001 \mathrm{M} \Omega$	2.0\% + 8	2.0\% + 8	2.0\% + 8	5.0\% + 8	NA	2.0\% + 8
200 M ,	$0.01 \mathrm{M} \Omega$	$6.0 \%+80$	$6.0 \%+80$	$6.0 \%+80$	NA	NA	6.0\% + 80

Notes:

1. The accuracy for ranges 2Ω to 200Ω is specified after Null function which is used to subtract the resistance of test leads and the contact resistance
2. For ranges of $20 \mathrm{M} \Omega$ and $200 \mathrm{M} \Omega$, the R.H is specified for $<60 \%$
3. Resistance is specified to $Q<10$ and $D>0.1$, otherwise the accuracy is ($A Z+O f f s e t$) $x \sqrt{1+Q 2}$
4. Equivalence Series Resistance (ESR) measurement is determined by impedance measurement and range. The maximum display is up to $199.99 \mathrm{k} \Omega$ and accuracy is (AZ+Offset) $\times \sqrt{1+Q^{2}}$

Capacitance ${ }^{3}$

Accuracy = AC + Offset						
Range	Resolut	U1731C/U1732C/U1733C			U1732C/U1733C	U1733C
		100 Hz	120 Hz	1 kHz	10 kHz	100 kHz
20 mF	0.001 mF	0.5\% + 8	0.5\% + 8	NA	NA	NA
$2000 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	0.5\% + 5	0.5\% + 5	0.5\% + 8	NA	NA
$200 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	0.3\% + 3	0.3\% + 3	0.5\% + 5	0.5\% + 8	NA
$20 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	$0.2 \%+3$	0.2\% + 3	0.2\% + 3	0.5\% + 5	5.0\% + 10
2000 nF	0.1 nF	$0.2 \%+3$	0.2\% + 3	$0.2 \%+3$	$0.2 \%+3$	0.7\% + 10
200 nF	0.01 nF	$0.2 \%+3$	0.2\% + 3	0.2\% + 3	$0.5 \%+3$	0.7\% + 10
20 nF	0.001 nF	0.5\% + 5	0.5\% + 5	$0.2 \%+3$	0.5\% + 3	0.7\% + 10
$2000 \mathrm{pF}^{1}$	0.1 pF	$0.5 \%+10$	0.5\% + 10	$0.5 \%+5$	$0.5 \%+3$	2.0\% + 10
$200 \mathrm{pF}^{1}$	0.01 pF	NA	NA	0.5\% + 10	0.8\% + 10	$2.0 \%+10$
$20 \mathrm{pF}^{1}$	0.001 pF	NA	NA	NA	1.0\% + 20	2.5\% + 10

1. The accuracy for ranges $20 \mathrm{pF}-2000 \mathrm{pF}$ is specified after Null function which is used to subtract the stray capacitances of test leads.
2. The accuracy for the ceramic capacitor will be influenced depending on the dielectric constant (K) of the material used to make the ceramic capacitor. For related influence factors, please refer to the Component dependency factors section in the Impedance Measurement Handbook, download able for free at http://www.keysight.com/find/Icrmeters
3. Capacitance is specified to $Q>0.1$ and $D<10$, otherwise the accuracy is ($A Z+O$ offset) $\times \sqrt{1+D 2}$

U1731C/U1732C/U1733C Electrical Specifications

Inductance ${ }^{2}$

Accuracy = AL + Offset						
Range	Resolution		U1731C/U1732C/U1733C		U1732C/U1733C	U1733C
		100 Hz	120 Hz	1 kHz	10 kHz	100 kHz
$20 \mu \mathrm{H}_{1}$	$0.001 \mu \mathrm{H}$	NA	NA	NA	1.0\% + 5	2.5\% + 20
$200 \mu \mathrm{H}_{1}$	$0.01 \mu \mathrm{H}$	NA	NA	1.0\% + 5	$0.7 \%+3$	2.5\% + 20
$2000 \mu \mathrm{H}_{1}$	$0.1 \mu \mathrm{H}$	0.7\% + 10	0.7\% + 10	0.5\% + 3	0.5\% + 3	0.8\% + 20
20 mH	0.001 mH	0.5\% + 3	$0.5 \%+3$	$0.2 \%+3$	0.3\% + 3	0.8\% + 10
200 mH	0.01 mH	0.5\% + 3	0.5\% + 3	$0.2 \%+3$	$0.2 \%+3$	1.0\% + 10
2000 mH	0.1 mH	0.2\% + 3	$0.2 \%+3$	$0.2 \%+3$	0.5\% + 5	1.0\% + 10
20 H	0.001 H	$0.2 \%+3$	$0.2 \%+3$	0.5\% + 5	1.0\% + 5	2.0\% + 10
200 H	0.01 H	0.7\% + 5	0.7\% + 5	1.0\% + 5	2.0\% + 8	NA
2000 H	0.1 H	1.0\% + 5	1.0\% + 5	$2.0 \%+8$	NA	NA

