The W1919 Global Navigation Satellite System (GNSS) Baseband Verification Library is an optional add-on library for SystemVue. It provides end-to-end simulation modeling for GPS satellite navigation systems, with additional modulation-only sources for Galileo, GLONASS and Beidou (Compass) systems. The library provides reference designs for GPS transmitters and receivers, and a satellite channel model with troposphere, ionosphere and multi-path effects, enabling users to simulate receiver performance with baseband and RF impairments. Full multi-satellite scenarios are also provided to simulate system performance in realistic satellite environments given the receiver location, trajectory, date, and time.
Who Should Use the W1919?

System-level architects, baseband algorithm designers and RF component designers can use the W1919 GNSS library to perform early system validation, with or without working baseband or RF hardware. SystemVue is also scriptable, linkable to other platforms and connects to high-performance test equipment, providing both flexibility and consistency across the full product lifecycle.

The W1919 GNSS library is intended for use in early R&D, academic research and aerospace/defense systems to explore algorithm and system robustness in deep margin and interference situations. It also provides a convenient modeling platform for customer applications and emerging worldwide GNSS standards.

What Can You Do With the SystemVue GNSS Library?

With the SystemVue GNSS library, users can simulate satellite navigation system performance (including baseband TX/RX algorithms and RF impairments) in single-satellite and multi-satellite scenarios.

- **Baseband modeling**
 Replace algorithms in the Keysight W1919 GNSS reference design with your own custom algorithms in C++, MATLAB, or HDL formats, or use graphically-defined schematics. SystemVue also integrates directly with your existing MATLAB, for Intellectual Property (IP) compatibility and portability.

- **System modeling**
 Evaluate algorithms under user-defined fading, noisy, interference, jamming, and deep-margin conditions, and include RF impairments.

- **Research and emerging standards**
 Add military, emerging standards or custom encoding/decoding to extend beyond the commercially-available "GPS L1" signal formats and standards. Precisely probe inside the open block diagrams or simply self-educate on the latest GNSS standards.

- **Custom testing**
 Download custom wideband waveforms, multi-standard signals, interference, and impairments to test and measurement equipment. (SystemVue for static waveform generation is limited mainly by the AWG memory depth of the signal source.)

- **RF component evaluation**
 SystemVue's GNSS library fills the gaps for RFIC/RF module designers who want to assess system-level performance based on simulated or tested analog designs. SystemVue can interact with the Keysight ADS and GoldenGate RF EDA simulators, with X-parameters* and more.

1. SystemVue can also be customized to integrate with the STK 10 inertial and terrain modeling software from Analytical Graphics, Inc. (AGI). Please contact your local EEsof EDA Consulting Services representative about integrating SystemVue with STK (depending on local availability and export restrictions).
Figure 1. The W1919 GNSS library can be used to create GPS or Beidou2 signals with full multi-satellite constellation and fading, ground receiver trajectories and a reference receiver. Substitute your MATLAB/C++ algorithms, RF impairments and interference, or download to test equipment to validate GNSS satellites or receivers.

Figure 2. The W1919 GNSS library is used here to simulate receiver tracking performance as it acquires a satellite signal, overcomes its Doppler shift and outputs raw navigation data.
Uncoded GNSS Modulation Formats Supported as Sources

