Keysight Technologies

Time-Saving Features in Economy Oscilloscopes Streamline Test

Application Note
Oscilloscopes are the go-to tool for debug and troubleshooting, whether you work in R&D, manufacturing or education. Like other electronic equipment, oscilloscopes are evolving to provide more capabilities at lower price points. In fact, some surprising features are available in models that cost just over $1,000—and these new capabilities can save you time and frustration no matter what your job is.

R&D:

Designers use oscilloscopes to debug, troubleshoot and characterize designs, from prototype through the initial production run. In addition to accurate waveform capture, they need advanced analysis features to find root causes of problems quickly and shorten time to market.

Manufacturing:

Oscilloscopes provide production engineers and technicians with repeatable pass-fail measurements and debug of products that don’t pass. They need easy operation and fast test, as well as waveform analysis to identify problems.

Education:

Educators use oscilloscopes to teach basic electronic principles and scientific measurements. Students need instruments that are easy to use, with connections to, or incorporation of signals, for analysis.

The list below shows the range of time-saving features available in today’s economy scopes. By learning more about these capabilities and their benefits, you can select those that will save the most time in your applications.

Time-Saving Features

- Integrated function generator
- Large display
- Extremely fast update rate
- Mixed analog and digital inputs (MSO)
- Upgradability
- Serial bus trigger and decode
- Other time-saving options
Integrated Function Generator

When you visit a typical engineer’s lab, you generally see several common instruments. First and foremost is the oscilloscope; second is the function generator. Unfortunately the function generator may be missing—perhaps a colleague borrowed it, the bench doesn’t have room for it or the budget didn’t allow it. If your oscilloscope had a built-in function generator, however, it would always be available to provide stimulus for your designs. Your colleague couldn’t borrow it, but you would save room on your bench and in your budget. Moreover you could set up your function generator using the same graphical user interface and display as your oscilloscope, as shown in Figure 1.

A built-in function generator not only is a huge time-saver for engineers, but it provides similar benefits for educators setting up a teaching lab. Equally valuable is a dedicated educators’ toolkit, such as the one offered for the Keysight Technologies, Inc. 2000 and 3000 X-Series scopes, that helps educators quickly create labs by supplying training signals for students to analyze.

Large Display

One of the first features evident in an oscilloscope is the display—both the size and crispness. A display large enough to simultaneously show your waveform and the math/measurements/analysis you are performing offers far more convenience: You won’t need to hide menus to see your waveform and then unhide them to see your measurements. In addition, the higher the resolution of the display, the easier it is to see critical information about your signal. For example, the 8.5” WVGA display in the Keysight 2000 and 3000 X-Series provides almost double the viewing area and five times the resolution of a typical 5.7” QVGA display (Figure 2).
Extremely Fast Update Rates

The old saying “ignorance is bliss” fails when an infrequent glitch keeps your design from working. Oscilloscopes are a critical tool for debugging and troubleshooting, and one with a fast update rate can expedite both. What is update rate? It determines how quickly the oscilloscope can trigger, process the information it has captured, display it and then re-arm to trigger again. The time between triggers is often called “dead time.” The faster the update rate (or the shorter the dead time), the more likely your scope is to capture infrequent events.

The fastest update rate available today is over 1,000,000 waveforms per second on Keysight’s 3000T and 4000 X-Series scopes, thanks to the included MegaZoom IV application-specific integrated circuit. The MegaZoom IV ASIC integrates several components that are handled separately in a typical oscilloscope, including the memory controller, acquisition memory, waveform plotter and display memory. Integrating these capabilities produces an oscilloscope that is faster than a typical analog oscilloscope, with the capabilities and features of a digital oscilloscope (Figures 3-4).

So how does a fast update rate save you time? What takes seconds to find using the 3000T or 4000 X-Series could take minutes—or even hours—on oscilloscopes with slower update rates. When you need to see exactly what is happening in your circuit, a fast update rate can ensure you don’t miss a critical event.

Discrete Scope Block Diagram

![Discrete Scope Block Diagram](image)

Typical update rate = 100/s to 1000/s

Figure 3: Traditional oscilloscope architectures use discrete components and place the CPU system in the display path of the waveform. Both of these combine to cripple update rate, often limiting it to just a few hundred waveform per second.

