Resistance measurement is one of the most commonly performed tests to characterize electrical device properties. However, very small resistance measurements require a very precise, low-level current source to prevent device self-heating or device damage during testing.

There are many factors that need to be considered when making precise low resistance measurements:
- The 4-wire (Kelvin) measurement technique must be used to remove lead and contact resistance.
- A current source and a voltage meter with both low noise and high accuracy are required.
- Test currents must be large enough to generate sufficient voltage drop across the test resistance such that it is measurable within the test equipment’s resolution limits.
- Self-heating effects caused by power dissipation need to be minimized.
- Special measurement technique must be used to eliminate offset currents (zeroing) and to reduce the thermal electromotive force (EMF) by alternating the current direction.
- The current source and the voltage meter must be synchronized to avoid measurement error caused by source settling time.

Determining the appropriate test current is not trivial because while a larger test current gives you better measurement resolution, it also increases power dissipation and self-heating effects. This application note describes how to find the optimal test current for precise low resistance measurement using the Keysight Technologies, Inc. B2961A 6.5 Digit Low Noise Power Source in conjunction with the Keysight 34420A 7 ½ Digit Nano Volt / Micro Ohm Meter.
Keysight B2961A/62A Low Noise Power Source

The B2961A/B2962A, a member of the Keysight B2900A Series of precision instruments, is an advanced power supply/source. It can source either voltage or current with 6.5 digits of resolution while also monitoring both voltage and current, which is essential for a variety of measurement applications (please see Figure 1).

The B2961A/B2962A possesses an intuitive graphical user interface (GUI), and it can also be controlled using free PC-based application software from Keysight. This makes it easy to begin making productive measurements immediately.

The B2961A/B2962A is a bipolar source that supports 4-quadrant operation, so the voltage and current polarities can be either positive or negative. It can source currents from 10 fA to 3 A (DC) or 10.5 A (pulsed), and voltages from 100 nV to 210 V (please see Figure 2).

In addition to the basic sourcing capabilities described above, the B2961A/B2962A also has advanced features that permit more complex testing and evaluation. These include arbitrary waveform generation, programmable output resistance function and a time domain voltage/current waveform viewer. Therefore, the B2961A/B2962A satisfies all of the requirements for precise low resistance measurement when used in combination with the Keysight 34420A.

![Figure 1. The B2961A/B2962A can source either voltage or current with 6.5 digits of resolution](image1)

![Figure 2. Broad bipolar and current ranges (4-quadrant operation)](image2)
Measurement System Diagram

The combination of the B2961A and 34420A provides superior performance for low resistance measurement. In the resistance measurement scheme shown in Figure 3, the 34420A performs the voltage measurement while the B2961A sources a precise current. In this setup the B2961A acts as the master and makes measurements at programmed intervals while simultaneously sending trigger signals to the 34420A to perform voltage measurements.

The 34420A can measure resistance without other instrumentation. Its minimum resistance range is 1 Ω and its maximum output current is 10 mA. However, the B2961A can force currents of up to 3 A, making it possible to perform measurements with resolution 300 times higher as compared with the case of the standalone 34420A. In addition, using the B2961A’s list sweep mode it is possible to generate alternating polarity test currents to suppress the effects of thermal electromotive force (EMF). This is important when measuring small resistances since errors due to offset voltages and EMF can significantly affect measurement accuracy (please see Figure 4a).

The following equation shows the impact of these errors on a resistance measurement made by forcing current and measuring voltage:

\[R_{\text{Meas}} = \frac{V_{\text{Meas}}}{I_{\text{Src}}} = \frac{V_{\text{DUT}}}{I_{\text{Src}}} + \frac{V_{\text{Error}}}{I_{\text{Src}}} = R_{\text{DUT}} + R_{\text{Error}} \]

This error can be eliminated by applying both forward and reverse currents \(I_{\text{Src}} \) and \(-I_{\text{Src}} \) and averaging the two voltage measurement results (please see Figure 4b). The following equation shows how to use these two measurement results to calculate the true value of the resistance:

\[R_{\text{Meas}} = \frac{V_{1} - V_{2}}{2 \times I_{\text{Src}}} = R_{\text{DUT}} + R_{\text{Error}} \]
Measurement Example

A measurement example is shown using a 10 mΩ metal foil resistor, which exhibits a very small EMF. The measurement results are shown in Figures 5, 6 and 7.

The 34420A can measure the resistance using its internal 10 mA current source (with offset compensation) without using the B2961A (please see Figure 5). As Figure 5 shows, the data fluctuations due to electrical noise can be seen in the measurement results using a 10 power line cycle (PLC) aperture time (in other words, integration time). Although it is reduced by increasing the aperture time to 100 PLC, this makes the measurement time unacceptably long (about 8 s/point with auto compensation enabled).

On the other hand, the data fluctuations using a 10 mA current supplied by the B2961A using a 10 PLC aperture time is less than that observed using the 34420A’s internal 10 mA current source due to the B2961A’s low noise current sourcing ability (please see Figure 6).

Moreover, if the current from the B2961A is increased to 100 mA then very stable measurements can be achieved with a 10 PLC aperture time. This enables the measurement time to be kept to less than 1 s/point (please see Figure 7). As this example has shown, the combination of the B2961A and 34420A enables you to get better resistance measurement results while minimizing measurement time.
Methodology to determine the optimal test current

As discussed earlier, determining the appropriate test current is not trivial because while a larger test current provides better resolution, it also increases device self-heating.

The following example describes the procedure to determine the optimal current to achieve stable measurement results. First, sampling measurements are made using the B2961A under the following conditions:

- Aperture time: 10 PLC
- Measurement Interval: 1 s
- Test current: 10 mA, 100 mA, 500 mA, 1 A and 3 A

Measurement results are shown in Figure 8.

The minimum power dissipation is 1 mW with a test current of 10 mA, and the maximum power dissipation is 90 mW with a 3 A test current. As Figure 8 shows, the 10 mA test current result exhibits large fluctuations that prevent accurate characterization, while the other test current values display low enough noise levels to permit device evaluation. However, the test currents of 1 A and 3 A create enough device self-heating to cause the measurement curves to shift over time. After some thought, it appears that a test current of about 500 mA is appropriate for this measurement and that it strikes a good balance between measurement resolution and heat effects caused by power dissipation.

Sample Measurement Program

As this example shows, the most efficient way to determine the appropriate test current is to start with a small test current and gradually increase it until the noise level is acceptable and yet small enough to minimize heating effects caused by power dissipation. In this example, a 500 mA test current was determined to be the best value to balance measurement resolution requirements with power dissipation induced heating effects.
Evolving Since 1939
Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/precisionSOURCE

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805369
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System