<table>
<thead>
<tr>
<th>System</th>
<th>Carrier (MHz)</th>
<th>Signal</th>
<th>Type</th>
<th>Modulation</th>
<th>Chipping rate</th>
<th>Code length</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>L1 1575.42</td>
<td>C/A</td>
<td>Data</td>
<td>BPSK</td>
<td>1.023 Mcps</td>
<td>1023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>Military</td>
<td>BPSK</td>
<td>10.23 Mcps</td>
<td>For 7 days</td>
</tr>
<tr>
<td></td>
<td>L2 1227.6</td>
<td>C/A</td>
<td>Data</td>
<td>BPSK</td>
<td>1.023 Mcps</td>
<td>1023</td>
</tr>
<tr>
<td></td>
<td>L5 1176.45</td>
<td>I</td>
<td>Data</td>
<td>QPSK</td>
<td>10.23 Mcps</td>
<td>10230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q</td>
<td>Pilot</td>
<td>BPSK</td>
<td>10.23 Mcps</td>
<td>10230</td>
</tr>
<tr>
<td></td>
<td>L1C 1575.42</td>
<td>L1CD</td>
<td>Data</td>
<td>BOC(1,1)</td>
<td>1.023 Mcps</td>
<td>10230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L1CP</td>
<td>Pilot</td>
<td>TM and BPSK</td>
<td>10.23 Mcps</td>
<td>10230</td>
</tr>
<tr>
<td></td>
<td>L2C 1227.6</td>
<td>L2CM</td>
<td>Data</td>
<td>TM and BPSK</td>
<td>0.5115 Mcps</td>
<td>10230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2CL</td>
<td>Pilot</td>
<td>BPSK</td>
<td>0.5115 Mcps</td>
<td>767250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>Military</td>
<td>BPSK</td>
<td>10.23 Mcps</td>
<td>For 7 days</td>
</tr>
<tr>
<td>Galileo</td>
<td>E1 1575.42</td>
<td>B</td>
<td>Data</td>
<td>CBOC</td>
<td>1.023 Mcps</td>
<td>4092</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>Pilot</td>
<td>CBOC</td>
<td>1.023 Mcps</td>
<td>4092*25</td>
</tr>
<tr>
<td></td>
<td>E5 1191.795</td>
<td>a-i</td>
<td>Data</td>
<td>AltBOC</td>
<td>10.23 Mcps</td>
<td>10230*20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a-Q</td>
<td>Pilot</td>
<td>(15, 10)</td>
<td>10.23 Mcps</td>
<td>10230*100</td>
</tr>
<tr>
<td></td>
<td>a: 1176.450</td>
<td>b-i</td>
<td>Data</td>
<td></td>
<td>10.23 Mcps</td>
<td>10230*4</td>
</tr>
<tr>
<td></td>
<td>b: 1207.140</td>
<td>b-Q</td>
<td>Pilot</td>
<td></td>
<td>10.23 Mcps</td>
<td>10230*100</td>
</tr>
<tr>
<td>GLONASS</td>
<td>L1 1602.0+kΔf, k=-7,...,6</td>
<td>C/A</td>
<td>Data</td>
<td>BPSK (not CDMA)</td>
<td>0.511 Mcps</td>
<td>10220</td>
</tr>
<tr>
<td>Beidou</td>
<td>B1 1561.098</td>
<td>C/A</td>
<td>Data</td>
<td>BPSK</td>
<td>2.046 Mcps</td>
<td>2046</td>
</tr>
</tbody>
</table>

Figure 3. The SystemVue W1919 GNSS library supports a variety of uncoded modulation formats as signal sources for the major worldwide satellite navigation standards.

GNSS Transmit-Receive Scenarios Supported

<table>
<thead>
<tr>
<th>GNSS</th>
<th>TX Modulated signal</th>
<th>TX Scenario</th>
<th>RX</th>
<th>RX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constellation</td>
<td>Doppler</td>
<td>Losphere/ troposphere</td>
<td>Multi-path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>L1 C/A; L1C, L2, L2C, L5 examples</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (user-defined)</td>
</tr>
<tr>
<td>Beidou2</td>
<td>B1I</td>
<td>Yes: GEO/IGSO/ MEO</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 4. For GPS L1 C/A and Beidou2 B1I systems, the W1919 provides a working reference design with a coded source, multi-satellite scenarios, propagation, and a reference receiver. This enables end-to-end system-level simulations of Latitude/Longitude/Altitude (LLA) position uncertainty. The open block diagram allows user IP, RF models, and impairments to be added, or used simply for parameterized test vector generation.
Configuration

The W1919 GNSS Baseband Verification Library can be added as an option to any W146x-series SystemVue environment or bundle.

The W1919 can be combined with other libraries such as the W1917 WLAN, W1918 LTE-Advanced or W1905 Radar libraries, which can provide additional sources of interference and signal complexity.

The W1719 RF System Design Kit is recommended for including analog/RF effects in the RF receiver design, including X-parameters, phase noise and other factors that affect receiver performance. The W1464 RF System Architect environment includes the W1719 and can be used as the base platform, instead of the W1461 SystemVue Comms Architect.
Download your next insight

Keysight software is downloadable expertise. From first simulation through first customer shipment, we deliver the tools your team needs to accelerate from data to information to actionable insight.

- Electronic design automation (EDA) software
- Application software
- Programming environments
- Productivity software

Learn more at
www.keysight.com/find/software

Start with a 30-day free trial.
www.keysight.com/find/free_trials

Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

* X-parameters is a trademark and registered trademark of Keysight Technologies in the US, EU, JP, and elsewhere. The X-parameters format and underlying equations are open and documented. For more information, visit http://www.keysight.com/find/eesof-x-parameters-info.

www.keysight.com/find/eesof-systemvue-gnss-library
www.keysight.com/find/eesof-systemvue-videos
www.keysight.com/find/eesof-systemvue-evaluation

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8000 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-B-20-17)

This information is subject to change without notice.
© Keysight Technologies, 2013 – 2017
Published in USA, June 7, 2017
5991-2203EN
www.keysight.com