Notes:

1. The accuracy for ranges $20 \mathrm{uH}-2000 \mathrm{uH}$ is specified after Null function, which is used to subtract the inductances of test leads.
2. Inductance is specified to $Q>0.1$ and $D<10$,; the accuracy is (AL+Offset) $\times \sqrt{1+D 2}$

Phase Angle of Impedance

Range	Resolution	Accuracy ($\mathrm{e}_{\text {e }}$)	Condition	
$-180^{\circ} \sim 180^{\circ}$	0.1 ${ }^{\circ} 1^{\circ}$	(AZ + Offset/Zx) x $180 / \pi$	D <1 0	
An example of the calculation shown below refers to the Impedance function with a Range of 2000Ω at a frequency of 100 Hz				
Impedance	Zx	AZ	Offset	θe
1999.9 ת	19999	0.2\%	3	$\pm 0.12^{\circ}$
199.9 ת	1999	0.2\%	3	$\pm 0.20^{\circ}$
19.9Ω	199	0.2\%	3	$\pm 0.98^{\circ}$
1.9Ω	19	0.2\%	3	$\pm 9.16^{\circ}$

Notes:

1. Specifications are applicable to all models (U1731C, U1732C, and U1733C) unless otherwise specified.
2. The "AZ" and Offset are the accuracy specifications for impedance measurement.
3. The " π " is approximately 3.14159 .
4. The Zx is the display count of the reading.

Dissipation/Quality Factor

Function		Range	Accuracy (De)
Z	$0.001 \sim 999$	$A Z+$ Offset/Zx $\times 100 \%+3$	$D<1$ or $Q>1$
L	$0.001 \sim 999$	$A L+$ Offset/Lx $\times 100 \%+3$	$D<1$ or $Q>1$
C	$0.001 \sim 999$	$A C+$ Offset/C $\times 100 \%+3$	$D<1$ or $Q>1$

An example of the calculation shown below refers to the Capacitance function with a Range of 200 uF at a frequency of 100 Hz .

| Capacitance | Cx | AC | Offset | De |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $88.88 \mu \mathrm{~F}$ | 8888 | 0.3% | 3 | $0.334 \%+3$ |

Notes:

1. Specifications are applicable to all models (U1731C, U1732C, and U1733C) unless otherwise specified.
2. The "AZ, AL, AC" and Offset are the accuracy specifications for Impedance, Inductance, and Capacitance measurement, respectively.
3. The $Z x, L x$, and $C x$ are the display counts of the reading. For example, the $C x$ is 8888 as if the capacitance is $88.88 \mu \mathrm{~F}$ for the range of $200 \mu \mathrm{~F}$.
4. The Quality Factor is the reciprocal of the Dissipation Factor.

U1731C/U1732C/U1733C Electrical Specifications

Test Signal

Model	Selection	Test signal level		Test frequency	
		Level	Accuracy	Frequency	Accuracy
U1731C/U1732C/U1733C	100 Hz	0.74 Vrms	0.05 Vrms	100 Hz	$\pm 0.01 \%$
	120 Hz	0.74 Vrms	0.05 V rms	120.481 Hz	$\pm 0.01 \%$
	1 kHz	0.74 Vrms	0.05 V rms	1 kHz	$\pm 0.01 \%$
U1732C/1733C	10 kHz	0.70 Vrms	0.05 Vrms	10 kHz	$\pm 0.01 \%$
U1733C	100 kHz	0.70 Vrms	0.05 Vrms	100 kHz	$\pm 0.01 \%$
	DCR	+1.235 V	0.05 V	NA	NA

Source Impedance of Impedance/Resistance Measurement

Typical source impedance						
Range	U1731C/U1732C/U1733C			U1732C/U1733C		U1733C
	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz	DCR
2Ω	190Ω					
20Ω	190Ω					
200Ω	190Ω					
2000Ω	$1.09 \mathrm{k} \Omega$					
$20 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$
$200 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$
$2000 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	10.1 k Ω	NA	$100 \mathrm{k} \Omega$
$20 \mathrm{M} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	NA	$100 \mathrm{k} \Omega$
$200 \mathrm{M} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	NA	NA	$100 \mathrm{k} \Omega$

Source Impedance of Capacitance Measurement

Typical source impedance					
Range	U1731C/U1732C/U1733C			U1732C/U1733C	U1733C
	100 Hz	120 Hz	1 kHz	10 kHz	100 kHz
20 mF	190Ω	190Ω	NA	NA	NA
2000 ¢ F	190Ω	190Ω	190Ω	NA	NA
$200 \mu \mathrm{~F}$	190Ω	190Ω	190Ω	190Ω	NA
$20 \mu \mathrm{~F}$	190Ω				
2000 nF	$1.09 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$	190Ω	190Ω	190Ω
200 nF	$10.1 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$	190Ω	190Ω
20 nF	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$	190Ω
2000 pF	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$
200 pF	NA	NA	$100 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$
20 pF	NA	NA	NA	$100 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$