MegaZoom IV Scope Block Diagram

![MegaZoom IV Scope Block Diagram](image)

Figure 4: Keysight’s MegaZoom IV ASIC combines many of the traditional discrete blocks in to a single chip that speeds the signal path considerably. In addition, it removes the oscilloscope’s CPU system from the majority of operations accessing an update rate over 1 M waveforms per second (50,000 waveforms per second on 2000 X-Series).
Mixed Analog and Digital Inputs

Mixed-signal oscilloscopes combine traditional analog channels with 8 or 16 digital channels. An oscilloscope where those digital channels are integrated into the scope (instead of in a separate pod) can provide powerful triggering capabilities. An MSO could save you significant time in debugging a DDR interface, for example. Typical scopes do not have enough channels to trigger on a write or read, but an MSO can trigger on more than four channels to isolate writes from reads. Keysight’s 2000 X-Series family is the first to offer an integrated, upgradable, eight-channel MSO in an entry-level oscilloscope.

Upgradability

Although an oscilloscope is often a designer’s main tool, needs can change as a project evolves. Then the products your company manufactures may require test capabilities that your scope doesn’t offer. One way around this is to upgrade your current equipment, which typically costs far less than purchasing a new instrument.

Oscilloscopes like Keysight’s InfiniiVision X-Series allow you to add new applications, memory, digital channels, a function generator or even more bandwidth, all without replacing the instrument. This not only saves money, but time as well: Most of those upgrades can be handled with a license key, eliminating the need to get approval for a new capital expenditure or wait for a new piece of equipment to arrive.

Serial Bus Trigger and Decode

Oscilloscopes are first and foremost viewing tools, but over time they have evolved to be application-specific tools as well. An oscilloscope with a CAN trigger and decode option, for example, will actually decode the CAN bus to provide protocol-level information in addition to physical-layer waveforms, as Figure 5 illustrates. This can be significantly faster than counting 1’s and 0’s and trying to decode the bus yourself. In addition, the scope triggering is adapted to be “protocol aware,” which gives you the option of triggering on specific packet or frame information instead of using the scope’s standard triggering.

Figure 5: CAN bus triggering lets you decode a CAN bus and LIN bus, and simultaneously display packets time aligned in the lister.
Segmented Memory

Segmented memory saves time by letting you digitize only the information you want. This uses less memory and enables capture of a significantly larger amount of time at a higher sample rate, as shown in Figure 6. Segmented memory is ideal for capturing signals that have periods of burst data between long periods of idle time, including radar bursts and serial packets/frames.

Mask Testing

Mask testing is a valuable application that adds pass/fail testing to a scope’s traditional functions. Mask testing lets you capture a “golden” waveform and define tolerance limits to create a test envelope. Incoming signals are compared to the allowable tolerance range and flagged as pass or fail. You can then select the action the oscilloscope performs if it detects a violation of the mask. This alone saves time, but it becomes even more powerful if your oscilloscope can test against the mask very quickly, as shown in Figure 7. This helps ensure your customers receive higher quality products more quickly.

Other Time-Saving Options

Many other features available in scopes today can help you save time—even some you may not be familiar with yet. Some allow you to search through your data record for specific events; for example, with a Keysight 3000T, 4000 or 6000 X-Series scope you could identify all rise times less than 20 nS. And on all InfiniiVision X-Series oscilloscopes, you can set up the scope to automatically search and identify specific serial bus transactions and error conditions, such as RS232 parity errors.

Most oscilloscopes also have functions like high-resolution mode or averaging mode. Both of these modes let you effectively increase the resolution of your oscilloscope (up to 12 bits), which can reduce noise and produce a smoother image on the screen. Other tricks possible when working with a noisy signal include noise-reject mode and high-frequency reject. Noise reject adds hysteresis to the trigger circuit, making it less sensitive to noise (although it may require a greater amplitude waveform to trigger properly). High-frequency reject adds a 50 kHz low-pass filter in the trigger path to remove unwanted noise, such as AM or FM broadcast signals.

Another powerful feature that many scopes offer is a Fast Fourier Transform (FFT). FFT lets you to see the frequency content of the signal you are testing. This can be extremely useful when determining the cause of noise in a waveform, such as harmonic distortion, or fine-tuning a filter.

Bottom-Line Benefits of

No matter which area of engineering you work in, time is money. As we rely more and more on electronic products in our daily lives, the need to speed up test increases. The faster you can get products to market, the faster your company can turn a profit. Using the waveform capture, display and analysis capabilities available in typical economy scopes—coupled with the time-saving features discussed here—can help you get your job done more quickly, easily and profitably than ever.

Figure 6. Segmented memory captures 1000 signal bursts (more than 3.9 seconds of bursts at 2 GS/s). To capture 1000 bursts in a traditional oscilloscope at 2 GSa/s without segmented memory would require almost 8 G of scope memory.

Figure 7. In this example from a Keysight 3000 X-Series scope, 2.8 million mask tests were executed in a little over 10 seconds. During this time, 85 failures were noted, resulting in a 0.0030% failure rate.
Keysight Oscilloscopes

Multiple form factors from 20 MHz to >90 GHz | Industry leading specs | Powerful applications
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.