Keysight Technologies
Using PrecisionProbe Software on the Infiniium 9000 Series Oscilloscopes to Characterize and Correct for Probe Loss

Application Note
1.0 Introduction

Oscilloscope probes provide the vital link between an object to be measured and the oscilloscope. Because they are inherently lossy, probes influence both the accuracy of the measurement result and measurement repeatability. To compensate for the inherent loss, various techniques (e.g., probe correction via digital signal processing (DSP) or use of higher bandwidth probe heads) have been employed with mixed results. Over the last few years, waveform transformation software has made it possible to minimize the errors caused by the probing system, but the process is long and arduous. This application note introduces an easier and quicker solution for addressing the loss due to the probing system and its impact on oscilloscope measurements. The solution—the Keysight Technologies, Inc. PrecisionProbe software running on the Infiniium 9000 Series oscilloscopes—enables quick characterization of the entire probe system, making it increasingly more difficult for engineers to simply ignore the loss.
2.0 Understanding the Problem

When it comes to the probe system, engineers don't typically know how the link to the oscilloscope input impacts their measurement results, and that's the problem. At times, the probe's inherent loss and response variation can be substantial. In other cases, it may be just different enough from the other similar probes to cause measurement variation. Either way, the result is the same—inaccurate, non-repeatable measurements, which ultimately means more time debugging and slower times to market.

The goal of any measurement system is a flat frequency response, since the flatter the response, the more accurately the scope will depict the actual signal being probed. A flatter frequency response also means that measurements become more repeatable. Achieving a flat frequency response requires probe correction as probe hardware is not perfect and will have loss. Unfortunately, four key challenges work to complicate this process.

To better understand these challenges, it's important to first define the following terms:

- \(V_{\text{Src}} \) — The signal at the probe point before the probe is connected, which would be the signal at the probe point if an ideal probe with infinite input impedance were connected.
- \(V_{\text{in}} \) — As shown in Figure 2-1, \(V_{\text{in}} \) is the signal at the probe point while the signal is being loaded by the probe. Probe loading is caused by the input impedance of the probe making a voltage divider with the source impedance of the circuit being measured.
- \(V_{\text{Out}} \) — As shown in Figure 2-1, \(V_{\text{Out}} \) is the signal that is output from the probe.
- Voltage Transfer Function — The resulting response of the compensation of the probe.

2.1 Probed environment challenges

The four key challenges presented by the probed environment include:

2.2 Model-based correction

In an ideal world, probe compensation would be done for each individual probe, however due to time and file management this is not possible. Tips and probe head correction is typically based off a model, it does not accurately represent a specific probe employed. As an example, consider a probe amplifier. Oscilloscope vendors measure many probes and average all their characteristics to get a baseline probe characteristic that is converted into a characteristic file. Vendors use the file to create a model and ultimately, for probe compensation for all probe amplifiers. This same method is used for oscilloscope accessories.

One exception to the model-based compensation is the InfiniiMax III probe amplifier. With the introduction of the InfiniiMax III probe amplifier, Keysight now offers a better method. Instead of relying on model-based correction, each specific InfiniiMAX III probe amplifier is measured and the resulting S-parameter (the probe characteristic file) data stored on the amplifier. When the amplifier probe is plugged into the oscilloscope, the stored data is automatically downloaded. While the amplifier is no longer model based, all accessories and probe heads still use model-based characterization for their compensation.
2.3 Custom probes

Custom probes have no automatic vendor provided correction (in other words you get what the hardware gives you). An example of characteristics of one such custom probe is shown in Figure 2-2. As the graph illustrates, the response on this probe has a 3 dB down point at 4 GHz, even though the probe and scope are rated to 13 GHz.

2.4 Differing compensation techniques

Oscilloscope vendors employ different frequency response correction methods to account for probing. The two frequency response correction methods used to compensate for loss and nonlinearities are $V_{\text{Out}}/V_{\text{In}}$ and $V_{\text{Out}}/V_{\text{Src}}$ (Figure 2-3). Each method poses a number of pros and cons.

With the $V_{\text{Out}}/V_{\text{In}}$, the goal is for V_{Out} to equal V_{In}. In this case, the signal at the output of the probe offers an accurate representation of the signal that currently exists as it is being probed; it doesn’t hide the fact that the probe loaded the signal. This method is best used for receiver sensitivity.

With $V_{\text{Out}}/V_{\text{Src}}$, the goal is for V_{Out} to equal V_{Src}. When the system source impedance is known, this method more accurately depicts the signal before it was probed (V_{Src}). It is best used for transmitter test since it does an exceptional job of estimating the signal coming out of the transmitter. With receiver type testing, errors occur since the signal that is actually there while being probed isn’t shown. Additionally, it hides the effect that probe loading has on the signal being probed.

The graph in Figure 2-4 compares the two probe compensation methods ($V_{\text{out}}/V_{\text{src}}$ and $V_{\text{out}}/V_{\text{in}}$). Notice that while the $V_{\text{out}}/V_{\text{in}}$ correction accurately tracks with the cabled connection, the $V_{\text{out}}/V_{\text{src}}$ correction overemphasizes the rise time. The $V_{\text{out}}/V_{\text{in}}$ function is the definitive voltage transfer function of the probe, but it is not a function of the probe’s input impedance. The $V_{\text{out}}/V_{\text{src}}$ function is not the definitive voltage transfer function of the probe. Rather, it is a function of the probe’s input impedance and the source impedance of the system being probed.