U1731C/U1732C/U1733C Electrical Specifications

Source Impedance of Inductance Measurement

Typical source impedance					
Range		U1731C/U1732C/U1733C		U1732C/U1733C	U1733C
	100 Hz	120 Hz	1 kHz	10 kHz	190 kHz
$20 \mu \mathrm{H}$	NA	NA	NA	190Ω	100Ω
$200 \mu \mathrm{H}$	NA	NA	190Ω	190Ω	190Ω
$2000 \mu \mathrm{H}$	190Ω				
20 mH	190Ω				
200 mH	190Ω	190Ω	190Ω	$1.09 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$
2000 mH	190Ω	190Ω	$1.09 \mathrm{k} \Omega$	10.1 k Ω	$1.09 \mathrm{k} \Omega$
20 H	$1.09 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$1.09 \mathrm{k} \Omega$
200 H	$10.1 \mathrm{k} \Omega$	$10.1 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	NA
2000 H	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	NA	NA

General Specifications

Parameter	U1731C	U1732C	U1733C
Measurements	Z／L／C／R／D／Q／日／ESR	Z／L／C／R／D／Q／日／ESR	Z／L／C／R／D／Q／日／ESR／DCR
Display	Primary display：Maximum display 19，999 countsSecondary display：Maximum display 999 countsAutomatic polarity indication		
Test frequency （Accuracy $= \pm 0.1 \%$ of actual test frequency）	$100 \mathrm{~Hz}, 120 \mathrm{~Hz}, 1 \mathrm{kHz}$	$100 \mathrm{~Hz}, 120 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$	$\begin{aligned} & 100 \mathrm{~Hz}, 120 \mathrm{~Hz}, 1 \mathrm{kHz} \text {, } \\ & 10 \mathrm{kHz}, 100 \mathrm{kHz} \end{aligned}$
Backlight	No	Yes	Yes
	Selection	Test signal level	Test frequency
	100 Hz	0．74 Vrms	100 Hz
	120 Hz	0．74 Vrms	120.481 Hz
Test signal level	1 kHz	0．74 Vrms	1 kHz
	$10 \mathrm{kHz}{ }^{1}$	0．74 Vrms	10 kHz
	$100 \mathrm{kHz}{ }^{2}$	0．74 Vrms	100 kHz
	DCR2	＋1．235 V	NA
Tolerance mode	1\％，5\％，10\％，20\％		
Ranging mode	Auto and manual		
Measurement rate	1 time／second，nominal		
Response time	Approximately 1 second／DUT（Device Under Test）		
Auto power－off	～0－99 mins without operation		
Power supply	Single standard 9 V battery（alkaline or carbon－zinc）or optional power adaptor		
Power consumption	225 mVA maximum without backlight		
Input protection fuse	Resettable over－current protection		
Battery life	16 hours based on alkaline battery		
Low battery indicator	$[\square]$ will appear when voltage drops below $\sim 7.2 \mathrm{~V}$		
Operating temperature	-10 to $55^{\circ} \mathrm{C}$		
Storage temperature	-20 to $70^{\circ} \mathrm{C}, 0$ to 80% R．H．without battery		
Temperature coefficient	$0.1 \times$（specified accuracy）$/{ }^{\circ} \mathrm{C}$（from -10 to $18{ }^{\circ} \mathrm{C}$ or 28 to $55^{\circ} \mathrm{C}$ ）		
Relative humidity	Maximum 80% R．H．for temperature up to $30^{\circ} \mathrm{C}$ decreasing linearly to 50% R．H．at $55^{\circ} \mathrm{C}$		
Weight	337 grams with battery		
Dimensions（ $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ ）	$184 \mathrm{~mm} \times 87 \mathrm{~mm} \times 41 \mathrm{~mm}$		
Safety and EMC Compliance	Refer to Declaration of Conformity for the latest revisions of regulatory compliance at： www．keysight．com／go／conformity In compliance with EN61010－1（IEC61010－1：2001）for low voltage directive and Pollution Degree II Environment． Susceptibility and Emissions（EMC）：Commercial Limits per EN61326－1 Note：If used in close proximity to an RF transmitter or when subjected to continuously present electromagnetic phenomena，some recoverable degradation of performance may occur．		
Calibration	One－year calibration cycle recommended		
Warranty	3 years for main unit 3 months for standard shipped accessories		
Notes： 1．Only applicable for U1732C／U1733C 2．Only applicable for U1733C			

Ordering Information

Standard shipped items
Standard U1731C, U1732C, and U1733C
ordering include:
• Certificate of Calibration (CoC)
• Alligator clip leads

- 9 V alkaline battery

