Abstract

This application note provides an example of a LNBF test configuration using a CXA X-Series signal analyzer and illustrates how easy it is to perform tests and make measurements.
A low-noise block downconverter (LNB) is the receiving device of a parabolic satellite antenna; the antenna type commonly used for satellite TV reception. A LNB uses the superheterodyne principle to take a wide block (or band) of relatively high frequencies, such as C-band (3.4 to 4.2 GHz) or Ku-band (11.7 to 12.2 GHz), and amplifies and converts it to a low, intermediate frequency (IF) ranging from 950 to 2150 MHz.

The unit consisting of the feedhorn plus the converter is called the LNB-feedhorn (LNBF). LNBFs are used for a wide variety of applications, such as television and internet access. LNBFs are advantageous because they are cost-effective.

During the mass production of LNBF devices, a spectrum analyzer verifies the LNBF’s RF performance to ensure that the LNBF devices achieve customer requirements and work properly.

The Keysight Technologies, Inc. N9000A CXA signal analyzer is ideal for this application, providing a well-balanced choice between high throughput and low cost of ownership. Its excellent RF performance and robust measurement capabilities make it ideal for testing:

- Local oscillator’s frequency and power
- Channel gain flatness
- Noise figure

Overview
Typical LNBF Measurement Configuration

Figure 1 is a typical automatic test system configuration for LNBF RF performance testing.

Figure 1. Typical LNBF test system block diagram

1. An RF signal generator is used for RF-TO-IF isolation.
The CXA signal analyzer plays a pivotal role in maximizing throughput for LNBF products because of its fast measurement speed, rich measurement capabilities, and flexible programmability. Some of its key attributes include:

- 9 kHz to 3.0 or 7.5 GHz frequency range covers LNB IF range
- ± 0.5 dB amplitude accuracy ensures accurate measurement results
- W9069A noise figure measurement application makes measurement easy
- Fast measurement speed maximizes productivity
- LAN/USB/GPIB connections provide adequate remote control interfaces and optimum flexibility to expand an automated test system
- SCPI command compatibility with the Keysight ESA Series spectrum analyzers offers an easy migration path to a new generation test platform

Table 1. Summarizes the equipment’s role in the automated system and suggests suitable Keysight products

<table>
<thead>
<tr>
<th>Device</th>
<th>Purpose</th>
<th>Keysight solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF spectrum analyzer with:</td>
<td>Measures the DUT’s RF specifications</td>
<td>N9000A CXA signal analyzer:</td>
</tr>
<tr>
<td>- GPIB interface</td>
<td></td>
<td>- Option 503 or 507:</td>
</tr>
<tr>
<td>- USB</td>
<td></td>
<td>- Frequency range, 9 kHz to 3 or 7.5 GHz</td>
</tr>
<tr>
<td>- LAN</td>
<td></td>
<td>- Option P03 or P07:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Preamplifier, 3 or 7.5 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- W9069A-1FP:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Noise figure measurement application</td>
</tr>
<tr>
<td>Switch matrix</td>
<td>Provides switch signal pathway</td>
<td>Keysight multiport coaxial switch</td>
</tr>
<tr>
<td>Computer</td>
<td>Runs software</td>
<td>N/A</td>
</tr>
<tr>
<td>Main control unit</td>
<td>Controls test fixture, signal pathway, and other</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>parameters</td>
<td></td>
</tr>
<tr>
<td>Test fixture</td>
<td>Makes testing easier</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The CXA signal analyzer plays a pivotal role in maximizing throughput for LNBF products because of its fast measurement speed, rich measurement capabilities, and flexible programmability. Some of its key attributes include:
Local Oscillator Frequency and Power Measurement

In order to receive and demodulate the satellite’s signal, the LNBF’s local oscillator (LO) must work at the correct frequency and appropriate power.

To implement the manual LO frequency and power measurements, set up the CXA signal analyzer as follows:

Note: Key names surrounded by [] indicate hardkeys located on the front panel, while key names surrounded by { } indicate softkeys located on the right of the display

1) Set center frequency: Press [FREQ Channel] > [1.7905] > {GHz}
2) Set span: Press [SPAN] > [10] > {MHz}
3) Set reference level: Press [AMPTD Y Scale] > [10] > {–dBm}
4) Set RBW: Press [BW] > [100] > {kHz}
5) Set peak marker and read the result: Press [Peak Search]. The result appears on the upper right of the display screen, as shown as Figure 2.

If a manual test system is being used, there are two alternatives for making LO frequency and power measurements.

1. Using the Auto Tune function press [Frequency] > {Auto Tune}. The CXA will automatically find the signal and make the measurement.
2. Using the User State Register, perform Steps 1 through 5 mentioned previously
 a. Press [Save] > {State}
 b. Choose one of the six registers to save the setup
 c. To repeat the measurement, press [Recall] > {State} to recall the previously saved states.

The User State Register function can be used for most manual measurements.
The signal received by the LNBF is typically a wide band signal so the LNBF’s channel gain flatness is very important. If the channel gain flatness of the LNBF does not meet the requirement, it will impair the signal and degrade the signal quality, making demodulation more difficult.

To measure channel gain flatness, use the CXA signal analyzer as follows:

1) Set center frequency: Press [FREQ Channel] > [1.79] > GHz
2) Set span: Press [SPAN] > [60] > MHz
3) Set reference level and scale/div:
 Press [AMPTD Y Scale] > [33] > –dBm > (Scale/Div) > [2] > dB
5) Use peak-to-peak search to achieve the maximum delta power in the band: Press [Peak Search] > {More ½} > {Pk-Pk Search}

Figure 3. Channel gain flatness
Noise Figure Measurement

Noise figure and gain are key specifications because they define the LNBF’s sensitivity. The CXA signal analyzer equipped with the W9069A noise figure measurement application provides noise figure and gain measurement capabilities. Because the noise source’s excess noise ratio (ENR) determines the noise figure’s range, using a low ENR noise source such as the Keysight N4000A smart noise source (4.6 to 6.5 dB) or 346A traditional noise source (5 to 7 dB) is recommended.

For detailed manual measurement procedures, refer to the Keysight N9069A and W9069A Noise Figure X-Series Measurement Application Self-Guided Demonstration, literature number 5990-9835EN.

To learn more about noise figure measurements, visit www.keysight.com/find/w9069a.

Conclusion

A test configuration for LNBF using the CXA signal analyzer with other Keysight products provides the measurement capabilities necessary to ensure product quality. The affordably-priced, easy-to-use test equipment provides accurate, repeatable results with the speed and performance required in your manual or automated test environment.
AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty

Keysight’s commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

Keysight Channel Partners

Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.