Probe characteristics differ from one probe to the next. For example, an InfiniiMax II series probe amplifier with a browser will have a different voltage transfer function than an InfiniiMax III series probe amplifier with a browser. Two InfiniiMax II’s with an identical browser model number will not be identical in their characteristics. Even a task as simple as changing the span on a browser changes the entire probe’s voltage transfer function.
3.0 An Easier, More Accurate Solution

Realizing accurate, repeatable measurements in the presence of probe loss requires a solution that understands the characteristics of the probing system and is able to adequately compensate for any response nonlinearities caused by loss or phase nonlinearities. The recently introduced PrecisionProbe software running on the Infiniium 9000 Series oscilloscope (N2808A) offers just such a solution, enabling higher measurement accuracy and repeatability.

3.1 PrecisionProbe Software and the 9000 Series Oscilloscope

PrecisionProbe software quickly and easily characterizes and corrects the frequency response $(V_{\text{Out}}/V_{\text{In}})$ or $(V_{\text{Out}}/V_{\text{Src}})$ magnitude and phase of any probe and probe head combination using only the Infiniium 9000 Series oscilloscope (Figure 3-1), the individual probe and its accessories (meaning no more model-based inaccuracies). It also ensures that the frequency response is the same for every oscilloscope probe. In particular, it allows the engineer to:

- Measure the input impedance and response of any probe (gaining valuable insight),
- Quickly correct for probe loss (without extra instruments such as VNA or TDR),
- Correct probing issues such as phase nonlinearity, magnitude non-flatness, and see the effect of probe loading; and
- Quickly gain insight into the impedance/capacitance that defines the connection.

The software characterizes and corrects a probe by first measuring only a cabled connection and the E2655A desk fixture to create a baseline measurement. The probe is then added to the deskel fixed fixture and the characteristics of the system measured. The resulting S-parameter data is stored on the oscilloscope. When the probe is plugged into the oscilloscope, the stored data is automatically recalled. This simple method of measurement allows the PrecisionProbe software to measure V_{src} (the voltage at the DUT before the probe is connected), V_{in} (the voltage at the DUT with probe loading), and V_{out} (the voltage at the end of the probe).

Combining PrecisionProbe with the 9000 Series oscilloscope enables a number of key benefits. To begin with, every probe in the system can have the exact same response probe-to-probe without the inaccuracies that using one model can produce, as all probes are measured and compensated to the individual probe. Custom probes can now be properly characterized and unwanted loss and nonlinearities removed. Characterization of custom probes can now be done without needing a Vector Network Analyzer (VNA). Additionally, engineers can characterize their probing system and then immediately use the compensation in real time, without having to load more software.

When combining Infinimax probes with switches between the amplifier and the probe head, PrecisionProbe allows for full correction and automation of each probe’s path, including the switch. Full automation is then available to allow for quick swapping of the inputs with each input fully characterized and corrected. No longer does one need to worry about the path-to-path variation that can cause inaccuracies. In addition to increased measurement accuracy, such capabilities translate into a significant time and cost savings as accurately depicted measurements mean faster time to market.

Figure 3-1. The Infiniium 9000 Series scopes comprise three instruments in one: a scope, logic analyzer and protocol analyzer. It offers the same powerful features as any Infiniium oscilloscope, but is specifically engineered with a broad measurement capability in bandwidths up to 4 GHz and a 20 GSa/s sample rate to meet a full range of needs.
4.0 Probe Characterization: Final Results

With PrecisionProbe, engineers can choose to utilize either the \(V_{\text{Out}}/V_{\text{Src}} \) or \(V_{\text{Out}}/V_{\text{In}} \) method for probe correction. In the latter case, PrecisionProbe corrects the \(V_{\text{Out}}/V_{\text{In}} \) response to be flat with frequency and phase to the engineer’s defined bandwidth limit. Regardless of the chosen correction method, PrecisionProbe cannot correct the loading effects of the probe. Note that Keysight’s probe frequency response corrections are typically defined using \(V_{\text{Out}}/V_{\text{In}} \), which does not ignore probe loading.

The final result of a probe characterization using the \(V_{\text{Out}}/V_{\text{In}} \) method is shown in Figure 4-1. In this case, PrecisionProbe is used to correct “\(V_{\text{Out}} \) is directly on top of \(V_{\text{In}} \)” The corrected \(V_{\text{Out}}/V_{\text{In}} \) transfer function is indicated by the light blue line. Notice that the transfer function is now flat for the entire bandwidth of the probe. In addition, 6 dB of loss has been compensated.

5.0 Conclusion

Despite the absolute best efforts from oscilloscope vendors, probes are lossy and, as a result, can cause measurement errors. Over the last few years, waveform transformation software has made minimizing the errors possible; however until software/hardware was introduced on scopes it was still a long process. Scope vendors are now making probe correction much easier and making the decision to ignore the probe systems inherent loss much more difficult. Keysight’s PrecisionProbe software runs on the Infiniium 9000 Series oscilloscopes to provide a means for engineers to quickly and easily characterize and correct for the insertion loss caused by probing systems. Using PrecisionProbe, they can now further increase their margins without adding significant time or extra equipment, and also realize accurate and repeatable measurements.
Keysight Oscilloscopes

Multiple form factors from 20 MHz to > 90 GHz | Industry leading specs | Powerful applications
Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 988 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 509286
Spain 800 00154
Sweden 0200 682255
Switzerland 0800 80536
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001:2015 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2012 – 2018
Published in USA, March 1, 2018
5990-9465EN
www.keysight.com